RELATIONAL SCHEMA DESCRIPTION LANGUAGE

Descriptors: RERLATION BASES, PROGRAMMING LANGUAGE,
SCHEMA DEFINITION, INTERPRETERS, SDL LANGUAGE

INFORMATICA 1/89

- Radojko Miladinovi¢
Dusan Velasevié

ABSTRACT: 1In this paper a schema description language for relational databases is
described. The language provides a schema description on which any query language can
be defined. The implemented multiuser incremental interpreter for that language is

also described.

SADRZAJ: U ovom clanku opisan je jezik

definisanje s8eme u "relacionim bazama

podataka, Taj Jjezik omogucava definisanje seme na kojoj bilo koji upitni jezik moze
biti definisan. Za taj jezik realizovan je visekorisnicki inkrementalni interpreter.

INTRODUCTION

Since 1970., when E.F. Codd had defined the
relational data model [4,5,6,7], a lot of
relational database management systems (RDBMS)
wag developed and implemented. All these
systems can be classified into two groups
according to the way of the schema definition.
The systems from the first group, for example
Relationdal Database Management System [9,10],
have a stand alone schema definition language.
The s8ystems from the second group do not
provide such a language: the schema definition
is realized as a function of data sublanguage,
i.e. query language. SYSTEM R [1,3,11] belongs
to this group of RDBMS.

The relation between schema description
language (SDL) and other languages in RDBMS
({query language, data manipulation language -
DML, ‘subschema description language and
physical database description language)
represents a special problem in the database
design. All these languages can be implemented
as stand alone languages or as extensions of
standard programming languages. The majority
of RDBMS does not have the independent SDL,
query language and DML; in fact, the data
definition, data manipulation and query
facility are realized as the functions of the
special language called the data sublanguage.
The data sublanguage can be implemented as a
stand alone programming language or as an
extension of the host language. If it is
implemented as a stand alone language, it is
usually called the query language.

Although the most of modern RDBMS have not a
separate SDL, there exists a need for such a

language which should be general, simple,
structured and wuser-friendly. This language
should provide the means . for a schema

description over which any query language can
be defined. A complete functional independence
of the schema description process from the
data manipulation and queries is achieved in
this way. Bearing this in mind, we developed
a new sSDL and multiuser incremental
interactive interpreter for that language.

" The language design was influenced by the
general principles applied to the other
programming languages. We especially
emphasized the language reliability, precise
syntax and semantics description of the
language, orthogonallity and language
independence. The SDL structure was designed

bearing in mind that the language should be
interactive. For this reason, the commands
for direct communication with the users are
defined, each statement must be written in
one line and the language is structured to
provide better readability and documentability

-of SDL programs.

BASIC LANGUAGE ELEMENTS

The following notation is used in the
description of SDL elements:

{ } - Braces indicate that one of the
elements enclosed must be specified.
{ 1 - Square brackets .indicate - that one

of the elements enclosed may be
optionally specified.
... - Ellipses indicate that the immediately

preceding part of the format may be

repeated.
- Upper case words are SDL reserved words.
- Lower case words indicate the

information that should be supplied by
the user.

Language alphabet .

The complete SDL character set consists of 52
characters. All SDL characters are presented
in table 1. :

Table 1.

A,B,...,X,Y,2 uppercase letters
01234561789 decimal digits

+ plus

minus

asterisk

slash

less than

greater than
equals

left parenthesis
right parenthesis
point

] comma

: - colon

' quotation marks

$ dollar sign
hyphen

space

s VAN %

Identifiers

A SDL identifier (or word) 1is a character
gtring that forms a user defined or a reserved
word of not more than 20 characters. It can be
any combination of letters, digits and hyphen
sign, but hyphen cannot be the first or the
last character of the identifier. A reserved
word has specific meaning and may be used only
in the manner presented in the statement
format. Reserved words are chosen carefully so
they enable writing of reliasble and synoptic
programs. The 1list of the reserved words is
given in APPENDIX A.

The user defined words are SDL words that must
be supplied by the user to satisfy the format
of the statements. The user defined words are
variable names, constants, function names,
procedures and comments,

Constants and variables

The classification of constants and variables
according to their format and type is given in
Fig 1.

Variables in SDL are relations and attributes.
Attributes are one-dimensional arrays with
elements of the same type. Relations are
considered as two-dimensional arrays in which
all elements in the same column are of the
same type; elements in the same row are not
obligatory of the same type. The attribute
type is8 explicitly defined by a particular
statement in the SDL, and the relation type is
implicitly defined through attributes which
constitute that relation. The external
representation of constants is very simple. It
corresponds to the syntax representation of
integer and real numbers. For example:

1000, -3.5 0.75E10, 0.32D11, -34E10
The internal representation of constants
depends on the context in which constants
appear. For example, if variable A.B in the
relational expression

’ A.B > 10000

is declared as a real variable of the extended
precision (binary floating point format), then
the constant 1000 is presented in the same
format.

Alphanumeric strings (literals) are externally
represented as a character strings delimited
by the quotation marks. The internal
representation of literals is completely the
same if the data compression is not applied.

Arithmetic expressions

12

operands and arithmetic operators., An
arithmetic operand may be a numeric constant
and a variable (attribute). Arithmetic
operators specify a computation to be

performed using the values of arithmetic
operands; they produce a numeric value asa a
result. The operators are: addition(+},
subtraction(-), multiplication(*) and
division(/). Arithmetic expressions are
evaluated in an order determined by a
precedence associated with each operator. The
precedence of the operators is: first (% and
/) and second (+ and -). Parentheses can be
used to override the normal evaluation order.
The attributes which appear in arithmetic
expressions must be of type real or integer.
The attribute names in arithmetic expressions
have the format:

OLD

[[{ }] relation_name.] attribute_name
NEW

The relation name must

of attribute name if

be specified in front
an attribute appears in
more than one relation. If an attribute
belongs to only one relation, then the
relation name 1is optional. The reserved words
OLD and NEW can appear in front of attribute
name. These words denote attribute values
before and after updating. If they are omitted
the immediate attribute values are considered.
The examples of arithmetic expressions:

ORDER.QUANTITY - PRODUCT.QUANTITY

OLD EMPLOYEE.SALARY - 1000

Relational expressions

A relational expression
relational expression, or may be a combination
of simple relational expressions, functions
and logical operators. A simple relational
expression consists of two operands separated
by =a comparison operator. The comparison
operators are: less than(<), greater than(>),
less than or equal to(<z), greater than or
equal to(=>), equal to(=) and not equal
to{(<>). An operand may be a constant and a
variable (attribute) of any type. An attribute
name has the same format as in an arithmetic
expression. The logical operators are AND and
OR. The precedence of the logical operators
is: first AND and second OR. In a relational
expression, the simple relational expressions
are evaluated first to obtain their values.
Evaluation of relational expressions is
performed according to an order of precedence

may be a simple

Arithmetic expressions are used to compute new assigned to logical operators. Logical
attribute values during updating. Arithmetic operators of equal rank are evaluated from
expressions are formed with arithmetic left to right. Parentheses may be used to
alter the normal sequence of evaluation, just
DATA TYPES
INTEGER REAL CHARACTER
\\\\
™~
BINARY DECIMAL FLOATING FIXED COMPRESSED NONCOMPRESSED
POINT POINT
STANDARD EXTENDED STANDARD EXTENDED
PRECISION PRECISION PRECISION PRECISION

Fig 1. Data typesdefined in SDL

as in arithmetic expressions. The examples of
relational expressions:
EMPLOYEE.SALARY > 2000 AND EMPLOYEE.SEX =

" OLD EMPLOYEE.SALARY < NEW EMPLOYEE.SALARY

e

Functions

The functions in SDL
relational expressions that appear in more
than one statements. They are defined through
FUNCTION statements. The functions also enable

are used to define

the decomposition of long relational
expressions, which cannot be written in one
line, into several logical parts. Each logical
part must represent the complete relational
expressions defined by a separate FUNCTION
statement. 1In that way, the long statements
containing relational expressions can be

spread over sgeveral lines. This must be done
because a SDL statement can be written in only
one line. For example:
{EMPLOYEE.JOB="PILOT" OR
EMPLOYEE.JOB="DRIVER")
AND EMPLOYEE.AGE>60

This relational expression cannot
in one line, so function FUN1
follows:
FUN1:=EMPLOYEE.JOB="PILOT" OR
EMPLOYEE.JOB="DRIVER"

The relational expression becomes now:

FUN1 AND EMPLOYER.SEX="M" AND EMPLOYEE.AGE>60
The names of other functions can appear in the
function definition.

AND EMPLOYEE.SEX="M"

be written
is defined as

LANGUAGE DESCRIPTION

Programs written in SDL have specific
structure due to the fact that SDL is used
only for the relational schema description.
The program structure is determined by the
structure of the relational database
description. Each SDL program contains four
type of entries: schema entry, domain entry,
attribute entry and relation entry. The
entries appear in the program in cited order.
Each entry consists of a sequence of
statements. Some statements can appear in
different entries. The entry specification
contains the following parts:
1. Narrative description of entry function
2. General format in which all statements of
the entry are presented
3. Description of each statement
The statement specification consists
following parts:

a. Narrative description of statement function
b. General format that defines the statement
parts and their functions
c. Language rules that explain

the statement

of the

the wusage of

Line format

A SDL statement must be written in one line,
i.e. the continuation of the statement in a
few 8ucceeding 1lines is not allowed. If any
statement can’t be written in one 1line, that
statement is divided in several logical parts
which should be defined as-functions., One or
more spaces can appear at the beginning of
each line in other to achieve a better program
structure and readability. All lexical
entities in a statement may be separated by
one or more spaces.

Data base example .
The application of each statement described is

illustrated by the examples which are composed

of the following relations:

PRODUCT (CODE, NAME, PRICE, QUANTITY)
. DOMCODE DOMNAME DOMPRICE DOMQUANTITY

EMPLOYEE(CODE, NAME, SEX, SALARY)
DOMCODE DOMNAME DOMSEX DOMSALARY

13

SUPPLY (CODEPRO, CODESUP, DATE, QUANTITY)
DOMCODE DOMCODE DOMDATE DOMQUANTITY

DEPT(CODE, NAME, ADDRESS, EMPNO)

DOMCODE DOMNAME DOMADDRESS DOMNUMBER
As we can see, an attribute can appear in more
different relations. For each attribute,
domain on which the attribute is defined is
also represented.

SCHEMA ENTRY

1. The schema entry uniquely identifies schema

by its name . Besides, the textual
description of the schemd contents and
¢ripto protection method applied, if any,
igs given in the schema entry.

2. Entry format
SCHEMA statement
[DESC statement]
[CRIPTO_PROTECTION statement]
{domain entry)
{attribute entry}
{relation entry}
ENDSCHEMA statement

3. Statements description
The schema entry begins with SCHEMA
statement and ends with ENDSCHEMA
statement. The statements that define the
schema are located between the SCHEMA
statement and first domain entry 1in the
schema. The order of these statements is
irrelevant. In the schema entry, the
entries of all domains are defined first,
then the entries of all attributes, and

finally the relation entries.

SCHEMA statement

a) The SCHEMA statement uniquely identifies
schema by its name.
b) Format

SCHEMA schema_name

c) Language rules

- Schema name
database.

must be wunique in the

DESC statement
a) The DESC statement is used to describe the
content and function of schema, domain,’
attribute and relation. This statement can
appear in any entry in the schema.
b) Format
DESC comment
c) Language rules
~ An arbitrary number of DESC statements
can appear in the schema entry
- Comment in DESC statement can contain any
character from SDL character set.

- This statement has no meaning for

. interpreter.

- If a comment can't be written 1in one
line, several DESC statement must be
used.

CRIPTO_PROTECTION statement -

a) The CRIPTO_PROTECTION statement can appear
in the schema and in relation entry. If it
appears in schema entry, all relations in
the schema are cripto protected. The cripto
protection can be implemented by a special
procedure defined by the wuser or =as a
standard function in RDBMS.

b) Format

procedure_name
CRIPTO_PROTECTION { }
SYSTEM

c) Language rules
- Only one CRIPTO_PROTECTION statement can

appear in the schema or relation entry.

- If the option SYSTEM is specified, the
cripto protection is implemented as one
of the activities of RDBMS., If the
procedure_name is specified, the cripto
protection is implemented by a special
procedure.

