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Empirical Option Weights for Multiple-Choice 

Items: Interactions with Item Properties and 
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Gregor Sočan1 

Abstract 

 

In scoring of a multiple-choice test, the number of correct answers does not 

use all information available from item responses. Scoring such tests by 

applying empirically determined weights to the chosen options should 

provide more information on examinees’ knowledge and consequently 

produce more valid test scores. However, existing empirical evidence on this 

topic does not clearly support option weighting. To overcome the limitations 

of the previous studies, we performed a simulation study where we 

manipulated the instruction to examinees, discrimination structure of 

distractors, test length, and sample size. We compared validity and internal 

consistency of number-correct scores, corrected-for-guessing scores, two 

variants of correlation-weighted scores and homogeneity analysis scores. 

The results suggest that in certain conditions the correlation-weighted scores 

are notably more valid than the number-correct scores. On the other hand, 

homogeneity analysis cannot be recommended as a scoring method. The 

relative performance of scoring methods strongly depends on the 

instructions and on distractors’ properties, and only to a lesser extent on 

sample size and test length. 

 

1 Introduction 

The multiple-choice format is a popular item format for ability and attainment 

tests, especially when a maximally objective or even an automated scoring is  

desired, or when the use of constructed-response items would be impractical. 

However, the relatively complex form of a multiple-choice item allows for 
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different scoring techniques, which differ with regard to the information they take 

into account and the specific algorithm for transforming this information into a 

single numeric score. Since guessing can be an important factor contributing to the 

test score, the instructions for examinees and the scoring algorithm should not be 

sensitive to individual differences in the guessing-related attitudes and processes. 

This paper deals with the practical usefulness of scoring techniques, based on 

empirically derived weights, which are consistent with the classical test theory 

(thus excluding item response theory models). Furthermore, we shall limit our 

treatment to the most common form of items, where the examinee is required to 

choose one of the m offered alternatives, m > 2, excluding item formats like 

true/false, answer-until-correct, option elimination, confidence weighting etc. 

1.1 Scoring based on the number of correct responses only 

The simplest scoring rule is the number-correct (NC) rule: the score is determined 

as a number of correct responses. The most obvious advantage of the NC rule is its 

conceptual and computational simplicity. On the other hand, the test scores are 

contaminated with the examinees’ tendency to guess, unless all examinees respond 

to all items. Moreover, the NC rule does not use all information available from the 

item response. In particular, when the examinee does not respond correctly, (s)he 

gets zero points regardless of the degree of incorrectness of the chosen distractor.  

To eliminate the effect of individual differences in the guessing proneness, the 

correction for guessing (CG), also known as “formula scoring” can be used. This 

rule assigns different scores to incorrect responses and to omitted responses; 

typically, an incorrect response is scored with -[1/(m-1)] points, and an omitted 

response is scored with 0 points2. Although the CG scoring could be treated as a 

simple case of differential response weighting, this conceptualization would imply 

that the differences between 1, 0 and -[1/(m-1)] points reflect the differences in 

expected values of the respective examinees’ knowledge – a position that would be 

disputable at best. It is therefore more meaningful to treat it as a modification of 

the NC scoring. In any case, the opinions about the correction for guessing have 

varied widely (for a recent review see Lesage, Valcke, and Sabbe, 2013). In short, 

the advocates have mostly stressed the higher measurement precision relative to 

the NC scores (Burton, 2004, 2005; Lord, 1975), which is achieved when some 

basic assumptions about the response process hold. On the other hand, the critics 

(for instance, Bar-Hillel, Budescu, and Attali, 2005; Budescu and Bo, 2015; Cross 

and Frary, 1977) pointed to introduction of biases related to the individual 

differences in risk aversion, accuracy of the subjective estimation of the 

probability of a correct response, and similar psychological factors. The issue of 

                                                 
2 Alternative CG formulas and algorithms have been proposed; for an evaluation see Espinosa 

and Gardeazabal (2010, 2013).  
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correction for guessing is complicated by the finding that statistically equivalent 

variants of the CG scoring are not necessarily strategically equivalent when the 

risk aversion is taken into account (Espinosa and Gardeazabal, 2013), and by the 

fact that researchers working with similar quantitative models of examinees’ 

responding to multiple choice items sometimes arrived to opposite conclusions 

about the optimal size of the penalty for a wrong answer (Budescu and Bo, 2015 

vs. Espinosa and Gardeazabal, 2013). We shall not extend our discussion of the 

CG scoring, because it does not play the central role in this study; however, we 

should stress that various irrelevant psychological factors may significantly 

determine the psychometric properties of guessing-corrected scores. 

1.2 Empirical option weighting 

The previously discussed scoring rules disregard the information contained in the 

particular choice of an incorrect option. That is, if the examinee chooses an 

incorrect option, the item score does not depend on which option has been chosen. 

