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Abstract

Let p be an odd prime. A graph is called a bi-p-metacirculant on a metacyclic p-group
H if admits a metacyclic p-group H of automorphisms acting semiregularly on its vertices
with two orbits. A bi-p-metacirculant on a group H is said to be abelian or non-abelian
according to whether or not H is abelian.

By the results of Malnič et al. in 2004 and Feng et al. in 2006, we see that up to iso-
morphism, the Gray graph is the only cubic edge-transitive non-abelian bi-p-metacirculant
on a group of order p3. This motivates us to consider the classification of cubic edge-
transitive bi-p-metacirculants. Previously, we have proved that a cubic edge-transitive non-
abelian bi-p-metacirculant exists if and only if p = 3. In this paper, we give a classifica-
tion of connected edge-transitive non-abelian bi-p-metacirculants of valency p, and con-
sequently, we complete the classification of connected cubic edge-transitive non-abelian
bi-p-metacirculants.
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1 Introduction
Given a group H , let R, L and S be three subsets of H such that R−1 = R, L−1 = L
and R ∪ L does not contain the identity element of H . The bi-Cayley graph over H with
respect to the triple (R,L, S), denoted by BiCay(H,R,L, S), is the graph having vertex
set the union H0 ∪H1 of two copies of H , and edges of the form {h0, (xh)0}, {h1, (yh)1}
and {h0, (zh)1} with x ∈ R, y ∈ L, z ∈ S and h0 ∈ H0, h1 ∈ H1 representing a given
h ∈ H . It is easy to see that a graph is a bi-Cayley graph over a group H if and only if it
admits H as a semiregular automorphism group with two orbits.
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Let Γ = BiCay(H,R,L, S). For g ∈ H , define a permutation R(g) on the vertices of
Γ by the rule

h
R(g)
i = (hg)i, ∀i ∈ Z2, h ∈ H.

Then R(H) = {R(g) | g ∈ H} is a semiregular subgroup of Aut(Γ) which is isomorphic
to H and has H0 and H1 as its two orbits. When R(H) is normal in Aut(Γ), the bi-Cayley
graph Γ = BiCay(H,R,L, S) is said to be normal (see [24]). When NAut(Γ)(R(H)) is
transitive on the edge set of Γ, we say that Γ is normal edge-transitive (see [7]).

Bi-Cayley graphs are useful in constructing edge-transitive graphs (see [7, 24]). How-
ever, it is difficult in general to decide whether a bi-Cayley graph is edge-transitive. So it
is natural to investigate the edge-transitive bi-Cayley graphs over some given groups. Note
that metacylic groups are widely used in constructing graphs with some kinds of symmetry,
see, for example, [1, 11, 12, 13, 14, 18]. (A group G is called metacyclic if it contains a
cyclic normal subgroup N such that G/N is cyclic.) In this paper, we shall focus on the
bi-Cayley graphs over a metacyclic p-group with p an odd prime. For convenience, a bi-
Cayley graph over a (resp. non-abelian or abelian) metacyclic p-group is simply called a
(resp. non-abelian or abelian) bi-p-metacirculant.

Note that the Gray graph [6], the smallest cubic semisymmetric graph, is a non-abeian
bi-3-metacirculant of order 2·33. Malnič et al. in [8, 17] gave a classification of cubic edge-
transitive graphs of order 2p3 for each prime p. Actually, it is easy to prove that every cubic
edge-transitive graphs of order 2p3 is a bi-Cayley graph over a group of order p3. Rather
than describe the classification in detail, we would simply like to point out one striking
feature: except the Gray graph, there do not exist other cubic edge-transitive non-abelian
bi-p-metacirculants of order 2 · p3 for every odd prime p. This seems to suggest that cubic
edge-transitive non-abelian bi-p-metacirculants are rare. Motivated by this, we are going
to consider the following problem:

Problem 1.1. Classify cubic edge-transitive non-abelian bi-p-metacirculants for every odd
prime p.

In [19], we gave a partial answer to this problem. We first proved that a cubic edge-
transitive non-abelian bi-p-metacirculant exists if and only if p = 3, and then we gave a
classification of cubic edge-transitive bi-Cayley graphs over an inner-abelian metacyclic
p-group for each odd prime p. (A non-abelian group is called an inner-abelian group if
all of its proper subgroups are abelian.) In view of this, to solve Problem 1.1, it suffices
to classify cubic edge-transitive non-abelian bi-3-metacirculants. Naturally, the following
problem arises.

Problem 1.2. Classify edge-transitive non-abelian bi-p-metacirculants of valency p for
every odd prime p.

The following is the main result of this paper which gives a solution of Problem 1.2.

Theorem 1.3. Let p be an odd prime, and let Γ be a connected edge-transitive non-abelian
bi-p-metacirculants of valency p. Then p = 3 and Γ is isomorphic to one of the following
graphs:

(i)

Γr = BiCay(Gr, ∅, ∅, {1, a, a−1b}),

Gr =
〈
a, b | a3r+1

= b3
r

= 1, b−1ab = a1+3r
〉
,
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(ii)

Σr = BiCay(Hr, ∅, ∅, {1, b, b−1a}),

Hr =
〈
a, b | a3r+1

= b3
r+1

= 1, b−1ab = a1+3r
〉
,

where r is a positive integer.

Remark 1.4. The graphs Γr and Σr are actually those graphs what we have found in [19].
By [19], Γr is semisymmetric while Σr is symmetric. To the best of our knowledge, the
graphs Γr form the first known infinite family of cubic semisymmetric graphs of order
twice a power of 3.

From the above theorem and [19, Theorem 1], we may immediately obtain the follow-
ing result which gives a solution of Problem 1.1.

Corollary 1.5. Let p be an odd prime. A connected cubic non-abelian bi-p-metacirculant
is edge-transitive if and only if it is isomorphic to one the graphs given in Theorem 1.3.

Remark 1.6. The classification of cubic edge-transitive bi-Cayley graphs on abelian groups
has been given in [10, 23]. So our result actually completes the classification of all cubic
edge-transitive bi-p-metacirculants for each odd prime p.

2 Preliminaries
2.1 Definitions and notation

Throughout this paper, groups are assumed to be finite, and graphs are assumed to be
finite, connected, simple and undirected. For the group-theoretic and the graph-theoretic
terminology not defined here we refer the reader to [4, 21].

Let G be a permutation group on a set Ω and take α ∈ Ω. The stabilizer Gα of α in
G is the subgroup of G fixing the point α. The group G is said to be semiregular on Ω if
Gα = 1 for every α ∈ Ω and regular if G is transitive and semiregular.

For a positive integer n, denote by Zn the cyclic group of order n and by Z∗n the mul-
tiplicative group of Zn consisting of numbers coprime to n. For a finite group G, the full
automorphism group and the derived subgroup of G will be denoted by Aut(G) and G′,
respectively. Denote by exp(G) the exponent of G. For any x ∈ G, denote by o(x) the
order of x. For two groups M and N , N oM denotes a semidirect product of N by M . A
non-abelian group is called an inner-abelian group if all of its proper subgroups are abelian.

