
59.Acta Geotechnica Slovenica, 2015/1

Abstract

The compression index is one of the important soil param-
eters that are essential for geotechnical designs. Because 
laboratory and in-situ tests for determining the compres-
sion index (Cc) value are laborious, time consuming and 
costly, empirical formulas based on soil parameters are 
commonly used. Over the years a number of empirical 
formulas have been proposed to relate the compress-
ibility to other soil parameters, such as the natural water 
content, the liquid limit, the plasticity index, the specific 
gravity. These empirical formulas provide good results for 
a specific test set, but cannot accurately or reliably predict 
the compression index from various test sets. The other 
disadvantage is that they tend to use a single parameter 
to estimate the compression index (Cc), even though Cc 
exhibits spatial characteristics depending on several soil 
parameters. This study presents the potential for Genetic 
Expression Programming (GEP) and the Adaptive 
Neuro-Fuzzy (ANFIS) computing paradigm to predict 
the compression index from soil parameters such as the 
natural water content, the liquid limit, the plastic index, 
the specific gravity and the void ratio. A total of 299 data 
sets collected from the literature were used to develop the 
models. The performance of the models was comprehen-
sively evaluated using several statistical verification tools. 
The predicted results showed that the GEP and ANFIS 
models provided fairly promising approaches to the predic-
tion of the compression index of soils and could provide a 
better performance than the empirical formulas.

1 INTRODUCTION

The settlement of a structure is the vertical, downward 
movement due to a volume decrease of the soil on which 
the structure is built. Geotechnical engineers have a 
responsibility to calculate the extent of the possible 
settlements as completely as possible for the safety of 
particular projects. So, a study of the consolidation 
characteristics of soft, compressible geo-environmental 
materials is very useful for forecasting the magnitude 
and time of the settlement of the structure. The desired 
use of the structure may be damaged and the design 
life of the structure may be reduced if the settlement is 
not kept within a tolerable limit. To evaluate the spatial 
distribution of the consolidation settlement (sc) in a 
large coastal reclamation area, geotechnical engineers 
need to correctly access the spatial characteristics of 
the soil’s properties. However, it is difficult to evaluate 
the exact spatial characteristics of the soil’s properties 
because the amount of geotechnical investigation data is 
insufficient in most cases.
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In particular, it is well known that when compressible 
geo-materials, like silt or clay layers, are subjected to 
a stress, an increase in the pore-water pressure occurs 
immediately. Because the hydraulic conductivity of 
these soils is very small, the excess pore-water pressure 
generated by loading gradually dissipates over a long 
period. Consequently, the associated volume change 
(consolidation) of the soil continues a long time after the 
completion of the structure. In geotechnical engineering, 
the change in the void ratio versus the change in the 
effective pressure compressibility of the soils is defined 
as the coefficient of the compressibility index (Cc), which 
is generally determined directly using the e – logp curve.

Oedometer tests of which testing procedures have been 
standardized by ASTM-D-2435-96 [1] are commonly 
used for experimental determinations of the compres-
sion index in the laboratory. However, these are labori-
ous, time-consuming and costly methods. In order to 
obtain the Cc value for soils with less effort and more 
economically, empirical equations based on the funda-
mental soil parameters, as specified using simpler labora-
tory tests, are generally preferred [2-9]. However, most of 
them are developed using limited experimental data and 
do not provide satisfactory and precise predictions. 

The other disadvantage of these equations is that they 
generally use a single soil parameter or use multivariable 
equations based on linear approaches to predict the 
compression index [9-11]. The soils have reasonably 
complex structures, imprecise physical properties and 
a spatial variability (i.e., heterogeneities) associated 
with their formation. Therefore, their mechanical 
and dynamic features show an uncertain behavior 
in contrast to most other engineering materials [12]. 
Alternative methods such as GEP, ANNs and ANFIS 
allow the modelling of spatially complex systems and 
have recently emerged as commonly used and promising 
approaches [13-17]. Their importance is also related 
in all engineering areas as a result of the high-speed 
development of information and computer technologies. 
These methods have a capability for pattern recognition, 
classification, speech recognition, design of structures, 
automatic control, manufacturing process control, and 
the modeling of material behavior [18-20].

