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Abstract

We investigate the minimum number t0(G) of faces in a Hamiltonian triangulation
G so that any Hamiltonian cycle C of G has at least t0(G) faces that do not contain an
edge of C. We prove upper and lower bounds on the maximum of these numbers for all
triangulations with a fixed number of facial triangles. Such triangles play an important
role when Hamiltonian cycles in triangulations with 3-cuts are constructed from smaller
Hamiltonian cycles of 4-connected subgraphs. We also present results linking the number
of these triangles to the length of 3-walks in a class of triangulation and to the domination
number.
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1 Introduction
In this article all triangulations are simple triangulations of the plane with at least 4 vertices.
A triangulation or a graph is said to be Hamiltonian if it contains a Hamiltonian cycle. For
a triangulation G with a Hamiltonian cycle C of G, a type-i triangle with i ∈ {0, 1, 2} is
defined as a facial triangle of G which shares exactly i edges with C. We define ti(G,C)
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as the number of type-i triangles. If the triangulation and Hamiltonian cycle are clear from
the context, we will also just write ti.

A triangulation G can be extended by inserting a 4-connected triangulation or poly-
hedron in a triangle T to obtain a larger graph G′. If there is a Hamiltonian cycle C in
G, then we can extend C to a Hamiltonian cycle of G′ – unless T is a type-0 triangle.
If there is a Hamiltonian cycle C without any type-0 triangles such as in a double wheel
or the majority of small 4-connected triangulations (e.g. more than 80% for 4-connected
triangulations on 20 vertices), then for the graph G′ obtained by inserting a 4-connected
triangulation or polyhedron in each triangle in a set of disjoint facial triangles we can ex-
tend C to a Hamiltonian cycle of G′. In [3] it is proven that the – still open – question
whether all triangulations with at most four 3-cuts are Hamiltonian can be reduced to the
question whether for each set of four disjoint triangles in a 4-connected triangulation there
is a Hamiltonian cycle so that none of them is a type-0 triangle. More properties of triangu-
lations with a Hamiltonian cycle with few or even without type-0 triangles are described in
Section 4. Investigating whether there always exists a Hamiltonian cycle with few type-0
triangles is the main target of this paper.

We denote the number of facial triangles of G by t(G). Euler’s formula implies that
(with |G| the number of vertices of G), t(G) = 2|G| − 4, so it is always an even number.
For i ∈ {0, 2} we further define

ti(G) = min{ti(G,C) | C is a Hamiltonian cycle of G},

and for even t ≥ 4

ti(t) = max{ti(G) | G is a Hamiltonian triangulation with exactly t facial triangles}.

In some cases we might want to restrict the class to 4- or 5-connected triangulations. Note
that there are no 4-connected triangulations G with t(G) < 8 and no 5-connected triangu-
lations G with t(G) < 20. So for j = 4 and even t ≥ 8, and for j = 5 and even t ≥ 20 we
define

tji (t) = max{ti(G) | G is a j-connected triangulation with exactly t facial triangles}.

In this paper, we show the following theorem.

Theorem 1.1. Let t be an integer. Then the following hold.

(i) For t ≥ 8 we have t0(t) ≤ t−8
3 , and for 4 ≤ t < 8 we have t0(t) = 0.

(ii) For t ≥ 10 we have t40(t) ≤ t−10
3 , and for t = 8 we have t40(t) = 0.

(iii) For t ≥ 20 we have t50(t) ≤ t−12
3 .

In Section 3, we discuss lower bounds on t0(t), t40(t) and t50(t).
As we will see in Section 4.1, also the number of type-i triangles on one side of a

Hamiltonian cycle is relevant, so we also define t̄i(G,C) as the number of type-i triangles
on that side of C with fewer type-i triangles. The numbers t̄i(G), t̄i(t), and t̄ji (t) are
defined correspondingly. By definition

t̄i(G,C) ≤ ti(G,C)/2, t̄i(G) ≤ ti(G)/2,

t̄i(t) ≤ ti(t)/2 and t̄ji (t) ≤ t
j
i (t)/2
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for i ∈ {0, 2} and j ∈ {4, 5}.
An outer plane graph is a plane graph in which all vertices are incident with the outer

face. In particular, an outer plane graph with maximal number of edges is called a maximal
outer plane graph, which is, in other words, an outer plane graph in which all inner faces
are triangles. For a triangulation G with a Hamiltonian cycle C, the inside as well as the
outside of C together with C form a maximal outer plane graph. For a 2-connected plane
graph G, the boundary of the outer face is called the boundary cycle of G. In particular,
vertices and edges in the boundary cycle of G are boundary vertices resp. boundary edges
in G. A cycle C in a plane graph such that the inside as well as the outside (not including
C) contain a vertex is called a separating cycle. Note that in a triangulation, any triangle
that is not facial is a separating cycle.

Let G be a triangulation with a Hamiltonian cycle C. If we take the dual of the max-
imal outer plane graph consisting of the inside of C together with C and delete the vertex
corresponding to the outer face, then we obtain a subcubic tree in which the vertices of
degree (3− i) correspond to type-i triangles of the triangulation. Using these relations, we
get the following proposition.