For a graph Γ, we denote by V (Γ) the set of all vertices of Γ, by E(Γ) the set of all
edges of Γ, by A(Γ) the set of all arcs of Γ, and by Aut(Γ) the full automorphism group
of Γ. For u, v ∈ V (Γ), denote by {u, v} the edge incident to u and v in Γ. If a subgroup G
of Aut(Γ) acts transitively on V (Γ), E(Γ) or A(Γ), we say that Γ is G-vertex-transitive,
G-edge-transitive or G-arc-transitive, respectively. In the special case when G = Aut(Γ)
we say that Γ is vertex-transitive, edge-transitive or arc-transitive, respectively. An arc-
transitive graph is also called a symmetric graph. A graph Γ is said to be semisymmetric if
Γ is regular and is edge- but not vertex-transitive.
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2.2 Quotient graph

Let Γ be a connected graph with an edge-transitive groupG of automorphisms and letN be
a normal subgroup of G. The quotient graph ΓN of Γ relative to N is defined as the graph
with vertices the orbits of N on V (Γ) and with two orbits adjacent if there exists an edge
in Γ between the vertices lying in those two orbits. Below we introduce two propositions
of which the first is a result of [15, Theorem 9].

Proposition 2.1. Let p be an odd prime and Γ be a graph of valency p, and letG ≤ Aut(Γ)
be arc-transitive on Γ. Then G is an s-arc-regular subgroup of Aut(Γ) for some integer
s. If N E G has more than two orbits in V (Γ), then N is semiregular on V (Γ), ΓN is a
symmetric graph of valency p with G/N as an s-arc-regular subgroup of automorphisms.

In view of [16, Lemma 3.2], we have the following proposition.

Proposition 2.2. Let p be an odd prime and Γ be a graph of valency p, and letG ≤ Aut(Γ)
be transitive on E(Γ) but intransitive on V (Γ). Then Γ is a bipartite graph with two
partition sets, say V0 and V1. If N E G is intransitive on each of V0 and V1, then N is
semiregular on V (Γ), ΓN is a graph of valency p with G/N as an edge- but not vertex-
transitive group of automorphisms.

2.3 Bi-Cayley graphs

Proposition 2.3 ([23, Lemma 3.1]). Let Γ = BiCay(H,R,L, S) be a connected bi-Cayley
graph over a group H . Then the following hold:

(1) H is generated byR∪ L ∪ S.

(2) Up to graph isomorphism, S can be chosen to contain the identity of H .

(3) For any automorphism α of H , BiCay(H,R,L, S) ∼= BiCay(H,Rα,Lα, Sα).

(4) BiCay(H,R,L, S) ∼= BiCay(H,L,R, S−1).

Let Γ = BiCay(H,R,L, S) be a bi-Cayley graph over a group H . Recall that for each
g ∈ H , R(g) is a permutation on V (Γ) defined by the rule

h
R(g)
i = (hg)i, ∀i ∈ Z2, h, g ∈ H,

and R(H) = {R(g) | g ∈ H} ≤ Aut(Γ). For an automorphism α of H and x, y, g ∈ H ,
define two permutations on V (Γ) = H0 ∪H1 as following:

δα,x,y : h0 7→ (xhα)1, h1 7→ (yhα)0, ∀h ∈ H,
σα,g : h0 7→ (hα)0, h1 7→ (ghα)1, ∀h ∈ H.

Set

I = {δα,x,y | α ∈ Aut(H) s.t. Rα = x−1Lx,Lα = y−1Ry, Sα = y−1S−1x},
F = {σα,g | α ∈ Aut(H) s.t. Rα = R,Lα = g−1Lg, Sα = g−1S}.

Proposition 2.4 ([24, Theorem 3.4]). Let Γ = BiCay(H,R,L, S) be a connected bi-
Cayley graph over the group H . Then NAut(Γ)(R(H)) = R(H) o F if I = ∅ and
NAut(Γ)(R(H)) = R(H)〈F, δα,x,y〉 if I 6= ∅ and δα,x,y ∈ I . Furthermore, for any
δα,x,y ∈ I , we have the following:
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(1) 〈R(H), δα,x,y〉 acts transitively on V (Γ);

(2) if α has order 2 and x = y = 1, then Γ is isomorphic to the Cayley graph Cay(H̄,
R∪ αS), where H̄ = H o 〈α〉.

3 Some basic properties of metacyclic p-groups
In this section, we will give some properties of metacyclic p-groups.

Proposition 3.1. Any metacyclic p-group G (p an odd prime) has the following presenta-
tion:

G =
〈
a, b | ap

r+s+u

= 1, bp
r+s+t

= ap
r+s

, ab = a1+pr
〉
,

where r, s, t, u are non-negative integers with u ≤ r. Different values of the parameters
r, s, t, u with the above conditions give non-isomorphic metacyclic p-groups. Furthermore,
the following hold:

(1) If |G′| = pn, then for any m ≥ n, we have

(xy)p
m

= xp
m

yp
m

, ∀x, y ∈ G.

(2) For any positive integer k and for any x, y ∈ G,

xp
k

= yp
k

⇐⇒ (x−1y)p
k

= 1⇐⇒ (xy−1)p
k

= 1.

Proof. By [22, Theorem 2.1], it suffices to prove the items (1) and (2). Since G′ is cyclic,
(1) follows from [9, Chapter 3, §10, Theorem 10.2 (c) and Theorem 10.8 (g)]. Item (2)
follows from [9, Chapter 3, §10, Theorem 10.2 (c) and Theorem 10.6 (a)].

Lemma 3.2. Let p be an odd prime, and let H be a metacyclic p-group generated by a, b
with the following defining relations:

ap
m

= bp
n

= 1, b−1ab = a1+pr ,

where m,n, r are positive integers such that r < m ≤ n+ r. Then the following hold:

(1) For any i ∈ Zpm , j ∈ Zpn , we have

aibj = bjai(1+pr)j .

(2) For any positive integer k and for any i ∈ Zpm , j ∈ Zpn , we have

(bjai)k = bkjai
∑k−1

s=0 (1+pr)sj .

(3) For any positive integers t, k and any element x of H , if xp
2t

= 1, then

x(1+pt)k = x1+k·pt .

(4) The subgroup of H of order p is one of the following groups:〈
ap

m−1
〉
,
〈
bp

n−1

ai
′pm−1

〉
(i′ ∈ Zp).
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Proof. From [19, Lemma 14 (1) – (2)], we have the items (1) – (2).
For (3), the result is clearly true if k = 1. In what follows, assume k ≥ 2. Since

xp
2t

= 1, we have xp
kt

= 1. Then

x(1+pt)k = x[C0
k·1

k·(pt)0+C1
k·1

k−1·(pt)1+C2
k·1

k−2·(pt)2+···+Ck
k ·1

0·(pt)k]

= xC
0
k·(p

t)0 · xC
1
k·(p

t)1 · xC
2
k·(p

t)2 · · ·xC
k
k ·(p

t)k

= x · (xp
t

)C
1
k · (xp

2t

)C
2
k · · · (xp

kt

)C
k
k

= x · xk·p
t

= x1+k·pt ,

and so (3) holds. (Here for any integers N ≥ l ≥ 0, we denote by ClN the binomial
coefficient, that is, ClN = N !

l!(N−l)! .)
For (4), let Ω1(H) = 〈x ∈ H | o(x) = p〉. Since H is a metacyclic p-group, by [2,

Exercise 85], we have Ω1(H) ∼= Zp × Zp. It implies that H has p+ 1 subgroups of order
p. Furthermore, the subgroup of H of order p is one of the following groups:〈

ap
m−1

〉
,
〈
bp

n−1

ai
′pm−1

〉
(i′ ∈ Zp),

as required.

