
Image Anal Stereol 2015;34:101-110 doi: 10.5566/ias.1225
Original Research Paper

FLOWING BILATERAL FILTER: DEFINITION AND IMPLEMENTATIONS

MAXIME MOREAUD AND FRANCOIS COKELAER
IFP Energies nouvelles, B.P. 3, 69390 Solaize, France
e-mail: maxime.moreaud@ifpen.fr; francois.cokelaer@ifpen.fr
(Received September 22, 2014; revised April 22, 2015; accepted April 27, 2015)

ABSTRACT

The bilateral filter plays a key role in image processing applications due to its intuitive parameterization and
its high quality filter result, smoothing homogeneous regions while preserving the edges of the objects.
Considering the image as a topological relief, seeing pixel intensities as peaks and valleys, we introduce a
way to control the tonal weighting coefficients, the flowing bilateral filter, reducing “halo” artifacts typically
produced by the regular bilateral filter around a large peak surrounded by two valleys of lower values. In this
paper we propose to investigate exact and approximated versions of CPU and parallel GPU (Graphical
Processing Unit) based implementations of the regular and flowing bilateral filter using the NVidia CUDA
API. Fast implementations of these filters are important for the processing of large 3D volumes up to several
GB acquired by x-ray or electron tomography.

Keywords: adaptive filter, GPU, 3D image processing.

INTRODUCTION

Filtering operation is a critical image processing ope-
ration which performs noise attenuation allowing to
do further advanced tasks in better conditions (e.g.,
segmentation or analysis, …). The bilateral filter
formulated by Tomasi and Manduchi (1998), whose
beginnings can be found in Smith and Brady (1997),
belongs to the class of non-iterative and locally adaptive
image filters (Barash, 2002). Besides regular spatial
weighting (directly linked to the distance from the
center of the filter’s observation window), the main
idea of the bilateral filter is to insert an additional
weighting factor based on a tone (or photometric, grey
level) distance. Thus, a spatially close pixel, but far in
terms of tone value, would have a low contribution in
a result value.

The research community devoted large efforts
during the past decade to reduce the bilateral filter
complexity induced by the computation of the tonal
weighting factor, mainly by using non-exact versions
of this filter. Straightforwardly, we can consider, as
for the Gaussian filter, that a k-D kernel can be
decomposed in a succession of k 1-D kernels, each
result of a 1-D filter being the next filter’s input
image (Pham and Vliet, 2005). Note that, unlike the
Gaussian filter, the result of this filter is only an
approximation of the bilateral filter (the same remark
could be done for all non-separable filters, such as
median filter approximation (Narendra, 1981)). Later,

we will refer to this filter as the separable bilateral
filter. Paris and Durand (2006) proposed an original
formulation of the bilateral filter seeing it as a convo-
lution in a spatio-tonal space of dimension k+1. This
method is composed of three steps. Firstly, conversion
of the image in the space of higher order dimension.
Secondly, filtering using standard convolution in this
space. Thirdly, conversion by interpolation of the
result in the initial space. Note that a specific data
structure, the “bilateral grid” was recently developed
(Chen et al., 2007) combining the latter method with
a GPU compliant architecture. Weiss (2006) proposed
a O(log(r)) per pixel implementation (with ‘r’ corres-
ponding to the spatial width of the filter) but limited
to constant weighting functions (box-filter). His ap-
proach uses sliding windows histogram computation,
also known as an efficient way to speed up median
filters (Huang, 1981). Recently Porikli, (2008) and
Yang et al., (2009), improved this method by using
image integral histogram and succeeded in lowering
the complexity to O(1) per pixel in the case of
constant or polynomial weighting functions (Taylor
development of Gaussian kernel). Note that these
methods are efficient for 8 bit images but remain
computationally intensive for 24 or 32 bits images
leading to a huge memory requirement for large
images due to local histogram computation. Recently,
Chaudhury et al., (2011) used the O(1) algorithm of
Porikli, (2008) but with trigonometric range kernels
thus yielding a better approximation.

101

MOREAUD M ET AL: Flowing bilateral filter

A lot of efforts have been brought to speed up the
bilateral filter at algorithmic levels, sometimes by
using an elaborated data structure or a rough version
of the filter. But, recent advances of massively parallel
computation hardware opens new perspectives: espe-
cially for processing of large 3D data volumes, up to
several GigaBytes.