Proposition 1.2. Let G be a triangulation with a Hamiltonian cycle C. Then

t̄2(G,C) = t̄0(G,C) + 2 and t2(G,C) = t0(G,C) + 4.

Note that the number of facial triangles on the inside is equal to the number of facial
triangles on the outside. As t(G) = t0(G,C) + t1(G,C) + t2(G,C), we have

t1(G,C) = t(G)− 2t0(G,C)− 4.

So finding the minimum value for t0(G,C) is equivalent to finding the minimum value for
t2(G,C), and finding the maximum value for t1(G,C).

Let G be a triangulation and let C be a Hamiltonian cycle in G. We say that two facial
triangles are adjacent if they share an edge. An (i, j)-pair (i, j ∈ {1, 2}) is defined as a
pair of adjacent facial triangles consisting of a type-i triangle and a type-j triangle such
that the common edge is contained in C. Note that each type-1 triangle is contained in at
most one (1, 2)-pair.

2 Upper bounds for t0(t), t40(t) and t50(t)

To prove Theorem 1.1 in this section, we first show some lemmas. A vertex v in a graph G
is said to be dominating if v is adjacent to all other vertices in G.

If a type-2 triangle T is contained in two (2, 2)-pairs, we call the three triangles involved
a (2, 2, 2)-triple and T the central triangle of the triple.

Restricted to minimum degree 4 the first part of the following lemma was proven in
[13, Lemma 2.1].

Lemma 2.1. Let G be a triangulation with a Hamiltonian cycle C, but without a domi-
nating vertex. Then there exists a Hamiltonian cycle C ′ in G such that C ′ has no (2, 2, 2)-
triples.

If G has minimum degree 4, then C ′ can be chosen in a way that it also has at least as
many (1, 1)-pairs as C.
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Proof. Assume that there is a (2, 2, 2)-triple with central triangle T and let v denote the
vertex contained in all three triangles involved. As v is not dominating, there is a first
vertex v0 in counterclockwise orientation from T around v that has a neighbour on C that
is not a neighbour of v. Numbering the neighbours of v in clockwise orientation around
v as v0, v1, . . . , vdeg(v)−1, there is also a first vertex vk with k > 0 and a neighbour on C
that is not a neighbour of v. We can reroute the part of C containing v, v0, . . . , vk along the
path v0, v1, . . . , vk−1, v, vk. This operation is displayed in Figure 1. Of course the roles of
v0 and vk are symmetric and we could do the same with their roles interchanged.
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Figure 1: Rerouting a Hamiltonian cycle to remove a (2, 2, 2)-triple.

If all vertices have degree at least 4, any new type-2 triangle contains v and the number
of (2, 2, 2)-triples is decreased. Furthermore, no (1, 1)-pairs without a triangle containing
v can be destroyed and after rerouting at least the edges v1v2, v2v3, . . . , vk−3vk−2 are
common edges of a (1, 1)-pair. These are k − 3 (1, 1)-pairs, but note that k − 3 can be 0.
Depending on whether v0v1 is the common edge of a (1, 1)-pair in C, the triangles under
discussion can belong to k − 3 or k − 4 (1, 1)-pairs before rerouting – so the number of
(1, 1)-pairs does not decrease.

The vertices v0 and vk always have degree at least 4, but if one of v1, . . . , vk−2 has
degree 3, it is contained in a type-2 triangle not containing v. For v1, . . . , vk−3 (note that
this set of vertices can be empty) this type-2 triangle has type-1 triangles on the other side
of the edges in the Hamiltonian cycle and is therefore not contained in a (2, 2)-pair. If vk−2

has degree 3 we would produce a (2, 2, 2)-triple. If v2 has degree larger than 3, we can
apply the operation with the role of v0 and vk interchanged, so let us assume that v2 as well
as vk−2 have degree 3. As no two vertices of degree 3 can be neighbours in a triangulation
different from K4, this implies that k > 3.

Let i > 0 be minimal so that there is an edge vivk−1. Such an i is sure to exist, as k−3
is a candidate. We then reroute the cycle along v0, v1, . . . , vi, vk−1, vk−2, . . . , vi+1, v, vk
to obtain C ′. An example of this rerouting is given in Figure 2.

After rerouting, the only edges that can be the common edge of the two triangles in a
new (2, 2)-pair are vi+1vi+2 and vivk−1. As vivj is not in C ′ for any i < j < k − 1,
vivk−1 can only be in a (2, 2)-pair if vk−1vk−2 is contained in the same triangle, which
gives i = k−3, so vi+1vi+2 = vk−2vk−1 is the common edge of a (2, 2)-pair too and only
the case that vi+1vi+2 is the common edge of a (2, 2)-pair remains to be discussed.

