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Abstract

The well known Brooks theorem says that each graph G of maximum degree
k ≥ 3 is k-colorable unless G = Kk+1. We generalize this theorem by allowing
higher degree vertices with prescribed types of neighborhood.

1 Introduction

A k-coloring of a graph is a mapping from the set of vertices to {1, . . . , k} such that any
two adjacent vertices have different colors. The decision problem whether a given graph
G has a k-coloring is a classical NP-complete problem for every fixed k ≥ 3 (see [3, 4]).

By Brooks’ Theorem [1], every graph with maximum vertex degree at most k ≥ 3
and without a component isomorphic to Kk+1 (a complete graph on k+ 1 vertices) has a
k-coloring. Furthermore, as follows from [2, 6, 7, 8, 9], there exists a linear time algorithm
that finds a k-coloring for such a graph.

Kochol, Lozin, and Randerath [6, Theorem 4.3] proved that if D is a class of graphs in
which the neighborhood of each 4-degree vertex induces a graph isomorphic to a disjoint
union of an isolated vertex and a path of length 2, then every graph from D is either
3-colorable or has a component isomorphic to K4. Furthermore, there exists a linear time
algorithm that finds either a 3-coloring or a component isomorphic to K4 for each graph
from D. This generalizes the Brooks theorem for the case k = 3.

The aim of this paper is to generalize the Brooks theorem and the result from [6,
Theorem 4.3]. We consider classes of graphs where each vertex of degree at least k+2 has
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a strictly prescribed neighborhood, so called “(k, s)-dart graphs”, defined in the following
section. Our main result, Theorem 1, is that if G is a (k, s)-dart graph, k ≥ max{3, s},
and s ≥ 2, then G is (k + 1)-colorable if and only if it has no component isomorphic
to Kk+2. Furthermore, if G is (k + 1)-colorable, then a (k + 1)-coloring of G can be
constructed in a linear time. We also show that if s > k ≥ 3, then it is an NP-complete
problem to decide whether a (k, s)-dart graph is (k + 1)-colorable (see Theorem 2).

2 Definitions

In this paper we consider simple graphs, i.e., without multiple edges and loops. If G is a
graph, then V (G) and E(G) denote the vertex and the edge sets of G, respectively.

LetG be a graph and x, y two vertices ofG. ThenG+xy denotes the graph constructed
from G by adding an edge xy. Since we consider simple graphs, G + xy = G if x, y are
adjacent in G. For a vertex v of G, let dG(v) denote the degree of v in G. Let H,G be
two graphs such that H is not a subgraph of G. Then we use to say that G is a H-free
graph.

A (k, s)-diamond is a join of a clique of size k ≥ 1 and an independent set of size
s ≥ 1. These graphs are also known as split graphs. In a (k, s)-diamond D, vertices that
belong to the independent set are called pick vertices, and the remaining (i.e. those in
the k-clique) are called central vertices. Denote by C(D) and P (D) the sets of central
vertices and pick vertices of D, respectively. An example of a (4, 2)-diamond D with
C(D) = {c1, . . . , c4} and P (D) = {p1, p2} is in Figure 1.

c1 c2

c3 c4

p1 p2

Figure 1: A (4, 2)-diamond.

Note that a (k, 1)-diamond is isomorphic to Kk+1; in this case the unique pick vertex
does not distinguish from the central vertices but in such a situation this is irrelevant for
us.

Definition 1 A graph G is a (k, s)-dart if each vertex of G of degree ≥ k+2 is a central
vertex of some (k, i)-diamond D as an induced subgraph of G with i ≤ s, for which

(a) dD(x) ≥ dG(x)− 1 for each x ∈ V (D);

(b) no two vertices of C(D) have a common neighbor in G−D.
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Every graph of maximum degree ≤ k + 1 is a (k, 1)-dart graph since in the above
definition, we only prescribe the structure on the neighborhood of vertices of higher degree.
Also, every (k, s1)-dart is a (k, s2)-dart if s1 ≤ s2.