4 Inner-abelian bi-p-metacirculants of valency p

In this section, we focus on edge-transitive bi-Cayley graphs over inner-abelian metacyclic
p-groups of valency p. For convenience, a bi-Cayley graph over an inner-abelian metacyclic
p-group is simply called an inner-abelian bi-p-metacirculant.

In [19, Theorem 2], we gave a classification of cubic edge-transitive inner-abelian bi-
p-metacirculants.

Proposition 4.1 ([19, Theorem 2]). Let Γ be a connected cubic edge-transitive bi-Cayley
graph over an inner-abelian metacyclic 3-group H . Then H ∼= Gr or Hr, and Γ ∼= Γr
or Σr, where the groups Gr, Hr, and the graphs Γr, Σr are defined as in Theorem 1.3. In
particular, H/H ′ ∼= Z3r × Z3r or Z3r × Z3r+1 .

In this section, we shall prove the following theorem.

Theorem 4.2. Let H be an inner-abelian metacyclic p-group with p an odd prime, and let
Γ be a connected edge-transitive bi-Cayley graph over H of valency p. Then p = 3, and Γ
is isomorphic to one of the graphs given in Theorem 1.3.

4.1 Two technical lemmas

Lemma 4.3. Let p be an odd prime and let Γ be a connected edge-transitive graph of
valency p. If G ≤ Aut(Γ) is transitive on the edges of Γ, then for each v ∈ V (Γ),
|Gv| = pm with (m, p) = 1.

Proof. Since G is transitive on the edges of Γ, for each v ∈ V (Γ), the order of a vertex
stabilizerGv must be divisible by p. Suppose, by way of contradiction, that |Gv| is divisible
by p2. Let G∗v be the subgroup of Gv fixing the neighborhood Γ(v) of v in Γ pointwise.
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Then Gv/G∗v . Sp, forcing that p | |G∗v|. Then G∗v contains an element α of order p.
Note that each orbit of 〈α〉 has length either 1 or p. Since 〈α〉 fixes v and each vertex in
Γ(v), the connectedness of Γ implies that each orbit of 〈α〉 has length 1, and so α = 1, a
contradiction.

Lemma 4.4. Let H be a p-group with p an odd prime, and let Γ = BiCay(H,R,L, S) be
a connected edge-transitive bi-Cayley graph of valency p. Then

(1) Γ is normal edge-transitive, R = L = ∅, and S = {1, h, hhα, . . . , hhα · · ·hαp−2}
for some 1 6= h ∈ H and α ∈ Aut(H) satisfying hhαhα

2 · · ·hαp−1

= 1 and
o(α) | p;

(2) if H has a characteristic subgroup K such that H/K is isomorphic to Zpm × Zpn ,
then |m− n| ≤ 1.

Proof. Let A = Aut(Γ), and let P be a sylow p-subgroup of A such that R(H) ≤ P .
Since Γ is edge-transitive, Lemma 4.3 gives that |A| = |R(H)| ·p ·m, where (p,m) = 1. It
follows that |P | = p|R(H)|, and hence P ≤ NA(R(H)). Furthermore, for any e ∈ E(Γ),
we have |A : Ae| = |E(Γ)| = p|R(H)|, and so |Ae| = m. It follows that Pe = P∩Ae = 1,
and hence |P : Pe| = |P | = p|R(H)| = |E(Γ)|. Thus, P is transitive on the edges of Γ.
Thus, Γ is normal edge-transitive.

Let N = NA(R(H)). Then N is transitive on the edges of Γ. Since R(H) E N ,
the two orbits H0, H1 of R(H) do not contain any edge of Γ, and so R = L = ∅. By
Proposition 2.3, we may assume that 1 ∈ S. Since N is transitive on the edges of Γ
and Γ has valency p, N10 has an element σα,h of order p for some α ∈ Aut(H) and
1 6= h ∈ H . Furthermore, σα,h cyclically permutes the elements in Γ(10). So we have
Γ(10) = {11, h1, (hh

α)1, . . . , (hh
α · · ·hαp−2

)1} and hhαhα
2 · · ·hαp−1

= 1. This implies
that

S = {1, h, hhα, . . . , hhα · · ·hα
p−2

},

and hα
p

= h. Since Γ is connected, one has H = 〈S〉 = 〈hαi | 0 ≤ i ≤ p − 1〉. As
hα

p

= h, αp is a trivial automorphism of H . Consequently, we have o(α) = 1 or p and (1)
is proved.

For (2), without loss of generality, assume that H/K ∼= Zpm × Zpn with m > n,
where K is a characteristic subgroup of H . Let T = 〈R(x) ∈ R(H) | xpn ∈ K〉. Then
T is characteristic in R(H) and R(H)/T ∼= Zpm−n . Propositions 2.1 and 2.2 implies
that the quotient graph ΓT of Γ relative to T is a graph of valency p with N/T as an
edge-transitive group of automorphisms. Clearly, R(H)/T is semiregular on V (ΓT ) with
two orbits and R(H)/T E N/T , so ΓT is a normal edge-transitive bi-Cayley graph over
R(H)/T ∼= Zpm−n of valency p.

So to complete the proof, it suffices to show that if H ∼= Zpm then m ≤ 1. Suppose
to the contrary that H ∼= Zpm with m ≥ 2. Since H = 〈hαi | 0 ≤ i ≤ p − 1〉, we have
H = 〈h〉. Let hα = hλ for some λ ∈ Z∗pm . Then

1 = hhαhα
2

· · ·hα
p−1

= h1+λ+λ2+···+λp−1

,

and then
1 + λ+ λ2 + · · ·+ λp−1 ≡ 0 (mod pm).
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It follows that λp ≡ 1 (mod pm), and hence λ ≡ 1 (mod p). Let λ = kp + 1 for some
integer k. Since m ≥ 2, we have

1 + (kp+ 1) + (kp+ 1)2 + · · ·+ (kp+ 1)p−1 ≡ 0 (mod p2).

It follows that

1 + (kp+ 1) + (2kp+ 1) + · · ·+ ((p− 1)kp+ 1) ≡ 0 (mod p2),

and hence
p+

1

2
p(p− 1)kp ≡ 0 (mod p2).

A contradiction occurs.

4.2 Proof of Thorem 4.2

Throughout this subsection, we shall always let H be an inner-abelian metacyclic p-group
with p an odd prime, and Γ be a connected edge-transitive bi-Cayley graph over H of
valency p.

In view of Lemma 4.4(1) and since H is inner abelian, we may make the following
assumption throughout this subsection.

Assumption 4.5. Γ = BiCay(H, ∅, ∅, S), where S = {1, h, hhα, . . . , hhα · · ·hαp−2} for
some 1 6= h ∈ H and α ∈ Aut(H) satisfying hhαhα

2 · · ·hαp−1

= 1 and o(α) = p.

Proof of Theorem 4.2. Suppose to the contrary that p > 3. Since H is an inner-abelian
metacyclic p-group, by elementary group theory (see also [20] or [3, Lemma 65.2]), we
may assume that

H =
〈
a, b | ap

t+1

= bp
s

= 1, b−1ab = ap
t+1
〉
,

where t ≥ 1, s ≥ 1. Note that H/H ′ = 〈aH ′〉 × 〈bH ′〉 ∼= Zpt × Zps . By Lemma 4.4, we
have H/H ′ = 〈aH ′〉 × 〈bH ′〉 ∼= Zpt × Zpt , Zpt × Zpt+1 or Zpt × Zpt−1 .

