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ABSTRACT 

The bilateral filter plays a key role in image processing applications due to its intuitive parameterization and 
its high quality filter result, smoothing homogeneous regions while preserving the edges of the objects. 
Considering the image as a topological relief, seeing pixel intensities as peaks and valleys, we introduce a 
way to control the tonal weighting coefficients, the flowing bilateral filter, reducing “halo” artifacts typically 
produced by the regular bilateral filter around a large peak surrounded by two valleys of lower values. In this 
paper we propose to investigate exact and approximated versions of CPU and parallel GPU (Graphical 
Processing Unit) based implementations of the regular and flowing bilateral filter using the NVidia CUDA 
API. Fast implementations of these filters are important for the processing of large 3D volumes up to several 
GB acquired by x-ray or electron tomography.  

Keywords: adaptive filter, GPU, 3D image processing. 

INTRODUCTION 

Filtering operation is a critical image processing ope-
ration which performs noise attenuation allowing to 
do further advanced tasks in better conditions (e.g., 
segmentation or analysis, …). The bilateral filter 
formulated by Tomasi and Manduchi (1998), whose 
beginnings can be found in Smith and Brady (1997), 
belongs to the class of non-iterative and locally adaptive 
image filters (Barash, 2002). Besides regular spatial 
weighting (directly linked to the distance from the 
center of the filter’s observation window), the main 
idea of the bilateral filter is to insert an additional 
weighting factor based on a tone (or photometric, grey 
level) distance. Thus, a spatially close pixel, but far in 
terms of tone value, would have a low contribution in 
a result value. 

The research community devoted large efforts 
during the past decade to reduce the bilateral filter 
complexity induced by the computation of the tonal 
weighting factor, mainly by using non-exact versions 
of this filter. Straightforwardly, we can consider, as 
for the Gaussian filter, that a k-D kernel can be 
decomposed in a succession of k 1-D kernels, each 
result of a 1-D filter being the next filter’s input 
image (Pham and Vliet, 2005). Note that, unlike the 
Gaussian filter, the result of this filter is only an 
approximation of the bilateral filter (the same remark 
could be done for all non-separable filters, such as 
median filter approximation (Narendra, 1981)). Later, 

we will refer to this filter as the separable bilateral 
filter. Paris and Durand (2006) proposed an original 
formulation of the bilateral filter seeing it as a convo-
lution in a spatio-tonal space of dimension k+1. This 
method is composed of three steps. Firstly, conversion 
of the image in the space of higher order dimension. 
Secondly, filtering using standard convolution in this 
space. Thirdly, conversion by interpolation of the 
result in the initial space. Note that a specific data 
structure, the “bilateral grid” was recently developed 
(Chen et al., 2007) combining the latter method with 
a GPU compliant architecture. Weiss (2006) proposed 
a O(log(r)) per pixel implementation (with ‘r’ corres-
ponding to the spatial width of the filter) but limited 
to constant weighting functions (box-filter). His ap-
proach uses sliding windows histogram computation, 
also known as an efficient way to speed up median 
filters (Huang, 1981). Recently Porikli, (2008) and 
Yang et al., (2009), improved this method by using 
image integral histogram and succeeded in lowering 
the complexity to O(1) per pixel in the case of 
constant or polynomial weighting functions (Taylor 
development of Gaussian kernel). Note that these 
methods are efficient for 8 bit images but remain 
computationally intensive for 24 or 32 bits images 
leading to a huge memory requirement for large 
images due to local histogram computation. Recently, 
Chaudhury et al., (2011) used the O(1) algorithm of 
Porikli, (2008) but with trigonometric range kernels 
thus yielding a better approximation. 
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A lot of efforts have been brought to speed up the 
bilateral filter at algorithmic levels, sometimes by 
using an elaborated data structure or a rough version 
of the filter. But, recent advances of massively parallel 
computation hardware opens new perspectives: espe-
cially for processing of large 3D data volumes, up to 
several GigaBytes. 

Despite of the large number of papers on the 
acceleration of the 2D bilateral filter on GPU, only a 
few recent works can be found on the 3D implemen-
tation. Bethel, (2012) proposed an NVidia CUDA 
based 3D exact implementation of the bilateral filter 
together with a study of the impact of the GPU 
configuration parameters. However, these tests are for a 
fixed and relatively small 3D image (256x256x120 
voxels). In Banterle et al., (2012), an approximated 
version of the bilateral filter is proposed by using 
subsampling, benefiting from GPU fast cache texture 
fetches. This implementation gives a good trade-off 
between computation time and quality of the filtering 
result. 