Assume that vi+2vi+1 is contained in two type-2 triangles — vi+2vi+1v and T ′. If the
degree of vi+2 is 3, then T ′ = vi+1vi+2vi+3 and the second neighbour triangle of T ′ along
C ′ is a type-1 triangle, so in that case vi+2vi+1 is not part of a (2, 2, 2)-triple.
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Figure 2: Rerouting a Hamiltonian cycle to remove a (2, 2, 2)-triple if vk−2 has degree 3.

If the degree of vi+2 is at least 4, the other edge of T ′ in the Hamiltonian cycle must be
vi+2vi, which can only be contained in a type-2 triangle vi+2vi+1vi if i+ 2 = k − 1, that
is i = k − 3. In order to be contained in a second type-2 triangle, there must be an edge
vk−1vk−4. Due to the minimality of i we get k = 4, so we have the situation depicted in
Figure 3 on the left hand side. Rerouting the Hamiltonian cycle along v0, v, v2, v1, v3, v4

(right hand side of Figure 3) gives a Hamiltonian cycle with one (2, 2, 2)-triple less.
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Figure 3: Rerouting a Hamiltonian cycle to remove a (2, 2, 2)-triple if vk−2 has degree 3
and the default method produces a (2, 2, 2)-triple.

Using a result by Whitney [17], we can prove the existence of a Hamiltonian cycle with
at least one (1, 1)-pair in a 4-connected triangulation. Below we first give the lemma by
Whitney, but use a simplified version of the formulation from [7].

Lemma 2.2. Let G be a 4-connected triangulation. Consider a cycle D in G together with
the vertices and edges on one side of D (referred to as the outside of D). Let a and b be
two vertices of D dividing D into two paths P1 and P2 each of which contains both a and
b. If

• no two vertices of P1 are joined by an edge which lies outside of D and
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• there is a vertex z (distinct from a and b) dividing P2 into two paths P3 and P4 each
of which contains z such that no pair of vertices in P3 and no pair of vertices in P4

are joined by an edge which lies outside of D,

then there is a path from a to b using only edges on and outside of D which passes through
every vertex on and outside of D.

Using this lemma, we can give the following result. Note that for triangulations being
k-connected is equivalent to having no separating cycles of length shorter than k.

Lemma 2.3. Let G be a 4-connected triangulation which is not isomorphic to the octahe-
dron. There exists a Hamiltonian cycle C in G such that C has at least one (1, 1)-pair.

u v
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um
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Figure 4: Construction of a Hamiltonian cycle with at least one (1, 1)-pair in a 4-connected
triangulation.

Proof. As a consequence of the Euler formula and the fact that G is not isomorphic to the
octahedron, there exists a vertex x of degree at least 5 inG. Let uvx be an arbitrary triangle
containing x. The edge uv is contained in a second triangle, say uvz. Let the vertices
adjacent to u (in counterclockwise order) be v, z, u1, . . . , um, a, x (note that there are no
ui vertices if u has degree 4), and let the vertices adjacent to v be u, x, b, v1, . . . , vn, z (note
that there are no vi vertices if v has degree 4) (see Figure 4).

As G is 4-connected, D = axbv1 · · · vnzu1 · · ·uma is a cycle in G. The vertices a
and b partition D into two paths satisfying the conditions of Lemma 2.2 with P1 = axb.
Indeed, the path P2 is divided into P3 and P4 by the vertex z. As x has degree at least 5, a
and b are not adjacent. All vertices of P3, resp. P4, are adjacent to u, resp. v, so any edge
which lies outside of D and joins two vertices of P3 or two vertices of P4 would be part of
a separating triangle.

Let P be the path from a to b described in Lemma 2.2. The Hamiltonian cycle C =
P ∪ auvb contains the (1, 1)-pair (uvx, uvz).

In the case of 5-connected triangulations, we can prove a slightly stronger result.

Lemma 2.4. Let G be a 5-connected triangulation. There exists a Hamiltonian cycle C in
G such that C has at least two (1, 1)-pairs.
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Figure 5: Construction of a Hamiltonian cycle with at least two (1, 1)-pairs in a 5-connected
triangulation.

Proof. Let v be a vertex of G which has degree 5, and let u and w be two neighbour-
ing vertices of v which are not adjacent to each other. Let the vertices adjacent to u be
v, z, u1, . . . , um, a, x, and let the vertices adjacent to w be v, y, b, w1, . . . , wn, z (see Fig-
ure 5).

As G is 5-connected, D = axybw1 · · ·wnzu1 · · ·uma is a cycle in G. The vertices a
and b partition D into two paths satisfying the conditions of Lemma 2.2 with P1 = axyb.
Indeed, the path P2 is divided into P3 and P4 by the vertex z. As all vertices have degree
at least 5, any edge outside of D connecting two vertices of P1 is contained in a separating
triangle or a separating quadrangle. All vertices of P3, resp. P4, are adjacent to u, resp. w,
so any edge which lies outside of D and joins two vertices of P3 or P4 would be part of a
separating triangle.

Let P be the path from a to b described in Lemma 2.2. The Hamiltonian cycle C =
P ∪ auvwb contains the (1, 1)-pairs (uvx, uvz) and (vwy, vwz).