If H/H ′ = 〈aH ′〉 × 〈bH ′〉 ∼= Zpt × Zpt−1 , then s = t− 1 and

H =
〈
a, b | ap

t+1

= bp
t−1

= 1, b−1ab = ap
t+1
〉
.

Let T = 〈R(x) | x ∈ H,xpt−1

= 1〉. Then T is characteristic in R(H) and R(H)/T is
isomorphic to Zp2 . However, by the proof of Lemma 4.4, this is impossible.

If H/H ′ = 〈aH ′〉 × 〈bH ′〉 ∼= Zpt × Zpt , then s = t and

H =
〈
a, b | ap

t+1

= bp
t

= 1, b−1ab = ap
t+1
〉
,

where t ≥ 1. We shall show that this is impossible in Lemma 4.6.
If H/H ′ = 〈aH ′〉 × 〈bH ′〉 ∼= Zpt × Zpt+1 , then s = t+ 1 and

H =
〈
a, b | ap

t+1

= bp
t+1

= 1, b−1ab = ap
t+1
〉
,

where t ≥ 1. We shall show that this is impossible in Lemma 4.7.
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Lemma 4.6. If H =
〈
a, b | apt+1

= bp
t

= 1, b−1ab = ap
t+1
〉

(t > 0), then p = 3.

Proof. Suppose to the contrary that p > 3. We first define the following four maps. Let

γ : a 7→ a1+p, b 7→ b, δ : a 7→ a, b 7→ b1+p,

σ : a 7→ a, b 7→ bap, τ : a 7→ ba, b 7→ b.

Let x1 = a1+p, x2 = x3 = a, x4 = ba, y1 = y4 = b, y2 = b1+p and y3 = bap. Since
H is an inner-abelian metacyclic-p group, by Proposition 3.1 and a direct computation,
we have o(xi1) = o(a) = pt+1, o(yi1) = o(b) = pt and it is direct to check that xi1
and yi1 have the same relations as do a and b, where i1 ∈ {1, 2, 3, 4}. Moreover, for any
i1 ∈ {1, 2, 3, 4}, we have 〈xi1 , yi1〉 = H . It follows that each of the above four maps
induces an automorphism of H .

Set P = 〈σ, γ, δ, τ〉. By a direct computation, we have o(γ) = pt, o(δ) = pt−1 and
o(σ) = o(τ) = pt. Furthermore, γδ = δγ, γ−1σγ = σp+1 and δ−1σδ = σ` with
`(p+ 1) ≡ 1 (mod pt). As both γ and δ fixes the subgroup 〈b〉 while σ does not, one has

〈σ, γ, δ〉 = 〈σ〉o (〈γ〉 × 〈δ〉) ∼= Zpt o (Zpt × Zpt−1).

Observing that 〈σ, γ, δ〉 fixes the subgroup 〈a〉 setwise but τ does not, it follows that
〈σ, γ, δ〉 ∩ 〈τ〉 = 1, and hence |P | ≥ p4t−1. In view of [13, Theorem 2.8], Aut(H)
has a normal Sylow p-subgroup of order p4t−1. It follows that P = 〈σ, γ, δ, τ〉 is the
unique Sylow p-subgroup of Aut(H). In particular, we have P = 〈γ〉〈δ〉〈σ〉〈τ〉.

Recall that S = {1, h, hhα, . . . , hhα · · ·hαp−2}. Assume that h = buav for some
u ∈ Zpt and v ∈ Zpt+1 . Since H = 〈S〉, we have o(h) = exp(H). It follows that
(v, p) = 1. Then the map ϕ1 : a 7→ av, b 7→ b induces an automorphism of H . Let
ϕ = (τuϕ1)−1. Then ϕ ∈ Aut(H) and hϕ = a. By Proposition 2.4(3), we have that
Γ ∼= Γ′ = BiCay(H, ∅, ∅, Sϕ). Let β = ϕ−1αϕ. Then σβ,a ∈ Aut(Γ′) cyclically
permutates the elements in Γ′(10). It follows that

Sϕ = {1, a, aaβ , aaβaβ
2

, . . . , aaβaβ
2

· · · aβ
p−2

},

and aaβaβ
2 · · · aβp−1

= 1. Clearly, o(β) = o(α) = p, so β ∈ P . We assume that
β = γiδjσkτ l for some i, k, l ∈ Zpt and j ∈ Zpt−1 .

By Lemma 3.2(2) – (3) and Proposition 3.1(1), we have

β :

{
a 7→ (bla)(1+p)i = b(1+p)ila(1+p)i

b 7→ (b · (bla)pk)(1+p)j = b(1+p)j(1+pkl)a(1+p)jpk
(4.1)

Let f1(H) = {xp | x ∈ H}. Then f1(H) ≤ Z(H) and

β :

{
a 7→ bla · w
b 7→ b · w′

(4.2)

for some w, w′ ∈ f1(H). Since Γ′ is connected, by Proposition 2.3, we have H = 〈Sϕ〉.
By Proposition 3.1(1), it follows that (l, p) = 1.

We shall finish the proof by the following steps.
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Step 1: t > 1.
Suppose to the contrary that t = 1. Then H = 〈a, b | ap2 = bp = 1, b−1ab = a1+p〉.

We shall first show that for any r ≥ 1,

aβ
r

= brla1+ 1
2 r(r−1)klp+irp (4.3)

By Equation (4.1) we have

β :

{
a 7→ bla1+ip

b 7→ bakp

So Equation (4.3) holds when r = 1. Now assume that r > 1 and

aβ
r−1

= b(r−1)la1+ 1
2 (r−1)(r−2)klp+i(r−1)p.

By a direct computation, we have

aβ
r

= (b(r−1)la1+ 1
2 (r−1)(r−2)klp+i(r−1)p)β

= (bakp)(r−1)l(bla1+ip)1+ 1
2 (r−1)(r−2)klp+i(r−1)p

= b(r−1)la(r−1)lkpbla1+ 1
2 [(r−1)2−(r−1)]klp+irp

= b(r−1)l+la1+[ 12 (r−1)2− 1
2 (r−1)+(r−1)]klp+irp

= brla1+ 1
2 r(r−1)klp+irp

By induction, we have Equation (4.3).
Now we show that for any r ≥ 1,

a · aβ · · · aβ
r

= b
1
2 r(r+1)la(r+1)+[ 16 r(r+1)(2r+1)l+ 1

2 r(r+1)i+ 1
6 (r−1)r(r+1)kl]p. (4.4)

By Equation (4.3) and Lemma 3.2(1)&(3), we have

a · aβ = a · bla1+ip = bla(1+p)la1+ip = bla1+lpa1+ip = bla2+(l+i)p.

So Equation 4.4 holds when r = 1. Now assume that r > 1 and

a · aβ · · · aβ
r−1

= b
1
2 (r−1)rlar+[ 16 (r−1)r(2r−1)l+ 1

2 (r−1)ri+ 1
6 (r−2)(r−1)rkl]p.