In this paper, our contributions are : 

 Seeing images as peaks and valleys (Salembier 
and Serra, 1994; Serra and Soille, 1994), we derive 
a new bilateral filter formulation: the flowing bila-
teral filter. Additionally to the well-known spatial 
and tonal attenuation coefficient, a topological ap-
proach of the image allows suppression of 
“halo1” artifacts around a large peak surrounded 
by two valleys of different values. 

                                                          

 Study of several bilateral filter implementations, 
i.e., regular (as in (Tomasi and Manduchi, 1998) 
but with Tukey’s biweight function (Durand and 
Dorsey, 2002)) and separable versions are proposed 
on massively parallel architecture using the NVidia 
CUDA API considering the processing of quite 
large 3D volumes acquired by X-ray or electron 
tomography. 

METHODS 

We first recall the definition of the regular bilateral 
filter. Then, we give the exact definition of the flowing 
bilateral filter. Finally, the definition of the separable 
version of the flowing bilateral filter is given.  

REGULAR BILATERAL FILTER 

Let I be an image defined on its spatial domain D. Let 
f and g be two even functions having their maximum 

 

 

1we mean by "halo" overflows with dark or light intensities not 
present on the initial image and caused by a filter process. 

in x = 0, decreasing from x = 0 and parameterized by 
σf and σg for f and g respectively. f and g are typically 
Gaussian but can take other forms like the fast 
decreasing and truncated Tukey's biweight function 
(f(x) = g(x) = 0.5(1-(x/σ)2)2 if |x| < σ, 0 otherwise). For 
a pixel location p in D, the result of the bilateral filter 
is given by I’(p) (Eq. 1): 
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The effect of this filter is illustrated on a 1D 
profile (Fig. 1). The bilateral filter can be seen as 
signal convolution with the function f weighted by 
the function g. A pixel present in the observation 
window will, therefore, be strongly taken into account 
in the convolution points at low distance from the 
current point (standard convolution) and close in 
intensity of the current point (action of function g), 
but these two aspects are taken into account indepen-
dently "f does not see the intensity and g does not see 
the distance". 

FLOWING BILATERAL FILTER 

Here, an image is seen as a topological relief. We 
consider the case where two valleys of different 
values are surrounding a large peak (see Fig. 2 for an 
illustration). As we have seen before, the bilateral 
filter, with an adequate parameterization, can keep 
intact the strong transition. However, in this particular 
case, we can observe an overflow of the valleys 
around the peak, the lower value valley into the 
higher value valley and reciprocally. This case leads 
to the creation of “halo” in the filtered images and 
can be avoided if  is strictly decreasing. This 
kind of function can be designed by imposing the 
decrease of the function g by adding a comparison 
while computing filter’s tonal weight : if d and d’ are 
distances from the central pixel, with d>d’, then g(d) 
must be smaller than g(d’). This criterion can be 
formulated as a morphological reconstruction operation 
(Serra, 1988; Vincent, 1993) in the weighting function 
space. Grayscale morphological reconstruction  XρY

     Xδ Xρ n
Y1nY 



 
of Y from X is obtained by iterating grayscale geodesic 
dilation of X “under” Y until stability is reached 
(Vincent, 1993): 

 with       YBXXδ 1
Y    

and  
            (n times).  Xδ...δδXδ 1

Y
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 a. b. c. d. 
Fig. 1. a. Initial 1D profile; b. 1D profile with additional Gaussian noise; c. After application of a spatial filter 
(Tukey function σ = 15); d After application of a bilateral filter (Tukey functions σf = 15 et σg = 10). 

    
 a. b. c. d. 
Fig. 2. a. Initial 1D profile composed by a large peak surrounded by two valleys; b. 1D profile with additional 
Gaussian noise; c. After application of a bilateral filter (f and g, Tukey function, with σf=20 and σg=20); d. 
After application of the flowing bilateral filter (same parameters). 

