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ABSTRACT

We consider the stochastic subscriber line model as a pttdhastic model for telecommunication networks
and we are interested in the evaluation of the required d@gmat different locations of the network in order
to provide, in fine, an estimation of the cable system whick teabe installed. In particular, we consider
hierarchical telecommunication networks with higherelesomponents (HLC) and lower—level components
(LLC) located on the road system underlying the network. ddide paths are modeled by shortest paths along
the edge set of a stationary random tessellation, whergadHidC and LLC are modeled by Cox processes
concentrated on the edges of this tessellation. We theaduate the notion of capacity which depends on
the length of some subtree on the edge set of the underlyssgltation. Moreover, we investigate estimators
for the density and distribution function of the typical ¢gh of this subtree which can be computed based on
Monte Carlo simulations of the typical serving zone. In a eual study, the density of the typical subtree
length is determined for different specific models.

Keywords: point processes, random tessellations, sttclgeometry, telecommunication systems.

INTRODUCTION telecommunication networks. On the one hand, it is
too expensive to install cables with large capacities
A statistical method based on spatial stochastiat all locations of the network. On the other hand,
modeling is proposed in order to analyze requiredt is important that the cable system of the network
capacities in  hierarchical telecommunicationprovides the capacities demanded by the subscribers.
networks. The networks considered in this papeHowever, once the network is built, it is difficult
possess higher-level components (HLC) and lowerto change the installed cables of the network. So
level components (LLC) located on the cable systenit is essential to know the required capacities at
of the network. With each HLC a domain is associatedjiven network locations in advance. Based on our
which is called the serving zone of this HLC. All stochastic model, the approach developed in the
LLC within a serving zone are then connectedpresent paper provides a method to design capacities
to its HLC on the shortest path along the roadof new networks or analyze existing cable systems.

system. Recently, such telecommunication networks The paver is oraanized as follows. Eirst we briefl
have been studied in the context of the stochastic pap g ' Y

subscriber line model (SSLM), where a me,[hodmention how the density of the typical shortest path

has been developed to estimate the mean ty icéﬁngth can be estimated, which will be used later
P . PIC31 in the paper. Then, we introduce the notion of
shortest path length and the mean typical subscriber,

line length from LLC to HLC (Gloagueret al, gapa}glty atglven r&etworﬁ I?catlohns ?nd showgwow |tsf
2009a). Note that the SSLM is particularly suitable Istribution depends on the lengths of some subtrees o
: ) - ot the network. The considered locations are modeled by
in the analysis of telecommunication access network

Further methods for the analysis and optimizatio oint processes, where we concentrate on two special

of telecommunication networks based on spatiafases' We analyze the capacity required at locations

stochastic models have been developedg, in with a given shortest path length to the closest

. HLC and at network locations chosen at random,
Baccell! and Zuyev (1996), Baccedt al. (2000), and respectively. In both cases we derive representation
Baccelli and Btaszczyszyn (2001).

formulae for distributional characteristics of the

We investigate a network characteristic whichtypical subtree length, which are suitable to construct
is related to the typical shortest path length inestimators for these network characteristics based on
the SSLM. In particular, we are interested insamples of the typical serving zone. Finally, we present
the distribution of capacities required at differentthe results of a numerical study, where the density of
locations of the network. The required capacity is arthe typical subtree length is determined for different
important characteristic in the strategic planning ofspecific models.
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S

(a) PLT (b) PVT

Fig. 1.HLC with their serving zones (blue) and LLC (green) with séstrpaths along the edge set (red).