Lemma 2.5. Let G be a triangulation with a dominating vertex v and t triangles. Then
t0(G) < t

4 − 1 if G is not K4 and t0(K4) = 0.

Proof. We can easily check K4 by hand, so assume that G is not K4.
G − {v} is an outer plane graph, so it has a vertex w of degree 2. Let w′ be a vertex

sharing a boundary edge of G − {v} with w and let C be the Hamiltonian cycle of G
containing {v, w}, {v, w′} and the boundary cycle of G − {v} without the edge {w,w′}.
Let t0,∆, t1,∆ and t2,∆ be the number of facial triangles of type 0, 1 and 2 on the side of
C containing the triangle v, w,w′. All triangles on the other side of C contain v and as
no type-0 triangle in G contains v, we have t0(G) = t0,∆. Since each side of C contains
exactly t(G)/2 facial triangles, we have t0,∆ + t1,∆ + t2,∆ = t(G)

2 . Furthermore (as G is
not K4) we have t1,∆ ≥ 1 (the unique triangle containing w but not v). So t0,∆ + t2,∆ <
t0,∆ + t1,∆ + t2,∆ = t

2 . By Proposition 1.2, we have t2,∆ = t0,∆ + 2, and hence we get
2t0,∆ + 2 = 2t0 + 2 < t

2 and finally t0(G) < t
4 − 1.

By combining the results above, we are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. For t < 20 the theorem was checked by testing all triangulations.
The triangulations were generated by the program plantri [2] and a straightforward ex-
haustive search for Hamiltonian cycles with the smallest number of type-0 triangles was
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performed. Thus, we may assume t ≥ 20. Let G be a Hamiltonian triangulation with
t ≥ 20 facial triangles.

Suppose that G has a dominating vertex v. Since G − {v} has a vertex of degree two,
G has a 3-cut, and hence G is not 4-connected. Since t

4 − 1 ≤ t−8
3 , Lemma 2.5 implies the

result.
Assume now that G has no dominating vertex. Suppose that G has a Hamiltonian cycle

with p (1, 1)-pairs. Lemmas 2.3 and 2.4 imply that p ≥ 1 if G is 4-connected, and p ≥ 2
if G is 5-connected. Due to Lemma 2.1, G contains a Hamiltonian cycle C ′ which has at
least p (1, 1)-pairs and in which each type-2 triangle is contained in at least one (1, 2)-pair.
A type-1 triangle is contained in a (1, 1)-pair or a (1, 2)-pair. There are at least 2p type-1
triangles in (1, 1)-pairs of C ′ and therefore at most (t1(G,C ′) − 2p) type-1 triangles in
(1, 2)-pairs. Since each type-2 triangle forms a (1, 2)-pair with at least one of the type-1
triangles in a (1, 2)-pair, we get

t2(G,C ′) ≤ t1(G,C ′)− 2p.

By Proposition 1.2, we have t2(G,C ′) = t0(G,C ′) + 4, and hence

t1(G,C ′) ≥ t0(G,C ′) + 4 + 2p.

Combining these results with t(G) = t0(G,C ′) + t1(G,C ′) + t2(G,C ′), we get

t(G) ≥ t0(G,C ′) + t0(G,C ′) + 4 + 2p+ t0(G,C ′) + 4.

This can be rewritten as

t0(G,C ′) ≤ t(G)− 8− 2p

3
,

and so we also have
t0(t) ≤ t− 8− 2p

3
.

Using the values for p from Lemma 2.3 and Lemma 2.4, we get the given bounds.

3 Lower bounds for t0(t), t40(t) and t50(t)

In order to prove lower bounds for t0(t), t40(t) and t50(t), we will construct families of
graphs in which each Hamiltonian cycle has at least a certain number of type-0 triangles.

Theorem 3.1.

• Let t ≥ 16 be even. Then t0(t) ≥ b t3c − 5 and t̄0(t) ≥ b t+2
6 c − 3.

We have t0(14) = 1 and t̄0(14) = 0. For t < 14 we have t0(t) = t̄0(t) = 0.

• Let t ≥ 18 be even. Then t40(t) ≥ 2(b t6c − 3) and t̄40(t) ≥ b t6c − 3.
For t < 18 we have t40(t) = t̄40(t) = 0.

• Let t ≥ 20 be even. Then t50(t) ≥ 2b t
12c − 20.

For t ≤ 66 we have that t̄50(t) = 0.

Proof. t40(t) and t̄40(t):
The results for t < 18 were determined by a computer using the program plantri [2] for

the generation of all 4-connected triangulations and a straightforward algorithm to compute
t0 and t̄0.
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First consider the case where t is a multiple of six, and let k = t
6 . Consider the fragment

B shown in the left part of Figure 6. Take k copies B0, . . . , Bk−1 of B and identify all
vertices labelled N and all vertices labelled S, respectively, (we call the resulting vertices
the poles) and for 0 ≤ i < k identify vertex y in Bi with vertex x in Bi+1 (mod k).
This graph has 6k facial triangles, and we denote it by Gk. It is easy to check that Gk is
4-connected.