By a direct computation, we have

aaβaβ
2

· · · aβ
r

= b
1
2 (r−1)rlar+[ 16 (r−1)r(2r−1)l+ 1

2 (r−1)ri+ 1
6 (r−2)(r−1)rkl]p · brla1+ 1

2 r(r−1)klp+irp

= b
1
2 r(r+1)la{r+[ 16 (r−1)r(2r−1)l+ 1

2 (r−1)ri+ 1
6 (r−2)(r−1)rkl]p}·(1+rlp)+1+ 1

2 r(r−1)klp+irp

= b
1
2 r(r+1)lar(1+rlp)+[ 16 (r−1)r(2r−1)l+ 1

2 (r−1)ri+ 1
6 (r−2)(r−1)rkl]p+1+ 1

2 r(r−1)klp+irp

= b
1
2 r(r+1)la(r+1)+[ 16 (r−1)r(2r−1)+r2]lp+[ 12 (r−1)r+r]ip+[ 16 (r−2)(r−1)+ 1

2 r(r−1)]rklp

= b
1
2 r(r+1)la(r+1)+[ 16 r(r+1)(2r+1)l+ 1

2 r(r+1)i+ 1
6 (r−1)r(r+1)kl]p.

By induction, we have Equation (4.4).
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Since p is a prime and p > 3, by Equation (4.4), we have

aaβaβ
2

· · · aβ
p−1

= b
1
2 (p−1)plap+[ 16 (p−1)p(2p−1)l+ 1

2 (p−1)pi+ 1
6 (p−2)(p−1)pkl]p = ap 6= 1,

a contradiction.

Step 2: A final contradiction
Let f2(H) = {xp2 | x ∈ H}. Then f2(H) ≤ Z(H). By Equation (4.1), we have

aβ = b(1+ip)la1+ip ·$,
bβ = b1+jp+pklapk ·$′,

for some $,$′ ∈ f2(H). Let m ≡ il (mod p), n ≡ i (mod p), f ≡ j + kl (mod p)
for some m,n, f ∈ Zp. Then

β :

{
a 7→ bmp+lanp+1 ·$1

b 7→ bfp+1akp ·$′1
(4.5)

for some $1, $
′
1 ∈ f2(H).

We shall first prove the following claim.

Claim. For any r ≥ 2, aβ
r

= bcrp+2ladrp$r for some cr, dr ∈ Zp and $r ∈ f2(H).

Since t > 1, for any positive integer i0, by Lemma 3.2(1)&(3), we have

abi0 = bi0a(1+pt)i0 = bi0a1+i0p
t

= bi0a ·$0, (4.6)

for some $0 ∈ f2(H). Then by Equations (4.5) and (4.6), we have

aβ
2

= (bfp+1akp ·$′1)mp+l(bmp+lanp+1 ·$1)np+1 ·$β
1

= b(2m+fl+nl)p+2la(2n+kl)p ·$2,

for some $2 ∈ f2(H). Take c2, d2 ∈ Zp such that 2m + fl + nl ≡ c2 (mod p) and
2n + kl ≡ d2 (mod p). If r = 2, then Claim is clearly true. Now assume that r > 2 and
Claim holds for any positive integer less than r. Then

aβ
r−1

= bcr−1p+2ladr−1p ·$r−1,

for some cr−1, dr−1 ∈ Zp and $r−1 ∈ f2(H), and then

aβ
r

= (bfp+1akp ·$′1)cr−1p+2l(bmp+lanp+1 ·$1)dr−1p ·$β
r−1

= b(cr−1+2fl+ldr−1)p+2la(2kl+dr−1)p ·$r,

for some $r ∈ f2(H). Take cr, dr ∈ Zp such that cr−1 + 2fl+ ldr−1 ≡ cr (mod p) and
2kl + dr−1 ≡ dr (mod p). By induction, we complete the proof of Claim.

Now by our Claim, we have

aβ
p

= bcpp+2ladpp ·$p = a,

for some cp, dp ∈ Zp and $p ∈ f2(H). It follows that cpp + 2l ≡ 0 (mod p2), a
contradiction. This completes the proof of our lemma.
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Lemma 4.7. If H =
〈
a, b | apt+1

= bp
t+1

= 1, b−1ab = ap
t+1
〉

(t > 0), then p = 3.

Proof. Suppose to the contrary that p > 3. We first define the following four maps. Let

γ : a 7→ a1+p, b 7→ b, δ : a 7→ a, b 7→ b1+p,

σ : a 7→ bpa, b 7→ b, τ : a 7→ a, b 7→ ba.

Let x1 = a1+p, x2 = x4 = a, x3 = bpa, y1 = y3 = b, y2 = b1+p and y4 = ba. Since
H is an inner-abelian metacyclic-p group, by Proposition 3.1 and a direct computation,
we have o(xi1) = o(a) = pt+1, o(yi1) = o(b) = pt and it is direct to check that xi1
and yi1 have the same relations as do a and b, where i1 ∈ {1, 2, 3, 4}. Moreover, for any
i1 ∈ {1, 2, 3, 4}, we have 〈xi1 , yi1〉 = H . It follows that each of the above four maps
induces an automorphism of H .

Set P = 〈σ, γ, δ, τ〉. By a direct computation, we have o(γ) = o(δ) = pt, o(σ) = pt

and o(τ) = pt+1. Moreover, we have γδ = δγ, δ−1σδ = σp+1 and γ−1σγ = σ` with
`(p + 1) ≡ 1 (mod pt+1). As both γ and δ fixes the subgroup 〈a〉 while σ does not, one
has

〈σ, γ, δ〉 = 〈σ〉o (〈γ〉 × 〈δ〉) ∼= Zpt o (Zpt × Zpt).

Observing that 〈σ, γ, δ〉 fixes the subgroup 〈b〉 setwise but τ does not, it follows that
〈σ, γ, δ〉 ∩ 〈τ〉 = 1, and hence |P | ≥ p4t+1. In view of [13, Theorem 2.8], Aut(H) has
a normal Sylow p-subgroup of order p4t+1. It follows that P = 〈σ, γ, δ, τ〉 is the unique
Sylow p-subgroup of Aut(H). In particular, we have P = 〈γ〉〈δ〉〈σ〉〈τ〉.

Recall that S = {1, h, hhα, . . . , hhα · · ·hαp−2} and o(α) = p. Assume that h = buav

for some u ∈ Zpt+1 and v ∈ Zpt+1 . Since H = 〈S〉, we obtain that o(h) = exp(H). It
follows that (u, p) = 1. Then there exists u′ ∈ Z∗pt+1 such that u ≡ u′v (mod pt+1). Let

ϕ = σu
′
(δu)−1(τv)−1. Then ϕ ∈ Aut(H) and hϕ = b. By Proposition 2.4(3), we have

Γ ∼= BiCay(H, ∅, ∅, Sϕ). Let Γ′ = BiCay(H, ∅, ∅, Sϕ) and β = ϕ−1αϕ. Then σβ,b ∈
Aut(Γ′) cyclically permutates the elements in Γ′(10). It follows that bbβbβ

2 · · · bβp−1

= 1
and

Sϕ = {1, b, bbβ , bbβbβ
2

, . . . , bbβbβ
2

· · · bβ
p−2

}.