ENDSCHEMA statement

a) This statements denotes the end of the
schema entry, 1i.e. the end of the whole
schema description program.

b) Format
ENDSCHEMA

DOMAIN ENTRY

1. The domain entry uniquely identifies the
domain by its name. Besides, the domain
mode, the names of all attributes defined

over that domain and the domain units are
specified in the domain entry.
2. Entry format
DOMAIN statement
DEFINES statement
[DESC statement]
MODE statement
[UNIT statement]}
ENDDOMAIN statement
3. Statements description

The domain entry begins with the DOMAIN
statement and ends with the ENDDOMAIN
statement. The order of other statements in

the entry is irrelevant.

DOMAIN statement

a) The DOMAIN statement uniquely identifies
domain by its name. :
b} Format

DOMAIN domain_name

c) Language rules

- Domain_name
schema.

has to be wunique in the

DEFINES statement
a) The DEFINES statement specifies the names
of all attributes defined over that domain.
b) Format
DEFINES attr_l,attr_2, ...
c) Language rules
- An arbitrary number of DEFINES statements
can appear in the domain entry.
- Attributes declared 1in thia statement
must be defined in the separate attribute
entries.

sattr_n

MODR statement
a) The MODE statement defines the data types
in the domain.
b) Format
CHARACTER int_1 [COMPRESSED proc_name]

FIXED_POINT integer_2,int_3
MODE REAL

FLOATING_POINT (EXTENDED]

BINARY (EXTENDED]
INTEGER

DECIMAL integer_4
c) Language rules

~ Only one MODE statement can appear in
domain entry.

- Integer data in the database may be
represented in the binary or decimal
form; the binary integer data can have
the standard and extended format. If the
decimal bage is specified, it is
necessary to give the number of decimal
digits (integer_-4). Default format for

integer data is the binary representation
in the standard format.
- Real data can have the
point
Real

fixed or floating
representation in the database.
data in floating point format is

always represented in binary form with
standard or extended precision. Real data
in fixed point format is always
represented in packed decimal form;
integer_2 is the total number of decimal
digits and integer_3 is the number of

digits in the fractional part. The
default format for real data 1is the
binary floating point format in standard
precision. :

~ Character data can be represented in
compressed or source form. Integer_1
specifies the number of characters. If
COMPRESSED option is declared, the name
of the procedure {(proc_name) which

performs the compression must be declared
too.

UNIT statement

a}) The UNIT statement defines the input unit
for data in the domain. Because the domain
values stored 1in the database can be

expressed in different units, the name of
the procedure which performs the conversion
.from input to internal units may be also
specified in this statement.

b) Format

UNIT unit (,procedure_name]

Language rules

- If the procedure_name is not specified,
the data in the database are measured by
the same units as input data. If the
procedure_name is specified, the
conversion from input units to internal
units must be done. For example, the
input unit can be dollar but the internal
unit can be million dollars, etc.

- If this statement 1is not given in the
domain entry, the domain values are
numbers or character strings, without a
specific context.

e}

ENDDOMAIN statement

a) This statement denotes the end of the
domain description.

b) Format
ENDDOMAIN

ATTRIBUTE ENTRY

1. The attribute entry uniquely identifies the
attribute by its name. Besides, the domain
name over which the attribute is defined,
the names of relations in which the
attribute appears and the total number of
different values the attribute may assume
are given in the attribute entry.

2. Entry format
ATTRIBUTE statement
ORIGIN statement
BELONGS statement
[DESC statement]
[CARDINALITY statement]
[VALUE statement}
ENDATTRIBUTE statement

3. Statements description
The attribute entry
ATTRIBUTE statement and
ENDATTRIBUTE statement.
statements is irrelevant.

beginsg with the
ends with the
The order of other

ATTRIBUTE statement

a) The ATTRIBUTE statement uniquely identifies
the attribute by itas name.

b) Format
ATTRIBUTE attribute_name

¢) Language rules

- Attribute_name has to be unique in the
schema

- Attribute_name must appear in DEFINES
atatement in the entry of the domain
whose name is declared in the ORIGIN

statement in this attribute entry.

- Attribute_name must
CONTAINS statement in
relation whose name
BELONGS statement in
entry. An attribute
arbitrary number of

appear in the
the entry of the
is declared in the

this attribute
may appear in an
relations.

ORIGIN statement
a) The ORIGIN statement identifies the domain
over which this attribute is defined.
b} Format
ORIGIN domain_name
c) Language rules
- Domain whose name
statement must be
separate domain entry.

this
the

appears in
declared in

BELONGS statement
a) This statement identifies the relations in
which this
attribute appears.
b) Format

BELONGS relation_1,
c) Language rules

relation_2,

- An .arbitrary number of the BELONGS
statements may appear in the attribute
entry.

- Relations whose names appear in this
statement must be declared in the

separate relation entries.

CARDINALITY statement
a) The CARDINALITY statement specifies the
total number of different attribute values.
This statement specifies the total number
of n-tuples in the relation, if the
attribute is the primary key of the
relation.
b) Format
CARDINALITY integer
c) Language rules
~ Only one CARDINALITY statement may appear
in the attribute entry.
- The number of different attribute values
is unlimited if this statement does not
appear in the attribute entry.

VALUE statement

a) This statement defines an implicit value
that should be assigned to the attribute if
the attribute value is not assigned during
the loading of the database

b) Format :
VALUE constant)

c) Language rules

- Only one VALUE statement may appear in
the attribute entry.

- The conatant can be of the type real,
integer or character depending on the
attribute type.

- If this statement is omitted, the

attribute values must be
the database loading.

assigned during

ENDATTRIBUTR statement

a) This statement declares
attribute entry.

b) Format
ENDATTRIBUTE

the end of the

RELATION ENTRY

1. The relation entry uniquely identifies the
relation by its name. Besides, the
attributes belonging to that relation, the
integrity constraints, the primary key, the

cripto protection method and dependencies
among this relation and other relations are
gspecified in the relation entry.

15

2. Entry format
RELATION statement
CONTAINS statement
KEY statement
[DESC statement]
[CRIPTO_PROTECTION statement]
[INTEGRITY_CONSTRAINT statement])
{UNIQUE statement]
{FUNCTION - statement)
[ACCESS_CONTROL statement]
[TRIGGER structure]
ENDRELATION

3. Statements description
The order of the statements in the relation
entry is irrelevant,

RELATION statement
a) The RELATION statement uniquely identifies
schema by its name.
b) Format
RELATION relation_name
c) Language rules
- Relation_name
schema.
- Relation_name must be declared 1in the
BELONGS statement of all attributes that
belongs to the relation.

has to be unique in the

CONTAINS statement
a) The CONTAINS statement specifies the names
of all attributes in the relation.
b) Format
CONTAINS attribute_1,
c) Language rules

attribute_2, ...