This new filter can be written as: 
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Within this formulation, the weighted function 
depends on the location of the central pixel (Eq. 3). 
This new filter enables the suppression of “halo”, 
however, morphological opening by reconstruction 
results in a significant additional time computing 
overhead especially for 3D processing. 
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SEPARABLE FLOWING BILATERAL 
FILTER 

In order to reduce the complexity and memory usage 

of such a filter, it is possible to design an approxi-
mated version by means of a separated kernel (Pham 
and Vliet, 2005). The separable bilateral filter can be 
written as Eq. 4: 
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The formulation of the separable flowing bilateral 
filter (see an illustration Fig. 4) can be written with a 
morphological reconstruction as Eq. 5. This formu-
lation can lead to a practical and efficient implemen-
tation. Indeed, a morphological reconstruction can be 
implemented as a simple floating point comparison 
by a neighborhood element (see Algo. 1). 
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Function Horizontal_flowing_BFilter() 
BEGIN  
FOREACH p in I 
 fRc = 1; // flowing tonal coeff. init 
 sum_c = 0.0; // neighborhood coeff. sum 
 FOREACH p’ in Dx 
 Sc = GetSpatialCoeff(p’); 
 Rc = GetTonalCoeff(p’); 
 IF( Rc <= fRc) // flowing bilateral filter 
 fRc = Rc 
 ENDIF 
 c = fRc*Sc; 
 sum_c += c; 
 tot = c*I(p’);   
 ENDFOREACH 
 O(p) = tot/sum; 
END FOREACH 

Algo. 1. Pseudo code of separable flowing bilateral 
filter considering the horizontal direction. 

GPU ARCHITECTURE AND CUDA 
PROGRAMMING MODEL 

Even if GPU were originally designed to perform 
graphic oriented applications, such as renderings and 
textures mappings, their native parallel architecture 
(Single Instruction Multiple Data) led the scientific 
community to bring speed up to highly computational 
demanding applications. For our study, we used the 
computed unified device architecture (CUDA) 
(NVIDIA CUDA C, 2012) developed by NVIDIA for 
the implementation of regular and separable bilateral 
filters. In order to operate the native GPU capability 
to perform parallel work, the NVidia CUDA API 
enables to run thousands of threads in parallel by 
launching a batch of threads called warps on the 
GPU’s Streaming Multiprocessors (SMs) via a 
function called kernel function. A kernel function can 
be seen as a specialized template function on the 
index of the threads and blocks launched on the SMs. 
GPUs own different types of memory which are on 
and off chip. The DRam or global memory is the 
main GPU memory enabling inter alia, reading and 
writing from the host machine (with a high latency 
and via the PCI Express), and providing memory 
pointers to kernel functions in order to perform data 
processing. Shared memory and registers are on chip 
memories providing a low latency and high 
bandwidth. Note that shared memory is statically 
allocated by the programmer and that an allocated 
buffer is shared by all the threads of a block whereas 
registers are handled automatically by the driver and 
are related to each of the threads individually.  

As we carried over our experiments with an 
NVidia Quadro 4000 of capability 2.0 we will limit 

our description to the Fermi architecture. Regarding 
the relation between GPU architecture and CUDA 
API, there are three levels of parallelism expressed 
and they represent three levels of granularity:  

 The smaller execution level is the warp of threads. 
In our case the SMs run a batch of 32 threads 
simultaneously. 

 The second level of parallelism is the block, whose 
size is chosen by the programmer and contains a 
maximum of 1024 threads for the Fermi archi-
tecture. Note that a block can only be executed by 
one SM however, one SM can execute several 
blocks. 

 The last level of granularity is the grid (more 
precisely the grid of threads blocks), often 
determined by the mapping of threads on data 
desired by the programmer (e.g., it can be con-
venient to make one thread treating one voxel). 

In order to reach a high arithmetic peak for a 
given applications some basic strategies are recom-
mended (NVIDIA CUDA Best, 2012) and will be 
experimented in ours implementations:  

 An algorithm should be written to exhibit 
parallelism. 

 Minimize data transfer between CPU and GPU 
because of their penalizing latency. 

 Ensure coalesced read from global memory. 

 Avoid conditional branching (e.g., “if” statements). 

 Maximize SM occupancy rate, i.e., give the multi-
processors a large number of blocks to process. 