Despite of the large number of papers on the
acceleration of the 2D bilateral filter on GPU, only a
few recent works can be found on the 3D implemen-
tation. Bethel, (2012) proposed an NVidia CUDA
based 3D exact implementation of the bilateral filter
together with a study of the impact of the GPU
configuration parameters. However, these tests are for a
fixed and relatively small 3D image (256x256x120
voxels). In Banterle et al., (2012), an approximated
version of the bilateral filter is proposed by using
subsampling, benefiting from GPU fast cache texture
fetches. This implementation gives a good trade-off
between computation time and quality of the filtering
result.

In this paper, our contributions are :

 Seeing images as peaks and valleys (Salembier
and Serra, 1994; Serra and Soille, 1994), we derive
a new bilateral filter formulation: the flowing bila-
teral filter. Additionally to the well-known spatial
and tonal attenuation coefficient, a topological ap-
proach of the image allows suppression of
“halo1” artifacts around a large peak surrounded
by two valleys of different values.

 Study of several bilateral filter implementations,
i.e., regular (as in (Tomasi and Manduchi, 1998)
but with Tukey’s biweight function (Durand and
Dorsey, 2002)) and separable versions are proposed
on massively parallel architecture using the NVidia
CUDA API considering the processing of quite
large 3D volumes acquired by X-ray or electron
tomography.

METHODS

We first recall the definition of the regular bilateral
filter. Then, we give the exact definition of the flowing
bilateral filter. Finally, the definition of the separable
version of the flowing bilateral filter is given.

REGULAR BILATERAL FILTER

Let I be an image defined on its spatial domain D. Let
f and g be two even functions having their maximum

 

1we mean by "halo" overflows with dark or light intensities not
present on the initial image and caused by a filter process.

in x = 0, decreasing from x = 0 and parameterized by
σf and σg for f and g respectively. f and g are typically
Gaussian but can take other forms like the fast
decreasing and truncated Tukey's biweight function
(f(x) = g(x) = 0.5(1-(x/σ)2)2 if |x| < σ, 0 otherwise). For
a pixel location p in D, the result of the bilateral filter
is given by I’(p) (Eq. 1):

      

      p'IpIg p'pf with W

 I(p) p'IpIg p'pf
W

1
pI'

gf

gf

σ
Dp'

σ

σ
Dp'

σ













gf 

. (1)

The effect of this filter is illustrated on a 1D
profile (Fig. 1). The bilateral filter can be seen as
signal convolution with the function f weighted by
the function g. A pixel present in the observation
window will, therefore, be strongly taken into account
in the convolution points at low distance from the
current point (standard convolution) and close in
intensity of the current point (action of function g),
but these two aspects are taken into account indepen-
dently "f does not see the intensity and g does not see
the distance".

FLOWING BILATERAL FILTER

Here, an image is seen as a topological relief. We
consider the case where two valleys of different
values are surrounding a large peak (see Fig. 2 for an
illustration). As we have seen before, the bilateral
filter, with an adequate parameterization, can keep
intact the strong transition. However, in this particular
case, we can observe an overflow of the valleys
around the peak, the lower value valley into the
higher value valley and reciprocally. This case leads
to the creation of “halo” in the filtered images and
can be avoided if is strictly decreasing. This
kind of function can be designed by imposing the
decrease of the function g by adding a comparison
while computing filter’s tonal weight : if d and d’ are
distances from the central pixel, with d>d’, then g(d)
must be smaller than g(d’). This criterion can be
formulated as a morphological reconstruction operation
(Serra, 1988; Vincent, 1993) in the weighting function
space. Grayscale morphological reconstruction  XρY

     Xδ Xρ n
Y1nY 



of Y from X is obtained by iterating grayscale geodesic
dilation of X “under” Y until stability is reached
(Vincent, 1993):

 with       YBXXδ 1
Y 

and
            (n times). Xδ...δδXδ 1

Y
1

Y
1

Y
n

Y 

102

Image Anal Stereol 2015;34:101-110

 a. b. c. d.
Fig. 1. a. Initial 1D profile; b. 1D profile with additional Gaussian noise; c. After application of a spatial filter
(Tukey function σ = 15); d After application of a bilateral filter (Tukey functions σf = 15 et σg = 10).

 a. b. c. d.
Fig. 2. a. Initial 1D profile composed by a large peak surrounded by two valleys; b. 1D profile with additional
Gaussian noise; c. After application of a bilateral filter (f and g, Tukey function, with σf=20 and σg=20); d.
After application of the flowing bilateral filter (same parameters).