If the distractors differ in the level of incorrectness, which may often be the case, 

such scoring does not use all information contained in the item response. 

Therefore, taking account of a choice of a particular distractor should in principle 

increase reliability and validity of the examinee’s score. One possible way of using 

this information is by using an item-response theory (IRT) model, modelling the 

relation between the latent trait and the response to each option. Such models 

include cases described by Bock (1997), Thissen and Steinberg (1997), Revuelta 

(2005), and García-Pérez and Frary (1991). However, if the sample size is not very 

large or when the assumptions of the IRT models are not satisfied – for instance, 

in areas like educational measurement or personality assessment the measured 

construct is often multidimensional – researchers may prefer to use classical 

models, based on linear combinations. A computational approach which seems 

particularly attractive is homogeneity analysis (HA; also known as dual scaling, 

optimal scaling, multiple correspondence analysis, and Guttman (1941) 

weighting). Homogeneity analysis transforms qualitative variables into 

quantitative variables by means of weighting the elements of the indicator matrix, 

corresponding to the item options.  

In case of multiple choice items, the responses to each of k items are recorded 

as a categorical variable with m categories (or possibly m + 1 categories, if 

omissions are to be weighted as well). This variable is then recoded into m (or m + 

1, respectively) indicator variables, taking the value of 1 if the corresponding 

option was selected by the examinee, and the value of 0 otherwise. Then, k vectors 

of weights are computed minimizing the discrepancy function    

 

 

(1) 
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where Gj is a matrix of indicator variables for item j, and h is a vector of weighted 

test scores, whereas the symbol  stands for the sum of squared elements of the 

matrix X. Since Equation 1 formally represents a multivariate regression model, 

we can interpret the score vector h as the best linear approximation of the 

quantified item responses in the least squares sense. That is, the score explains the 

maximum possible amount of quantified items’ variances. Conversely, the 

quantified variables are maximally homogeneous, which means that they have 

minimum within-person variance. Although several uncorrelated score vectors can 

be determined, only the first one is interesting in our case.  

From the psychometric viewpoint, a particularly attractive feature of HA is 

that its weights maximize the value of coefficient alpha for the total test score, 

calculated as the sum of the quantified variables. From the interpretational 

viewpoint, HA is attractive because of its close relation to the principal component 

analysis (PCA). HA can be understood as a variation of PCA for categorical 

variables; note that the first principal component also maximizes the explained 

variances of the analyzed variables and the coefficient alpha for their sum (for 

further details see Gifi, 1990, Greenacre, 2007, and Lord, 1958).    

Two potential drawbacks of HA should be noted. As a statistical optimization 

technique, it is prone to chance capitalization, and it is not clear what sample sizes 

are needed for a reliable generalization of multiple-choice item weights. 

Furthermore, although it makes intuitive sense to expect a high correlation 

between the score vector and the measured knowledge, there is no guarantee for 

this to happen in a particular dataset. Fortunately, the seriousness of both potential 

problems can be assessed by means of simulation.  

A compromise solution, sacrificing optimality to achieve greater stability, 

would consist of weighting the indicator variables with their point-biserial 

correlations with the total test score. The correlation weights (CW) should 

generally result in a smaller amount of quantified items’ homogeneity, but on the 

other hand their use should reduce the scope of the above mentioned limitations of 

HA. Since the correlation weights are not aimed at maximizing homogeneity in the 

sample, they do not capitalize on chance; and because the total test score is always 

relatively highly correlated with knowledge, the weighted score cannot have a very 

low correlation with knowledge. Although not producing optimal scores, the 

correlation weights are appealing because they still give more importance to better 

discriminating options. Furthermore, the calculation of correlations with the total 

unweighted score represents the first step in Guttman’s (1941) vers ion of HA. 

Although this computational procedure for HA is now obsolete, this fact shows 

that CW can be understood as the first-step approximation to the HA solution – 

similarly as the classical item discrimination coefficients are the first -step 

approximations to the first principal component loadings.  

Both approaches to the empirical option weighting were evaluated in several 

older studies, which mostly focused on the internal-consistency reliability and the 
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criterion validity of the weighted option scores in large samples. Davis and Fifer 

(1959) found that the cross-validated correlation weights, compared to the NC 

scores, increased reliability, but not validity. Reilly and Jackson (1973), Downey 

(1979), and Hendrickson (1971) reported that the HA scores, compared to the NC 

scores, were more reliable and less valid. Sabers and Gordon (1969) found no 

notable differences in either reliability or validity. Echternacht (1976), on the other  

hand, reported higher values of both reliability and validity coefficients for the HA 

scores compared to the NC scores. 

Almost all studies found higher internal consistency of HA scores compared to 

NC scores; however, this should be expected due to the alpha-maximizing property 

of HA. Inconsistent results with regard to criterion validity are more puzzling. 