N

S

N

S

x y

Figure 6: The fragment B used to construct a family of triangulations establishing a lower
bound on t40(t) and t̄40(t) and the most common way for a Hamiltonian cycle to pass through
this fragment.

We show t0(Gk) ≥ 2( t
6 −3) and t̄0(Gk, C) ≥ t

6 −3 by induction on k. Computational
results give that for 3 ≤ k ≤ 8 we have t0(Gk) = 2k − 6 and t̄0(Gk) = k − 3. Since Gk

contains 6k triangles, we can also write this as t0(Gk) = t
3 − 6 and t̄0(Gk) = t

6 − 3, and
we are done. So we may assume that k ≥ 9.

Let C be a Hamiltonian cycle in Gk. An edge of C which is incident to a pole is
contained in at most two fragments. Since there are two edges incident to each pole, there
are at most 8 fragments that contain an edge of C that is incident to a pole. Since k ≥ 9, we
may assume that C visits the fragment Bk−1 – up to symmetry – as shown in the right part
of Figure 6. This part of the Hamiltonian cycle C produces two type-0 triangles in Bk−1 –
one on each side of C. So, by removing two inner vertices of Bk−1, identifying the vertex
y in the copyBk−2 and the vertex x in the copyB0, we obtain a Hamiltonian cycle, say C ′,
in Gk−1. By the induction hypothesis, t0(Gk−1, C

′) ≥ 2( t−6
6 − 3) and t̄0(Gk−1, C

′) ≥
t−6

6 − 3. Since t0(Gk, C) = t0(Gk−1, C
′) + 2 and t̄0(Gk, C) = t̄0(Gk−1, C

′) + 1, we
obtain the desired inequality.

For the case where t is not a multiple of six, we let k =
⌊
t
6

⌋
. We apply the same

construction, but for a pair of neighbouring fragments we connect the x- and y-vertex by
an edge instead of identifying them – see the left part of Figure 7 – or with an extra vertex of
degree 4 that is also connected to the poles. This gives 2, resp. 4 extra triangles. Confirming
the formulas for these modified triangulations with 3 to 8 fragments with a computer, one
can apply the same argumentation as above to prove the equations in the lemma.

t0(t) and t̄0(t):
For t0(t) and t̄0(t), where 3-cuts are allowed, we use the same fragment and the same

constructions as for t40(t) and t̄40(t), but for two fragments we do not identify x and y but
instead connectN and S by an edge between these segments – see the right part of Figure 7.
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N

S

N

S

Figure 7: Modifications of the construction for the 4-connected case when t is not a multiple
of 6 and for the 3-connected case.

This construction with k fragments gives triangulations with 6k+2 facial triangles that can
be extended to triangulations with 6k+ 4 and 6(k+ 1) facial triangles by inserting vertices
of degree 3 in one or both triangles containing the edge between the poles.

Computational results for k ≤ 8 fragments combined with the same reduction argument
as before give that t0(t) ≥ b t3c − 5 and t̄0(t) ≥ b t+2

6 c − 3.

Remark. For small values of t a double wheel where triangles are subdivided with a vertex
of degree 3 alternatingly on both sides of the rim gives a larger result for t0(t) and t̄0(t),
but the linear factor is only 1

4 , so that the advantage compared to the sequence described is
only for small values.

t50(t) and t̄50(t):
For t ≤ 130 we have that t50(t) ≥ 0 ≥ 2b t

12c − 20. So assume that t is even and
t > 130.

For even t > 130 we can construct triangulations in a similar way as for the cases
t40(t) and t̄40(t), but use the fragments depicted in Figure 8. We use r = (t − 12b t

12c)/2
copies B′0, . . . , B

′
r−1 of the right fragment with 14 triangles and l = b t

12c − r copies
B′r, . . . , B

′
r+l−1 of the left fragment with 12 triangles.

We identify all vertices labelled N and all vertices labelled S, respectively, and for
0 ≤ i < r + l identify the vertices y, y′ in B′i with the vertices x, x′ in B′i+1 (mod (r+l))

respectively. It is easy to check that the resulting graph Gr,l is 5-connected.
Checking the different ways how a Hamiltonian cycle can pass the left fragment in

Figure 8 without using the poles and saturate the 4 interior vertices (some boundary vertices
can also be saturated from outside the segment), gives that each such segment contains at
least 2 type-2 triangles. As the fragment on the right hand side of Figure 8 contains the one
on the left hand side, the same is true for the fragment on the right hand side too.

So for t > 130 and consequently r+l ≥ 11 any Hamiltonian cycleC inGr,l has at least
r+l−8 fragments not containing an edge ofC incident with a pole and therefore containing
at least 2 type-2 triangles. So t2(Gr,l, C) ≥ 2(r + l − 8) and therefore t0(Gr,l, C) ≥
2(r + l − 8)− 4 = 2(r + l)− 20. As r + l = b t

12c we get t50(t) ≥ 2b t
12c − 20.