SHORTEST PATH LENGTHS the ergodic case, the empirical distribution of the
marks s(X_ n) belonging to a sampling windowv

To begin with we briefly introduce our network converges to the distribution & if W unboundedly
model which is based on (marked) point processe#)creases. Thus§* can be interpreted as the shortest
random tessellations and Palm theory. For details opath length of a location chosen at random among all
these basic notions from stochastic geometry, selelC. Realizations ofX? are displayed in Fig. 1. Let
Stoyanet al. (1995) and Schneider and Weil (2008). TH = {=H.n} denote the Voronoi tessellation o,
The cable system is modeled by the edgeTsét of ~ and consider the marked point procg€Xu n, LY 1)},
a stationary and isotropic random tessellafiomwith ~ whereL?, , = (T N =y ) — Xu n, i.€., the points of
intensity y = Evy(T™® N[0,1)?), wherev; denotes X are labelled with the (centered) segment systems
the 1-dimensional Hausdorff measure. For exaniple, of T(1) inside the Voronoi cells offy. The segment
can be a Poisson line tessellation (PLT), a PoissonsystemLy; inside the typical cell ofly is then defined
Voronoi tessellation (PVT), or a Poisson-Delaunays the typical mark of (X n,L{, ) }. Note thatLj, can
tessellation (PDT). The HLC and LLC are modeledbe split into segmentS;,i = 1,...,M with endpoints
as (conditionally independent) Cox proces¥gsand A, B; such thats(A)) < s(Bj) = s(A)) + v1(S), where
X_ with linear intensities\, andA; on T, where the  s(x) denotes the length of the shortest path fooaLj,
random driving measurA of Xy andX_ is given by to the origin, see Fig. 2.
A(B) = Avi(BNTW),B € Z(R?) with A = A, and
A = A/, respectively. Each poink_, of X_ is then
connected to its nearest neighborXqf with respect
to the Euclidean distance. Thi§ , is connected to
a point Xy ; of Xy if and only if X_, is located
in the Voronoi cell=y j of Xy ; induced by Xy.
Furthermore, we assume that the physical connection
betweerX, , and its nearest neighbor ¥f; is obtained
on the shortest path along the edgeBét. However,
the connection path may lie partly outsiég j. Let
S(X_n) denote the length of this path and consider the
stationary marked point proce$8= { (X_n,S(XLn))}
The typical mark ofX? is called the typical shortest
path length. It is denoted b$%* and can formally Using Neveu's exchange formula for stationary
be defined by the Palm mark distribution ¥f. In  marked point processes, the following representation

Fig. 2. Splitting of L, into segments;S. .., Su-
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formula can be derived (Gloaguenal., 2009b; Voss respectively. Moreover, leX = {X,} be a further

et al, 2009c). stationary point process of random locatiods on
the edge seT™® which is conditionally independent
Lemmal The density § of S is given by of X_ given T, The points ofX are used to model

the locations at which we want to analyze the required
M . capacities. The (planar) intensity §K,} is denoted
fo (x) = ME [_2111[3(A,-),s(8i))(x)] ifx>0, by A. For eachn > 1, we define the capaci@(X,)
S = required atX, in the following way. If X, € Lyy j =

0 otherwise, L2 ; +Xu,j for somej > 1, then we put

whereliga) s 1) (X) equalsl if x € [s(Aj),s(B;)) and e PN
(A (1) _
0 otherwise. C%n) i; Trguexa) XL G (2)

where Tsyp(Xn) = {y € Ln,j : Xn € P(Y,Xu,j) } is the
subset of those pointgon Ly ; whose shortest path
P(y,Xu,j) fromy to Xy j crossesX,, see Fig. 3. Note
that we callTsyp(Xn) the subtree rooted .

Note that the densitys- of S* does not depend on the
intensity A; of LLC. Furthermore, the representation
formula given in Lemma 1 leads to the (plug—in)
estimator

n M;j

:1;]'[5(/\-,] ):8(Bj j))) x), (@)

fs(x;n) = A, 1
n

for fs(x) which can be computed based on the
simulation ofn i.i.d. copiesL}, 4,...,L} , of L};. For
T being a PLT, PVT, and PDT, respectively, simulation
algorithms forL}, are given in Gloagueat al. (2005),
Fleischeret al. (2009), and Voset al. (2009a). Note
that the estimatorfs:(-;n) given in Eq. 1 has good
statistical properties. For example, it can be shown that
IP’(rI]iLnoosug(eRH} (x;n) — fs(X)| = 0) = 1, see Voss
et al.(2009c). /

Fig. 3. Teup(X) (black) at given location x (black) with
MODELING OF CAPACITIES LLC (grey) on subtree.