Note that the assumption that x is of degree ≥ k+2 implies that i ≥ 2. In a (k, s)-dart
graph G, every vertex of degree at least k + 2 belongs to an induced (k, i)-diamond with
2 ≤ i ≤ s. Denote by D(G) the set of all induced maximal (k, i)-diamonds of G with
i ≥ 2. Observe that we do not require that a diamond of D(G) must contain a vertex of
degree k + 2 or more, just to satisfy conditions (a) and (b) of Definition 1.

We say that a vertex of a dart G is central if it is a central vertex of a diamond of
D(G). Similarly define a pick vertex of G. Denote the sets of central vertices and pick
vertices by C(G) and P (G), respectively.

Let G be a (k, s)-dart and D ∈ D(G). Then, each central vertex x ∈ C(D) is adjacent
to at most one vertex v′ from G−D. In this case, v′ is called isolated neighbor of v. The
set of all isolated neighbors of the central vertices of D is denoted by I(D). Possibility
I(D) = ∅ is not excluded.

We remark that the following observations for a (k, s)-dart G hold:

(1) A central vertex v of a (k, s)-dart G is not necessarily of degree at least k+2. This
happens only if v is a central vertex of a (k, 2)-diamond D ∈ D(G) and it has no
neighbor in G−D. Then, v is of degree k + 1.

(2) If Kk+2 is a subgraph of a (k, s)-dart G, then it must be a component of G. Thus
a copy of Kk+2 in G is disjoint from diamonds of D(G).

(3) No two pick vertices of the same diamond from D(G) are adjacent.

3 Properties of dart graphs

The following lemma is an easy observation.

Lemma 1 Let G be a (k, s)-dart graph and D ∈ D(G). Let λ be a proper (k+1)-coloring
of G−C(D) such that all pick vertices P (D) are assigned the same color a. Then, λ can
be extended to G unless every central vertex of D has an isolated neighbor and λ assigns
the same color c ̸= a to all vertices of I(D).

Proof: Let L(v) ⊂ {1, . . . , k + 1} be the set of available colors for a central vertex
v ∈ V (G) regarding λ. Notice that k ≥ |L(v)| ≥ k − 1. And, |L(v)| = k − 1 if and only
if v has an isolated neighbor v′ and λ(v′) ̸= a. Thus, each central vertex of D has an
isolated neighbor and all vertices of I(D) are assigned a same color c ̸= a, if and only if
the unions of all L(v)’s is of size k − 1. Now the proof follows by Hall’s theorem.

Next lemma assures that diamonds in a dart graph are vertex disjoint:
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Lemma 2 Let G be a (k, s)-dart graph with k ≥ 3. Then

(a) V (D1) ∩ V (D2) = ∅, for every two distinct diamonds D1, D2 ∈ D(G).

(b) C(G) ∩ P (G) = ∅; in particular each pick vertex is of degree k or k + 1.

Proof: We prove (a). Suppose that v is a vertex of two distinct diamondsD1, D2 ∈ D(G).
Assume that v ∈ C(D1) ∩ C(D2). If C(D1) = C(D2), then by Definition 1(b) we

obtain that P (D1) = P (D2), whence D1 = D2. Thus C(D1) ̸= C(D2).
Suppose first |C(D1) ∩C(D2)| = 1, i.e., C(D1)∩C(D2) = {v}. Then by Definition 1,

either k−2 or k−1 vertices of C(D2) (resp. C(D1)) are pick vertices ofD1 (resp. D2). But
then for k ≥ 4, we obtain also two adjacent pick vertices of D1 (resp. D2), a contradiction
to (3). So we may assume that k = 3, C(D1) = {u1, w1, v}, C(D2) = {u2, w2, v}, and
u1 (resp. u2) are pick vertices of D2 (resp. D1). By (3), w1 (resp. w2) is not a pick
vertex of D2 (resp. D1). Then w1 ∈ I(D2) (resp. w2 ∈ I(D1)) is a common neighbor of
v, u2 ∈ C(D2) (resp. v, u1 ∈ C(D1)), a contradiction with Definition 1(b).