GPU CODE OPTIMIZATION 

Spatial coefficient 

The first optimization realized for all the implementa-
tions is the pre-computation of the spatial attenuation 
coefficients on the CPU. As these coefficients don’t 
change during program execution, we load them on 
the GPU in an on-chip buffer memory of 64kB called 
constant memory which is accessible by all the 
threads with high bandwidth and small latency. 

Memory acces 

Our first experiment was designed to show the impact 
of non-strided access when working with multi-di-
mensional arrays allocated as a linear memory block. 
Even if misaligned global memory fetches issues 
were resolved since the introduction of Fermi 
architecture (due to the additional L1 cache of 128 
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bytes in each SMs), Fig. 3 reveals that column and 
depth (Y and Z directions) fetches penalize global 
computation time. The specification of the Quadro 
4000 GPU card announces a bandwidth peak of 89.6 
Go/sec, this serves as a reference to evaluate the 
speed of our algorithm. The slowdown observed for 
Y and Z passes is due to the GPU driver fetching 
mechanism in the global memory where fetches are 
performed via 32, 64 or 128 bytes transactions 
aligned with their size. In the case of a 3D image 
processing algorithms, we need to consider the three 
directions and to perform a local scan around each 
voxel. For the regular bilateral filter, we consider a 
3D neighborhood window, thus a convenient memory 
fetching optimization is to bind image data memory 
portion to a 3D texture cache in order to speed up 
spatial locality access.  

For the separable bilateral filter, even if we can’t 
avoid the reading and writing of the data from the 
global memory, we can benefit of this first read to 
load an on-chip and fast buffer of shared memory, 
and then to perform memory fetches into this buffer 
for the neighborhood scan. Note that the memory 
requirement consists of allocating enough memory 
for the input and output image on the Dram of the 
GPU (e.g., this represents 1GByte for a 512x512x512 
image). 

Performance vs occupancy 

This first implementation was designed to maximize  

SMs occupancy, i.e., one thread computes one result 
image voxel. Starting from this first implementation, 
we decided to investigate the vectorization capabilities 
of the GPU by treating simultaneously N_BATCH of 
rows, columns or data vectors in the depth direction 
thereby introducing Instruction Level Parallelism 
(ILP) via loop unrolling directive (Volkov, 2010). Note 
that vectorization is lowering the number of threads and 
blocks launched on the SMs thus tending to reduce 
occupancy while rising registers usage. Hence the 
principle is to allocate and to load N_BATCH. 

 
Fig. 3. Global memory bandwidth ratio with theore-
tical hardware bandwidth peak considering the three 
filtering directions (X, Y, Z) through a 512x512x512 
– 32 bits data volume and with bilateral filter’s 
fetching pattern. 

 

    
 original σf = 9 and σg = 5 σf = 9 and σg = 10 σf = 9 and σg = 20 

    
 original σf = 9 and σg = 5 σf = 9 and σg = 10 σf = 9 and σg = 20 
Fig. 4. Separable flowing bilateral filter results on standard tests images. 
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RESULTS 

QUALITATIVE AND QUANTITATIVE ANALYSIS 

 
332x410x8-bit 

 
552x574x8bit 328x500x8-bit 686x482x8 bit 728x476x8bits 

Regular Bilateral Filter 

  

Separable Flowing Bilateral Filter  

  

Bilateral Filter (from (Paris and Durand, 2006) sampling factor = 1)  

  

Bilateral Filter ( from (Paris and Durand, 2006) ) (sampling factor = 0.25) 

  

Fig. 5. Qualitative comparisons on 2D images. For each images, spatial and tonal parameters are equivalent. 
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Table 1. Timings comparisons between Regular, Separable Flowing and (Paris and Durand, 2006) bilateral 
filter implementations on standard test images.  

 “Stained Glass” “Tulip” “House Corner” “Catalyst 1” “Catalyst 2” 
Regular Bilateral Filter (CPU / GPU implementation) 

5.24s / 0.1s 12.62s / 0.34s 6.51s / 0.18s 13.14s / 0.1s 13.77s / 0.12s 
Flowing Bilateral Filter (CPU implementation) 

24.29s 56.75s 29.77s 60.32s 66.89s 
Separable Bilateral Filter (CPU implementation) 

0.336s 0.812s 0.42s 0.845s 0.885s 
Separable Flowing Bilateral Filter (CPU / GPU implementation) 

0.35s / 0.01s 0.83s / 0.03s 0.43s / 0.01s 0.87s / 0.02s 0.926s / 0.02s 
Bilateral Filter (from (Paris and Durand, 2006) (CPU , subsampling = 1) 

0.6s 1.1s 0.6s 1.4s 1.4s 
Bilateral Filter (from (Paris and Durand, 2006) (CPU , subsampling = 0.25) 

12.2s 47.7s 14.8s 63.4s 68.8s 
 
 
Table 2. Quantitative comparisons between the proposed implementations of the flowing bilateral filter and 
other discussed implementations on various 2D images. 