In this paper new approaches based on GEP and ANFIS 
were introduced for the prediction of the compression 
index of soils. The data sets for training and testing were 
obtained from the literature. Five basic soil properties 
that are accepted to be substantial parameters in geotech-
nical engineering, such as the natural water content (ωn), 
the liquid limit (LL), the plasticity index (PI), the specific 
gravity (Gs) and the void ratio (e), were used for the GEP 
and ANFIS models as the input parameters.

2 OVERVIEW OF THE COMPRESSION INDEX OF 
SOILS

The compression index (Cc) shows the slope of the linear 
part of the curve of the void ratio versus the logarithm of 
the effective pressure (Fig. 1). In other words, it means 
a change in the void ratio due to the effective pressure 
change during the consolidation of soils.

For a layer of normally consolidated soil of thickness H, 
the initial void ratio eo , the compression index Cc , the 
effective overburden pressure P'0 , and the total settle-
ment St under an applied load Δp can be expressed as
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where Cc is the slope of the virgin compression portion 
of the e – log p curve determined from a standard 
consolidation test on an undisturbed sample.

Figure 1. A typical ep – log σ΄ν curve for obtaining the value of 
Cc at any load increment.

3 BRIEF REVIEW OF GENETIC EXPRESSION 
PROGRAMING (GEP)

Genetic Expression Programming (GEP), which is based 
on genetic algorithms (GAs) and genetic program-
ming (GP), was developed for the first time by [21]. Its 
data-processing system is similar to the human genetic 
system and is a computer program encoded in linear 
chromosomes of fixed length. The fundamental concept 
of this approach is to find a mathematical function, 
defined as a chromosome with multi genes, by using 
the data presented to it. The mathematical expression 
is encoded as simple strings of fixed length, which are 
subsequently expressed as expression trees of different 
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Figure 2. The algorithm of Genetic Expression Programming [25].

Figure 3. Schematic indication of a chromosome with one gene and 
its expression tree and the corresponding mathematical equation.

size and shape in GEP [22-24]. A typical GEP algorithm 
is sketched out in Fig. 2. Its processing initializes, select-
ing five elements, such as the function set, the terminal 
set, the fitness function, the control parameters and the 
stop condition. The GEP algorithm randomly generates 
an initial chromosome that symbolizes a mathematical 
function and then converts it into an expression tree 
(ET), as indicated in Fig. 3.

The later processing is to compare between the predicted 
values and the measured values. If the desired results are 
achieved using the initially selected error criteria , the 
GEP algorithm is terminated. When the expected results 
cannot be obtained, some chromosomes are selected by 
means of the method called roulette-wheel sampling. 
This method, with an elitism strategy, is employed by the 
GEP algorithm to select and copy the individuals. Single 
or several genetic operators, such as crossover, mutation 
and rotation, are used for introducing variations into 
the population. Note that the rotation operator rotates 
two subparts of the genome with respect to a randomly 
chosen point. Further descriptions of the GEP algorithm 
can be found in [21]. They are mutated to obtain new 
chromosomes. After the desired fitness score is obtained, 
this process terminates and then the knowledge coded in 
the genes in chromosomes is decoded for the best solu-
tion of the problem [25].

GEP has two main components that are defined as the 
chromosomes and the expression trees (ETs). The chro-
mosomes that may have one or more genes are coded 
with some information using a special language about 
the problem. The mathematical information is translated 
to the ET using a bilingual and conclusive language 
called Karva Language (the language of the genes) 
and by means of the language of ETs. The genotype is 
accurately derived by using the Karva Language. The 
GEP genes are made up of two parts that are named as 
the head and the tail. The head of a gene includes the 
main variables needed to code any expression, such as 
some functions, variables and constants. The tail simply 
contains variables and constants, which may be required 
for additional terminal symbols. These symbols are 
used in the event that the variables in the head are insuf-
ficient to encipher a function. While the head of a gene 
contains arithmetic and trigonometric functions – like 
+, -, √, /, p, sin, cos – the tail includes the constants and 
the independent variables of the problem – like (1, a, b, 
c).