Suppose now |C(D1)∩C(D2)| ≥ 2. Then each vertex u ∈ C(D1)\C(D2) is a neighbor
of at least two vertices from C(D2), whence by Definition 1(b), u ∈ P (D2) and thus
C(D1) \ C(D2) ⊆ P (D2). Similarly C(D2) \ C(D1) ⊆ P (D1). Thus the subgraph of
G induced by C(D1) ∪ C(D2) is a clique, whence |C(D1) ∪ C(D2)| = k + 1, and so
|C(D1) ∩ C(D2)| = k − 1. By assumptions, D1 is a (k, s1)-diamond, s ≥ s1 ≥ 2. Thus
there exists x1 ∈ P (D1)\C(D2). By (3), we infer that x1 ∈ I(D2) but then it is a common
neighbor of at least two vertices from C(D2), a contradiction with Definition 1(b).

By the above two paragraphs, we can assume that C(D1) ∩ C(D2) = ∅. If v ∈
V (D1) ∩ P (D2), then dD2(v) + 1 < dG(v), a contradiction with Definition 1(a). Similarly
if v ∈ V (D2) ∩ P (D1). This proves claim (a). Claim (b) is an easy consequence of (a).

Next lemmas assures that removing small vertices or diamonds in dart graphs we
preserve the class of dart graphs.

Lemma 3 Let G be a (k, s)-dart graph with k ≥ 3. Then

(a) if v is a vertex of degree ≤ k, then G′ = G− v is a (k, s)-dart graph,

(b) if D ∈ D(G), then G′ = G−D is a (k, s)-dart graph.

Moreover, in both cases, D(G′) can be determined from D(G) in a constant time.

Proof: We first show that in both cases G′ is a (k, s)-dart graph. Suppose that u′ is
an arbitrary vertex of degree ≥ k + 2 in G′. Then, it is also of degree ≥ k + 2 in G, and
hence it belongs to a (k, i)-diamond D′ ∈ D(G) with 2 ≤ i ≤ s. In case (b), diamonds
D and D′ are disjoint, by Lemma 2, and hence D′ is an induced (k, s)-diamond in G′.
Consider now case (a). If D′ is an induced subgraph of G′, then we are done. Otherwise,
v ∈ V (D′) is a pick vertex of D′. Since u′ is of degree ≥ k+2 in G′, it follows that i ≥ 3,
and hence D′ − v is a (k, i− 1)-diamond in G′.
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Regarding D(G′) and D(G), in case (b), Lemma 2 assures that D(G) consists of D
and D(G′). In case (a), D(G) may change only if v is a pick vertex of some (k, s)-diamond
D′ of G. So, in this case, D(G) is either D(G′) or (D(G′) \ {D′ − v)) ∪ {D′}.

In the next few lemmas, we study properties of a graph G′ obtained from G be applying
some local changes.

Lemma 4 Let G be a (k, s)-dart graph with k ≥ 3 and let a1, a2 be two central vertices
of a diamond D ∈ D(G). Suppose that x1 and x2 are the isolated neighbors of a1 and
a2, respectively. Then, each (k + 1)-coloring λ∗ of G∗ := G − x1a1 − x2a2 + x1x2 can be
modified into a (k + 1)-coloring of G in a constant time.

Proof: Clearly λ∗(a1) ̸= λ∗(a2) and λ∗(x1) ̸= λ∗(x2). By Definition 1, a1 and x2 are
non-adjacent, and similarly a2 and x1 are non-adjacent. Notice that λ∗ is not a coloring
of G if and only if λ∗(a1) = λ∗(x1) or λ

∗(a2) = λ∗(x2). But in that case, we can simply
interchange the colors of a1 and a2, and obtain a proper (k + 1)-coloring of G.

