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In the article, we discuss the influence of the locally perturbed 
order parameter in austenitic-martensitic phase transformation 
on the character of the phase transformation. We choose 
Landau type mean field approximation which covers the most 
important features of the proposed theoretical description. 
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V članku obravnavamo vpliv lokalno spremenjenega 
ureditvenega parametra pri avstenitno-martenzitnem faznem 
prehodu na značaj takega faznega prehoda. Sistem modeliramo 
z metodo povprečnega polja Landau-ovega tipa, ki vsebuje 
najpomembnejše značilnosti tega teoretičnega opisa. 

 
Ključne besede: 

avstenitno-martenzitni 
fazni prehod,  

Landau-ovo povprečno 
polje,  

Ginzburgov člen, 
 parameter,  
modeliranje 

 
 
 
 
 
 
 

 



M. Svetec: Vpliv nastajajoče martenzitne faze na značaj martenzitnega faznega prehoda 53.
 

 

1 Introduction 
 
Shape memory alloys (SMA) are due to its superelastic (pseudoelastic) phenomena 
very fruitful field of research, even in the medicine (e.g. orthodontics (Ferčec, Anžel, 
Rudolf, 2014)). Such an unusual behaviour of an alloy can be result of mechanical 
load and/or temperature change (Ferčec, Glišič, Šćepan, 2012). Shape changes are 
generated by martensitic phase transformations, rather than by conventional elastic 
or plastic dislocation glide deformation. The most common SMA is NiTi. 
Martensitic phase transformation is a phase change between two solid phases and 
involves rearrangement of atoms within the crystal lattice and is associated with an 
inelastic deformation of the crystal lattice with no diffusive process involved. The 
absence of diffusion makes the martensitic phase transformation almost 
instantaneous (first – order transition). But there exist a class of transitions in 
martensites and ferroelectrics named “nucleation type” which can be continuous (in 
some control parameter, e.g. stress field) (de Gennes, 1973). The phase 
transformation itself is an example of a displacive transition, in which there is 
cooperative motion of a relatively large number of atoms, each being displaced by 
only a small distance relative to its neighbours. As such the martensitic phase 
transformation can be characterised also as a structural phase transitionbn (Cowley, 
1980, Ferčec, Jenko, Buchmeister, 2014). 
 
Phase transition from high-temperature austenitic phase towards low-temperature 
martensitic phase takes place if the temperature of the system is changed from Ms 
to Mf. The same phase transformation e.g. of the NiTi wire can occur if the 

martensitic transformation stress 𝜎ெ೑
 is applied and increased to 𝜎ெ೑

. When the 

stress is reduced it is thermodynamically more stable for the alloy to revert back to 
the parent phase exhibiting hysteresis because extra driving force is required due to 
the stored elastic strain energy contribution. 
 
Landau mean - field theory provides a relatively simple picture of many structural 
phase transitions in terms of relatively few phenomenological constants (de Gennes, 
1973, Landau, Lifshitz, 1980). In spite of neglecting fluctuations the 
phenomenological theories are very successful in describing a lot of phase transition 
phenomena. First attempts to describe martensitic phase transformation using 
Landau approach have been made in 1978 by Bhatt (Bhatt, 1978). Some review 
about following work in the “early years” of mean field description of the martensitic 
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phase transition was given in (Falk, 1982). There has been some very comprehensive 
research work using Landau approach to discuss (weakly) first order (martensitic) 
phase transformation with or without an external field e.g. (Falk, 1982, Fradkin, 
1994, Sanati, Saxena, 2003), but there is not very much done using Landau approach 
in respect of the influence of the emerging martensitic phase on the character of the 
phase transformation. It is known that as the SMA enters from austenitic into 
martensitic phase in the process of transformation due to thermo-mechanical 
coupling macroscopic domains are formed, which strongly depend on loading 

(strain) rate 𝜀̇ (Bruno, Leo, Reitich, 1995, Sun, Zhong, 2000). Here point over the 

strain (𝜀) represents the time derivative. Moreover the number of emerging domains 

is strongly connected to 𝜀̇ (He, Sun, 2010).  
 
In the following we will use a Landau mean-field approach to study the effect of 
elastic distortions as the consequence of the spatial strain inhomogeneity on the 
character of the phase transformation. Strain inhomogeneity will be introduced as 
the free energy “gradient term”, and then it will turn out to be an essential part of 
the local thermo-mechanical coupling of the system. We first introduce our model 
in sec. II, then we discuss our result in sec. III, and finally in sec. IV we summarise 
and present our conclusions. 
 