The result for t̄50(t) was proven by a computer search testing graphs constructed by the
program plantri [2]. All 5-connected triangulations G with up to 66 triangles were found
to have t̄0(G) = 0. It should also be noted that the graphs Gr,l constructed for the first part
all allow a Hamiltonian cycle C with t̄0(G,C) = 0.
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Figure 8: The fragments used for the 5-connected case.

Computational results for r = 0 and l ≤ 8 suggest that t50(t) ≥ 2b t
12c − 8, but a proof

similar to the one for t0(t) and t40(t) is out of reach on the computational side for the basic
step in the induction and would be very lengthy on the theoretical side.

For t0(t), t̄0(t), t40(t), and t̄40(t) the upper and lower bounds differ only by an additive
constant, so there is not much room for improvement. For t50(t), and especially t̄50(t) the
upper and lower bounds are far apart and have a different growth rate. In these cases there
is not only room, but also need for improvement.

4 Applications different from Hamiltonian cycles
Type-0 triangles are of their own interest in the context of Hamiltonicity of triangulations,
as they are the problematic case for the extendability of partial Hamiltonian cycles to the
inside of separating triangles (see e.g. [9]), but the number t0(G) has also an impact on
invariants that are not that obviously related to Hamiltonian cycles. In this section, we
describe two other topics in graph theory for which the value of t0(G) is relevant.

4.1 The domination number of a triangulation

A vertex subset S of a graph G is said to be dominating if every vertex in G − S has a
neighbour in S. The cardinality of a minimum dominating set ofG is called the domination
number of G and is denoted by γ(G). For a triangulation G, Matheson and Tarjan [11]
proved that γ(G) ≤ |G|

3 and they conjectured that γ(G) ≤ |G|
4 . This conjecture is still

open, even when restricted to 4- or 5-connected triangulations.
Plummer, Ye and Zha [13] proved that γ(G) ≤ min

{⌈ 2|G|
7

⌉
,
⌊ 5|G|

16

⌋}
for any

4-connected triangulation G. This is the currently best approach towards the Matheson-
Tarjan conjecture. The idea of their inductive proof is to find a Hamiltonian cycle with
certain properties of type-2 triangles and to use these for reduction of the graph.

If we can find a Hamiltonian cycle with few type-2 triangles, then (as implicitly used in
[13]) we can bound the size of a dominating set as follows: Let C be a Hamiltonian cycle.
By symmetry we can assume that the number of type-2 triangles on the inside of C is less
than or equal to that on the outside ofC. LetG′ be the maximal outer plane graph consisting
of the inside of C together with C. Note that G′ contains t̄2(G,C) type-2 triangles. It
is shown in [5, 16] that any maximal outer plane graph H satisfies γ(H) ≤ |H|+k(H)

4 ,
where k(H) denotes the number of vertices of degree 2 in H . Any vertex of degree two
in G′ is the common end vertex of two edges of C in a type-2 triangle. Thus, we have
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k(G′) = t̄2(G,C). Since t̄2(G,C) = t̄0(G,C) + 2, we obtain by Proposition 1.2

γ(G) ≤ γ(G′) ≤ |G|+ k(G′)

4
=
|G|+ t̄2(G,C)

4
=
|G|+ t̄0(G,C) + 2

4

≤ 2|G|+ t0(G,C) + 4

8
.

So for a given Hamiltonian triangulation, a Hamiltonian cycle C with few type-0 triangles
possibly gives a good upper bound on the domination number in that triangulation. In
general though, the impact of the values of t0(t) is a negative one: the lower bounds given
in Theorem 3.1 show that at least for 4-connected triangulations a direct application of this
method cannot lead to improved bounds for the domination number.

4.2 3-walks with few vertices visited more than once

A k-tree of a graphG is a spanning tree ofG in which every vertex has degree at most k. A
k-walk is a spanning closed walk that visits every vertex at most k times. It is well-known
that a graph that contains a k-walk also contains a (k + 1)-tree, see [8] (but the converse
does not hold in general). Furthermore, the vertices visited k times in a k-walk correspond
to vertices of degree k + 1 in the (k + 1)-tree that is constructed.

Every 3-connected planar graph admits a 3-tree [1] and a 2-walk [6]. The result about
3-trees was strengthened in [12] where it is shown that every 3-connected planar graph G
admits a 3-tree with at most |G|−7

3 vertices of degree 3.
As in the construction of 3-trees from 2-walks in [8], vertices visited twice in a 2-walk

correspond to vertices of degree 3 in the 3-tree, it was natural to consider the following
problem, which was already mentioned in [12].

Problem 4.1. Is there for every 3-connected planar graph G a 2-walk such that the number
of vertices visited twice is at most |G|3 − c for a constant c?

