Badarinath Kalkunte1, Vlastimil Kolda2, Ole Koserl, Jurgen Ruckert3, Peter Ubl3 1Calcom ESI SA 2Mecas ESI s.r.o, Czech Republic / Češka Republika 3PSE-A - EPFL Nov pristop k virtualnemu preizkušanju razkalupljanja ulitkov iz kokil Novel Modelling Approach to Virtually Test the Part Ejection in Die Castings 1 Uvod Pomemben korak v visokotlačnem litju (HPDC - High Pressure Die Casting) magnezija je izmet ulitka. Zaradi strjevanja in ohlajanja se ulitek nakrči na orodje. Za uspešno spopadanje s takšnimi močnimi silami in ločevanje dela ulitka od kokile se uporabljajo izmetači, s katerimi ulitek potisnemo iz kokile. Običajno je število izmetačev preveliko. To je posledica dejstva, da je brez preizkusa trenutno težko oceniti, ali je mogoče nek del razkalupiti tudi z zmanjšanim številom izmetačev. Zmanjšanje števila izmetačev bi znižalo proizvodne stroške ter proizvajalcem orodij omogočilo več svobode pri izdelavi hladilnih kanalov, saj ti zasedajo isti prostor kot izmetači. V tem članku je predstavljen nov pristop modeliranja razkalupljanja delov izmeta ulitkov v virtualnem okolju. Ta pristop predstavlja simulacijska veriga, sestavljena iz dveh korakov. Prvi korak je izvedba večfizikalnega modela procesa litja, ki upošteva vidike pretoka ter termičnih in mehanskih lastnosti. Namen takšne simulacije je napovedati obremenitve v tistih delih ulitka, s katerimi je pritrjen na kokilo. Takšna porazdelitev obremenitve je začetno stanje drugega koraka, ki predstavlja modeliranje procesa razkalupljanja in upošteva vse učinke trenja. Rezultati modeliranja zagotavljajo informacije o tem, 1 Introduction One important process step in Magnesium HPDC (High Pressure Die Casting) is the ejection of part from the mould. Due to solidification and cooling down the part shrinks onto the mould. To over-come the strong forces that hold the part on the mould, ejection pins are used that push the part out-side. Often the number of ejection pins is exaggerated since it is currently difficult to estimate if a reduced number could already be sufficient to eject the part without actually trying it. Reducing the number of ejection pins would decrease production costs and also give more flexibility to the mould maker to set cooling channels since these are occupying the same design space as the ejection pins. This article presents a novel modelling approach to virtually test the part ejection. The approach is a simulation chain built of two steps. In the first step a multi-physic modelling of the casting process, taking into account flow, thermal and mechanical aspects, is performed. Target of this simulation is to predict the stresses in the part that fix the part to the mould. This stress distribution is used as the initial state for the second part which represents the modelling of the ejection process taking into account all friction effects. Outcome of the modelling provides information if the stresses in the part during ejection will remain in the elastic Livarski vestnik, letnik 64, št. 1/2017 29 ali obremenitve v ulitku med razkalupljanjem še vedno delujejo v elastičnem razponu oziroma ali obstajajo področja, kjer prihaja do plastične deformacije, kar bi pomenilo, da postopkovni parametri niso ustrezno nastavljeni. Uporaba takšnih metod omogoča virtualno preizkušanje različnih porazdelitev in nastavitev izmetačev. Ta članek je sestavljen, kot sledi: prvi del opisuje pristop k rešitvi vprašanja skozi modeliranje. Med drugim opisuje lastnosti materiala, robne pogoje in druge informacije, nujne za modeliranje. Ta okvir bo nato prenesen na konceptualni primer, na podlagi katerega nameravamo prikazati dosledno vedenje modela. Pridobljene rezultate bomo podrobno obrazložili. V zadnjem delu bo model uporabljen na dejanskem industrijskem primeru. 