2  Model 
 
We begin with our considerations assuming homogeneous order parameter field 
with no elastic distortions. Landau in his theory of continuous phase transitions 
assumes that free energy is an analytic function of the order parameter and of 
temperature. Therefore, he expanded the free energy density function f, with respect 
to the order parameter into a power series. Although Landau developed his theory 
for continuous (second order) phase transitions, albeit modified free energy density 
function (Devonshire theory (Falk, 1982)) can be used for the phase transition of 
the first order. The order parameter is an internal variable of the system (Landau, 
Lifshitz, 1980, Falk, 1982). In martensitic phase transitions the order parameter is 

the strain 𝜀  (for simplicity reasons we treat strain as a scalar quantity). Now the free 
energy density reads as 
 

𝑓(𝜀, 𝑇) = 𝛼(𝑇 − 𝑇∗)𝜀ଶ − 𝛽 𝜀ସ + 𝛾 𝜀଺ − 𝜎ா𝜀. (1) 
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Here 𝛼, 𝛽 and 𝜎ா are positive coefficients and 𝑇∗ is a characteristic temperature. 
Their values depend on the characteristics of the system. The last term represents 
“external field” conjugated to the order parameter. In our case the external field is 
“external” stress. Meanwhile  

𝜎௜ =
𝜕𝑓଴(𝜀, 𝑇)

𝜕𝜀
 (2) 

represents energetic response of the system due to a changing internal state (Falk, 

1982). It can be designated as an “internal” stress. In eq. (2): 𝑓଴ =  𝛼(𝑇 − 𝑇∗)𝜀ଶ −

𝛽𝜀ଷ + 𝛾𝜀଺. In equilibrium, where 𝜕(𝜀, 𝑇)/𝜕𝜀 = 0, we have 𝜎௜ = 𝜎ா or  

𝜎ா = 𝜎 = 2𝛼(𝑇 − 𝑇∗)𝜀 − 4𝛽𝜀ଷ + 6𝛾𝜀ହ 

  
(3) 
 

Now eq. (3) represents our strain-stress relation. To make our calculations clearer, 
we introduce dimensionless free energy expression as 

𝜑 = (𝑡 − 1)𝜂ଶ − 2𝜂ସ + 𝜂଺ − ℎா𝜂, (4) 

where 𝜂 = ට
ଶ ఊ

ఉ
𝜀 is dimensionless strain, ℎா = 2𝜎ா𝛾ଷ/ଶ𝛽ିହ/ଶ is dimensionless 

external stress, 𝜑 = 8𝛾ଶ𝛽ିଷ𝑓, and 𝑡 = 4𝑇𝛼𝛾𝛽ିଶ. At 𝑇 = 0 we have then 𝑡 = 0, 

and for 𝑇 = 𝑇∗, there is 𝑡 = 1. Therefore𝑇∗
ିଵ = 4𝛼𝛾𝛽ିଶ. 

 
3 Results and discussion 
 
The equivalent of the eq. (3) reads as 

ℎா = ℎ(𝜂, 𝑡) = 2(𝑡 − 1)𝜂 − 8𝜂ଷ + 6𝜂ହ . (5) 

  

Differentiating eq. (5) with respect to ℎ, gives us 
డ௛

డఎ
=

డమఝ

డఎమ . In the Figure 1 we can 

see a characteristic plot of ℎ(𝜂) at 𝑡 > 1. In the section AA’ there is 
డ௛

డఎ
< 0  meaning 

also 
డమఝ

డఎమ < 0. Therefore, free energy there has its maximum and not a minimum. In 

the sections BA and B’A’ the thermodynamic potential has a minimum, but its value 
is greater than for the minima corresponding to sections represented by full line 

(Landau, Lifshitz, 1980). Equilibrium form of the function ℎ(𝜂) therefore follows 
the full line rather than a dashed one. If the material (let’s say NiTi wire) would be 
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perfect (homogeneous, no defects in the crystal structure) the system would follow 

ℎ(𝜂, 𝑡)  function until the point A would be reached, but in reality we see that stress 

increases up to nucleation stress ℎே > ℎ஻ (He, Sun, 2010), and then due to 

nucleation it drops to the level of ℎ஻.   