This new filter can be written as:

     

 G p'pf W

with

W

I p, ,σ
Dp'

σ

Dp'
σ

gf

f






   p'

 I(p) p'G p'pf
1

pI' I p, ,σ g 

 

. (2)

Within this formulation, the weighted function
depends on the location of the central pixel (Eq. 3).
This new filter enables the suppression of “halo”,
however, morphological opening by reconstruction
results in a significant additional time computing
overhead especially for 3D processing.

 
 

    
 and 0; else p,

 withAρp'G
gIp,,gσg p ,σBI p, ,σ 

 

xIpIg(x)B

 xif 0g(x)A

gg

gg

σI p, ,σ

σp ,σ



 . (3)

SEPARABLE FLOWING BILATERAL
FILTER

In order to reduce the complexity and memory usage

of such a filter, it is possible to design an approxi-
mated version by means of a separated kernel (Pham
and Vliet, 2005). The separable bilateral filter can be
written as Eq. 4:

 
 

    

 

 
 

    

 
 

    

 
 

    

    xxyyyx

xxσ
pDyp'
σy

σ
pDxp'
σx

σ
pDxp'
σ

x

x

xxxσ
pDyp'
σ

y

apDpaDet apDpaD

and

p'IpIg p'pfW

,p'IpIg p'pfW

with

I(p) p'IpIg p'pf
W

1
pI

, (p)I p'IpIg p'pf
W

1
pI'

gf

gf

gf

gf



























 

. (4)

The formulation of the separable flowing bilateral
filter (see an illustration Fig. 4) can be written with a
morphological reconstruction as Eq. 5. This formu-
lation can lead to a practical and efficient implemen-
tation. Indeed, a morphological reconstruction can be
implemented as a simple floating point comparison
by a neighborhood element (see Algo. 1).

 

 
    

   
 

    I(p) p'IpIG

 , (p)I p'IpIG p'pf
W

1
pI'

Ip,,σ

xxxIp,,σ
pDyp'
σ

y

g

xgf



 


 p'pf
W

1
pI

pDxp'
σ

x

x f
 



 
 

    

 
 

    

   
 

    
    xxyyyx

σI p, ,σ

σp ,σ

p ,σBI p, ,σ

xxIp,,σ
pDyp'
σy

Ip,,σ
pDxp'
σx

apDpaDet apDpaD

,xIpIg(x)B

and 0 else p, xif 0g(x)A

 with Aρp'G

and

,p'IpIG p'pfW

,p'IpIG p'pfW

with

gg

gg

gI p, ,gσg

xgf

gf





















. (5)

103

MOREAUD M ET AL: Flowing bilateral filter

Function Horizontal_flowing_BFilter()
BEGIN
FOREACH p in I
 fRc = 1; // flowing tonal coeff. init
 sum_c = 0.0; // neighborhood coeff. sum
 FOREACH p’ in Dx
 Sc = GetSpatialCoeff(p’);
 Rc = GetTonalCoeff(p’);
 IF(Rc <= fRc) // flowing bilateral filter
 fRc = Rc
 ENDIF
 c = fRc*Sc;
 sum_c += c;
 tot = c*I(p’);
 ENDFOREACH
 O(p) = tot/sum;
END FOREACH

Algo. 1. Pseudo code of separable flowing bilateral
filter considering the horizontal direction.

GPU ARCHITECTURE AND CUDA
PROGRAMMING MODEL

Even if GPU were originally designed to perform
graphic oriented applications, such as renderings and
textures mappings, their native parallel architecture
(Single Instruction Multiple Data) led the scientific
community to bring speed up to highly computational
demanding applications. For our study, we used the
computed unified device architecture (CUDA)
(NVIDIA CUDA C, 2012) developed by NVIDIA for
the implementation of regular and separable bilateral
filters. In order to operate the native GPU capability
to perform parallel work, the NVidia CUDA API
enables to run thousands of threads in parallel by
launching a batch of threads called warps on the
GPU’s Streaming Multiprocessors (SMs) via a
function called kernel function. A kernel function can
be seen as a specialized template function on the
index of the threads and blocks launched on the SMs.
GPUs own different types of memory which are on
and off chip. The DRam or global memory is the
main GPU memory enabling inter alia, reading and
writing from the host machine (with a high latency
and via the PCI Express), and providing memory
pointers to kernel functions in order to perform data
processing. Shared memory and registers are on chip
memories providing a low latency and high
bandwidth. Note that shared memory is statically
allocated by the programmer and that an allocated
buffer is shared by all the threads of a block whereas
registers are handled automatically by the driver and
are related to each of the threads individually.