2 Opis glavnega pristopa k modeliranju Modeliranje je razdeljeno na dva dela. Prvi del je simulacija procesa visokotlačnega litja (HPDC - High Pressure Die Casting). Modeliranje je sestavljeno iz polnjenja kokile s tekočim magnezijem, strjevanja, ohlajanja ter krčenja ulitka v kokili. Z vidika reševalnika to ustreza hkratnemu izračunu temperatur, pretoka in napetosti. Modeliranje je bilo izvedeno s svežnjem programske opreme za simuliranje industrijskega ulivanja ProCAST [1]. Simulacija poteka do trenutka razkalupljanja ulitka. Stanje obremenitve v tem trenutku se izvozi (Slika 1) ter uporabi za mehansko modeliranje faze razkalupljanja. Namen tega modeliranja je raziskati, kakšne obremenitve nastajajo (ob upoštevanju učinkov trenja), ko izmetači ulitek potiskajo iz kokile. Ta del modeliranja smo opravili z mehanskim reševalnikom programske opreme za modeliranje VPS [2]. range or if there are regions where plastic deformation occurs, which would indicate that the process parameters are not set well. Using this methodology will enable the virtual testing of different distribution and settings of ejections pins. The article is structured in the following way. First the principle approach to solve the problem by modelling will be described. The details include material properties, boundary conditions and other information that are used by the modelling. This framework will then be applied on a conceptual case to show that the model is behaving in a consistent way. The obtained results of this case will be explained in detail. In the last section, the modelling will be applied on an industrial case. 2 Description of the Principle Modelling Approach The modelling is divided in two parts. The first part is a process simulation of the HPDC (High-Pressure-Die-Casting) process. Content of the modelling is the filling of the liquid Magnesium in the metallic die, the solidification, cooling down and how the part is thereby shrinking onto the die. From the point of view of the solver this is corresponding to a coupled thermal, flow and stress cal-culation. The modelling is performed with the industrial casting simulation software package Pro-CAST [1]. The modelling is performed until the moment of part ejection. The stress state in this situation is exported (Figure 1) in order to initialize a mechanical modelling of the ejection phase. Content of this modelling is to investigate what kind of stresses will occur when the ejection pins are moving the part outside the die taking into account friction effects. This part of the modelling is performed with the mechanical solver from VPS [2]. 18 Livarski vestnik, letnik 64, št. 1/2017 29 Slika 1: Diagram modeliranja Figure 1: Modelling schema 3 Nastavitve modeliranja Modeliranje je zajemalo določanje mehanskih lastnosti ter robnih in začetnih pogojev. Lastnosti materiala zajemajo toplotne in mehanske vidike. Na Sliki 2 so prikazane glavne toplotne lastnosti, 3 Modelling Setup The modelling setup is consisting of setting the material properties, boundary conditions and initial conditions. The material properties are consisting of thermal and mechanical aspects. Figure 2 shows the main thermal T«np««U.l H.rt HIM CcnlK,_rK[a_fnqrrtmlfkH r trenja 0,5 je rahlo večja od pričakovanj v primerjavi s trenjem 0,2 (če bi pričakovali, da drži načelo sorazmernosti). Razlikuje se tudi oblika krivulj. Videti je, da se pri nižjem trenju razkalupljanje zgodi v dveh korakih (ulitek verjetno najprej izgubi stik z enim mestom in nato še z drugim), v drugem primeru pa izmetavanje sestavlja zgolj en korak. In the case of a fc (friction coefficient) of 0.5 the maximum total force is around 160 kN, while in the case of a fc = 0.2 an ejection force of around 50 kN can be observed. From the modelling, it appears that the total force shows not a complete linear behavior. The force in the case of 0.5 fric-tion coefficient is slightly higher than expected comparing to the case of a friction coefficient of 0.2 (if one would expect a proportional law). Also, the 26 Livarski vestnik, letnik 64, št. 1/2017 29 Slika 13: Obremenitev presečne ravnine med razkalupljanjem Figure 13: Stress in a cutting plane during ejection Naš pristop omogoča