- At least one attribute name must be
declared in this statement.

- An arbitrary number of the CONTAINS
statements c¢an appear in the.relation
entry. :

~ The attributes declared in this
statement must be defined 1in the

separate attributes entries.

KEY statement
a) The KEY statement
of the relation.
b) Format
KEY attribute_1l,attribute_2, ...
c) Language rules

- Only one KEY statement can appear in the
relation entry.

- At least one attribute name
declared in the KEY statement.

- The attributes declared in this
must be defined in the separate
entries.

- The attributes declared in this
must belong to this relation, i.e. they
must be defined in the CONTAINS
statement of this relation entry.

defines the primary key

must be

statement
attribute

statement

INTEGRITY_CONSTRAINT statement

a) This statement defines the integrity
constraints in the relations, The
constraints can be static and dynamic.

b) Format

: r_exp_l r_exp_2
INTEGRITY_CONSTRAINT { [1IF {]

fun_1 fun_2
¢) Language rules

- An arbitrary numbeér of the this
statements can appear in the relation
entry;

- Reserved words OLD and NEW can appear in

the relational_exp_1 but not in the
~ relational_exp_2;
- An arbitrary number of the this
statements can be defined for one

attribute because the attribute .can have
more than one integrity constraint;

- Static and dynamic integrity constraints
for one attribute must be defined in
different INTEGRITY_CONSTRAINT statements

- Integrity constraint is

_defined by
relational _exp_1 or by

function_1.

Function is defined in the FUNCTION
statement;

~ Integrity constraint represents the
comparison between old (OLD) and new
(NEW) attribute values, if the integrity
constraint 1is dynamic. In that case,
attribute names must include reserved
words OLD and NEW, If the integrity
conastraint is static, the attribute names
in the relational expressions represents

immediate values and
and NEW are not
attributes names.

- IF option specifies the attribute values
on which the integrity constraint is
applied. If this option is omitted,
the integrity is valid for all attribute
values.

Examples:
INTEGRITY_CONSTRAINT SUPPLY.CODEPRO =
PRODUCT .CODE
INTEGRITY_CONSTRAINT NEW EMPLOYEE.SAL > OLD
EMPLOYEE. SAL
INTEGRITY_CONSTRAINT FUN3 IF

EMPLOYEE.DEPTCODE="B"

INTEGRITY_CONSTRAINT FUN2 IF EMPLOYEE.SEX="M"
FUNCTION FUN2:=EMPLOYEE.SAL > 5000

FUNCTION FUN3:=NEW EMPLOYEE.SAL>OLD EMP.SAL
The integrity constraint in the first example
specifies that all values of the attribute
CODEPRO in the relation SUPPLY must be equal
to the values of the attribute CODE in
relation PRODUCT. Second example specifies
that new salaries of all employees must be
greater than old salaries. The usage of the IF
option is shown in the third example. This
example sgpecifies that new salary must be
greater than old salary, but only for
employees in department "B". The fourth
example defines integrity constraint that the
male employees have salary greater than 5000,
In the third and fourth example functions FUN2
and FUN3 are used. These functions are defined
by the FUNCTION statements.

reserved words OLD
included in the

UNIQUE statement

a) The UNIQUE statement identifies attribute
or attributes group having unique values
in the relation. That attribute or
attributes group do not represent the
primary key.

b} Format
UNIQUE attribute_1, attribute_2, ...

c) Language rules
- An arbitrary number of the UNIQUE

statements can appear in the relation
entry.

- The attributes declared in this statement
must be defined in the separate
attributes entries;

- The attributes declared must belong to
this relation, i.e. they must be declared
in the CONTAINS statement of the

relation entry.

- If more than one attribute is declared in
the UNIQUE statement, that attribute
group has unique values, not the
particular attributes in that group.

- If more than one attribute or attributes
group in the relation have unique
values, that should be specified by
separate UNIQUE statements;

- If UNIQUE statement doesn’t appear in the

relation entry, only attributes that
constitute primary key have unique
values.

FUNCTION statement

a) The FUNCTION statement defines a function.
b) Format

FUNCTION function_name:=relational_exp

16

c) Language rules

- Function_name must be unique in the
schema; :
- The other function names can appear in

the relational expression.

ACCESS_CONSTRAINT statement

a) The ACCESS_CONSTRAINT statement specifies
the operations that cannot be performed on
all or particular n-tuples, i.e. on all or
particular attribute values.

b} Format
READ r_exp
ACCESS_C FOR { UPDATE; {ON attr_1] [IF { }]
INSERT funct
DELETE

c) Language rules

- An arbitrary number of this statements
can appear in the relation entry.

- One ACCESS_CONSTRAINT statement must be
specified for each forbidden operation;

- The operations INSERT and DELETE denote
the insertion eand deletion of n-tuples.
They must be applied to n-tuples, not to
the attribute values. The READ operation

denotes the reading of n-tuples or
attribute values, and UPDATE operation
denotes the wupdating of one or more
attributes in the relation. The READ and
UPDATE operations c¢an be applied to
n-tuples and attribute values. If

ACCESS_CONSTRAINT specifies that UPDATE
or READ are forbidden on some attributes,
the ON option specifies these attributes.
If ON option is omitted, UPDATE or READ
are forbidden for all attributes of the
relation. The ON option can appear in
this statement only for READ and UPDATE
operations.

- IF option specifies n-tuples or attribute

values for which the given operation is
forbidden. If this option is omitted the
requested operation is forbidden for all

n-tuples or for all attribute values;
- If the ACCESS_CONSTRAINT statement is not

included in the relation entry
description all operations over n-tuples
or attributes of the relation are
allowed .

Examples:

ACCESS_CONSTRAINT FOR DELETE

ACCESS_CONSTRAINT FOR UPDATE ON CODE
ACCESS_CONSTRAINT FOR READ IF CODEz"C"
ACCESS_CONSTRAINT FOR READ ON SAL IF CODE=z"C"
All examples are defined over the relation
EMPLOYEE. First example means that the DELETE

operation 1is forbidden for all n-tuples of
relation EMPLOYEE and the second example
denotes that the updating of the attribute

CODE is not allowed. Third example means that
n-tuples in the relation EMPLOYEE having the
value of attribute CODE equal "C" cannot be
read, and the fourth example means that the
values of attribute SALARY of the n-tuples
with attribute CODE="C" cannot be read.