At the beginning of the model’s construction the user 
specifies the length of the head (i.e., the number of 
symbols), which is the most significant parameter in 
the GEP process. The encoding process takes place 
by reading the ET from left to right in the top line of 
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the tree and from the top to the bottom, and the ET is 
converted to Karva Language. The GEP genes include a 
non-coding part similar to the coding and non-coding 
sequences of biological genes. There are four primary 
operators (such as selection, mutation, transposition, 
and cross-over) during the GEP processing. When the 
mathematical equation obtained from the GEP model is 
not suitable for the problem, the chromosomes should 
be modified by means of GEP operators to obtain the 
next generation. The operators given above are applied 
with the operator rate that shows a certain probability 
for a chromosome. The operator rates are specified by 
the user prior to the analysis. The mutation rate is gener-
ally used between 0.001 and 0.1. On the other hand, it is 
suggested that the transposition rate and cross-over rate 
are 0.1 and 0.4, respectively [25].

4 FUZZY INFERENCE SYSTEMS

Zadeh [26] proposed the first fuzzy approach. This 
method exhibits some differences from the traditional 
cluster theory (TCT), which is the crisp definition for 
an element belonging to a cluster. According to TCT, an 
element either belongs to a cluster or not. However, the 
fuzzy approach does not decide completely with respect 
to the belonging. This is because the degree of member-
ship of an element is important for the fuzzy approach. It 
is defined partially by the continuous membership func-
tions that take a value between 0 and 1 [27, 28]. Takagi 
and Sugeno [29] proposed two models known as the 
Mamdani and Tagagi-Sugeno (TS) models. There are, 
however, some differences between them. The Mamdani 
model employs human expertise and the linguistic 
knowledge’s to build the membership functions and the 
if-then rules. However, in the TS model the optimiza-
tion and adaptive techniques are used and it also uses 
a smaller number of if-then rules. So, the advantage of 
some aspects of the TS model is that it is more suitable 
for the mathematical and computational modeling, and 
therefore it is mostly preferred by researchers [14, 24]. 
The other advantage is that it also makes it possible to 
design the output function as either linear or constant 
[13, 30 and 31]. ANFIS is a kind of fuzzy-logic approach 
proposed by Jang [32]. It has more advanced properties 
than other fuzzy models, such as learning and parallel-
ism, like that of ANNs, which allow the fuzzy rules and 
membership functions to be generated adaptively using 
a neural training process with the data set presented. In 
the Sugeno-type fuzzy approach, the if-then rules given 
below are used:

1 1 1( , ) 1 1 1x yIf x A and y B then f p x q y k= = = + +       (2)

2 2 2( , ) 2 2x y qIf x A and y B then f p x q y k= = = + +     (3)

where x (or y) = the input node; i, p, q and k = the conse-
quence parameters obtained from the training; A and B 
= are labels of the fuzzy set defining a suitable member-
ship function. A backpropagation learning algorithm 
and a hybrid learning algorithm are utilized to update 
the membership functions during the fuzzy process [33]. 
In Fig. 4, the main concept of the ANFIS approach is 
illustrated. As shown, the computational process of the 
ANFIS is performed in five steps. The initial parameters 
that define the membership functions are specified in 
the first step. For example, the initial parameters of the 
generalized bell-shaped are widely used as a member-
ship function, as given below:
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where η = the membership function; a, b and c = the 
parameter set known as the initial (or premise) param-
eters. In second step, every node in this layer is a fixed 
node labelled Π, representing the firing strength of each 
rule. The firing strength means the degree to which the 
antecedent part of the rule is satisfied. It represents the 
product of the incoming signals that is calculated using 
the following equation:

2, ( ) ( ) 1,2i i i iU w A x B y ih h= = ´ =         (5)

The firing strengths computed in the second step are 
normalized using the following equation in the third 
step,
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        (6)

In the fourth step, the effect of each rule on the output 
is computed with an adaptive node function using the 
following equation:

4, ( )i l i i i i iU w f w p x q y k= = + +         (7)

where w is the normalized firing strength calculated in 
step 3; and pi , qi , and ki are the resulting parameters. 
The final output of the ANFIS model is found in the fifth 
step using the equation shown below:
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w
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        (8)
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Figure 4. The simple ANFIS architecture [34].