As we carried over our experiments with an
NVidia Quadro 4000 of capability 2.0 we will limit

our description to the Fermi architecture. Regarding
the relation between GPU architecture and CUDA
API, there are three levels of parallelism expressed
and they represent three levels of granularity:

 The smaller execution level is the warp of threads.
In our case the SMs run a batch of 32 threads
simultaneously.

 The second level of parallelism is the block, whose
size is chosen by the programmer and contains a
maximum of 1024 threads for the Fermi archi-
tecture. Note that a block can only be executed by
one SM however, one SM can execute several
blocks.

 The last level of granularity is the grid (more
precisely the grid of threads blocks), often
determined by the mapping of threads on data
desired by the programmer (e.g., it can be con-
venient to make one thread treating one voxel).

In order to reach a high arithmetic peak for a
given applications some basic strategies are recom-
mended (NVIDIA CUDA Best, 2012) and will be
experimented in ours implementations:

 An algorithm should be written to exhibit
parallelism.

 Minimize data transfer between CPU and GPU
because of their penalizing latency.

 Ensure coalesced read from global memory.

 Avoid conditional branching (e.g., “if” statements).

 Maximize SM occupancy rate, i.e., give the multi-
processors a large number of blocks to process.

GPU CODE OPTIMIZATION

Spatial coefficient

The first optimization realized for all the implementa-
tions is the pre-computation of the spatial attenuation
coefficients on the CPU. As these coefficients don’t
change during program execution, we load them on
the GPU in an on-chip buffer memory of 64kB called
constant memory which is accessible by all the
threads with high bandwidth and small latency.

Memory acces

Our first experiment was designed to show the impact
of non-strided access when working with multi-di-
mensional arrays allocated as a linear memory block.
Even if misaligned global memory fetches issues
were resolved since the introduction of Fermi
architecture (due to the additional L1 cache of 128

104

Image Anal Stereol 2015;34:101-110

105

bytes in each SMs), Fig. 3 reveals that column and
depth (Y and Z directions) fetches penalize global
computation time. The specification of the Quadro
4000 GPU card announces a bandwidth peak of 89.6
Go/sec, this serves as a reference to evaluate the
speed of our algorithm. The slowdown observed for
Y and Z passes is due to the GPU driver fetching
mechanism in the global memory where fetches are
performed via 32, 64 or 128 bytes transactions
aligned with their size. In the case of a 3D image
processing algorithms, we need to consider the three
directions and to perform a local scan around each
voxel. For the regular bilateral filter, we consider a
3D neighborhood window, thus a convenient memory
fetching optimization is to bind image data memory
portion to a 3D texture cache in order to speed up
spatial locality access.

For the separable bilateral filter, even if we can’t
avoid the reading and writing of the data from the
global memory, we can benefit of this first read to
load an on-chip and fast buffer of shared memory,
and then to perform memory fetches into this buffer
for the neighborhood scan. Note that the memory
requirement consists of allocating enough memory
for the input and output image on the Dram of the
GPU (e.g., this represents 1GByte for a 512x512x512
image).

Performance vs occupancy

This first implementation was designed to maximize

SMs occupancy, i.e., one thread computes one result
image voxel. Starting from this first implementation,
we decided to investigate the vectorization capabilities
of the GPU by treating simultaneously N_BATCH of
rows, columns or data vectors in the depth direction
thereby introducing Instruction Level Parallelism
(ILP) via loop unrolling directive (Volkov, 2010). Note
that vectorization is lowering the number of threads and
blocks launched on the SMs thus tending to reduce
occupancy while rising registers usage. Hence the
principle is to allocate and to load N_BATCH.