TRIGGER structure

a) The TRIGGER structure defines the set of
forced operations that must be performed over
other relations upon the finishing of the
current operation.
b) Format
INSERT
TRIGGER FOR iUPDATE [ON attribute_ 1]}
DELETE

INSERT const r_exp
UPDATE } rel_1 [SET atr_2:= { } [1F§ }]

ELETE a_exp fun
ENDTRIGGER
c) Language rules
- TRIGGER contains the head line, one or

]

more lines in which the set of forced
operations is defined and the end line;

- An arbitrary number of triggers can
appear in the relation entry;

- Relation_1 is the name of the relation to

which the forced operation is applied.
Attribute_2 is an attribute from that
relation;

- Reserved words OLD and NEW can appear in
the relational expression of the IF
option.

- The FOR option in the head line specifies
the operation that causes the trigger;

- If the operation declared in head line is
UPDATE, then the ON option must exist. -
The ON option specifies the attribute in
the current relation over which the
UPDATE operation (causing the trigger)
is performed. If the operation declared
in the head line is INSERT or DELETE,_ the
ON option mugt not appear in the head
line because these operations are
performed over the n-tuples not over the
attribute values;

- The SET option exists only if the forced
operation declared is UPDATE. One SET
option exists in the same trigger for

each attribute updated.
the trigger causes the updating of two
attributes (attr_2 and attr_3) in
relation_1, then the trigger must contain

the following lines:
constant }
{arithmetic_exp
constant
{arithmetic_exp}
The arithmetic expression can be defined
in the SET option only if the attr_2 and
attr_3 are REAL or INTEGER.

- The 1F option specifies the n-tuples,
i.e. attribute values in relation 1l over
which the operations defined by the
trigger are performed. If this option is
omitted, the forced operations are
applied to all n-tuples in relation_1,
i.e. to all attribute values;

- The n-tuples, i.e. attribute values to
which the forced operations must be
applied are determined by relational
expression or by the function whose name
appears in the IF option.

Examples:

TRIGGER FOR UPDATE ON CODE

UPDATE SUPPLY SET CODEPRO:=PRODUCT.CODE
ENDTRIGGER

TRIGGER FOR UPDATE ON DEPTCODE

UPDATE DEPT SET EMPNO:=DEPT.EMPNO+1 IF FUN1
UPDATE DEPT SET EMPNO:=DEPT.EMPNO-1 IF FUNZ.
ENDTRIGGER: '

FUNCTION FUN1:=DEPT.CODE=NEW EMPLOYEE.DEPTCODE
FUNCTION FUNZ2::=DEPT.CODE=OLD EMPLOYEE.DEPTCODE
First trigger updates the relevant CODEPRO
entries in the relation SUPPLY whenever the
CODE of the PRODUCT is updated. This trigger
is defined in the relation PRODUCT. Second
trigger updates the relevant EMPNO entries in
the relation DEPT whenever the DEPTCODE of the
- EMPLOYEE is updated. This trigger is defined
in the relation EMPLOYEE.

For example, if

UPDATE rel_1 SET attr_2:

UPDATE rel_1 SET attr_3:=

ENDRELATION statement

a) This satatement denotes the end of the
relation entry.
b) Format

ENDRELATION
The key words of SDL are given in APPENDIX A,
the formal syntax description in APPENDIX B

and the schema description for the
APPENDIX C.

example in

17

THE INTERPRETER REALIZATION

SDL commands

Bedring in mind that SDL is an interactive
language it contains a set of commands which
enables the wuser to list the program, run it,
modify, etc. SDL commands are: LIST, INSERT,
DELETE, SUBSTITUTE, RUN, PURGE, SAVE, OLD,
TERMINATE, PROMPT, TEST and EXIT. The majority

of these commands are the standard commands
that exist in each interactive language and
they have a usual meaning. For example, RUN

command runs the SDL program, the OLD command
brings an existing SDL program from the file
to the user area in the main memory, the PURGE
command deletes all program versions but the
last one etc. Only TEST and TERMINATE commands
have specific role in SDL. The TEST command
enables the wuser to control and track the
interpretation- process, and the TERMINATE
command requests from the interpreter to
finish the program interpretation after its
modification is done.

Interpreter structure

The interpretation is performed in two phases.

In the first phase, the source program is
analyzed (statement by statement) and
translated into an internal form (postfix

notation). The internal form of the program is
interpreted and the result is generated. in the
second phase. Two requests are imposed to the
implementation of the SDL interpreter: a) the
interpreter must be incremental, b) the multi
user environment must be provided.)
the

As a result of the interpretation process,

description file which contains the
description of all elements of the database
and their 1internal dependencies is created.
Each record in that file corresponds to one
element of the database (schema, domain,

attribute and relation).
The interpreter is implemented as a set of six
internally connected program modules, Fig. 2.

The interpreter modules are: command module,
lexical analyzer, parser, semantic analyzer,
result denerator and editor. The control
communications between modules are presented
in full lines, and the data flow in dashed
lines.

The data structures (static and dynamic) that

are used during the interpretation process
are. source program, internal program,
dictionaries and description file. The

dictionaries contain all information about the
objects of the source program (operators and
operands). These information are organized so
they can be accessed from any part of the
interpreter. There exist two static
dictionaries which are parts of the
interpreter (dictionary of reserved words and
dictionary of delimiters) and one dynamic
dictionary {symbol table). . The static
dictionaries are one dimensional arrays with
the elements of fixed 1length. The dictionary
of- delimiters ‘contains all arithmetic
operators, comparison operators and special
characters as comma, colon etc.

The symbol table is formed during the
translation of the source program. All
information about constants and variables from
a SDL program are stored into it. The symbol
table has the fixed and variable part. The
fixed part contains five . fields: identifier
name, object type indicator (R - relation, A -
attribute, D - domain, etc.), special
indicator wused for semantic control (if the
given object is completely defined this
indicator has the value one, otherwise null)
and the pointer to the variable part of the
symbol table. The fields of the variable part
depend on the database element to whom the

COMMAND MODULE

p —

- —>{ RELATIONAL DATABASE

—
———

¥ I

A
|
|
|

—_——— e o — — e

MANAGEMENT SYSTEM

) e
LEXICAL [PARSER | | SEMANTIC _s| INTERNAL RESULT
ANALYZER [T “] ANALYZER - T = PROGRAM ~] GENERATOR
\\ Y @ s
. \ | P v I
N \ 1 |
~ \ - i
~ ' ~ |
~ \ ¥ Pz y
EDITOR N \ s DESCRI1PTION
“ \ SYMBOL e FILE
\\ ~ TABLE s
A ~N DICTIONARY OF
SOURCE N DELIMITERS
PROURAM . N
DICTIONARY OF
RESERVED WORDS

Fig. 2. The interpreter structure

given entry belongs. The number of fields in
the variable part and their format for
different element types (relations, domains
etc.) are different, because the quantity of
information that must be stored is different.