Lemma 5 Let G be a Kk+2-free (k, s)-dart graph with k ≥ 3 and D ∈ D(G). Let a1, a2
be two central vertices of D and let x1, x2 be their isolated neighbors, respectively. Then
the graph G′ = G− x1a1 − x2a2 + x1x2 is a Kk+2-free graph unless x1, x2 are pick vertices
of a diamond of D(G).

Proof: Suppose that G′ contains a copy H of Kk+2. Then, x1, x2 are vertices of H, thus
cannot be adjacent in G and there is a set S of k common neighbors of x1 and x2 in G,
which induce a clique. Notice that |S| = k and dG(x1), dG(x2) ≥ k + 1.

Suppose that dG(x1) ≥ k+2. Then, x1 is a central vertex of some diamond D′ ∈ D(G),
whence by Definition 1(b), S ⊆ V (D′) and clearly, |S ∩C(D′)| ≥ k− 1 ≥ 2. Then x2 has
at least 2 neighbors in C(D′), whence x2 belongs to D′, and so it is adjacent with x1 in
G, a contradiction.

Thus, by pervious paragraph, we may assume that d(x1) = k + 1, and analogously
d(x2) = k + 1. Then x1, x2 and S belong to a diamond of D′ ∈ D(G) in which x1, x2 ∈
P (D′) and S = C(D′).

Lemma 6 Let G be a (k, s)-dart graph D ∈ D(G). Let a1, a2 be two central vertices of
D and let x1, x2 be their isolated neighbors, respectively. Then the graph G′ = G− x1a1 −
a2x2 + x1x2 is a (k, s)-dart graph unless one of the following conditions occurs:

(a) x1, x2 are pick vertices of the same diamond of D(G);

(b) there exists a diamond D′ ∈ D(G) and i ∈ {1, 2} such that xi ∈ C(D′) and x3−i is
an isolated neighbor of a central vertex from D′, which is distinct from xi.
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Proof: Suppose that G′ is not a (k, s)-dart graph. First notice that each vertex preserve
its degree from G except a1, a2, which belong to D and it is a diamond in G′ as well. If
there is some D′ ∈ D(G) that is not induced diamond of G′, then x1 and x2 must be
pick vertices of D′, which is the excluded case (a). Next observe that each diamond of
D(G) satisfies Definition 1(a) in G′. Finally, if Definition 1(b) is not satisfied for some
D′ ∈ D(G) in G′, then there are two central vertices u and v with a common neighbor w
outside D′. Notice that x1x2 is one of the edges uw or vw. Then without loss of generality,
we may assume that x1 is a central vertex in D′ and x2 is an isolated neighbor of a central
vertex of D′ distinct from x1.

Notice that in the exceptional case (a) of the above lemma, G′ may still be a dart
graph, when D is a (k, 2)-diamond with no isolated verices. Then, D becomes a copy of
Kk+2 in G′.

4 An extension of Brooks theorem

For a diamond D ∈ D(G), a vertex of I(D) could be a central or pick vertex of another
diamond of D(G). Denote by Ic(D) and Ip(D) the subset of all such vertices of I(D),
respectively. By Lemma 2(b), sets Ic(D) and Ip(D) are disjoint. Finally, let Is(D) be the
vertices of I(D) that are neither in Ic(D), nor in Ip(D).

Lemma 7 Let G be a Kk+2-free (k, s)-dart graph with given D(G) ̸= ∅ and k ≥ max{3, s}
and s ≥ 2. Then, in a constant time we can construct a Kk+2-free (k, s)-dart graph G∗

together with D(G∗) such that

(a) |E(G∗)| < |E(G)|;

(b) From any (k + 1)-coloring λ of G∗ one can construct a (k + 1)-coloring of G in a
constant time.