Echternacht (1976) simply attributed the inconsistency to the fact that different 

criterion variables implied different validity coefficients. Hendrickson (1971) 

conjectured that lower correlations with other variables were a consequence of a 

more homogeneous factor structure of HA items scores relative to the unweighted 

item scores. 

Reilly and Jackson (1973) noted that the weights assigned to omitted 

responses were often very low in practice. Raffeld (1975) assigned a constant zero 

weight to omitted responses, which improved predictive validity of the weighted 

option scores. However, this solution does not seem completely satisfactory, 

because setting the value of a weight to zero does not have a clear rationale. 

Nevertheless, Raffeld’s results are important because they highlight the issue of 

weighting the omitted responses.  

The inconsistent results concerning validity of option-weighted scores 

eventually led Frary (1989) to conclude that “option weighting offers no consis tent 

basis for improving the psychometric quality of test scores unless there is a 

problem with respect to internal consistency reliability.” (p. 83). However, the 

preceding empirical studies had a common limitation: for validity assessment, they 

relied on the correlation with external criterion variable(s). A more definite 

conclusion could be reached if the correlation with the response-generating trait 

was determined. Sočan (2009) simulated test scores while manipulating the degree 

of incorrectness of distractors and the general level of guessing. The results 

predictably showed better homogeneity and reliability of both CW and HA scores, 

compared to the NC scores, while the validity (i.e., correlation with the latent trait) 

of the CW scores was either marginally worse or notably better than the validity of 

the NC scores, the difference being larger when there was a distractor with a 

positive discrimination (for instance, a partially correct alternative). However, 

Sočan’s study had some limitations. First, only performance in small samples was 

studied, and the weights were neither cross-validated nor generalized to the 

population. Second, risk-aversion / guessing-proneness was not included as a 

person characteristic, which is not consistent with empirical evidence indicating 

the existence of guessing tendency as a stable personality-related trait (for 

instance, Brenk and Bucik, 1994; Dahlbäck, 1990; Slakter, 1967). 
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The problem of this study was to assess the psychometric quality (especially 

construct validity) of the correlation-weighted (CW) and homogeneity analysis 

(HA) scores compared to the number-correct scores (NC) and “guessing-corrected” 

(CG) scores. For all types of weighted option scores, we aimed to determine the 

generalizability of sample weights to the population with relation to sample size, 

test length, and distractor characteristics.  

2 Method 

2.1 Experimental treatments 

The following four experimental conditions were manipulated in a crossed design. 

1. Test instructions. In the first level of the factor (“forced  choice”), simulated 

examinees were forced to choose one of the alternatives, regardless of their 

confidence in the correctness of their choice. In the second level (“omissions 

allowed”), they were instructed to respond only when being reasonably confident 

that the selected alternative was correct. 

2. Distractor properties. Each test consisted of multiple-choice items with three 

alternatives. This format was chosen both for simplicity and according to 

recommendations from the meta-analysis by Rodriguez (2005). The alternatives 

were characterized by its discriminating power, defined as the correlation with the 

measured trait (denoted by rj(a)). The discrimination parameter for the correct 

option was always rj(c) = .40. The discrimination parameters for the two 

distractors were different in the two levels of the factor, namely:  

1. “both negative”: rj(1) = -.20 and rj(2) = -.10; 

2. “one positive”: rj(1) = -.20 and rj(2) = .10. 

The first factor level corresponds to the case where both distractors are clearly 

incorrect, while the second factor level corresponds to the case with one partially 

correct distractor. In both cases, all items in the test had equal discrimination 

structure. The values of parameters were set according to the results of preliminary 

analyses on real data (not shown here). 

3. Test length. Two test lengths were used, with the number of items k = 15 and 

50, respectively.  

4. Sample size. Three sample size levels were used: n = 100, 200 and 500, 

respectively.  
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2.2 Simulation design 

In the first step, a population was defined as a group of one million examinees, 

characterized by two uncorrelated latent traits: knowledge (N(0,1)) and risk-

aversion (N(0,0.5)). The variance of risk-aversion was smaller than the variance 

of knowledge to prevent the presence of examinees with extreme 

guessing/omitting behavior (see the description of the response model below). 

Responses were generated for each of the eight combinations of factors 1-3. 

We used the underlying variables approach to the response generation. For 

each examinee, we computed his/her response propensity for each option:  

xij(a)
* = irj(a) + eij(a), (2) 

where eij(a) was a random error component, eij(a)N(0,(1-r2
j(a))

1/2). 

In the “forced choice” condition, the response was simply determined as the 

option with the largest response propensity. In the “omissions allowed” condition, 

an examinee responded only when max(xij(a)
*) > i, and omitted the response 

otherwise. Therefore, our response model assumes that an examinee finds the 

option which seems to be correct most likely, but omits the response (if allowed to 

do so) if his/her confidence in the correctness of the choice does not exceed the 

personal confidence criterion (which is higher for more risk-averse persons and 

vice versa).  