 
 

Figure 1: Typical plot of  h(η), where dashed line represents metastable states of the system, 
as an opposite full line represents thermodynamically stable states. hB and ηB represent σMS 

point.  
Source: own. 

 

The points A and A’ we can calculate using 
డ௛

డఎ
= 0  . We get then 

𝐴ᇱ:  𝜂ଵ = ඨ
6 + √51 − 15𝑡

15
 (6a) 

𝐴:  𝜂ଶ = ඨ
6 − √51 − 15𝑡

15
 (6b) 

  
If for a moment we discuss the solutions (6a) and (6b), and suppose that the system 

is at the temperature 𝑡 = 1 (or equivalently 𝑇 = 𝑇∗), then we would get 𝜂ଵ = ට
ସ

ହ
 

and 𝜂ଶ = 0 meaning that at that temperature we have only one solution 𝜂 ≠  0 and 

therefore 𝑇∗  is “maximum undercooling” temperature. In other words, beyond that 
temperature the system cannot exist not even theoretically in some meta-stabile 
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austenitic phase regardless to how much load our system is exposed. To discuss 
temperature range where (6a) and (6b) are being physically reasonable, we first 
introduce the critical point. 
 
3.1 Critical point 
 
There exists a critical value of the field   at which the transition is continuous and 
beyond which no transition occurs. The critical field and the corresponding 
transition temperature are located by the conditions (Cowley, 1980): 

൬
𝜕𝜑

𝜕𝜂
൰

௛

= ቆ
𝜕ଶ𝜑

𝜕𝜂ଶ ቇ
௛

= ቆ
𝜕ଷ𝜑

𝜕𝜂ଷ ቇ = 0 (7) 

as 

ℎ஼ = ඨ
2

5

64

25
= 1.618. (8a) 

𝑡஼ =
17

5
= 3.40. (8b) 

There is no symmetry breaking at the critical point, since 𝜂 has there a nonzero value 

𝜂஼ = ඨ
2

5
= 0.632 . (8c) 

 

 
 

 

Figure 2: a) Plot of the stress-strain function for several temperatures. Here stars represent B 
and B’ points from the Figure 1. CP is the critical point (ηc,hc). b) The boundary points hB 

(sometimes called plateau stress) dependence on the temperature t. 
Source: own. 

a)                      b)  
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In the Figure 2a we can see how strain-stress relation depends on the temperature. 

In other words, on the Figure 2a we draw some isotherms of the ℎ(𝜂) function. The 
stars represent “boundary points” for every isotherm in the sense of B and B’ 

boundaries of the thermodynamically stable ℎ(𝜂) curve progression. CP is the 

critical point, (𝜂𝑐, ℎ𝑐) on the 𝑡஼ isotherm. On the Figure 2b we can see that the ℎ஻ 
points are nearly linearly dependent on t. Such kind of dependence was actually 
already shown (see (Shaw, Kyriakides, 1997)). 
 

Eq. (6a) and (6b) represent minima and maxima of the function ℎ(𝜂). These 

solutions are physically valid for 51 − 15𝑡 ≥ 0 or 𝑡 ≤ 𝑡஼ . At 𝑡 = 𝑡஼ we get 𝜂ଵ =

𝜂ଶ = 𝜂஼ . At the same time for the solutions being reasonable, there has to be true 

that ඥ6 − √51 − 15𝑡  ≥ 0  or equivalently 𝑡 ≥ 1. Therefore, temperature has to 

belong to the interval: 1 ≤ 𝑡 ≤ 𝑡஼ if the phase transformation from austenitic to the 
martensitic phase is going to be of the first order.  
 
3.2 Ginzburg term 
 
We spoke about formation of the domains after the system enters into 

transformation stage at ℎ஻ and 𝜂஻ (see Figure 1). The same is reported by 
experimental research (e.g. (Bruno, Leo, Reitich, 1995, Sun, Zhong, 2000, He, Sun, 
2010)). The formation of domains is connected to distortions of the strain field. 
Therefore a gradient term has to be included into the Landau free energy expression. 