Since o(β) = o(α) = p, we have β ∈ P . Assume that β = γiδjσkτ l for some i, j, k ∈ Zpt
and l ∈ Zpt+1 . Then by Lemma 3.2(2) – (3) and Proposition 3.1(1), we have

β :

{
a 7→ (bal)(1+p)ikpa(1+p)i = b(1+p)ikpa(1+p)i(1+klp)

b 7→ (bal)(1+p)j = b(1+p)ja(1+p)j l
(4.7)

and then

β :

{
a 7→ a · w
b 7→ bal · w′

(4.8)

for some w,w′ ∈ f1(H). Since Γ′ ∼= Γ is connected, we derive from Proposition 2.3 that
H = 〈Sϕ〉. By Proposition 3.1(1), it follows that (l, p) = 1. We shall finish the proof by
the following steps.
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Step 1: t > 1.
Suppose to the contrary that t = 1. Then H = 〈a, b | ap2 = bp

2

= 1, b−1ab = a1+p〉.
We shall first show that for any r ≥ 1,

bβ
r

= b1+(rj+ 1
2 r(r−1)kl)parl+

1
2 r(r+1)jlp+ 1

2 r(r−1)(i+kl)lp+ 1
6 r(r−1)(r−2)kl2p. (4.9)

By Equation (4.7), we have

β :

{
a 7→ bkpa1+(i+kl)p

b 7→ b1+jpal+jlp.

Thus Equation (4.9) holds when r = 1. Now assume that r > 1 and

bβ
r−1

= b1+((r−1)j+ 1
2 (r−1)(r−2)kl)p

· a(r−1)l+ 1
2 (r−1)rjlp+ 1

2 (r−1)(r−2)(i+kl)lp+ 1
6 (r−1)(r−2)(r−3)kl2p.

By a direct computation, we have

bβ
r

= (b1+jpal+jlp)1+((r−1)j+ 1
2 (r−1)(r−2)kl)p

· (bkpa1+(i+kl)p)(r−1)l+ 1
2 (r−1)rjlp+ 1

2 (r−1)(r−2)(i+kl)lp+ 1
6 (r−1)(r−2)(r−3)kl2p

= b1+(rj+ 1
2 (r−1)(r−2)kl+(r−1)kl)p · al+jlp+[(r−1)lj+ 1

2 (r−1)(r−2)kl2]p

· a(r−1)l(1+(i+kl)p)+ 1
2 (r−1)rjlp+ 1

2 (r−1)(r−2)(i+kl)lp+ 1
6 (r−1)(r−2)(r−3)kl2p

= b1+rjp+[ 12 (r−1)(r−2)+(r−1)]klp

· a[l+(r−1)l]+[1+(r−1)+ 1
2 (r−1)r]jlp+ 1

2 r(r−1)(i+kl)lp+[ 12 + 1
6 (r−3)](r−1)(r−2)kl2p

= b1+(rj+ 1
2 r(r−1)kl)parl+

1
2 r(r+1)jlp+ 1

2 r(r−1)(i+kl)lp+ 1
6 r(r−1)(r−2)kl2p.

By induction, we have Equation (4.9). Then by Equation (4.9), we have

bβ
p

= b1+(pj+ 1
2p(p−1)kl)papl+

1
2p(p+1)jlp+ 1

2p(p−1)(i+kl)lp+ 1
6p(p−1)(p−2)kl2p = bapl 6= b,

a contradiction.

Step 2: A final contradiction.
Let f2(H) = {xp2 | x ∈ H}. Then f2(H) ≤ Z(H). By Equation (4.7), we have

aβ = bkpa(i+kl)p+1 ·$′

bβ = bjp+1ajlp+l ·$

for some $,$′ ∈ f2(H). Let f ≡ i + kl (mod p), n ≡ j (mod p), m ≡ jl (mod p)
for some m,n, f ∈ Zp. Then

β :

{
a 7→ bkpafp+1 ·$′1
b 7→ bnp+1amp+l ·$1

(4.10)

for some $1, $
′
1 ∈ f2(H).

We shall first prove the following claim.
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Claim. For any r ≥ 1, bβ
r

= brnp+
r(r−1)

2 klp+1armp+
r(r−1)

2 (n+f)lp+
r(r−1)(r−2)

6 kl2p+rl ·$r

with $r ∈ f2(H).

If r = 1, then by Equation (4.10), Claim is clearly true. Now assume that r > 1 and
Claim holds for any positive integer less than r. Then

bβ
r−1

= b(r−1)np+
(r−1)(r−2)

2 klp+1

· a(r−1)mp+
(r−1)(r−2)

2 (n+f)lp+
(r−1)(r−2)(r−3)

6 kl2p+(r−1)l ·$r−1,

for some $r−1 ∈ f2(H). Since t > 1, for any positive integer i0, by Lemma 3.2(1)&(3),
we have

abi0 = bi0a(1+pt)i0 = bi0a1+i0p
t

= bi0a ·$0, (4.11)

for some $0 ∈ f2(H). Then by Equations (4.10) and (4.11), we have

bβ
r

= (bnp+1amp+l ·$1)(r−1)np+
(r−1)(r−2)

2 klp+1

· (bkpafp+1 ·$′1)(r−1)mp+
(r−1)(r−2)

2 (n+f)lp+
(r−1)(r−2)(r−3)

6 kl2p+(r−1)l ·$β
r−1

= b(r−1)np+
(r−1)(r−2)

2 klp+np+1+k(r−1)lp ·$r · a(r−1)nlp+
(r−1)(r−2)

2 kl2p

· amp+l+(r−1)mp+
(r−1)(r−2)

2 (n+f)lp+
(r−1)(r−2)(r−3)

6 kl2p+(r−1)l+(r−1)flp

= brnp+
r(r−1)

2 klp+1 · armp+
r(r−1)

2 (n+f)lp+
r(r−1)(r−2)

6 kl2p+rl ·$r.

for some $r ∈ f2(H). By induction, we complete the proof of Claim.

Now by our Claim and o(β) = p, we have

bβ
p

= bnp
2+

(p−1)
2 klp2+1 · amp

2+
(p−1)

2 (n+f)lp2+
(p−1)(p−2)

6 kl2p2+pl ·$p = b

for some $p ∈ f2(H). It follows that pl ≡ 0 (mod p2), a contradiction. This completes
the proof of our lemma.

5 Proof of Theorem 1.3
We first prove a lemma.

Lemma 5.1. Let p be an odd prime, and letH be a metacyclic p-group. If Γ is a connected
edge-transitive bi-Cayley graph over H of valency p, then H is either abelian or inner-
abelian.

Proof. We may assume that H is non-abelian. By Proposition 3.1, the group H has the
following presentation:

H =
〈
a, b | ap

r+s+u

= 1, bp
r+s+t

= ap
r+s

, ab = a1+pr
〉
,

where r, s, t, u are non-negative integers with u ≤ r and r ≥ 1.
Let Γ = BiCay(H,R,L, S) be a connected edge-transitive bi-p-Cayley graph over

H of valency p. Let A = Aut(Γ), and let P be a Sylow p-subgroup of A such that
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R(H) ≤ P . From the proof of Lemma 4.4(1), we see that P is transitive on the edges of
Γ. Since H ′ = 〈apr 〉 ∼= Zps+u , we have

H/H ′ =

〈
a, b | ap

r

= b
pr+s+t

= 1, ab = a

〉
∼= Zpr × Zpr+s+t ,

where a = aH ′ and b = bH ′. By Lemma 4.4(2), we have s + t = 0 or 1, and so
(s, t) = (0, 0), (1, 0) or (0, 1).