When all responses were generated, 10000 random samples of each size were 

drawn without replacement from each of the population response matrices. 

Altogether, 3×8×10000 = 240000 samples were processed. In each sample, both 

correlation weights and homogeneity weights were determined. Two versions of 

correlation weights were calculated. In both cases the weights  were calculated as 

Pearson correlations between the indicator variable corresponding to an option 

(including, where relevant, an omission) and the test score. The first version 

(CWNC) used the number-correct score as the criterion variable, and the second 

version (CWCG) used the score corrected for guessing. The HA weights were 

calculated using the closed form solution for homogeneity analysis (ten Berge, 

1993, pp. 66-67). For the CG scoring, the standard penalty of -[1/(m-1)] = -0.5 

points for an incorrect response was used. Five sets of scores were thus obtained 

for each sample, and the sample values of criterion variables were calculated. 

Then, the CW and HA weights obtained in the sample were applied to the 

population responses, and the values of criterion variables were calculated again.  

Table A in the appendix presents percentages of the choices and both validities 

and coefficients alpha for the number-correct score in various conditions. 

All simulations were performed using MATLAB R2012b software. The 

MATLAB codes used for the simulations are available as supplementary material 

from the website of Metodološki zvezki (http://www.stat-d.si/mz/Articles.html). 
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3 Results 

We shall first compare the four scoring rules with respect to validity and internal 

consistency of the obtained scores. After that, we shall compare both instruction 

conditions with respect to the validity of scores. We present no inferential 

statistics: because of large sample sizes and due to the use of the repeated-

measures design, the statistical power was very high, and even some practically 

irrelevant effects reached statistical significance. All discussed results were 

statistically significant (p < .001). 

3.1 Validity 

The most important question addressed in this study is validity of scores obtained 

by different scoring rules. Since the responses were simulated, it was possible to 

assess the construct validity directly as the Pearson correlation between the test 

score and the latent knowledge. Table 1 presents validity increments or losses, 

respectively, i.e. differences between mean validity coefficients of the number-

correct score and mean validity coefficients of each of the three remaining scores 

in various conditions. A positive difference indicates that a scoring rule produces 

more valid scores than the number-correct rule. The values in the left part of the 

table are related to the sample validities, while the values in the right part of the 

table are computed from the generalized validities; that is, they are based on 

population scores computed with sample weights. Since the CG weights are not 

empirically estimated, the respective population validities are independent of 

sample size.  

Clearly, the instruction for examinees was a major determinant of the pattern 

of validity increments. When examinees could omit the response, both the CG 

scores and the CWCG scores were invariably more valid than the NC scores. As 

expected, when there was a positively discriminating distractor, option weighting 

resulted in a slightly higher increment than the simple correction for guessing. On 

the other hand, when both distractors had negative discrimination power, the 

guessing correction produced higher increments than option weights, unless the 

sample size was at least 500. For both scoring rules, the increments were higher 

for longer tests. The remaining two weighting schemes produced scores less valid 

than the number-correct scores. In case of the HA scoring, the differences were 

especially large; in fact, the average validity of the HA scores was lower than .40 

in all 12 conditions related to the “omissions allowed” instruction. The differences 

for the CWNC scores were much smaller, but they were still of notable size and 

consistently negative. The increments and losses, respectively, of all four scoring 

methods were larger in absolute value when the test was longer.  
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In the forced choice condition, the increments for the CG scoring are not 

presented, because the CG scores are linearly related to the NC scores and are 

therefore equally valid. Consequently, the CWCG rule and the CWNC rule are also 

equivalent.  

 

Table 1: Validity increments/losses relative to the NC scoring 

    

 Sample 

 

Population 

Ins. k rj > 0 n  CG CWNC CWCG HA 

 

CG CWNC CWCG HA 

FC 15 one  100  - .02 -- -.02 

 

- .02 -- -.01 

 

  

200  - .03 -- .02 

 

- .03 -- .02 

   

500  - .03 -- .04 

 

- .03 -- .04 

  

none 100  - -.01 -- -.04 

 

- -.01 -- -.04 

   

200  - .00 -- -.02 

 

- .00 -- -.02 

   

500  - .00 -- .00 

 

- .00 -- .00 

 

50 one  100  - .01 -- .01 

 

- .01 -- .01 

   

200  - .02 -- .02 

 

- .02 -- .02 

   

500  - .02 -- .02 

 

- .02 -- .02 

  

none 100  - -.01 -- -.01 

 

- -.01 -- -.01 

   

200  - .00 -- .00 

 

- .00 -- .00 

   

500  - .00 -- .00 

 

- .00 -- .00 

OA 15 one  100  .02 -.02 .04 -.42 

 

 -.02 .03 -.44 

   

200  .02 -.01 .05 -.43 

 

.02 -.02 .05 -.43 

   

500  .02 -.01 .05 -.43 

 

 -.01 .05 -.43 

  

none 100  .04 -.03 .02 -.52 

 