In eq. (1) we have to add an additional (Ginzburg) term of the form: −𝐿(∇𝜀)ଶ. Here 
L is some elastic constant, which depends on the system properties. In fact it is a 
tensor quantity but for simplicity reasons let us suppose that it is a scalar quantity. 
Negative gradient term favours spatially modulated order parameter field. In our 
case this means distortions of the strain field as a consequence of the inclusions and 
defects in the crystal lattice. As the free energy potential should be 
thermodynamically stable, the elastic constant has to be limited. If we further 
suppose that locally perturbed order parameter recovers its equilibrium value on a 
length given by the relevant order parameter correlation length, for the gradient we 

can roughly write: ∇𝜀 ~ 𝜀/𝜉, where 𝜉 is order parameter correlation length of the 
system, then eq. (1) can be rewritten in the following form 



M. Svetec: Vpliv nastajajoče martenzitne faze na značaj martenzitnega faznega prehoda 59.
 

 

𝑓(𝜀, 𝑇) = 𝛼(𝑇 − 𝑇∗)𝜀ଶ − 𝛽 𝜀ସ + 𝛾 𝜀଺ − 𝜎ா𝜀 −
𝐿

𝜉ଶ
𝜀ଶ . (9) 

 

Now we can combine the terms with 𝜀ଶ into 𝛼(𝑇 − 𝑇∗ −
௅

ఈకమ)𝜀ଶ, where 𝑇∗ −
௅

ఈకమ  

can be seen as some “effective temperature”. To recognise how that effective 
temperature affects the stress-strain relation, we return to our dimensionless model.   
Now the counterpart of the eq. (4) is  

𝜑 = (𝑡 − 1)𝜂ଶ − 2𝜂ସ + 𝜂଺ − ℎா𝜂 −
𝜆

1 + 𝑥ଶ
𝜂ଶ , (10) 

where 𝜆 = 𝐿/𝐿଴ is dimensionless “elastic constant” if 𝐿଴ is some characteristic 

elastic constant of the system. Further in eq. (10) = 𝜉ఌ/𝜉଴ , where 𝜉଴ is the smallest 

possible size of the domain, and 𝜉ఌ represents strain rate contribution to the size of 

the typical domain. It roughly holds 𝜉ఌ ∝ 𝜀̇ିଵ [13]. Strain rate contribution includes 
also some other factors that influence the size of the domains formed (e.g. defects 
in the crystal lattice structure, inclusions etc.). The smallest possible size of a domain 
equals 

𝜉଴ = ඨ
2𝛼𝑇∗𝐿଴

𝛽
 . (11) 

We collect now the terms with 𝜂ଶ and get 

𝜑 = (𝑡 − 𝑡∗)𝜂ଶ − 2𝜂ସ + 𝜂଺ − ℎா𝜂 , (12) 

where 

𝑡∗ = 1 +
𝜆

1 + 𝑥ଶ
  (13) 

is now “effective temperature”. 
 

In the Figure 3 we can see that effective temperature 𝑡∗ reaches the value of 1 when 

𝑥 ≫ 1. That means if we want our system to work as if there would be no elastic 

distortions the contribution of 𝜉ఌ has to be extensive. On the other side, if the system 
is stiff (λ is very low) then also system behaves like a bulk (no elastic contribution). 
The behaviour of the system changes comprehensively with small domains and large 
elastic response.  
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Although the critical point (𝜂𝑐, ℎ𝑐) in that new situation does not change, the critical 

isotherm isn’t the same. Now holds 𝑡஼ = 𝑡∗ + 2.4. 
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Figure 3: Effective temperature for larger elastic constants can influence the behaviour of the 
system in great manner if the size of the domains is low. 

Source: own. 
 

 
 

Figure 4: Influence of the domain size on the character of the phase transformation. 
Soure: own. 

 
In the Figure 4 we can observe how the size of the typical domain influences the 

behaviour of the system after it reaches the transformation point (𝜂஻, ℎ஻) into 

martensitic phase. On Figure 4 we keep 𝜆 = 0.5. Although temperature is constant 
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the stress-strain behaviour is very similar to that on Figure 2a where temperature 
was changed. This indicates that we have to do with a thermo-mechanical coupling 
within our system. The curves on Figure 4 were calculated as if the size of domains 
would be constant up to the point where the system reaches the martensitic state, 
but in the reality, domains increase and/or merge, and therefore the number and the 
size of the domains change. 
 