Note that for a 2-walk in a graph G, the number of vertices visited twice is at most t
if and only if its length is at most |G| + t. With this formulation of the problem in mind,
the result that every 3-connected planar graph G contains a spanning closed walk of length
at most 4|G|−4

3 (proven in [10]) can be considered as a first step towards the solution of
Problem 4.1. However, a spanning closed walk constructed in [10] may visit a vertex many
times, so Problem 4.1 is still open.

In this section we describe a different step towards the solution of Problem 4.1, by
limiting the number of times a vertex is visited to 3. The class for which the result is proven
is a subclass of all triangulations, but in fact a class containing cases for which Problem 4.1
would hold with equality. Type-0 triangles play an important role in the construction of the
walks.

In the language of [9] the triangulations in the class of graphs we will describe now are
those triangulations where the so-called decomposition tree is a star. In order not to refer
the reader to [9] and to fix notation, we will give an independent description of the class
here. To simplify notation, we consider K4 also as a 4-connected graph in this section.
Let K be the set of all graphs G that can be constructed as follows: Take any 4-connected
triangulation H and let F be a subset of facial triangles of H . For each facial triangle
f = xyz ∈ F , take a 4-connected plane graph Gf (not necessarily a triangulation) where
the outer face is a triangle and let xf , yf and zf be the three boundary vertices of Gf . Then



G. Brinkmann et al.: Types of triangle in plane Hamiltonian triangulations and applications . . . 63

G is obtained from H by adding Gf inside f for f ∈ F , so that x, y, z are identified with
xf , yf , zf , respectively. Except for the case when G is a triangulation with exactly one
separating triangle the graphH is uniquely defined for eachG ∈ K and we writeH(G) for
it. In the case of one separating triangle there are two possible candidates for H and H(G)
denotes an arbitrary one of them.

For example, the face subdivision of a 4-connected triangulation H belongs to K. In
the definition above, F is the set of all facial triangles of H and for any face f we have
Gf ' K4. As in [12, Section 2], the face subdivision of a 4-connected triangulation shows
that we cannot decrease the coefficient 1

3 of |G| in Problem 4.1. So, in this sense, some
graphs in K belong to the most difficult ones for Problem 4.1.

The following result shows that a Hamiltonian cycleC in a 4-connected triangulation T
with small t0(T,C) can be used to construct a 3-walk of short length for the graphs G ∈ K
with H(G) = T . Using Theorem 1.1, in Corollary 4.3 we obtain a general upper bound
depending only on the number of vertices in G.

Theorem 4.2. Let G ∈ K be given and C a Hamiltonian cycle in H = H(G). We write
t′0(H,C) (or short t′0) for the number of those type-0 triangles of H that are not faces in
G. Then G contains a 3-walk of length at most 4|G|+t′0−4

3 which visits each vertex not in H
exactly once.

Proof. Let F,H , and for each facial triangle f ∈ F also Gf , xf , yf , and zf be as in the
definition of K. We denote the length of a walk W by l(W ), and let |R|− = |R| − 3 for a
plane graph R. With this notation we have |G| = |H|+

∑
f∈F |Gf |−.

Claim 4.2.1. For a 4-connected plane graphR where the outer face is a triangle (including
K4) with vertices x, y, z in the boundary and a, b ∈ {x, y, z} (with possibly a = b), there
is a (possibly closed) walk PR,a,b of length |R|− + 1 from a to b in R visiting exactly all
vertices in R except those in {x, y, z} \ {a, b} and visiting vertices not in the boundary
exactly once.

Proof. The case G = K4 can be easily checked by hand, so assume that G is not K4.
If a = b (w.l.o.g. a = b = x) then according to [15, (3.4)] there exists a Hamiltonian

cycle in G − {y, z}, which is a closed walk with the given properties starting and ending
in a.

If a 6= b (w.l.o.g. a = x, b = y), due to [14, Corollary 2] there is a Hamiltonian cycle
C in G through {a, z} and {b, z}. C − {{a, z}, {b, z}} is the walk PG,a,b.

For a given cycle C with a fixed vertex c1 we define a linear order along one of the
directions of C starting from c1 as c1 < c2 < · · · < cn. For each facial triangle f of H we
fix the notation of xf , yf , zf so that xf < yf < zf .

With this notation we have:

Claim 4.2.2. For any two triangles f and f ′ that belong to the same side of C we have
yf 6= yf ′ .

Proof. Assume xf ≤ xf ′ . C is divided into three segments by the vertices xf , yf and zf
and – as xf ′ , yf ′ and zf ′ are all at least xf and smaller than cn, they occur in one of these
segments in the order xf ′ , yf ′ , zf ′ . This implies that only xf ′ and zf ′ can be one of the end
vertices of the segment and yf ′ is in fact different from each of xf , yf and zf .
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We consider the following spanning subgraph H∗C of the dual of H: The vertex set of
H∗C is the set of triangles of H , and two faces are adjacent in H∗C if and only if they share
an edge in C. Note that for i ∈ {0, 1, 2}, a type-i triangle has degree exactly i in H∗C .
In particular, each component of H∗C is an isolated vertex, a path or a cycle. We can give
an orientation to the edges of such a component P ∗, so that each vertex in P ∗, except for
isolated vertices and one of the end vertices when P ∗ is a path, has out-degree one. In
cases where only one end vertex v of such a path P ∗ belongs to F , we choose v to have
out-degree one.