 -.03 .02 -.58 

   

200  .04 -.02 .03 -.57 

 

.04 -.03 .03 -.60 

   

500  .04 -.02 .04 -.59 

 

 -.02 .04 -.60 

 

50 one  100  .05 -.06 .06 -.52 

 

 -.08 .05 -.54 

   

200  .05 -.07 .06 -.53 

 

.05 -.08 .06 -.53 

   

500  .05 -.07 .06 -.53 

 

 -.07 .06 -.53 

  

none 100  .05 -.05 .04 -.64 

 

 -.06 .04 -.69 

   

200  .05 -.05 .05 -.67 

 

.05 -.05 .04 -.70 

   

500  .05 -.05 .05 -.69 

 

 -.05 .05 -.69 
Positive values are in boldface. Ins. = instruction, FC = forced choice, OA = omissions allowed, k 

= number of test items, n = sample size, rj > 0 = number of distractors with positive discrimination 

power, CG = correction for guessing, CWNC = correlation weights (number-correct score as the 

criterion), CWCG = correlation weights (guessing-corrected score as the criterion), HA = 

homogeneity analysis weights, - not relevant because both rules are equivalent,  -- not reported 

because it is equal to the CWNC value,  equal to the value below,  equal to the value above. 

 

With the forced choice instruction, the average validities of the weighted 

option scores were generally higher than the validities of the NC scores when one 

distractor had a positive discrimination. For the CW scores, the validity increment 

was slightly higher for the shorter test than for the longer test. When both 
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distractors discriminated negatively, the differences were close to zero, except 

when the sample size was 100; in this case, the weighted option scores were less 

valid than the NC scores, and we may conjecture that the weighted option scores 

would be more valid than the NC scores in larger samples (i.e., larger than 500). In 

general, validity increments of the weighted option scores were larger in larger 

samples, however, the effect of the sample size was slim. 

We can also note two general observations. First, the pattern of the sample 

differences was very similar to the pattern of the population differences. 

Therefore, for the evaluation of validity of scores obtained by various scoring 

methods, it does not matter much whether only a particular sample is of interest, or 

the generalization to the population is desired. Second, the average validity of 

(both variants of) CW scores was at least as high as the average validity of HA 

scores in almost all conditions, and it was much higher when it was possible to 

omit the response.  

3.2 Internal consistency 

In the broad sense, internal consistency is related to the homogeneity of a group of 

measures, in this case test items. We evaluated two aspects: internal consistency 

reliability and the amount of items’ variance, explained by the first principal 

component. For the former, we used coefficient alpha, which should be an accurate 

estimate of reliability, since the items were constructed as parallel measurements. 

The values of coefficient alpha were calculated from the covariance matrices of 

the item scores. For the latter, we performed principal component analysis on the 

inter-item correlation matrix. We do not report sample results; it is a mathematical 

necessity that the HA scores are more internally consistent than the NC scores, and 

since the correlation weights are approximations to the HA weights, the same can 

be expected for both variants of CW scores. Indeed, all weighted option scores had 

higher sample values of both coefficient alpha and the explained variance than the 

NC scores. 

However, when weights are cross-validated or generalized to the population, 

respectively, the superiority of weighted option scores is not guaranteed any 

longer. Table 2 presents internal consistency indicators for the scores, obtained by 

applying sample weights to the population response matrix. As in the previous 

section, the increments/losses relative to the NC scoring are presented. First, we 

can note a general – and, of course, expected - pattern of increasing internal 

consistency increments with sample size – that is, when the weights were obtained 

in larger samples, they generalized to the population better.  

In all “omissions allowed” conditions, internal consistency of the HA scores 

was notably better, and internal consistency of the CG scores was somewhat worse 

in comparison to the NC scores. The behavior of CW scores was more complex. 

The CWNC scoring resulted in positive increments where one distractor had a 
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positive discrimination; otherwise, the increment was positive only when the 

sample size was relatively large. On the other hand, the increments for the CW CG 

scores were positive only when the test was long, the sample size was 500 and 

there was a positively discriminating distractor.  

 

Table 2: Internal consistency increments/losses relative to the NC scoring 

    

  

 

VarPC1 

Ins. k rj > 0 n  CG CWNC CWCG HA  CG CWNC CWCG HA 

FC 15 one  100  - .03 -- -.03 

 

- 1.03 -- 0.23 

 

 

 200  - .04 -- .03 

 

- 1.28 -- 1.12 

   

500  - .05 -- .05 

 

- 1.42 -- 1.64 

  

none 100  - -.02 -- -.07 

 

- -0.34 -- -1.40 

  

 200  - -.01 -- -.03 

 

- -0.07 -- -0.54 

   

500  - .00 -- -.01 

 

- 0.08 -- -0.08 

 

50 one  100  - .02 -- .01 

 

- 1.20 -- 0.90 

   