All errors detected during the program
translation can be classified into five
groups: lexical, syntax, semantic, editor and

command errors. These errors are detected by
the corresponding modules. Upon the detection
of any error the interpretation process is
interrupted, the command module takes over the
control and sends the error message to the
user. Due to the concept of the incremental
interpretation, each error can be immediately
corrected by the user , and the interpretation
process continued.

Some diagnostic facilities are built in to
enable the tracking of the interpretation
process. Each phase of the interpretation
process can be easily tracked independently of
other phases by printing the results of that
phase. For example, the "lexical analysis can
be tracked by printing the set of tokens which
was generated during the lexical analysis. A
special SDL command (TEST) specifies the
interpretation phase that the user wants to
track. .

The communication of the SDL interpreter with
other parts of the RDBMS is.provided through
virtual calls. In this way, the interpreter is
made self-contained. In the RDBMS environment,
the virtual calls must be replaced by the
actual ones.

Functional analysis of interpreter parts

The lexical analyzer, parser,, semantic
analyzer and editor are implemented using the
well known methods, because they are the
standard parts of all interpreters [(2,8]. The
other modules are specific because their
functions are dictated by the SDL
characteristics.

The command module is the main interpreter
module which coordinates the work of other
modules and communicates with other parts of
the RDBMS. This module starts and terminates
the interpretation process; it accepts the
statements and commands and sends messages to

the user, activates other modules to do their
job, performs the memory management and
provides the multi-user environment.

The command module accepts the statements and
commands either from terminal and or file. If
the user entered a command, the command module
performs the appropriate action. For example

if RUN command was

given, the command module

activates the execution of a SDL program (in

fact, activates the
If the user entered
analyzer, parser

result generator). R
a statement, the lexical

and semantic analyzer are

activated to perform the analysis and

translation of the

source statement into the

internal form. If any of these modules detects
an error, it informs the command module by
setting the error indicator. In that case, the
command module interrupts the interpretation
process and sends the message to the user.

The lexical analyzer extracts tokens, forms
the symbol table (fixed part) and writes into
it all available information about
identificators. The parser and semantic
analyzer fill in the rest of the symbol table.
The +tokens are divided into four classes:
identifiers (variable names), constants,
reserved words and delimiters.

The parser performs syntax analysis of the
source statements and their translation into

the internal form.

The internal form of the

statements is postfix notation. The parser is
implemented by recursive descent method [2].

The semantic analyzer performs the semantic
analysis and writes corresponding information

into the symbol

table and internal program.

The semantic analysis includes the control of

the whole program

and particular statements.

The control of semantic correctness of the
whole program includes the checking the

presence of all
checking the order

prerequisite statements,
in which statements appear

and checking the uniqueness of the statements
that can appear only once in the program, in

the entry or in the
consistency of the
and the uniqueness
must be unique) are
The implementation
" egpecially the part

form, is based on

some block structure. The

operand and operator types

of the identifiers (that

also checked.

of the semantic analyzer,

which controls the program
the theory of the finite

state machine. The
single statements is
routines that
in the program structure
finite state machine [8].
The result generator,
the RUN command, creates the description file
from the symbol table and internal program.
The description file contains the descriptions
of all database elements (schema, domains,
attributes and relations). Due to the fact
that SDL has no imperative statements, the
result is generated by searching the symbol
table and internal program and gathering all
necessary information for the description
file. The records in the description file have
four different formats, and each record format
corresponds to one data structure in’ the
database (schema, domain, attribute and
relation). The records of the same format are
grouped together, so the physical description
file contains ' four logical files. The result
generator is implemented as a set of
procedures and each procedure forms a
description of one data type.

The editor is the module whose task
provide the editing of the source program and
support the incremental interpretation of the
SDL program.

The multiuser SDL interpreter is implemented
on the IBM 4331 computer using COBOL
programming language. The system software for
interactive work CICS [13] (which enables
dynamic memory and process management, data
interchange with disks and communications with
the users over terminals) is wused for
implementation. The description file is formed
ag IBM VSAM KSDS data file with variable
length records [12]. The interpreter volume
expressed by the number of program lines is
5500.

semantic control of the

done by the control
are called at particular places
which simulates that

which is activated by

CONCLUSION

The schema description language for relational
database is a stand alone language completely
independent from other languages in the DBMS
(query language, data manipulation language
etc.). Due to the fact that the relational
database description have four different data
types (schenma , attribute, domain and
relation), the SDL statements are grouped into
four entries, so each entry describes one data

type. The SDL is a structured language which
provides a high readability of the SDL
programs.

The interpreter developed for this language is
characterized by its functional independence
from the query language, the multiusesr
environment and incremental interpretation.

The implementation of the interpreter provides
the conditions for its easier portability to
different machines. These conditions are: a)
the application of standard programming
language characteristics without any
extensions, b) concentration of input/output
activities in command module ¢) marking all

machine dependent points in the interpreter
(for example, calls of assembler routines,
system service calls etc.) 80 they become
immediately visible.

REFERENCES

1. Astrahan M. M. "SYSTEM R: A relational

database management system"; Computer, may
1979. *

2. Brown P. J.: "Writing Interactive
Compilers and Interpreters”; John Wiley and

Sons.,

is to

19

3. Chamberlain D. D.
evolution of SYSTEM R";
no 10, october 1981.

etc: "A history and
Communications of ACM,

4. Codd E.F.:"A relational model of data for
large shared data banks"; Communications of
the ACM, no 6, june 1970,

5. Codd E.F.:"Further Normalization of the
Database Relational Model"”;Current Computer
Science Simposia, Vol 6, Database Systems, New
York city, May 1971, Prentice Hall.

6. Codd E.F.:"Normalized Database Structure:
A Brief Tutorial”; Current Computer Science

Simposia, Vol 6, Database Systems, New York
city, May 1871, Prentice Hall.

