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Abstract

In this paper, we define the 4-girth-thickness 6(4,G) of a graph G as the minimum
number of planar subgraphs of girth at least 4 whose union is G. We prove that the 4-
girth-thickness of an arbitrary complete graph K,,, (4, Ky,), is [2+2] for n # 6,10 and
0(4, Kg) = 3.
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1 Introduction

A finite graph G is planar if it can be embedded in the plane without any two of its edges
crossing. A planar graph of order n and girth g has size at most g%z(n — 2) (see [6]),
and an acyclic graph of order n has size at most n — 1, in this case, we define its girth as
00. The thickness (G) of a graph G is the minimum number of planar subgraphs whose
union is G} i.e. the minimum number of planar subgraphs into which the edges of G can
be partitioned.

The thickness was introduced by Tutte [11] in 1963. Since then, exact results have been
obtained when G is a complete graph [1, 3, 4], a complete multipartite graph [5, 12, 13] or
a hypercube [9]. Also, some generalizations of the thickness for the complete graph K,
have been studied such that the outerthickness 6,, defined similarly but with outerplanar
instead of planar [8], and the S-thickness g, considering the thickness on a surfaces S
instead of the plane [2]. See also the survey [10].

We define the g-girth-thickness 6(g, G) of a graph G as the minimum number of planar
subgraphs of girth at least g whose union is G. Note that the 3-girth-thickness 6(3, G) is
the usual thickness and the oo-girth-thickness 0(co, G) is the arboricity number, i.e. the
minimum number of acyclic subgraphs into which F(G) can be partitioned. In this paper,
we obtain the 4-girth-thickness of an arbitrary complete graph of order n # 10.
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2 The exact value of 6(4, K,,) for n # 10

Since the complete graph K, has size (g) and a planar graph of order n and girth at least
4 has size at most 2(n — 2) for n > 3 and n — 1 for n € {1, 2} then the 4-girth-thickness

of K, is at least
nn—1)1 n—|—1+ 1 _[n+2
22n—4)| | 4 2n—4| | 4

for n > 3 and also ["T”] for n € {1, 2}, we have the following theorem.

Theorem 2.1. The 4-girth-thickness 0(4, K,,) of K,, equals ["F2] for n # 6,10 and
6(4, Kg) = 3.

Proof. Figure 1 displays equality for n < 5.

1 1 1 3
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2 2,2
1 2 1
4 3, |3
Figure 1: 0(4, Kn): forn—1,2,3 4,5.

To prove that 6(4, K¢) = 3 > [%+2] = 2, suppose that 6(4, K¢) = 2. This partition
define an edge coloring of Kg with two colors. By Ramsey’s Theorem, some part contains
a triangle obtaining a contradiction for the girth 4. Figure 2 shows a partition of K¢ into

tree planar subgraphs of girth at least 4.

1 2 1 3 1 2 3
oo
5 4 76 2 ’ ! ‘
Figure 2: 6(4, Kg) = 3.

For the remainder of this proof, we need to distinguish four cases, namely, when n =
4k — 1,n = 4k, n = 4k + 1 and n = 4k + 2 for k > 2. Note that in each case, the lower
bound of the 4-girth thickness require at least k¥ + 1 elements. To prove our theorem, we
exhibit a decomposition of Ky, into k + 1 planar graphs of girth at least 4. The other three
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cases are based in this decomposition. The case of n = 4k — 1 follows because K41 is a
subgraph of K. For the case of n = 4k + 2, we add two vertices and some edges to the
decomposition obtained in the case of n = 4k. The last case follows because K4y is a
subgraph of K4i12. In the proof, all sums are taken modulo 2k.

1. Case n = 4k. It is well-known that a complete graph of even order contains a cyclic
factorization of Hamiltonian paths, see [7]. Let G be a subgraph of Ky isomorphic
to Kop. Label its vertex set V(G) as {v1,va,...,vox}. Let F; be the Hamiltonian
path with edges

V1V2, V2V2k, V2K V3, U3U2k—1, - - -, V24 kU1 4 k-
Let F; be the Hamiltonian path with edges

ViVi41, Vi41Vi—1, Vi—1Vi42, Vi42Vi—2, - -+, Vit k+1Vitk,
where i € {2,3,...,k}.

Such factorization of G is the partition {E(F;), E(F2),..., E(Fx)}. We remark
that the center of F; has the edge e = v 0 [ EXE see Figure 3.
2

2

a) b)

Vi1

Vs Uit1

Vi [2] -1
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Vitk+1 Vi1 TF

Figure 3: The Hamiltonian path F;: Left a): The dashed edge e for k£ odd. Right b) The
dashed edge e for k even.

Now, consider the complete subgraph G’ of Ky, such that G’ = Ky, \ V(G). Label
its vertex set V(G') as {v],v5, ..., v}, } and consider the factorization, similarly as
before, { E(F7), E(F3), ..., E(F},)} where F/ is the Hamiltonian path with edges

I ! ! ! / I ! / /
ViVig15 Vi1V 15Vi1V542, V40V 95+ -5 Vit k1 Vit ks

where i € {1,2,...,k}.