In the previous research (e.g.(Sun, Zhong, 2000, He, Sun, 2010, Shaw, Kyriakides, 
1997)) of the stress-induced phase transition behaviour of NiTi quasi one-
dimensional structures under isothermal tensile loading the stress drop in the 

domain-nucleation was observed. In the Figure 4 we chose 𝑡 = 2.90 where 𝜂஻ =

1.0, therefore the stress drop at the entering into the austenite-martensite 

transformation stage is clearly evident also in our model. At the 𝜂஻ the relation 

between (5) where stress is not affected by distortions of the strain field, and ℎ(𝑥) 
where strain field distortions are taken into account can be written as  

ℎ(𝑥)

ℎ
= 1 − 2𝜂஻

𝜆

1 + 𝑥ଶ
 . (14) 

 
From (14) we can infer that stress drop entering the transformation stage is less 

pronounced if 𝑥 is very large. In other words, if the system is inclined not to build 
more than a few domains the stress drop would be held small. On opposite if the 
system entering the transformation stage builds many domains, the result is severe 

drop of the stress. If the factor 𝑥 is relatively small the stress drop can be varied by 
elastic properties of the system. For growing λ the drop of stress would also increase 

as if the domain would be smaller. For large 𝑥, the elastic properties of the system 
are less important because only slight changes of stress drop can be achieved. 
 
4 Conclusions 
 
In this paper using Landau mean field approach we investigated the influence of the 
Ginzburg term on the description of a phase transformation between austenitic and 
martensitic phase in shape memory alloys. Distortions of the strain field, which are 
described by the Ginzburg gradient term, generate domain-like structure of the 
originating martensitic phase. We showed that distortions of the strain field are 
coupled with the thermo-mechanical response of the system. In the model the 'size' 
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of the domains was measured by 𝑥. For 𝑥 ≫ 1 the system entering into martensitic 
state developed only few domains and therefore practically no change was perceived 

comparing the system with no distortions of the strain field. For 𝑥 < 1 significant 
changes in behaviour were obtained. The system produced many domains and 
therefore mimicked e.g. large concentration of lattice defects (vacancies, 
dislocations, stacking faults, trapped solute atoms etc.). The result was a drop of 
stress and consequently lower transformation temperature (see Figure 4). For 
growing elastic response of the system, the drop of stress would also increase as if 

the domains would be smaller. For large 𝑥, the elastic properties of the system are 
less important.  
 
 
References 
 
 
Bhatt, R. N.,1978. Structural transition in A-15 compounds. Possible Landau theory descriptions; Phys. 

Rev. B, 17, 2947-2955. 
Bruno, O. P., Leo P. H., and Reitich F., 1995. Free Boundary Conditions at Austenite-Martensite 

Interfaces; Phys. Rev. Lett. 74, 746-749. 
Cowley, R. A., 1980. Structural phase transitions, I. Landau theory; Advances in Physics, 29, 1-110. 
Falk F., 1982.  Landau theory and martensitic phase transitions. Journal de physique, 43, C4(3-15). 
Ferčec J., Anžel I., Rudolf R., 2014. Stress dependent electrical resistivity of orthodontic wire from the 

shape memory alloy NiTi; Materials and design, 55, 699-706. 
Ferčec J., Glišič B., Šćepan I., et al., 2012. Determination of stresses and forces on the orthodontic  

system by using numerical simulation of the finite elements method; Acta Physica Polonica. A, 
122, 659-665. 

Ferčec J., Jenko D., Buchmeister B., et. al., 2014. Microstructure of NiTi orthodontic wires observations 
using transmission electron microscopy; Metalurgija, 53, 469-472. 

Fradkin M. A., 1994. External field in the Landau theory of a weakly discontinuous phase transition: 
Pressure effect in the martensitic transitions; Phys. Rev. B, 50, 16326-16339. 

de Gennes P. G., 1973. in Fluctuations, Instabilities, and Phase Transitions, edited by T. Rise; Plenum, 
New York. 

He Y. J., Sun Q. P., 2010. Rate-dependent domain spacing in a stretched NiTi strip; International 
Journal of Solids and Structures 47, 2775-2783. 

Landau L. D., Lifshitz E. M., 1980. Statistical physics, in Course of theoretical physics, vol. 5, Pergamon 
Press, New York. 

Sanati M., Saxena A., 2003. Landau theory of domain walls for one-dimensional asymmetric potentials; 
Am. J. Phys. 71, 1005-1012. 

Shaw J. A., Kyriakides S., 1997. On the nucleation and propagation of phase transformation fronts in 
NiTi alloy; Acta mater. 45, 683-700. 

Sun Q. P., Zhong Z., 2000. An inclusion theory for the propagation of martensite band in NiTi shape 
memory alloy wires under tension; International Journal of Plasticity 16, 1169-1187. 

 