Proof: In the construction of G∗ we use a bounded number of vertex/edge additions
and deletions. Similarly, we obtain D(G∗) from D(G) in a finite number of steps. This
will preserve that constructions are completed in a constant time. In the sequel consider
the following cases:

Case 1. There exists v ∈ V (G) of degree ≤ k. Then v is not a central vertex. Thus,
by Lemma 3(a), G∗ := G − v is a (k, s)-dart graph with |E(G∗)| < |E(G)|. By the
same lemma, one can construct D(G∗) from D(G) in a constant time. Obviously, G∗ is a
Kk+2-free graph. A coloring of G∗ can be easily extended to a coloring of G by assigning
to v a color that miss in its neighborhood.

Case 2. There exists v ∈ C(D), D ∈ D(G), having no isolated neighbor. By
Lemma 3(b), G∗ := G − D is a (k, s)-dart graph and D(G∗) can be constructed from
D(G) in a constant time. Obviously, G∗ is a Kk+2-free graph and |E(G∗)| < |E(G)|. Let
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λ∗ be a (k + 1)-coloring of G∗. Since each pick vertex of D has at most one neighbor
outside D and since |P (D)| < k+1, it follows that there exists a color that we can assign
to all pick vertices. Since v has no isolated neighbor, we can apply Lemma 1 to extend
λ∗ to the central vertices of D.

Case 3. There exists D ∈ D(G), such that Ic(D)∪ Is(D) ̸= ∅, or some two vertices of
Ip(D) do not belong to the same D′ ∈ D(G). We can assume that Case 2 does not hold,
whence |Ic(D)|+ |Ip(D)|+ |Is(D)| = k. Let x1, x2 ∈ I(D) be two distinct vertices. And,
let ai ∈ C(D) be the neighbor of xi for i = 1, 2.

Now, consider the graph G∗ = G − x1a1 − x2a2 + x1x2. If none of the exceptions
of Lemmas 5 or 6 holds, then G∗ is a Kk+2-free (k, s)-dart graph, and by Lemma 4, we
can modify any coloring of G∗ to a proper coloring of G in a constant time. Moreover,
|E(G∗)| < |E(G)| and D(G) can be determined in a constant time from D(G∗).

Assume that for each pair x1, x2 ∈ I(D), some of the exeptions of Lemmas 5 or 6 is
satisfied. This implies immediately that |Ic(D)| ≤ 1 and |Is(D)| ≤ 1.

Thus |Ip(D)| ≥ 1 (because k ≥ 3). Then x1 ∈ Is(D) ∪ Ic(D) and x2 ∈ Ip(D) do
not satisfy exeptions of Lemmas 5 or 6, whence Is(D) ∪ Ic(D) = ∅. Thus all vertices of
I(D) must be pick vertices of one diamond of D(G). This contradicts the assumptions of
Case 3.

Case 4. None of Cases 1.–3. occurs. Thus, by Case 3., for each D ∈ D(G), Ic(D) ∪
Is(D) = ∅, and all vertices of Ip(D) belongs to a same (k, k)-diamond D′ ∈ D(G). We
denote D′ by φ(D). Furthermore, observe that there exists a perfect matching between
C(D) and P (φ(D)).

Case 4.1. There exists D ∈ D(G), such that φ2(D) = D. Then vertices of D and
φ(D) induce a component G′ of G. Let G∗ := G − G′. Obviously, G∗ is a (k, k)-dart
graph, |E(G∗)| < |E(G)| and D(G∗) = D(G) \ {D,φ(D)}. Moreover, we can construct a
(k + 1)-coloring of G′ in a constant time: just color all vertices of P (D) and P (φ(D)) by
the color k + 1, and assign colors 1, . . . , k to the vertices of C(D) and C(φ(D)).