Fig. 3. Global memory bandwidth ratio with theore-
tical hardware bandwidth peak considering the three
filtering directions (X, Y, Z) through a 512x512x512
– 32 bits data volume and with bilateral filter’s
fetching pattern.

 original σf = 9 and σg = 5 σf = 9 and σg = 10 σf = 9 and σg = 20

 original σf = 9 and σg = 5 σf = 9 and σg = 10 σf = 9 and σg = 20
Fig. 4. Separable flowing bilateral filter results on standard tests images.

MOREAUD M ET AL: Flowing bilateral filter

RESULTS

QUALITATIVE AND QUANTITATIVE ANALYSIS

332x410x8-bit

552x574x8bit 328x500x8-bit 686x482x8 bit 728x476x8bits

Regular Bilateral Filter

Separable Flowing Bilateral Filter

Bilateral Filter (from (Paris and Durand, 2006) sampling factor = 1)

Bilateral Filter (from (Paris and Durand, 2006)) (sampling factor = 0.25)

Fig. 5. Qualitative comparisons on 2D images. For each images, spatial and tonal parameters are equivalent.

106

Image Anal Stereol 2015;34:101-110

107

Table 1. Timings comparisons between Regular, Separable Flowing and (Paris and Durand, 2006) bilateral
filter implementations on standard test images.

 “Stained Glass” “Tulip” “House Corner” “Catalyst 1” “Catalyst 2”
Regular Bilateral Filter (CPU / GPU implementation)

5.24s / 0.1s 12.62s / 0.34s 6.51s / 0.18s 13.14s / 0.1s 13.77s / 0.12s
Flowing Bilateral Filter (CPU implementation)

24.29s 56.75s 29.77s 60.32s 66.89s
Separable Bilateral Filter (CPU implementation)

0.336s 0.812s 0.42s 0.845s 0.885s
Separable Flowing Bilateral Filter (CPU / GPU implementation)

0.35s / 0.01s 0.83s / 0.03s 0.43s / 0.01s 0.87s / 0.02s 0.926s / 0.02s
Bilateral Filter (from (Paris and Durand, 2006) (CPU , subsampling = 1)

0.6s 1.1s 0.6s 1.4s 1.4s
Bilateral Filter (from (Paris and Durand, 2006) (CPU , subsampling = 0.25)

12.2s 47.7s 14.8s 63.4s 68.8s

Table 2. Quantitative comparisons between the proposed implementations of the flowing bilateral filter and
other discussed implementations on various 2D images.

 “Stained Glass” “Tulip” “House Corner”
PSNR UIQ SSIM PSNR UIQ SSIM PSNR UIQ SSIM

Noise
27.74 0.99 0.99 27.5 0.962 0.963 25.11 0.964 0.965

Regular Bilateral Filter
31.62 0.996 0.996 33.3 0.992 0.992 28.56 0.987 0.987

Flowing Bilateral Filter
31.74 0.996 0.996 33.35 0.992 0.992 28.627 0.987 0.987

Separable Bilateral Filter
31.6 0.993 0.993 33.77 0.993 0.993 27.99 0.985 0.985

Separable Flowing Bilateral Filter
32.27 0.997 0.997 34.24 0.994 0.994 28.627 0.987 0.987

Bilateral Filter (Paris and Durand. 2006) subsampling = 0.25
30.23 0.995 0.995 34.31 0.994 0.994 28.09 0.985 0.985

“Catalyst 1” “Catalyst 2”

PSNR UIQ SSIM PSNR UIQ SSIM
Noise

27.79 0.983 0.983 27.76 0.969 0.969
Regular Bilateral Filter

31.19 0.992 0.992 28.45 0.97 0.971
Flowing Bilateral Filter

31.23 0.992 0.992 28.49 0.97 0.971
Separable Bilateral Filter

30.41 0.991 0.991 27.15 0.959 0.96
Separable Flowing Bilateral Filter

31.6 0.993 0.993 28.37 0.97 0.971
Bilateral Filter (Paris and Durand. 2006) subsampling = 0.25

30.79 0.991 0.991 27.35 0.96 0.961

MOREAUD M ET AL: Flowing bilateral filter

For these tests, we used a noise removal applica-
tion. For each image we added a Poisson noise (5%)
and performed an analysis of the filtered images
generated by five different implementations: the regular
bilateral filter, separable bilateral filter, flowing
bilateral filter, separable flowing bilateral filter and
(Paris and Durand 2006) implementation with two
different sampling factors.