5 DATA COLLECTION

This study aims to estimate the compression index by 
taking account of the physical properties of soils. The 
data sets used to develop the GEP and ANFIS models 
were obtained from Kalantary and Kordnaeij [35]. They 
reported on data from Iran and suggested an ANN 
model for the prediction of the compression index. The 
input parameters used herein were selected in such a 
manner that the phenomenon of the compression index 
is defined by these parameters in accordance with the 

methods used extensively in practical engineering. 
Therefore, the void ratio (eo), the natural water content 
(ωn), the liquid limit (LL), the plastic index (PI), and the 
specific gravity (Gs) were chosen as the input param-
eters. Also, based on the previous trend of studies, the 
compression index of the soils is assumed to be affected 
by them. Fig. 5 shows histograms of the inputs and the 
target parameters and, also, the statistical parameters of 
the input and output variables for each data set are given 
in Table 1. As is clear from Table 1, there is a high corre-
lation between the input parameters (ωn and eo) and the 
target parameter (Cc).

Data Set Variable xort σ Cv Csx Ck xmaks xmin Range Correlation coefficient 
with the Cc

Training

ωn 28.39 6.94 48.16 1.01 2.44 57.40 11.10 46.30 0.76
LL 40.02 9.83 96.31 1.26 0.92 96.31 24.00 72.31 0.48
PI 18.83 8.50 71.88 1.37 0.36 71.88 4.00 67.88 0.46
eo 0.76 0.15 0.02 0.72 4.95 4.95 0.41 4.54 0.85
Gs 2.64 0.06 0.00 -9.77 0.50 2.80 2.43 0.37 -0.16

Testing

ωn 28.93 6.80 46.28 0.46 -0.04 46.40 14.50 31.90 0.80
LL 37.41 7.46 55.60 0.62 -0.40 57.00 25.00 32.00 0.30
PI 16.53 6.79 46.07 0.44 -0.68 34.00 6.00 28.00 0.27
eo 0.77 0.15 0.02 0.68 0.63 1.23 0.48 0.76 0.87
Gs 2.64 0.05 0.00 -0.70 1.29 2.74 2.49 0.25 0.00

Table 1. Statistical parameters of the input and output variables for each data set.

Cv: variation coefficient, Csx: skewness coefficient, Ck: kurtosis coefficient.
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Figure 5. The histograms of the input variables and the output variable.

6 GEP MODEL DEVELOPMENT

The GEP models enhanced herein are mainly designed 
to generate mathematical functions for the prediction 
of the compression index of the soil. Three GEP models 
(GEP Model I, GEP Model II and GEP Model III) were 

developed. Whilst five input parameters were selected, 
such as ωn , LL, PI, eo and Gs for the GEP Model I, three 
and two input parameters ((LL, PI and eo), (ωn and eo)) 
were used in the GEP Model II and GEP Model III, 
respectively. In other words, the ωn and Gs parameters 
were not taken into account for the inputs of the GEP 
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Model II. For that reason, three mathematical functions 
in the form y = f(ωn, LL, PI, eo and Gs), y = f(LL, PI and 
eo) and y = f(ωn and eo) were generated for the prediction 
of the compression index of the soil. The model param-
eters used for both models are given in Table 2. DTREG 
software is used for the GEP algorithm [36]. The func-
tions obtained from the GEP Models are given below:

Model I
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7 ANFIS MODEL DEVELOPMENT

Three ANFIS Models (ANFIS Model I, ANFIS Model II 
and ANFIS Model III) were built using the same inputs 
as in the GEP. The membership functions of each of the 
input variables were generated using the grid-partition 
method. The triangular membership function was chosen 
for both models and the hybrid learning algorithm was 
executed for optimizing the parameters that can perform 
a rapid identification of the parameters, substantially 
reducing the time needed to reach convergence.

Population Size 50
Generation 194174

Number of The Genes 4
Length of The Gene Head 8

Max. Generation 227405
Linking Function +

Function Set +, -, *, /, √, exp, ln, 
sin, cos, atan

Mutation Rate 0.044
Inversion Rate 0.1

One-Point Recombination Rate 0.3
Two-Point Recombination Rate 0.3

Gene-Transposition Rate 0.1

Table 2. GEP parameters of the developed models .