Case 4.2. For each D ∈ D(G), φ2(D) ̸= D. By the assumptions of lemma, there
exists D ∈ D(G) ̸= ∅. Let G∗ be the graph, we obtain by removing the vertices of
φ(D) and inserting a perfect matching between C(D) and P (φ2(D)). Obviously G∗ is
a (k, k)-dart graph with less edges than G and D(G∗) = D(G) \ {φ(D)}. Let λ∗ be a
(k + 1)-coloring of G∗. Then λ∗ assigns the same color c to all vertices of P (φ2(D)).
Assign c also to all vertices of P (φ(D)) and to each of the vertices of C(φ(D)) an unique
color from {1, . . . , k+1}\{c}. This gives a required coloring of G, completing the proof.

Now we are ready to prove the main result.

Theorem 1 Let G be a (k, s)-dart graph with k ≥ max{3, s} and s ≥ 2. Then G is
(k + 1)-colorable if and only if it has no component isomorphic to Kk+2. Furthermore, if
G is (k + 1)-colorable, then a (k + 1)-coloring of G can be constructed in a linear time.
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Proof: The necessity of the first part of the theorem is trivial. To see the sufficiency,
observe that a (k, s)-dart graph is Kk+2-free if and only if it has no component isomorphic
to Kk+2. The same is true if G is a graph with vertex degree at most k + 1. Therefore,
the sufficiency follows from Lemma 7 and Brooks’ Theorem [1].

We can check whether a dart graph G is Kk+2-free in linear time. Analogously, we
can find the set D(G) in linear time. Consequently, by means of Lemma 7 we can create
in linear time a Kk+2-free graph G′ without vertices of degree more than k + 1 such that
any (k + 1)-coloring of G′ can be transformed into a (k + 1)-coloring of G in linear time.
By [7] (see also [9, 6]), a (k + 1)-coloring of G′ can be found in linear time, which proves
the statement.

5 NP-Completeness

In this section we show that Theorem 1 cannot be extended for (k, s)-dart graphs where
s > k ≥ 2 unless P = NP.

We need some more notation. Take n vertex disjoint copies of (k, k + 1)-diamonds
D1, . . . , Dn, k, n ≥ 2. For i = 1, . . . , n, denote by vi,1, . . . , vi,k and ui,1, . . . , ui,k+1 the
central and pick vertices of Di, respectively. Add nk new edges vi,jui+1,j, i = 1 . . . , n,
j = 1, . . . , k (considering the sum i + 1 mod n). Then the resulting graph is called a
(n, k + 1)-bracelet and vertices u1,k+1, . . . , un,k+1 are called its connectors. An example of
a (4, 3)-bracelet with connectors u1,3, . . . , u4,3 is in Figure 2.

u1,3 u2,3 u3,3 u4,3

Figure 2: A (3, 4)-bracelet.

We study complexity of the following problem.

DART-(k, s)-(k + 1)-COL
Instance: A (k, s)-dart graph G.
Question: Is G k + 1-colorable?

Theorem 2 The problem DART-(k, s)-(k + 1)-COL, k ≥ 3, is

(a) NP-complete for s > k,

(b) solvable in linear time for s ≤ k.
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Proof: Claim (b) holds true by Theorem 1. We prove (a). Let G be a graph. Replace
each vertex v of G of degree ≥ 2 by a (dG(v), k + 1)-bracelet Hv. Let Hv be an isolated
vertex if dG(v) = 1. Each edge uv of G replace by an edge joining a connector of Hv with
a connector of Hu so that each connector is attached to at most one new edge. Denote the
resulting graph by G′. Clearly, G′ is a (k, k+1)-dart graph. By any (k+1)-coloring of Hv,
v ∈ V (G), all connectors of Hv must be colored by the same color. Hence G′ is (k + 1)-
colorable if and only if G is so. Thus the problem from item (a) can be polynomially
reduced to the problem of (k + 1)-coloring. This problem is NP-complete for every fixed
k ≥ 2 by Garey and Johnson [3, GT4].

We have proved item (a) also for k = 2. Let us note that item (b) for this case is a
consequence of [6, Theorem 4.3].
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