7. Codd E.F.:"Relational ' Completeness of
Database Sublanguages"; Current Computer
Science Simposia, Vol 6, Database Systems, New
York city, May 1971, Prentice Hall.

8. Gries D.: "Compiler Design for Digital

Computers"”; John Wiley and Sons.

9. Hutt A. T. F.:"Organizing the Description
of a Relational Database”;Software - Practice
and Experience, vol k9, 1979.

10. Hutt A.T.F.: "A Relational Data Base

Management System"; John Wiley and Sons, 1979.
11, Gray J., McJones P.:"The recovery manager
of SYSTEM R database"”; ACM Computing Surveys,

no 2, june 1982,

12. VSE (Virtual Storage Extended) System Data

Management Concepts - 1BM Laboratory,
Programming Publication Department, Boebling,
W. Germany.

13. CICS/VS {Customer Information Control
System/Virtual Storage) Introduction to
Program Logic - 1IBM Laboratory, ' Technical
Documentation Department, Hampshire, England.
APPENDIX A: Reserved words

ACCESS_CONSTRAINT FUNCTION

AND IF

ATTRIBUTE INSERT

BELONGS INTEGER

BINARY INTEGRITY_CONSTRAINT
CARDINALITY KEY

CHARACTER MODE

COMPRESSED NEW

CONTAINS OLD
CRIPTO_PROTECTION ON

DECIMAL OR

DEFINES ORIGIN

DELETE READ

DESC REAL

DOMAIN RELATION
ENDATTRIBUTE SCHEMA

ENDDOMAIN SET

ENDRELATION SYSTEM

ENDSCHEMA TRIGGER

ENDTRIGGER UNIT

EXTENDED UNIQUE

FIXED_POINT UPDATE
FLOATING_POINT VALUE

FOR

APPENDIX B: SDL syntax

Here we
SDL. In
indicate
indicate
times.
¢SDL_program>::z=<achema_entry>
{<domain_entry>}
{<attribute_entry>}
{<relation_entry>}

present the BNF syntax definition for
this notation square brackets []
optional constructs, and braces {}
constructs that appear one or more

¢schema_entry>}::=z<(schema_stat>
[<description_stat>]
[<cripto_protection_stat>]
<endschema_stat>

¢(schema_stat)::=SCHEMA <(schema_name>

<{schema_name)::=<{name>

(name)::=<{letter> {<¢hyphen><alphanumeric>

¢ <alphanumeric)}

¢alphanumeric)::=z=C(letter> | <«digit>
<(letter>::= A ; B, C D}, ... } 2
<digit>::= 0 V1 v 2 ... | 9
¢hyphen> iz _

(description_stat>::=DESC <character_string>
<(character_string>::={<(character>)
<character>::=z<(alphanumeric>

i <special_character>
¢special_character>::=z <addition_op>
(multiplication_op>
(comparison_op>

VTV, b b b s b ()) <hyphem>
<addition_op>::= ¢+ | ~
<multiplication_opd>::= 3 v/
{comparison_op>::= < | Voo o=) <=) O
(cripto_pr_stat): "CRIPTO _PROTECTION <method>

<method>::=<procedure_name)
{ SYSTEM
<{endschema_stat)::=ENDSCHEMA
{domain_entry>::=<(domain_stat>
(defines_stat>
<{mode_stat>
[<description_stat>]
[<mode_stat)]
<enddomain_stat>
<domain_stat)>::=DOMAIN <(domain_name>
<domain_name>::=<{name)
<defines_stat>::zDEFINES (<attribute_name)}
<mode_stat>::=MODE <domain_type>
{domain_type>::=<{character_type>
i {integer_type>
} <real_type>
(character_type>::=CHARACTER <(integer_number>
{COMPRESSED <procedure_name>]
:=FIXED_POINT <integer_number>,
¢{integer_number)>
! FLOATING_POINT [RXTENDED}
¢integer_type)::zINTEGER <number_type>
<number_type>::=DECIMAL <(integer_number>
! BINARY [EXTENDED])
<unit_stat>::=UNIT <unit)> [,<{procedure_name’]
{unit>::z=<character_string>
<enddomain_stat>::=ENDDOMAIN

{real_type>:

¢attribute_entry>::z=<attribute_stat>
: {description_stat>]
[<value_stat>]
<origin_stat>
<belongs_stat)
[<¢cardinality_stat)]
<endattribute_stat>
Cattribute_stat>::=ATTRIBUTE <attribute name)
(attribute_name)::=<name>
<origin_stat)>::=0RIGIN <domain_name>
<belongs_stat>::=BELONGS ({<relation_name)>}
<cardinality_stat>::=CARDINALITY
¢integer_number>
<integer_number>::={<digit>}
<value_stat)>:!:=VALUE <constant>
<constant)>::=<numeric_constant> |
{(numeric_constant):

{literal>

t=[<8ign>] <integer_number>
} [<sign>] <real_number>

<{s8ign> + ! -

o=
PRI

20,

{real_numberd>::= <integer_number>.

<integer_number> (exp>

<exp>::=D[<gign>]<¢integer_number>
{E[<¢sign>]¢integer_number>
<literal>::="<character_string>"

<endattribute_stat)>::zENDATTRIBUTE

(relation_entry>::=<(relation_stat>
[<description_stat>]
[<cripto_protection_stat>|]
<key_stat>
{contains_stat>
[<integrity_stat>]}
[<unique_stat)]
[<function_stat})
[<access_constraint_stat))
[<trigger_block>]
<endrelation_stat>

<relation_stat>::!=RELATION <relation _name)

{relation_name>::=<(name) .

<key_stat>::=zKEY (<attribute_name>)

{contains_stat)::=CONTAINS (<attribute_named}

<integrity_stat>::=INTEGRITY_CONSTRAINT

<constraint)> [IF <condition>)

:z<relational_expression>

i {function_name)
<condition)::=<relational_expression>
{ <function_name)>
{relational_expression>::=<(simple_exp>
i <¢simple_exp><log_op><function_name>

(simple_exp><lod_op>(<relational_exp>)

<log_op>::i= AND | OR

{simple_exp>::=<variable>

<comparison_op><operand>

{operand>::z=<(variable)> | <(constant>

{variable>::=<(prefix><e_variable>

{prefix>::=OLD | NEW

<e_variable)::z[<(relation_name’].