SinceX, is conditionally independent of_ given

1), Eq. 2 implies thatC(X,) < . Ci, where
~ Poi(Ajvi(Tsub(Xn))) given vi(Tsun(Xn)). Here
i(() denotes the Poisson distribution with mgan
us, the distribution o€(X,) is fully characterized
A, and the distribution ofC; and the subtree
ngthvi(Tsun(Xn)), respectively. Moreover, a similar

The main topic of this paper is the modeling and
analysis of capacities required at various location
in telecommunication networks. They are important."
performance characteristics and should be investigat
before the networks are built physically, because i
should be guaranteed as a rule that the capaci

at a given location is higher than the demanéepresentation formula can be derived for the typical

at this location. Otherwise, the demand of som capacity C* (at the typical point of{X,}), where

LLC cannot be served. Thus, for strategic planninqhe nonnegative random variab@&" is distributed
of telecommunication networks, the analysis of

according to the Palm mark distribution of the

capacities required at given locations of the networ . .
is an important task. i§tat|onary marked point proce§6X,,C(Xn))}.

More formally, the capacity required at a given T heorem 1 It holds that

point x € T of the edge seT™@ is understood as . K

the sum of demands which are requested by all those C = .ZLCM 3)
LLC located in the same serving zonexaand whose =

shortest paths crose In connection with this, we where K ~ Poi(A/v1(Tg,)) given vi(TS,) and
consider a sequence of independent and identicaljpe random variable vi(Tg,) is distributed
distributed random variable®;,C,, ... which describe according to the Palm mark distribution of 'X=
the demand of the LLC at the locatioXs 1, X 2,...,  {(Xn, V1(Tsun(%n)))}-
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Proof Using Eq. 2, the definition of the (Palm mark) we can apply Neveu's exchange formula (Neveu,
distribution ofC* gives that for each: R — [0, ») 1976; Maieret al., 2004) for stationary marked point
processes which yields Eq. 4.

e 1
) E( 01 (XL ) C‘)) In the rest of this paper we focus on two special
s cases for the point proce$X,} of locations at which
[E( h S ) 1T XH)} the required capacities are considered.

€012 X, i €Tsun(%)
FIXED DISTANCE TO HLC

For somes> 0, letX = {X} be the point process
= E[E<Z. h(ZjCj) | X) |T(l)>XH} which consists of all points ofx e T : s(x) = s},
) wheres(x) denotes the shortest path Iength fraro
(chj) \X) l 7XH} Xu j if X € Lp j, i.e, X is the point process of those
points on T with a fixed shortest path length to
their HLC which is equal t®. Then, the statement of
Ki Theorem 2 can be specified in the following way.

B(n(3,6) 1) =E(n(3,61) 1aToux))

with K ~ Poi(A;vi(Tsun(Xi))) given vi(Tsun(Xi)).
Thus, the statement of the theorem follows from A K

the definition of the Palm mark distribution Eh(vi(TF D)) = — ES h(vi(Te (X 6

of the stationary marked point process’ = (Va(Touw) fs(s) i; Va(laul26)), (©)

{ (X0, v1(Tsub(%a))) }-

In view of Eq. 3, it suffices to investigate the Where (X1, Toun(X0)). - (XK7TSUb(X )) denote the
distribution of the typical subtree lengtt(TS,), marked points oK™ on L}, andK is (random) total
assuming thad; and the distribution o€; are known. number of these points. In particular, the distribution
Similar to the statement of Lemma 1, we can expresBinction F: R — [0,1] of v1(Tg,) is given by
the distribution ofvy(Tg,) in terms of the typical
segment systenhf,, using again Neveu's exchange A 4 N
formula. LetAy denote the (planar) intensity ofy F(x) = —ZEZJI[QX](vl(Tsub(Xi))), x>0. (7)
and letXT be the Palm version o™ which is obtained fe(s) &
under the Palm probability measure {aXy n, L, )}
(see.e.qg, Fleischeret al, 2009 for details). Then, the
following is true.