200  - .03 -- .03 

 

- 1.59 -- 1.48 

   

500  - .04 -- .04 

 

- 1.82 -- 1.83 

  

none 100  - -.02 -- -.02 

 

- -0.53 -- -0.88 

  

 200  - -.01 -- -.01 

 

- -0.15 -- -0.31 

   

500  - .00 -- .00 

 

- 0.07 -- 0.01 

OA 15 one  100  -.07 .05 -.03 .15 

 

 2.13 -.57 7.33 

 

  

200  -.07 .06 -.01 .17 

 

-1.82 2.54 -.22 8.51 

   

500  -.07 .07 .00 .18 

 

 2.78 -.02 9.15 

  

none 100  -.03 -.01 -.05 .07 

 

 -.19 -1.55 4.12 

   

200  -.03 .00 -.04 .09 

 

-1.13 .20 -1.18 5.41 

   

500  -.03 .01 -.03 .11 

 

 .42 -.97 6.10 

 

50 one  100  -.04 .03 -.02 .08 

 

 3.04 -.25 8.27 

   

200  -.04 .04 .00 .09 

 

-1.92 3.68 .30 9.18 

   

500  -.04 .05 .01 .09 

 

 4.07 .61 9.70 

  

none 100  -.02 -.01 -.03 .04 

 

 -.16 -1.82 5.01 

   

200  -.02 .00 -.02 .05 

 

-1.18 .41 -1.30 5.99 

   

500  -.02 .01 -.01 .05 

 

 .75 -.98 6.53 

Positive values are in boldface.  = coefficient alpha of internal consistency reliability, VarPC1 = 

percentage of variance explained by the first principal component, k = number of test items, rj > 0 

= number of distractors with positive discrimination power, n = sample size, CG = correction for 

guessing, CWNC = correlation weights (number-correct score as criterion), CWCG = correlation 

weights (guessing-corrected score as criterion), HA = homogeneity analysis weights, - not relevant 

because both rules are equivalent,  equal to the value below,  equal to the value above. 

 

In the “forced choice” conditions, the weighted option scores were in general 

more internally consistent in cases with a positively discriminating distractor; 

otherwise, the internal consistency of weighted option scores was comparable to 

the internal consistency of the NC scores when the weights were obtained in 
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samples of size 500, and somewhat smaller when obtained in smaller samples. 

Therefore, when examinees are required to choose an option, using empirical 

option weights might significantly increase the population internal consistency 

only in samples of size considerably larger than 500. The performance of the HA 

scoring was generally comparable or even slightly worse than the performance of 

the CW scoring. 

3.3 Effect of instructions on validity 

Table 3: Validity increments of the “forced choice” over the “omissions allowed” 

instructions 

       Sample    Population 

k rj > 0 n NC CG CWNC CWCG HA 

 

NC CG CWNC CWCG HA 

15 one 100 .03 .01 .07 .01 .43 
 

  .07 .01 .46 

  
200 .03 .01 .07 .01 .48 

 
.03 .01 .07 .01 .48 

 
 

500 .03 .01 .07 .01 .49 
 

  .07 .01 .50 

 
none 100 .05 .01 .07 .01 .53 

 
  .07 .02 .58 

  
200 .05 .01 .07 .01 .60 

 
.05 .01 .07 .01 .63 

   500 .05 .01 .07 .01 .63 
 

  .07 .01 .64 

50 one 100 .06 .01 .14 .02 .59 
 

  .16 .03 .61 

 
 

200 .06 .01 .15 .02 .60 
 

.06 .01 .16 .02 .61 

 
 

500 .06 .01 .15 .02 .61 
 

  .16 .02 .61 

 
none 100 .06 .01 .11 .01 .69 

 
  .11 .02 .74 

 
 

200 .06 .01 .11 .01 .73 
 

.06 .01 .11 .02 .76 

    500 .06 .01 .11 .01 .75 
 

  .11 .02 .76 

k = number of test items, rj > 0 = number of distractors with positive discrimination power, n = sample 

size, NC = number-correct, CG = correction for guessing, CWNC = correlation weights (number-

correct score as criterion), CWCG = correlation weights (guessing-corrected score as criterion), 

HA = homogeneity analysis weights,  equal to the value below,  equal to the value above. 

 

A question can be posed whether one type of instruction generally results in a 

higher average validity, and whether this effect is moderated by the choice of a 

scoring method. Table 3 presents the average differences between validity 

coefficients in the “forced choice” condition and the same coefficients in the 

“omissions allowed” condition. The presented results show that the instructions 

for examinees strongly determine the performance of various scoring methods. All 

differences were positive: the average validity in a specified test design was 

always higher in the “forced choice” than in “omissions allowed” condition. The 

sizes of the average differences were very similar for both sample and population 

validities. The differences were in general larger for longer tests, whilst the effect 

of sample size was negligible. Although the instruction effect was present in all 
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types of scores, the average size of the difference varied: it was quite small for the 

CG and CWCG scores, and very large for the HA scores; in the latter case, the 

extreme superiority of the “forced choice” instruction was related to the very poor 

validity of the HA scores in the “omissions allowed” condition, as reported in 

section 3.1. 