On the “Stained Glass” image, no “halo” effects
surrounding the two regions border (darker one for
the brighter region and brighter one for the brighter
region respectively) can be noticed with the flowing
bilateral. As we can see, the regular bilateral filter
produces “halo” artifacts. Paris and Durand (2006)
strategy does not produce these artifacts but,
unfortunately, the noise is remaining strongly present
with the test realized with a sampling factor equal to
1. Considering a sampling factor at 0.25, a better
result can be obtained but the computing time is then
much longer (see Table 1). Our approach gives the
best compromise between image quality (no “halos”
artifacts and strong noise reduction) and computing
times. We also compared the results generated by
these implementations on standard tests images
(“Tulip” and “House Corner”) and on 2D Scanning
Electron Microscopy images of catalyst supports
("Catalyst1" and "Catalyst2"). Several criterions
namely PSNR, UIQ and SSIM (Wang et al., 2004)
are used to compare images before and after noise
filtering, the results are summarized in Table 2.
Except for “Tulip” whose texture is diagonally
oriented, the flowing bilateral filter is producing at
least as well or better than all the other filters used for
the comparisons (cf. the PSNR values). One can note
also that the separable version of the flowing bilateral
filter is very interesting (see Table 1), furthermore its
running time on GPU is a hundred time lower than
the Paris and Durand (2006) implementation with a
0.25 sampling factor.

COMPUTING TIME

Experimental results presented below are obtained
with an NVidia Quadro 4000 and an Intel Xeon
QuadCore 2.8Ghz on a 512x512x512 – 32 bits data
volume (see Fig. 7). We compared the computation
times of optimized versions of the separable flowing

bilateral filters with Tukey's biweight functions kernels
implemented on GPU and CPU multi-threads. CPU
code is implemented using the openMP API. In
addition to pre-compute filter’s spatial coefficients,
the inner loop is parallelized on all cores for each of
the passes of the filter, achieving in our case a quasi
linear efficiency compared to a single core implemen-
tation. Fig. 6 illustrates the computation times for the
different implementations described in the previous
section. Firstly, it may be observed that the GPU
implementations of the separable bilateral filter (cf.
GPU SEP TUKEY and GPU FLOWING SEP TUKEY)
outperform all the others implementations presented
here. Indeed, it only needs a few seconds to treat a
half GB data volume and bring it back to the CPU.
Despite the use of a 3D texture cache, the regular
bilateral filter GPU implementation (cf. GPU BRUTE
FORCE) is very slow. We can notice that comparison
with the CPU implementation (cf. CPU SEP TUKEY)
can give an order of magnitude of the reachable
speed-up compared to a GPU implementation. With a
half kernel size of 39, an acceleration factor of
approximately 20 is obtained. Considering a batch of
4 voxels to be computed at the same time by each
thread (i.e., via the loading of 4 rows into shared
memory) we benefit from ILP and observe a 40%
speed-up compared to the previously described
separable implementation. Moreover, we notice no
additional computation time change with the flowing
bilateral filter considering the GPU or the CPU imple-
mentations.

Fig. 6. Computation times of CPU/GPU implemen-
tations of flowing and regular bilateral filters.

108

Image Anal Stereol 2015;34:101-110

Fig. 7. 3D volume of alumina catalyst (size
512x512x512, resolution 1nm.voxel-1) obtained by
electron tomography (Tran et al., 2014). Upper
image: 3D observation by volume rendering; Left
image: one region of interest (ROI) of one slice of the
volume; Right image: same ROI after flowing
bilateral filter (parameter spatial 4, intensity 15).

CONCLUSION

Seeing an image as peaks and valleys, we introduced
the flowing bilateral filter, suppressing “halo”
artifacts typically produced by the regular bilateral
filter around a large peak surrounded by two valleys.
The proposed methodology was to combine a
morphological reconstruction in the tonal space in
order to ensure the strict decreasing of the tonal
weighting function. A separable version of this new
filter was also proposed. This version requires only
little change from the original approximate separable
version of the bilateral filter algorithm. We also
proposed GPU implementations of the separable
flowing bilateral filter by using the NVidia CUDA
API. With this version, the global memory of the
GPU in the row, column or depth direction can be
preloaded into a fast access buffer and is inducing a
great speed up compared to a CPU implementation.
Indeed, we can reach an acceleration factor up to 20
compared to a CPU implementation parallelized on 4
cores. Time computing of regular or flowing
separable bilateral filters on CPU or GPU are almost
identical.