Recall that F is the set of facial triangles of H into which a graph was inserted. We can
partition F into two sets F0 and F1. We define for i ∈ {0, 1}:

F− =
{
f ∈ F | f has out-degree exactly i

}
.

With t′1(H,C) (or short t′1) for the number of those type-1 triangles of H that are no
faces in G our construction gives |F0| ≤ t′0 +

t′1
2 .

Now we modify C using Claim 4.2.1 so that for each triangle f ∈ F it visits each
vertex inside Gf exactly once:

• Suppose that f ∈ F0. Then we add the walk PGf ,yf ,yf
to C. This increases the

length of C by |Gf |− + 1.

• Suppose that f ∈ F1. Let f ′ be the out-neighbour of f , and let {a, b} be the edge in
C that is shared by f and f ′.

Then we replace {a, b} in C by PGf ,a,b. This increases the length of C by only
|Gf |− as one edge in C is also deleted.

The resulting walkC ′ is a 3-walk because, by Claim 4.2.2, the number of times a vertex
is visited is increased by at most 1 for each side of C.

We will first give some equations we will use to compute the length of C ′. For the
given Hamiltonian cycle C we denote t0(H,C), t1(H,C) and t2(H,C), by t0, t1, t2, re-
spectively.

As t0 + t1 + t2 = t(H) = 2|H| − 4 and t2 = t0 + 4 (by Proposition 1.2), we get
|H| = 2t0+t1

2 + 4 ≥ 2t′0+t′1
2 + 4.

As in each face of F at least one vertex is inserted, we get |G| ≥ |H| + t′0 + t′1. So
together with the previous equation |G| ≥ 4t′0+3t′1

2 + 4 =
6t′0+3t′1

2 + 4 − t′0 which can be

rewritten as t′0 +
t′1
2 ≤

|G|+t′0−4
3 we get

l(C ′) = l(C) +
∑
f∈F1

|Gf |− +
∑
f∈F0

(|Gf |− + 1) = l(C) +
∑
f∈F

|Gf |− + |F0|

= |H|+
∑
f∈F

|Gf |− + |F0| = |G|+ |F0| ≤ |G|+ t′0 +
t′1
2

≤ |G|+ |G|+ t′0 − 4

3
=

4|G|+ t′0 − 4

3

This completes the proof of Theorem 4.2.

Using Theorem 1.1(ii) we obtain the following corollary.
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Corollary 4.3. Except for K4, any graph G ∈ K contains a 3-walk of length at most

22|G| − 34

15
.

Proof. Applying the construction of a walk from Theorem 4.2, we get that any graph G ∈
K with K4 = H(G) is Hamiltonian, so we just have to check whether |G| ≤ 22|G|−34

15 ,
which is the case for all graphs except K4 itself (that is if F = ∅).

Assume now that t(H(G)) = 8, so H(G) is the octahedron. If G is Hamiltonian, then
there is a walk of length |G| ≤ 22|G|−34

15 . Otherwise it follows directly from Theorem 16
in [4] that |F | ≥ 4. As that result is still unpublished, one can alternatively use our con-
struction of a walk from Theorem 4.2 together with Theorem 4.1 from [9] to obtain that
|F | ≥ 4. Furthermore one can easily find a Hamiltonian cycle with |F0| ≤ 2. With vi ≥ 4
the number of vertices added inside a triangle of the octahedron, the construction gives a
3-walk with length at most 6 + vi + 2 and 6 + vi + 2 ≤ 22(6+vi)−34

15 for vi ≥ 4. From now
on assume that H(G) has at least 10 faces.

Let C be a Hamiltonian cycle inH = H(G) with t0(H) type-0 triangles. Let t′0 denote
the number of type-0 triangles of C in H that are not faces in G. As each triangle in F
contains at least one vertex, we have that |G| ≥ |H| + t′0. By Theorem 1.1(ii), we get
t40(t(H)) ≤ t(H)−10

3 and

t′0 ≤ t40(t(H)) = t40(2|H| − 4) ≤ 2|H| − 14

3
≤ 2(|G| − t′0)− 14

3

which implies

t′0 ≤
2|G| − 14

5
.

Substituting this into the equation given in Theorem 4.2, we get Corollary 4.3.

5 Correctness of the computer programs used
The programs constructing Hamiltonian cycles and computing t0(·) and t̄0(·) are straight-
forward branch and bound programs that can be obtained from the authors or be down-
loaded from http://caagt.ugent.be/type0/ to check the source code, to check
the computational results in this paper, or to be used otherwise. Two independent programs
were developed and implemented and the results were compared for each of the around
150 000 000 triangulations with up to 30 triangles generated by plantri. There was full
agreement. The computation of t̄0(·) for 5-connected triangulations was done indepen-
dently up to 60 triangles and for larger values only by the faster of the two programs.
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