4 Discussion 

 

We see the main contribution of this study in elucidating the interactions 

between various aspects of testing design and the performance of different scoring 

methods. If examinees are instructed to attempt every item, the expected validity is 

higher than if they are instructed to avoid guessing. This fact reveals that 

individual differences in guessing behavior are generally more detrimental to 

measurement quality than the guessing itself. Although the instruction effect is 

present generally, its size depends on the scoring method and - to a smaller extent 

– on the test length. The effect of test length can be attributed to the law of large 

numbers: with a larger number of items, the proportion of “lucky guesses” 

converges to its expectation. Lengthening the test therefore reduces the effect of 

luck, but does not affect the effect of personality factors of guessing behavior.  

When examinees answer all items (as in the “forced-choice” condition), the 

number-correct scoring should be preferred to the option-weighting scoring if all 

distractors have negative discriminations of similar size; option-weighted scores 

seem to be more valid only in samples much larger than 500. On the other hand, 

when partially correct distractors (with a small positive discrimination power) are 

included, option weighting increases validity compared to the number-correct 

scoring, even in small samples (like n=100). 

When guessing is discouraged and examinees omit some items (the “omissions 

allowed” condition), the correction for guessing and correlation weighting (based 

on the guessing-corrected scores) should be preferred methods. The CWCG scoring 

may be the method of choice if there is a positively discriminating distractor; when 

all distractors have negative discrimination, the CG scores are more valid than the 

CWCG scores if the sample size is less than about 500. Note than the CWCG rather 

CWNC weights should be used with this instruction. Because the CW scoring uses 

more information than the CG scoring, we speculate that it may be less sensitive to 

personality factors like subjective utility (as discussed in Budescu and Bo, 2015, 

and Espinosa and Gardeazabal, 2013). When both types of scores have similar 

validity and reliability, it may be thus safer to use the CWCG scores. 

According to our results, homogeneity analysis cannot be recommended as a 

scoring method. The HA scores were never notably more valid than the 

correlation-weighted scores, and they were substantially less valid when 

examinees could omit items. Obviously, the relatively high internal consistency of 

http://link.springer.com/search?facet-author=%22David+V.+Budescu%22
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the HA scores in the “omissions allowed” condition  does not imply a high validity, 

but only reflects the contamination of true scores with the non-cognitive variables 

determining the guessing level. In this condition, the classical true score is not a 

faithful representation of knowledge, but rather a conglomerate of knowledge and 

risk-aversion. Therefore, the HA score may be a highly reliable measure of a 

conceptually and practically irrelevant quantity. Clearly, reliability is not a 

relevant test characteristic in such circumstances. As a collateral contribution, our 

results thus illustrate the danger of relying solely on (internal consistency) 

reliability in evaluation of measurement quality of cognitive tests. 

The unsatisfactory behaviour of the HA weights may be surprising. It can be 

partly attributed to the fact that the HA algorithm does not assure a high 

correlation between the weighted score and the number correct score, which is 

especially problematic when there are other significant determinants of the 

examinee’s response (in particular, the guessing proneness).  The performance of 

the HA weights was better when the guessing proneness was controlled (by forcing 

all examinees to answer all items); although their validity was comparable to the 

validity of their approximations (i.e., the CW weights) in our sample size range, 

we may speculate that the HA weights might be superior in terms of validity in 

very large samples (for instance, in large standardized educational assessments), 

provided that both empirical scoring key and the forced-choice instruction would 

be considered acceptable. 

In the “omissions allowed” conditions, the CWNC and HA weights on one hand 

and the CWCG weights on the other hand performed markedly different with 

respect to validity. These differences should be attributed to the differences in 

treatment of omitted responses. The number-correct score, controlled for the level 

of knowledge, is higher for examinees with a lower level of risk-aversion (that is, 

for examinees who attempt more items). As a consequence, a CWNC weight for an 

omitted response is negative even if the actual decision between responding and 

omitting is completely unrelated to the level of knowledge. Indeed, the inspection 

of sample weights for omissions (not reported here) showed that the values of 

CWNC weights were typically close to the weights for the (negatively 

discriminating) distractor(s), while the corresponding CWCG weights were much 

closer to zero (cf. Reilly and Jackson, 1973). With the homogeneity analysis 

weights, the problem is essentially the same, but is aggravated due to a lack of a 

mechanism that would ensure at least approximate collinearity with knowledge. 

Using CWCG weights removes the negative bias from the omission weights, 

however, these weights still reflect only one determinant of a response omission 

(i.e., knowledge), and disregard the personality-related determinants (risk 

aversion, subjective utility of a score, self-confidence and so on). 