podrobno proučitev faze razkalupljanja. Slika 13 prikazuje obremenitve presečne ravnine med razkalupljanjem. Slika zgoraj prikazuje obremenitve pred razkalupljanjem. Pomniti je treba, da je kokila v trenutnem modelu toga, zato je vrednost obremenitev enaka nič. Ko izmetači izmečejo ulitek, pride na mestu stika do velikih obremenitev. Obremenitve so višje, kadar so mesta stika velika (srednji del Slike 13), oz. se zmanjšujejo z razkalupljanjem ulitka iz kokile (Slika 13 spodaj). Čeprav so rezultati v industrijskih primerih dosledni s spremembami parametrov modela, jih je mogoče nadalje potrditi zgolj skozi primerjavo z rezultati drugih poskusov. S tem vprašanjem se nameravamo spopadati v prihodnosti. 6 Sklepi in nadaljnji koraki V tem prispevku je predstavljen nov pristop k modeliranju faze razkalupljanja pri tlačnem litju. Na podlagi simulacije procesa shape of the curves is different. It seems that in the case of lower friction the ejection is done in two steps (the part is probably loosing contact first in one area and then in another) while in the second case the ejection is done at once. The approach is enabling to look at the ejection phase in all details. Figure 13 shows in this context the stresses in a cutting planning during ejection. The top slide shows the stresses before ejection. To be noted that in the current modelling the die is regarded as rigid and therefore the stresses are zero. When the part is ejected by the pins high stresses can be observed in the contact area. The stresses are higher when the contact areas are still large (Figure 13 middle part) and decrease further when the part is more and more moved out (Figure 13 bottom). While the results of the industrial case are consistent to parameter changes of the model, a further validation can only be achieved by a comparison to experimental results. This will be addressed in the future. Livarski vestnik, letnik 64, št. 1/2017 29 litja, vključno z vidiki termike, pretoka in obremenitev, je osnovan model obremenitve v trenutku razkalupljanja. Takšen model je nato obdelan v mehanski analizi, v sklopu katere napovemo mehanske sile v fazi razkalupljanja. Raziskave študije primera so pokazale, da so izsledki glede vpliva oblike, trenja in nastavitev izmetačev dosledni. Aplikacijanaindustrijskemprimerudokazuje, da je mogoče z vidika kompleksnosti oblike takšen pristop uporabiti tudi v dejanskih industrijskih procesih. Naslednji korak raziskav bo potrditev rezultatov poskusa z namenom umeritve koeficientov trenja, ki bi lahko ustrezali dejanskemu industrijskemu okolju. Po pridobitvi rezultatov se bo pristop uporabil za optimizacijo samega procesa, npr. skozi zmanjšanje števila izmetačev. 6 Conclusions and Next Steps The article shows a new approach to model the ejection phase in HPDC. Based on process simula-tion of the casting process including thermal, flow and stress aspects the stress state at the moment of ejection is modelled. This state is further processed with a mechanical analysis in order to predict the mechanical forces during the ejection phase. Investigations of a conceptual case show that the results behave in a consistent manner concerning the influence of casting geometry, friction and ejection pin settings. The application on an industrial example shows that this approach can also be applied on a real industrial process in term of complexity of the geometry. Next step of the investigations will be the validation by experimental results in order to further cali-brate the friction coefficients valid in a real industrial environment. Once such results are available the approach will be used to optimize the process itself for example by reducing the number of ejection pins. Viri / References [1] https://www.esi-group.com/software-services/virtual-manufacturing/casting/procast-quikcast [2] http://www.esi-group.com/software-services/virtual- PERFORMANCE/VIRTUAL-PERFORMANCE-SOLUTION [3] UPORABNIŠKI PRIROČNIK, MODEL OBREMENITVE IN LASTNOSTI PROCAST