and

Theorem 3 For any measurable h[0, ) — [0, ),

Proof Using Eq. 4 we only have to show thag /A =
A¢/ fs<(s). Moreover, sincedy = yA,, it suffices to

how thath = yfs:(s). We h h
Theorem 2 For any measurable h[0, o) — [0, ), show thatt = yfs (s). We have that

BA(Ta) = 5B [ ) XT(dy)- @) S -
R =ES #{n: X% cLy;n[0,1

A =E#{n: %X, €[0,1)%}

Proof Consider the two jointly stationary marked ~ § )

point processeX™ = {(Xun,L? )} andXT. We can =M /RZ E#{n: X, € Ly N ([0,1)"=x) }dx,
regard (XT,X") as a random element of the space

Njo.«), Of locally finite point sets with marks ifd,«)  where the latter equality follows from the refined
or £, where # denotes the family of all locally Campbell theorem for stationary marked point
finite segment systems containing the origin. Using th@rocesses. Note that each poditi = 1,....K is
function f : R? x [0,0) x .% x Njg ) & — [0,0) given  contained almost surely in exactly one segmeﬂl@f

by _ and each segment contains 0 or 1 pointsxXdf so
(x8.2.0) = h(s) ifxed, 5y K <M. We can assume without loss of generality
0 otherwise, that X; € § for i = 1,...,K and that the segments
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S,i=K+1,...,M do not contain a point with shortest Note that Theorem 4 can be proven directly using

path lengtrs. This yields Theorem 2 and the assumption that,} is a Cox
. process ol (1), However, interestingly enough, there
A :)\H/ E#{n:)N(neL’,:lm([O,l)z—x)}dx is an alternative proof which uses the following
R2

relationship between the distribution of the typical

K subtree lengthvi(Tg ) at the points of{X,} and

= YAE Z :“[S(Aj),s(Bj))(S) /Rz:"[o.,l)Z_)”(j (x) dx the typical subtree length at the locations of the
=1 point procesq Xsn} with fixed shortest path length
K considered in the preceding section.

=YAE S A s6))(8) = yis(9),
=1
Lemma?2 Let se [0,), then it holds that
where the latter equality follows from Lemma 1. This

completes the proof. P(vi(Teun) <X | S =) = Fs(x), 9)
Note thatfs (s) is not known analytically, but it

can be estimated consistently by the estimégafx; n)
given in Eqg. 1. Thus, Theorem 3 leads to a natur
estimator for (x) which is given by

where § denotes the shortest path length at the typical
a;Point of X and E denotes the distribution function
introduced in Eq. 7 for fixed shortest path length s.

- A, 10 KU (0o Proof Let Ks and Xs1,...,Xz, be the random
F(xn) = s pen)n 2 .Z\JI[O’X](Vl(Tsub()ﬁ ) variables which have been introduced in Theorem 3
== (8 o fixedse [0.e), ie, s(Xs) =sfori=1..Ks

wherek (i) and.l.s(dl))m(j))’ {=1....nareiid. copies whereKs is the numbe.r Qf points ohy, Wlth shorNtest
path lengths to the origin. Moreover, leX = {X,}

of KAand Va(Tsuo( X)), respectively. It is easy to see denote the Palm version &f with respect to the Palm
that F(x;n) is ratio—unbiased and strongly consistentyjqyiptjon of Xy. Since the densityfs:(s) does not
for I_:(x). Moreover, sinceF is continuous, it can be depend on the intensitp! of the underlying Cox
easily shown that process{X_ n} of LLC, see Lemma 1, the equality
fs(s) = fs (s) holds almost everywhere. Thus we

P(lim sup|F(x;n) —F(x)| =0) =1.