Increasing sample size seems to improve the performance of correlation-

weighted scores. However, the sample size effect was quite small overall: weights 

determined in samples of 100 persons did not generalize substantially less well 
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than the weights determined in samples of 500 persons, especially when the test 

was long (k=50).  

It should be noted that the patterns rather than particular values of the reported 

effects are to be taken as findings of this study. The values of the 

increments/losses depend on particular experimental settings, which are to a 

certain extent arbitrary. For instance, we can reasonably expect that using much 

easier items would make option-weighting less relevant because of a smaller 

percentage of incorrect responses. On the other hand, distractors with more 

heterogeneous discriminations would probably make the performance of the CW 

scores more favorable relative to the NC scores. Increasing sample size also seems 

to improve the performance of the CW scoring. However, a researcher who has 

collected a very large sample may first try to fit a more sophisticated item-

response theory scoring model. 

The research of scoring models for multiple-choice items is complicated by 

the lack of formalized cognitive models explaining the item response process. The 

existing models (for instance, Budescu and Bo, 2015, Espinosa and Gardeazabal, 

2013) are mainly focused on guessing behavior, and are not useful in the context 

of weighting item options. Our study was based on very simple response model, 

which predicts examinee’s decisions with just two person parameters (knowledge 

and risk-aversion). The model rests on two assumptions: 

1. Both knowledge and risk-aversion are stable personal properties, which do 

not change during the testing process. 

2. An examinee’s response to a multiple-choice item is based on a comparison 

of plausibility of offered alternatives. When guessing is discouraged, the 

examinee omits the response if none of the option plausibility estimates 

exceeds the subjective criterion, determined by his/her level of risk-

aversion. 

While it seems safe to generally accept the first assumption, the second 

assumption is not so evidently generalizable to all examinees and testing contexts, 

and should be tested empirically in the future. 

Empirical weighting should not be used with negatively discriminating items. 

Although the resulting negative weights for correct responses would generally 

increase both validity and internal consistency of the empirically weighted scores 

in comparison to the NC and CG scores, respectively, such scoring would be 

difficult to justify to test takers, developers and administrators. Of course, the 

presence of negatively discriminating items is problematic regardless of which 

scoring method has been chosen.  

Furthermore, the weighting techniques assume invariance of item-option 

discrimination parameters across examinee subgroups. In real applications, this 

assumption may sometimes be violated. For instance, in intelligence testing, the 

discrimination parameters might be different for groups of examinees using 

different problem-solving strategies. In educational testing, using different 

textbooks or being exposed to different teaching methods might also cause 

http://link.springer.com/search?facet-author=%22David+V.+Budescu%22
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differences in discrimination parameters. Fortunately, the validity of the invariance 

assumption can be empirically verified, if the potentially critical subgroups can be 

identified. 

 

5 Conclusions 

 

Our results confirm Nunnally and Bernstein’s (1994, p. 346) recommendation 

to instruct examinees to attempt every item. This instruction should not be 

questionable in psychological testing, especially when applying computerized 

tests, which can prevent possible accidental omissions. Correlation weights can be 

used to maximize the score validity if the distractors differ in their degree of 

incorrectness. In educational testing3, some test administrators may not be 

comfortable with forcing the students to guess when they really do not recognize 

the correct answer. Using correlation weights, based on the corrected-for-guessing 

sum score, can be recommended in this case, especially if partially correct 

distractors have been used and the sample size is not too small. However, because 

omissions depend on both knowledge and risk-aversion, the scoring schemes 

studied here do not provide optimal scores for the omitted responses. 

Consequently, the validity of scores obtained with this instruction is lower 

compared to the “forced-choice” scores. Development of scoring models which 

would incorporate information on examinees’ risk-aversion and other relevant 

personal characteristics, remains a task for future research. 
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Appendix  

Table A: Percentages of choices of various alternatives and metric properties of the 

number-correct score 

   Response    

Instruct. k Distractors O C W1 W2  r.NC NC 

Forced  15 one positive n/a 33.4 34.2 32.5  .73 .53 

choice  both negative n/a 34.1 33.2 32.7  .79 .63 

 50 one positive n/a 33.4 34.1 32.5  .89 .79 

  both negative n/a 34.0 33.2 32.7  .92 .85 

  

Average n/a 33.7 33.7 32.6  .83 .70 

Omissions  15 one positive 16.9 27.7 28.3 27.1  .70 .59 

allowed  both negative 16.7 28.3 27.7 27.3  .74 .66 

 50 one positive 16.9 27.7 28.3 27.1  .83 .83 

  both negative 16.7 28.3 27.7 27.3  .85 .86 

  

Average 16.8 28.0 28.0 27.2  .78 .74 
k = number of items, O = omit, C = correct, W = wrong, r.NC = validity of the number-correct 

score in the population, NC = coefficient alpha for the number-correct score in the population. 

 