<attribute_name>

{congstraint)>:

(function_name>::=<(name)
<unique_gtat)::zUNIQUE (<attribute_name>)
<function_stat)>::=FUNCTION

<function_name):=<logical_exp>
<access_constraint_stat)>::=ACCESS_CONSTRAINT
FOR <operation_1)>
[ON <attrnameb>] [IF <condition>)

{operation_1>::= READ | <operation>
<operation)::= INSERT | UPDATE | DELETE
<trigger_block)::=<head_line> <(trigger_body>

<end_line>
:=TRIGGER FOR <operation>
[ON <attribute_name)>)
(trigger_body>::=z<(operation> <relation_name)>

[SET <attribute_name):=<{expression>

[IF <condition>]]
{expression>::=<{constant)> | <arithmetic_exp>
<arithmetic exp)"‘<31gn><operand>

i <sign><operand><arit_operator>
(<arithmetic_exp>)

<sign>i:z + | -
<operand>::=<variable> | <(numeric_constants>
<arit_operator>::z + |} - | & | /
(end_llne)..-ENDTRIGGBR

<head_line)>:

APPENDIX C: SDL program

SCHEMA MARKETING
DESC There is no protection at schema level
DOMAIN DOMADDRESS
DEFINES ADDRESS
MODE CHARACTER COMPRESSED PROC1
ENDDOMAIN
DOMAIN DOMCODE
DEFINES CODE,CODEPRO,CODESUP,DEPTCODE
MODE INTEGER BINARY
ENDDOMAIN
DOMAIN DOMDATE
DEFINES DATE
MODR CHARACTER
ENDDOMAIN
DOMAIN DOMNO
DEFINES EMPNO

DEFINES EMPNO
MODE INTEGER DECIMAL
ENDDOMAIN
DOMAIN DOMPRICE
DEFINES PRICE
MODE REAL FIXED_POINT
UNIT DOLLAR
ENDDDOMAIN
DOMAIN DOMQUANTITY
DEFINES QUANTITY
MODE REAL FIXED_POINT
ENDDOMAIN
DOMAIN DOMNAME
DEFINES NAME
MODE CHARACTER COMPRIMED PROC2
ENDDOMAIN)
DOMAIN DOMSALARY
DEFINES SALARY
MODE REAL FLOATING_POINT
UNIT DOLLAR
ENDDOMAIN
DOMAIN DOMSEX
DEFINES SEX
MODE CHARACTER
ENDDOMAIN
ATTRIBUTE ADDRESS
ORIGIN DOMADDRESS
BELONGS DEPT
ENDATTRIBUTE
ATTRIBUTE CODE
ORIGIN DOMCODE
* BELONGS SUPPLY, PRODUCT, EMPLOYEE, DEPT
ENDATTRIBUTE
ATTRIBUTE CODEPRO
ORIGIN DOMCODE
BELONGS SUPPLY
CARDINALITY 5000
ENDATTRIBUTE
ATTRIBUTE CODESUP
ORIGIN DOMCODE
BELONGS SUPPLY
CARDINALITY 100
ENDATTRIBUTE
ATTRIBUTE DEPTCODE
ORIGIN DOMCODE
BELONGS EMPLOYEE
ENDATTRIBUTE
ATTRIBUTE DATE
BELONGS SUPPLY
ORIGIN DOMDATE
VALUE "01/01/1380"
DESC Data when the product was bought
ENDATTRIBUTE
ATTRIBUTE EMPNO
ORIGIN DOMNO
BELONGS DEPT
DESC Number of employees in the department
VALUE O
ENDATTRIBUTE
ATTRIBUTE QUANT
ORIGIN DOMQUANTITY
BELONGS PRODUCT, SUPPLY
VALUE 0
ENDATTRIBUTE
ATTRIBUTE NAME

21

ORIGIN DOMNAME
- BELONGS PRODUCT, EMPLOYEE,DEPT
VALUE "XXxXx"
ENDATTRIBUTE
ATTRIBUTE PRICE
ORIGIN DOMPRICE
BELONGS PRODUCT
VALUE 100
ENDATTRIBUTE
ATTRIBUTE SALARY
ORIGIN DOMSALARY
BELONGS EMPLOYEE
VALUE 1000
ENDATTRIBUTE
ATTRIBUTE SEX
ORIGIN DOMSEX
BELONGS EMPLOYEE
CARDINALITY 2
VALUE "M"
ENDATTRIBUTE
RELATION PRODUCT
CONTAINS CODE,NAME,PRICE,QUANT
KEY CODE
DESC Products in the supply
INTEGRITY_CONSTRAINT CODE>0 AND CODE<32767
INTEGRITY_CONSTRAINT PRICE<999.99
TRIGGER FOR UPDATE ON QUANT
UPDATE SUPPLY SET QUANT:=SUPPLY.QUANT+NEW
PRODUCT.QUANT
ENDTRIGGER
TRIGGER FOR UPDATE ON CODE
UPDATE SUPPLY SET
PRODUCT.CODE
ENDTRIGGER

CODEPRO: =NEW

. ENDRELATION

RELATION EMPLOYEE
CONTAINS CODE,NAME SEX,SALARY,DEPTCODE
KEY CODE
DESC Company employees in the last 5 years
UNIQUE DEPTCODE
TRIGGER FOR UPDATE ON DEPTCODE
UPDATE DEPT SET EMPNO:=EMPNO+1 IF FUNI1
UPDATE DEPT SET EMPNO:=EMPNO-1 IF FUN2
ENDTRIGGER
FUNCTION FUN1:=DEPT.CODE=NEW DEPTCODE
FUNCTION FUNZ2:=DEPT.CODE=OLD DEPTCODE
INTEGRITY_CONSTRAINT SEX="M" OR SEX="F"
INTEGRITY_CONSTRAINT CODE>1 AND CODE<32767
INTEGRITY_CONSTRAINT DEPTCODE=DEPT.CODE
ACCESS_CONSTRAINT FOR READ ON SALARY 1IF
CODE<)> 1
ENDRELATION
RELATION SUPPLY
CONTAINS CODEPRO,CODESUP,DATE,QUANT
KEY CODEPRO,CODESUP .
INTEGRITY_CONSTRAINT CODEPRO=PRODUCT.CODE
INTEGRITY_CONSTRAINT DATE>"01/01/1980"
ENDRELATION
RELATION DEPT .
CONTAINS CODE,NAME,ADDRESS, EMPNO
KEY CODE
INTEGRITY_CONSTRAINT CODE>1 AND CODE<10
UNIQUE NAME
ENDRELATION
ENDSCHEMA