N—o cp have
P(v1(Tsup) < X[ Sc =)
RANDOM LOCATIONS = LiTOP(vl(TS*ub) <X| St €[s;s+¢))
In this section we assume that = {Xn} is @  _ i g(1 T Ysse)(SK)
Cox process with linear intensity! = A /y on T, £ ( ox(Va( S”b))j’ss“ fs. (u) du)

which is conditionally independent ofy and X, 1 S
given T, Recall thatlf; can be split into segments _ jim 2 S ]l[ox](Vl(Tsub(Xn)))M
S,i=1,...,M with endpointsA;, B; such thas(A) < eN0A o ’ JSFE fs (u)du
S(Bi) = s(A)) + vi(S). This leads to the following 1 (s(y)
representation formula for the flensrly R —[0,0)  _ ), lim E/Jl[o,x](W(Tsub(y))) s[ijre) va(dy),
of the typical subtree lengtin (T,), which is similar N0 L 5 fs(u)du

to the formula stated in Lemma 1 for the density

Xn€Ly

of S where the last but one equality is obtained by a
slight modification of Theorem 2 and the last equality
Theorem 4 It holds that follows from the fact that the pointgX,} form a Cox

process orL{; with linear intensityA/, see Fleischer

M . et al. (2009). We can dividd_}; into the segments
fx) = 4 ME| 2 e X)) X =0, S.,...,Su as before and get
0 otherwise, N
IED(Vl(Tsu ) < X’ Sk( - S)
where [(B;j) denotes the subtree length atBL}, and ALImE i /Jl v (T, Yissie)(s(Y)) vi(d
|(A|) _ Vl(S)+I(Bi)- 68\0 i; S [O,X]( 1( Sub(y))) [sSJrEfS*(U) du 1( y)
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Furthermore, fs is right-continuous, thus we have which proves the theorem.

almost surely For eachx > 0, Theorem 4 leads to the natural

i M / Yo (v1(Tau¥) Yssie)(S(Y)) (@) estimator
im Y ——————"v
eN0 i; S [0, V2l TsublY J$TE fs(u)du 1Y R 1 n M0
1 Ks _ f(X, n) =M ﬁ JZJ_ i; Jl[l(Bi(j)),l(Ai(j)))(X) ) (10)
NG ‘lel[o.,x] (V1(Tsun(Xs;i))) -
= for f(x) which is based onn independent and

Since identically distributed copies df},. Clearly, f(x;n) is

Uissie)(S(Y)) unbiased and strongly consistent foix). For further
/S 1o (VI(TSUb(y)))m vi(dy) useful properties of (x; n), see Vos®t al. (2009c).

S

1 S
< / -[sh,s+e)( (Y)) va(dy)
§ EMiNgefssia) fs (X) NUMERICAL RESULTS
1

@, We now consider two specific examples assuming
that T is a PLT or PVT, respectively. Then, it is
we can use the dominated convergence theorem imot difficult to show that the distribution functiof

: <
Minesst1) fs+(X)

order to get of the typical subtree length(Tg,,), considered in
. Eqg. 7 for network locations with a fixed distance
P(vi(Taup) <X[ S =) to their HLC, has a density. To see this, suppose
by Ks N that the~typical~segment~ systehﬁ and the marked
- ?(S)Ei;]l[o-x] (Tsub(Xsi)) = Fs(x), points(Xl,Tsub(Xl)_), - (XKaTsub(X}Z)) as well as the
random tessellationT* with respect to the Palm
which completes the proof. distribution of Xy are given. If we only condition on

Note that Lemma 2 states that the distributionT " the distribution ofs ; Ig(vi(Tsus(Xi))) does not -
distribution function ofvy(TZ,,) given thatS; = s. We uniformly distributed on the same segment. Under this

now use this relationship in order to prove Theorem 4transformation the points with shortest path lergin
T* are not changed, but some new points may li€gn