Next, we construct the planar subgraphs G1, Gb,...,G—1 and G, of girth 4, order 4k
and size 8k — 4 (observe that 2(4k — 2) = 8k — 4), and also the matching G 1, as
follows. Let G; be a spanning subgraph of Ky, with edges E(F;) U E(F/) and

/ !/ / !/ / !/ / !/
ViVt 15 ViVit 1, Vit 1 V415 Vip1Vi—1, Vi1V 425 Vi1 Vit 2505 Vit ket 1V o> Vip k1 Vit k
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where i € {1,2,...,k}; and let G4 be a perfect matching with edges vjvg for
j€41,2,...,2k}. Figure 4 shows G; is a planar graph of girth at least 4.
a) b)
(IR (R Vak
Gr1 ™
O C R Vo

Figure 4: Left a): The graph G; for any i € {1,2,...,k}. Right b) The graph Gj1.

k+1
To verify that Ky, = |J G;: 1) If the edge v;,v;, of G belongs to the factor F;
i=1
then v;, v;, belongs to G;. If the edge is primed, belongs to G}. 2) The edge v;, vj,
belongs to G4 if and only if 1 = 75, otherwise it belongs to the same graph G; as
v, Vi, Similarly in the case of v;, v;, and the result follows.

Case n = 4k — 1. Since Ky 1 C Ky, we have

E+1<0(4,Kap—1) <6(4, Kap) < k+1.

Case n = 4k + 2 (for k # 2). Let {G1, ..., Gk+1} be the planar decomposition of
K, constructed in the Case 1. We will add the two new vertices = and y to every
planar subgraph G;, when 1 < ¢ < k + 1, and we will add 4 edges to each G;, when
1 <14 < k,and 4k+1 edges to G1 such that the resulting new subgraphs of Ky
will be planar. Note that () + 4k + 4k + 1 = (**?).

To begin with, we define the graph Hj ., adding the vertices x and y to the planar
subgraph G and the 4k + 1 edges

/ / / / / /
{:Cya TV, LVg, TV3, LUy, « « « , TU2L—1, TV, YU, YU2, YUs, YUy, . . . 7yU2k_1>yU2k}-

The graph Hy; has girth 4, see Figure 5.

In the following, for 1 < i < k, by adding vertices x and y to G; and adding
4 edges to G;, we will get a new planar graph H; such that {H,...,Hx1} is a
planar decomposition of Ko such that the girth of every element is 4. To achieve
it, the given edges to the graph H; will be vz, xv;_1,v;y,yv;_;, for some odd
je{1,3,...,2k—1}.

According to the parity of k, we have two cases:
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Uak

V2L

Figure 5: The graph Hy 1.

Suppose k odd. For odd i € {1,2,...,k}, we define the graph H; adding the
vertices « and y to the planar subgraph G; and the 4 edges

0[]0 O 3] Vi [ 3]0 W [

2 2

when %W is even, otherwise

W0 0 VO T i T 0 2 )

Additionally, for even i € {1,2,...,k}, we define the graph H; adding the
vertices x and y to the planar subgraph G; and the 4 edges

!/ !/
B R RN AN
when [ 4] is even, otherwise
/! !/
WO )0 Y [4] 20 4]0 P i b
Note that the graph H; has girth 4 for all ¢, see Figure 6.
Suppose k even. Similarly that the previous case, forodd i € {1,2,...,k}, we

define the graph H; adding the vertices x and y to the planar subgraph GG; and
the 4 edges

{203 [0 TV 10 YV a7 400 Y0 22 )
when %W is even, otherwise
{WH[%MN yv;w%] ’ mz/q-[%]w TV [32] }-

On the other hand, for even i € {1,2,..., k}, we define the graph H; adding
the vertices « and y to the planar subgraph G; and the 4 edges

! !
{xvi-s-[%]’xvu(g]fl’va[g}73/“11-&-(%]—1}
when [ %] is even, otherwise
/ /
Wi 17 Y0 r )0 PV 5] Pin 5] 1 )

Note that the graph H; has girth 4 for all ¢, see Figure 7.
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Figure 6: The graph H; when k is odd and its auxiliary graph F;*. Above a) When 7 is odd.
Botton b) When i is even.
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/UiJrk—l
Vit+k

Vitk+1

Figure 7: The graph H; when k is even and its auxiliary graph F;. Above a) When i is
odd. Botton b) When i is even.
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In order to verify that each edge of the set

! / / / / /
{l"l}l, TV2, TV3, TV3,y ..., TVgp_1, TV, YV1,YVs, YU3,YV3, ... 7yv2k717yv2k:}'

is in exactly one subgraph H;, fori € {1,...,k}, we obtain the unicyclic graph F
identifying v; and v;- resulting in v;; identifying = and y resulting in a vertex which
is contracted with one of its neighbours. The resulting edge, in dashed, is showed in
Figures 6 and 7. The set of those edges are a perfect matching of K5 proving that
the added two paths of length 2 in G; have end vertices v; and v;_l, and the other
v and v;_1. The election of the label of the center vertex is such that one path is

j
Vewen TV a0d V2, .. YVoqq and the result follows.

4. Casen = 4k + 1 (for k # 2). Since K411 C K412, we have

E+1<0(4, Kypyr) <O0(4, Kypyo) < k+ 1.

For k = 2, Figure 8 displays a decomposition of three planar graphs of girth at least 4
proving that 6(4, Ky) = [2£2] = 3.

U3 gn

Figure 8: A planar decomposition of Ky into three subgraphs of girth 4 and 5.

By the four cases, the theorem follows. O

About the case of Ky, it follows 3 < (4, K19) < 4. We conjecture that 6(4, K(19) =

4.
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