In order to avoid over fitting, the stopping criterion was 
adopted as the minimum validation error. The ANFIS 
Model I has 243 linear parameters, 45 nonlinear param-
eters, 524 nodes and 243 fuzzy rules. On the other hand, 
ANFIS Model II has 64 linear parameters, 48 nonlinear 
parameters, 158 nodes and 64 fuzzy rules. Also, ANFIS 
Model III has 9 linear parameters, 18 nonlinear param-
eters, 35 nodes and 9 fuzzy rules. The fuzzy toolbox of 
the MATLAB computer-aided software was used for the 
model development [33].

8 RESULTS AND DISCUSSION

This paper, to a large extent, intends to investigate the 
potential use of GEP and ANFIS for the prediction of the 
compression index of soils, which has great significance 
for soil mechanics and foundation engineering. The 
results obtained from these approaches were compre-
hensively evaluated in terms of statistics for a quantita-
tive assessment of the model’s predictive abilities. Of the 
299 data sets, 233 were used for training the models and 
66, which are not used in training stage, were presented 
for the testing of the models. In order to learn the 
performance of the developed models, several statistical 
verification criteria were used, such as the coefficient of 
correlation (R), the root-mean-square error (RMSE) and 
the standard deviation (σ) of the errors. The definition of 
these evaluation criteria are given as follows:
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the accuracy and the precision of the prediction method. 
Under ideal conditions, an accurate and precise method 
gives a mean value of 1.0 and a standard deviation of 0. 
A μ value greater than 1.0 indicates an overestimation 
and an underestimation, otherwise. The best model is 
represented by a μ value close to 1.0 and a σ value close 
to 0. Based on the μ value, the GEP Model I shows a 
good prediction when using the soil parameters such as 
ωn, LL, PI, eo and Gs. Other empirical formulas yield a 
μ value in the range 0.820–14.574. This means that, on 
average, they considerably underestimate or overesti-
mate the compression index. The value of σ is also found 
to be a minimum for the GEP Model I.
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where ui
m and ui

c are the measured and predicted values, 
respectively. mu and cu are the mean of the measured 
and predicted values, e is the absolute error ( m c

i iu u- ), 
e  is the mean of the absolute error, and N is the size of 
the sample. The Cc values estimated from all the models 
through the training and testing process were graphi-
cally compared with the case records in Fig.6. It is clear 
from the figure that the results from the GEP and ANFIS 
are in good agreement with the case records. This also 
shows that all the models were found to be able to learn 
the complex relationship between the input parameters 
relating to soils and the value of Cc. Moreover, the statis-
tical performances of the models are presented in Table 
3. With respect to this table, all the models for compres-
sion index Cc give a satisfactory agreement in terms of 
the statistical evaluation criteria. The best results with 
regard to the R values were 0.910 and 0.900 for the GEP 
Model I and the ANFIS Model I, respectively. However, 
the GEP Model II and the ANFIS Model II give relatively 
high R values, i.e., 0.870 and 0.870, respectively. In 
statistics, the overall error performances of the relation-
ship between the two groups can be interpreted from 
the R values. According to Smith (1986), if a proposed 
model gives R>0.8, there is a strong correlation between 
the measured and the predicted values for all the data 
available in the database. 

As the models are compared with regard to the RMSE, 
which is a measurement of the deviation around the 
regression line, it is clear that the lowest RMSE is 
obtained from Eq. (9) generated from GEP Model I, 
i.e., 0.029. On the other hand, Eq. (10) generated from 
GEP Model II gives an RMSE value of 0.034. The other 
models yield low RMSE values, ranging from 0.032 to 
0.090. The RMSE value has great significance for the 
statistics in addition to the R value, because although the 
relationship provides a high R value, it may also give a 
high RMSE value.