Let n = 2r+2s+u+t. We use induction on n. If n = 1 or 2, thenH is clearly abelian,
as desired. Assume n ≥ 3. Let N be a minimal normal subgroup of P and N ≤ R(H).
SinceH is metacyclic, we haveN ∼= Zp or Zp×Zp. Suppose thatN ∼= Zp×Zp. Note that
R(H)′ ∼= Zps+u . Let Q be the subgroup of R(H)′ of order p. Since Q is characteristic in
R(H)′ andR(H)′ is characteristic inR(H),R(H)EP gives thatQEP . By Lemma 3.2(4),
each subgroup of R(H) of order p is contained in N . It follows that Q < N , contrary to
the minimality of N . Thus N ∼= Zp.

Consider the quotient graph ΓN of Γ corresponding to the orbits of N . Clearly, N is
intransitive on both H0 and H1, the two orbits of R(H) on V (Γ), and by Propositions 2.1
and 2.2, N is semiregular and ΓN is a graph of valency p with P/N as an edge-transitive
group of automorphisms. Clearly, ΓN is a bi-Cayley graph over the group R(H)/N of
order 2 · pn1 with n1 < n. By induction, we have R(H)/N is either abelian or inner-
abelian. If R(H)/N is abelian, then R(H)′ ≤ N ∼= Zp. It follows that R(H)′ = 1 or
R(H)′ ∼= Zp, implying that H ∼= R(H) is abelian or inner-abelian, as required.

In what follows, we always assume that R(H)/N is inner-abelian, and for any element
h ∈ H , we use h to denote hN .

By Theorem 4.2, we have p = 3. Recall that (s, t) = (0, 0), (1, 0) or (0, 1).

Case 1: (s, t) = (0, 0).
In this case, we have

H =
〈
a, b | a3r+u

= 1, b3
r

= a3r

, ab = a1+3r
〉
.

Let x = a and y = ba−1. Since b3
r

= a3r

, by Proposition 3.1(2), we conclude that
y3r

= (ba−1)3r

= 1 and

xy = aba
−1

= (ab)a
−1

= (a1+3r

)a
−1

= a1+3r

= x1+3r

.

Then

R(H) ∼= H =
〈
x, y | x3r+u

= y3r

= 1, xy = x1+3r
〉
.

Recall that N ∼= Z3 and N ≤ R(H). By Lemma 3.2(4), N is one of the following four
groups: 〈x3r+u−1〉, 〈y3r−1〉, 〈y3r−1

x3r+u−1〉, 〈y3r−1

x2·3r+u−1〉.
First suppose that N 6= 〈x3r+u−1〉. Then x has order 3r+u. We shall show that H/N

has the following presentation:

H/N =

〈
x, h | x3r+u

= h
3r−1

= 1, xh = x1+3r

〉
.
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Actually, if N = 〈y3r−1〉, then we may take h = y. If N = 〈y3r−1

x3r+u−1〉, then take
h = yx3u

, and then by Lemma 3.2(2) – (3), we have

(yx3u

)3r−1

= y3r−1

x3u[1+(1+3r)+(1+3r)2+···+(1+3r)3
r−1−1]

= y3r−1

x3u[1+(1+3r)+(1+2·3r)+···+(1+(3r−1−1)·3r)]

= y3r−1

x3u·3r−1

= y3r−1

x3u+r−1

∈ N.

If N = 〈y3r−1

x2·3r+u−1〉, then take h = yx2·3u

, and then by Lemma 3.2(2) – (3), we have

(yx2·3u

)3r−1

= y3r−1

x2·3u[1+(1+3r)+(1+3r)2+···+(1+3r)3
r−1−1]

= y3r−1

x2·3u[1+(1+3r)+(1+2·3r)+···+(1+(3r−1−1)·3r)]

= y3r−1

x2·3u·3r−1

= y3r−1

x2·3u+r−1

∈ N.

Clearly, in each case, we have xh = x1+3r

. So H/N always has the above presentation.
Since R(H)/N is inner-abelian, by [20] or [3, Lemma 65.2], we have u = 1. However,
by Proposition 4.1, there is no cubic edge-transitive bi-Cayley graph over R(H)/N , a
contradiction.

Suppose now that N = 〈x3r+u−1〉. Then

H/N =
〈
x, y | x3r+u−1

= y3r

= 1, xy = x1+3r
〉
,

Since R(H)/N is inner-abelian, by [20] or [3, Lemma 65.2], we have u = 2. Then

H =
〈
x, y | x3r+2

= y3r

= 1, xy = x1+3r
〉
,

where r ≥ 1.
If r = 1, then by MAGMA [5], there is no cubic edge-transitive bi-Cayley graph over

H , a contradiction. If r ≥ 2, then by Lemma 4.4(1), we have R = L = ∅. Assume that
S = {1, g, h}. Since Γ is connected, by Proposition 2.3(1), we have H = 〈S〉 = 〈g, h〉.
It follows that o(g) = o(h) = exp(H) = 3r+2, and so H ′ = 〈x3r 〉 = 〈g3r 〉 = 〈h3r 〉.
Moreover, by Lemma 4.4(1), there exists α ∈ Aut(H) such that gα = g−1h, hα = g−1

and o(α) | 3. Suppose that α is trivial. Then h = g−1, and then H = 〈g〉, a contradiction.
Thus, α has order 3. Assume that (g3r

)α = gλ·3
r

for some λ ∈ Z∗9. Then (h3r

)α = hλ·3
r

.
Since gα = g−1h and hα = g−1, we have gλ·3

r

= g−3r

h3r

and hλ·3
r

= g−3r

. Then

gλ
2·3r

= (gλ·3
r

)λ = (g−3r

h3r

)λ = g−λ·3
r

hλ·3
r

= g−λ·3
r

g−3r

= g(−λ−1)·3r

.

It follows that g(λ2+λ+1)·3r

= 1, and so 9 | λ2 + λ+ 1, a contradiction.

Case 2: (s, t) = (1, 0).
In this case, we have

H =
〈
a, b | a3r+u+1

= 1, b3
r+1

= a3r+1

, ab = a1+3r
〉
.
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Let x = a and y = ba−1. Since b3
r+1

= a3r+1

, by Proposition 3.1(2), we obtain that
y3r+1

= (ba−1)3r+1

= 1 and

xy = aba
−1

= (ab)a
−1

= (a1+3r

)a
−1

= a1+3r

= x1+3r

.

Then
R(H) ∼= H =

〈
x, y | x3r+u+1

= y3r+1

= 1, xy = x1+3r
〉
,

Recall that N ∼= Z3 and N ≤ R(H). By Lemma 3.2(4), N is one of the following four
groups: 〈x3r+u〉, 〈y3r 〉, 〈y3r

x3r+u〉, 〈y3r

x2·3r+u〉.
Suppose first that N 6= 〈x3r+u〉. Then x has order 3r+u+1. We shall show that H/N

has the following presentation:

H/N =
〈
x, h | x3r+u+1

= h
3r

= 1, xh = x1+3r
〉
.

Actually, if N = 〈y3r 〉, then we may take h = y. If N = 〈y3r

x3r+u〉, then take h = yx3u

,
and then by Lemma 3.2(2) – (3), we have

(yx3u

)3r

= y3r

x3u[1+(1+3r)+(1+3r)2+···+(1+3r)3
r−1]

= y3r

x3u[1+(1+3r)+(1+2·3r)+···+(1+(3r−1)·3r)]

= y3r

x3u[3r+
3r·(3r−1)

2 ·3r]

= y3r

x3u+r

∈ N.