Proof of Theorem 4 For eachx> 0 Lemma 2yields 414 some points may not lie &y, anymore. However,

F(X)=E (P(vi(TS) < x| SX)) the suptree lengthByp(Xi),i=1,2,... are'changed in.
o a continuous and non-constant way with probability
:/0 P(va(Tun) < x| Sk =9)fs (s)ds one if HLC are shifted along the segments. Thus
o K Ap(va(Tsun(X))) = 0 almost surely ifvy(B) = 0
:/o Fs(x) fs; (s) ds and hence the distribution afy(T.,) is absolutely
‘ continuous.
= A E Z\JI[O'X] (Toub(Xsi)) fs (s)ds, Moreover, a scaling invariance can be observed if
o fs(s) & the scaling factok = y/A, is fixed,i.e., the structure

where the latter equality follows from Eq. 7 and of the network model is fixed, but on different scales

— = B . . (Gloaguenet al, 2009b; Vosset al, 2009a). We
_KS’XSJ""’X&KS are the ra“df)m variables mtroducedthus used the estimators introduced in the preceding
in the proof of Lemma 2. Sincds:(s) = fg (s) for

sections to determine the densityx) of the typical

almost alls € [0, ), we have subtree lengthvy (T2, for different values ok based
& on i.i.d. samples ot}; which were generated using

. C e S simulation algorithms introduced in Gloaguenh al.
RO = ME/O i;]l[o.,x] (Tsup(Xsi)) ds (2005) and Fleischesat al. (2009). For each realization

Mo of Ly; first the shortest path from to all nodes ol
=)NE Z\/ Tg(s)ds were computed using Dijkstra’s algorlthm (Dijkstra,
i=1/1(Bi) 1959). In a second step, segments with distance peak
X M were split and in this way.{; was transformed into
:/ ME Zl]l[l(Bi),l(Ai))(S) ds, a tree structure, the shortest path tree. Note that the
0 i= distance peaks are the leaves of the tree. Based on this
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Fig. 4.Density f ofvy(Tg,,) for Cox processefXy} .
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Fig. 5.Density f ofv1(T; ) for fixed distance s to HLC.

tree we computed the subtree len¢tB;) and|(A;)) other. Furthermore, Fig. 5 shows that the density
at the segment endpoint§,B;,i = 1,...,M. These f(x) of the typical subtree length(Tg,) does not

results were then directly used for the computatlon oflepend too much on the particular choice of the (fixed)
the estlmatorf(x n) in Eq. 10. In order to compute the distances to the nearest HLC. On the other hand, the

estlmatorFs(x n) in Eq. 8 we first chose the segmentsvalues off(x) change rather drastically if the model

S,i=1,....,Kwiths(A) <s< s(Bi),i.e. the segments type of T (PLT vs. PVT) or the scaling factok is
which contam the pointsy,..., Xz, and computed changed, see Figs. 4 and 5.
Vi(Tsun(X)) = 1(Bi) +(Bi) —s. We also remark that knowing the densifyx)

In Fig. 4 the numerical results are displayed forof the typical subtree length (Tg,,) and using the
T being a PLT or PVT, respectively, and for Cox representation formula (Eq. 3) for the typical capacity
processeg X} with different values ofk, where we C*, we can computes.g, the expectatiofith(C*) for
used the estimator introduced in Eq. 10. Furthermorejarious functional$ : [0,0) — [0, ) of C*, where
in Fig. 5 the results are shown which we obtained
for network locations with a fixed distaneeto their K*
HLC. For different values o and k, we computed Eh(C") :Eh(ZCi)
the density of the typical subtree length(Tg,) i
using difference quotients of the empirical distribution

- o 1 Y
functionF (x;n) given in Eq. 8. Z W B ZC. / X(A/x)*F(x) dx,

It can be seen that the shapes of all the densities
presented in Figs. 4 and 5 are quite similar to eackvhich is a consequence of Theorem 1.
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Fig. 6.Joint density of S*,v1(Tg,))
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