ACKNOWLEDGEMENTS

The part of this paper dealing with implementations
on GPU of exact and separable bilateral filter was
presented at the 11th European Congress of Stereology
and Image Analysis, July 9–12, 2013 in Kaiserslautern,
Germany.

REFERENCE

Banterle F, Corsini M, Cignoni P, Scopigno R (2012). A
low-memory, straightforward and fast bilateral filter
trough subsampling in spatial domain. Comput Graphics
forum 31:19–32.

Barash D (2002). Fundamental relationship between bila-
teral filtering, adaptive smoothing, and the nonlinear
diffusion equation. IEEE T Pattern Anal Mach Intell
24:844–7.

Bethel EW (2012). Exploration of optimization options for
increasing performance of a GPU implementation of a
three-dimensional bilateral filter. Technical Report,
LBNL-5406E, Lawrence Berkeley National Laboratory,
Berkeley CA, USA, 94720.

Chaudhury KN, Sage D, Unser M (2011). Fast bilateral
filtering using trigonometric range kernels. IEEE T
Image Process 20:3376–82.

Chen J, Paris S, Durand F (2007). Real-time edge-aware
image processing with the bilateral grid. ACM T
Graphics 26:103.

Durand F, Dorsey J (2002). Fast bilateral filtering for the
display of high-dynamic range images. ACM T
Graphics 21: 257–66.

Huang TS (1981). Two-Dimensional Signal Processing II :
Transforms and Median Filters. Berlin: Springer-
Verlag, 1:209–11.

Narendra PM (1981). A separable median Filter for Image
Noise Smoothing. IEEE T Pattern Anal Mach Intell
3:20–9.

NVIDIA C (2012). NVIDIA CUDA C Programming
Guide 5.0.

NVIDIA Best (2012). NVIDIA CUDA C Best Practices
Guide 5.0.

Paris S, Durand F (2006). A fast approximation of the
bilateral filter using a signal processing approach. In
Proceedings of the European Conference on Computer
Vision, pp. 568–80.

Pham TQ, Vliet LJ (2005). Separable bilateral filtering for
fast video preprocessing. In IEEE International Confe-
rence on Multimedia and Expo, pp. 1–4.

Porikli F (2008). Constant Time O(1) Bilateral filtering. In
IEEE International Conference on Computer Vision
and Pattern Recognition 1–8.

Salembier P, Serra J (1994). Mathematical Morphology
and its Applications to Signal Processing (Special
issue), 38.

109

MOREAUD M ET AL: Flowing bilateral filter

110

Serra J (1988). Image Analysis and Mathematical Morpho-
logy, Part II: Theoretical Advances, Academic Press,
London.

Serra J, Soille P (1994). Mathematical Morphology and its
Applications to Signal Processing, Series "Computational
Imaging and Vision".

Smith SM, Brady JM (1997). SUSAN – A new approach
to low level image processing. Int J Comput Vision 23:
45–78.

Tomasi C, Manduchi R (1998). Bilateral filtering for gray
and color images. In IEEE Proceedings of the Sixth
International Conference on Computer Vision 836–46.

Tran V-D, Moreaud M, Thiébaut É, Denis L and Becker J
M (2014). Inverse Problem Approach for the
Alignment of Electron Tomographic Series, Oil & Gas
Science and Technology. IFP Energies nouvelles
69:279–91.

Vincent L (1993). Morphological grayscale reconstruction
in image analysis: Applications and efficient algorithms.
IEEE T Image Process 2:176–201.

Volkov V (2010). Better Performance at Lower Occupancy.
Proceedings of the GPU Technology Conference, GTC
10.

Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004).
Image quality assessment: From error visibility to
structural similarity. IEEE T Image Process 13:600–12.

Weiss B (2006). Fast median and bilateral filtering. ACM
T Graphics - Proc of ACM SIGGRAPH 25(3):519–26.

Yang Q, Tan KH, Ahuja N (2009). Real-time O(1)
bilateral filtering. In IEEE Conference on Computer
Vision and Pattern Recognition 557–64.