As seen from Table 4, the predictability of the GEP and 
ANFIS models is also statistically compared with the 
empirical formulas, the mean and the standard devia-
tion of the ratio Cc,pred/Cc,mea , which is often used for 
a statistical analysis. The mean (μ) and the standard 
deviation (σ) of Cc,pred/Cc,mea are important indicators of 

GEP Models ANFIS Models
I II III I II III

R 0.910 0.870 0.866 0.900 0.870 0.852
RMSE 0.029 0.034 0.035 0.032 0.090 0.037

σ 0.018 0.023 0.024 0.021 0.081 0.026

Table 3. Performance statistics of the models.

Equation Aver-
age, μ

Standard 
Devia-
tion, σ

References

Cc=0.01ωn-0.05 1.154 0.224 Azzouz [4]
Cc=0.01ωn 1.411 0.262 Koppula [37]

Cc=0.013ωn-0.115 0.820 0.206 Park and Lee 
[9]

Cc=0.54e0-0.19 1.058 0.204 Nishida [38]
Cc=0.75e0-0.38 0.874 0.352 Sowers [39]

Cc=0.006ωL-0.054 0.858 0.292 Azzouz [4]
Cc=0.009ωL-0.090 1.241 0.429 Terzaghi and 

Peck [3]
Cc=0.014ωL-0.168 1.786 0.642 Park and Lee 

[9]
Cc=0.2343(ωL/100)Gs 1.167 0.352 Nagaraj and 

Murthy [5]
Cc=2.926(ωL/100)Gs 14.574 4.399 Park and Lee 

[9]
Cc=0.009ωn+0.005ωL 2.216 0.443 Koppula [37]

GEP Model I 0.993 0.131 This study
GEP Model II 0.980 0.151 This study
GEP Model III 1.015 0.150 This study
ANFIS Model I 1.016 0.140 This study
ANFIS Model II 0.992 0.138 This study
ANFIS Model III 1.010 0.149 This study

Table 4. Statistical results for conventional empirical formulas.
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Figure 6. Comparison of the case records with the predicted Cc values from the GEP and ANFIS Models.

b) ANFIS Models

a) GEP Models

The evaluations given above clearly reveal that Eqs. 
(9), (10) and (11) generated by the GEP Models and 
the ANFIS Models have a good prediction ability. The 
prediction accuracy of the models appears to be statisti-
cally sufficient in terms of the prediction of Cc. Since the 
laboratory and the in-situ tests for the determination of 
the Cc value are laborious, time consuming and costly, 
it is better to use Eqs. (9), (10) and (11) to estimate the 
compression index (Cc) of soils.

9 CONCLUSIONS

This study looks at the capability of Genetic Expres-
sion Programming (GEP) and Adaptive Neuro-Fuzzy 
(ANFIS) for the prediction of the compression index 
(Cc) in soils. Data for the development and the testing 
of the models were obtained from the literature. At 

the end of the analyses, three mathematical equations 
from the GEP and three ANFIS Models were developed 
for a better prediction of the soil-compression index. 
The results of these compression indexes of the soils 
predicted by the GEP Models are compared with those 
obtained from the ANFIS and the conventional empiri-
cal formulas.

The comparison between soft computing systems 
mentioned above indicated that the GEP Model I 
markedly outperformed the other models. The satisfac-
tory agreement was obtained as a result of the testing 
procedures of Eqs. (1) and the GEP Models. This was 
evidenced by some statistical performance criteria used 
for evaluating the models. Eqs. (1) produced the GEP 
Model I and GEP Model II, respectively, and gave a high 
correlation coefficient (0.910 and 0.870, respectively) 
and low RMSE values (0.029 and 0.035). On the other 
hand, the ANFIS Models produced satisfactory results 
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with R values that are ranging from 0.900 to 0.850 and 
higher RMSE values ranging from 0.032 to 0.900 than 
the GEP Models. The overall evaluation of the results 
obtained throughout the paper revealed that the soft-
computing techniques used herein are very encouraging 
for the cases tested.

It was also observed that the best results were obtained 
from Model I with five input parameters. The other 
models that were developed to see the effects of differ-
ent soil properties also produced satisfactory results. 
It was concluded from all the findings herein that the 
use of basic soil properties, such as the void ratio (eo), 
the natural water content (ωn), the liquid limit (LL), the 
plastic index (PI), and the specific gravity (Gs), appears 
to be reasonable for the prediction of the compression 
index (Cc) of soils.
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