If N = 〈y3r

x2·3r+u〉, then take h = yx2·3u

, and then by Lemma 3.2(2) – (3), we have

(yx2·3u

)3r

= y3r

x2·3u[1+(1+3r)+(1+3r)2+···+(1+3r)3
r−1]

= y3r

x2·3u[1+(1+3r)+(1+2·3r)+···+(1+(3r−1)·3r)]

= y3r

x2·3u[3r+
3r·(3r−1)

2 ·3r]

= y3r

x2·3u+r

∈ N.

Clearly, in each case, we have xh = x1+3r

. So H/N always has the above presentation.
Since R(H)/N is inner-abelian, by [20] or [3, Lemma 65.2], we have u = 0. Then

H =
〈
x, y | x3r+1

= y3r+1

= 1, xy = x1+3r
〉
,

where r ≥ 1. By [20] or [3, Lemma 65.2], H is inner-abelian, as required.
Suppose now N = 〈x3r+u〉. Then

R(H)/N =
〈
x, y | x3r+u

= y3r+1

= 1, xy = x1+3r
〉
.

Since R(H)/N is inner-abelian, by [20] or [3, Lemma 65.2], we have u = 1. Then

H =
〈
x, y | x3r+2

= y3r+1

= 1, xy = x1+3r
〉
,
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where r ≥ 1.
If r = 1, then by MAGMA [5], there is no cubic edge-transitive bi-Cayley graph over

H , a contradiction. If r ≥ 2, then by Lemma 4.4(1), we have R = L = ∅. Assume that
S = {1, g, h}. Since Γ is connected, by Proposition 2.3(1), we have H = 〈S〉 = 〈g, h〉. It
follows that o(g) = o(h) = exp(H) = 3r+2. By Lemma 4.4(1), there exists α ∈ Aut(H)
such that gα = g−1h, hα = g−1 and o(α) | 3. Suppose that α is trivial. Then h = g−1,
and then H = 〈g〉, a contradiction. Thus, α has order 3. Note that

Ωr(H) =
〈
z3r

| z ∈ H
〉

=
〈
x3r
〉
×
〈
y3r
〉
∼= Z9 × Z3

and g3r

, h3r ∈ Ωr(H).
If 〈g3r 〉 = 〈h3r 〉, then we may assume that (g3r

)α = gλ·3
r

for some λ ∈ Z∗9. Then
(h3r

)α = hλ·3
r

. Since gα = g−1h and hα = g−1, we have gλ·3
r

= g−3r

h3r

and
hλ·3

r

= g−3r

. Then

gλ
2·3r

= (gλ·3
r

)λ = (g−3r

h3r

)λ = g−λ·3
r

hλ·3
r

= g−λ·3
r

g−3r

= g(−λ−1)·3r

.

It follows that g(λ2+λ+1)·3r

= 1, and so 9 | λ2 + λ+ 1, a contradiction.
Suppose 〈g3r 〉 6= 〈h3r 〉. Then Ωr(H) = 〈g3r

, h3r 〉 and H ′ = 〈x3r 〉 ∼= Z9. Assume
that x3r

= gi·3
r

hj·3
r

for some i, j ∈ Z9. Then either (i, 3) = 1 or (j, 3) = 1. Since
H ′ = 〈x3r 〉, we have 〈x3r 〉α = 〈x3r 〉. So (gi·3

r

hj·3
r

)α = (gi·3
r

hj·3
r

)k for some k ∈ Z9.
Then

gik·3
r

hjk·3
r

= (gi·3
r

hj·3
r

)α = (gα)i·3
r

(hα)j·3
r

= g−i·3
r

hi·3
r

g−j·3
r

= g−(i+j)·3r

hi·3
r

.

It follows that −(i + j) ≡ ik (mod 9) and i ≡ jk (mod 9). Then −(jk + j) ≡ jk2

(mod 9), and so j(1+k+k2) ≡ 0 (mod 9), forcing that 3 | j. Furthermore, since i ≡ jk
(mod 9), we have 3 | i, a contradiction.

Case 3: (s, t) = (0, 1).
In this case, we have

H =
〈
a, b | a3r+u

= 1, b3
r+1

= a3r

, ab = a1+3r
〉
.

Let x = b, y = b3a−1. Since ab = a1+3r

, we have b−1aba−1 = a3r

, and then

aba−1 = ba3r

= bb3
r+1

= b1+3r+1

.

Since b3
r+1

= a3r

, by Proposition 3.1(2), we have

x3r+u+1

= b3
r+u+1

= a3r+u

= 1, y3r

= (b3a−1)3r

= 1,

xy = bb
3a−1

= (b)a
−1

= aba−1 = b1+3r+1

= x1+3r+1

.

Then
R(H) ∼= H =

〈
x, y | x3r+u+1

= y3r

= 1, xy = x1+3r+1
〉
.

Recall that N ∼= Z3 and N ≤ R(H). By Lemma 3.2(4), N is one of the following four
groups: 〈x3r+u〉, 〈y3r−1〉, 〈y3r−1

x3r+u〉, 〈y3r−1

x2·3r+u〉.
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Suppose first that N 6= 〈x3r+u〉. Then x has order 3r+u+1. We shall show that H/N
has the following presentation:

H/N =

〈
x, h | x3r+u+1

= h
3r−1

= 1, xh = x1+3r+1

〉
.

Actually, if N = 〈y3r−1〉, then we may take h = y. If N = 〈y3r−1

x3r+u〉, then take
h = yx3u+1

, and then by Lemma 3.2(2) – (3), we have

(yx3u+1

)3r−1

= y3r−1

x3u+1[1+(1+3r+1)+(1+3r+1)2+···+(1+3r+1)3
r−1−1]

= y3r−1

x3u+1[1+(1+3r+1)+(1+2·3r+1)+···+(1+(3r−1−1)·3r+1)]

= y3r−1

x3u+1[3r−1+
3r−1·(3r−1−1)

2 ·3r+1]

= y3r−1

x3u+r

∈ N.

If N = 〈y3r−1

x2·3r+u〉, then take h = yx2·3u+1

, and then by Lemma 3.2(2) – (3), we have

(yx2·3u+1

)3r−1

= y3r−1

x2·3u+1[1+(1+3r+1)+(1+3r+1)2+···+(1+3r+1)3
r−1−1]

= y3r−1

x2·3u+1[1+(1+3r+1)+(1+2·3r+1)+···+(1+(3r−1−1)·3r+1)]

= y3r−1

x2·3u+1[3r−1+
3r−1·(3r−1−1)

2 ·3r+1]

= y3r−1

x2·3u+r

∈ N.

Clearly, in each case, we have xh = x1+3r

. So H/N always has the above presentation.
Since R(H)/N is inner-abelian, by [20] or [3, Lemma 65.2], we have u = 1. However,
by Proposition 4.1, there is no cubic edge-transitive bi-Cayley graph over R(H)/N , a
contradiction.

Suppose now that N = 〈x3r+u〉. Then

R(H)/N =
〈
x, y | x3r+u

= y3r

= 1, xy = x1+3r+1
〉
.

Since R(H)/N is inner-abelian, by [20] or [3, Lemma 65.2], we have u = 2. However,
by Proposition 4.1, there is no cubic edge-transitive bi-Cayley graph over R(H)/N , a
contradiction.

Now we are ready to finish the proof of Theorem 1.3.

Proof of Theorem 1.3. By Lemma 5.1, if H is non-abelian, then H is inner-abelian. By
Theorem 4.2, we have p = 3, and then by Proposition 4.1, Γ is isomorphic to either Γr or
Σr, as desired.
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