 “Stained Glass” “Tulip” “House Corner” 
PSNR UIQ SSIM PSNR UIQ SSIM PSNR UIQ SSIM 

Noise 
27.74 0.99 0.99 27.5 0.962 0.963 25.11 0.964 0.965 

Regular Bilateral Filter 
31.62 0.996 0.996 33.3 0.992 0.992 28.56 0.987 0.987 

Flowing Bilateral Filter 
31.74 0.996 0.996 33.35 0.992 0.992 28.627 0.987 0.987 

Separable Bilateral Filter 
31.6 0.993 0.993 33.77 0.993 0.993 27.99 0.985 0.985 

Separable Flowing Bilateral Filter 
32.27 0.997 0.997 34.24 0.994 0.994 28.627 0.987 0.987 

Bilateral Filter (Paris and Durand. 2006) subsampling = 0.25 
30.23 0.995 0.995 34.31 0.994 0.994 28.09 0.985 0.985 

  
“Catalyst 1” “Catalyst 2” 

PSNR UIQ SSIM PSNR UIQ SSIM 
Noise 

27.79 0.983 0.983 27.76 0.969 0.969 
Regular Bilateral Filter 

31.19 0.992 0.992 28.45 0.97 0.971 
Flowing Bilateral Filter 

31.23 0.992 0.992 28.49 0.97 0.971 
Separable Bilateral Filter 

30.41 0.991 0.991 27.15 0.959 0.96 
Separable Flowing Bilateral Filter 

31.6 0.993 0.993 28.37 0.97 0.971 
Bilateral Filter (Paris and Durand. 2006) subsampling = 0.25  

30.79 0.991 0.991 27.35 0.96 0.961 
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For these tests, we used a noise removal applica-
tion. For each image we added a Poisson noise (5%) 
and performed an analysis of the filtered images 
generated by five different implementations: the regular 
bilateral filter, separable bilateral filter, flowing 
bilateral filter, separable flowing bilateral filter and 
(Paris and Durand 2006) implementation with two 
different sampling factors. 

On the “Stained Glass” image, no “halo” effects 
surrounding the two regions border (darker one for 
the brighter region and brighter one for the brighter 
region respectively) can be noticed with the flowing 
bilateral. As we can see, the regular bilateral filter 
produces “halo” artifacts. Paris and Durand (2006) 
strategy does not produce these artifacts but, 
unfortunately, the noise is remaining strongly present 
with the test realized with a sampling factor equal to 
1. Considering a sampling factor at 0.25, a better 
result can be obtained but the computing time is then 
much longer (see Table 1). Our approach gives the 
best compromise between image quality (no “halos” 
artifacts and strong noise reduction) and computing 
times. We also compared the results generated by 
these implementations on standard tests images 
(“Tulip” and “House Corner”) and on 2D Scanning 
Electron Microscopy images of catalyst supports 
("Catalyst1" and "Catalyst2"). Several criterions 
namely PSNR, UIQ and SSIM (Wang et al., 2004) 
are used to compare images before and after noise 
filtering, the results are summarized in Table 2. 
Except for “Tulip” whose texture is diagonally 
oriented, the flowing bilateral filter is producing at 
least as well or better than all the other filters used for 
the comparisons (cf. the PSNR values). One can note 
also that the separable version of the flowing bilateral 
filter is very interesting (see Table 1), furthermore its 
running time on GPU is a hundred time lower than 
the Paris and Durand (2006) implementation with a 
0.25 sampling factor. 

COMPUTING TIME  

Experimental results presented below are obtained 
with an NVidia Quadro 4000 and an Intel Xeon 
QuadCore 2.8Ghz on a 512x512x512 – 32 bits data 
volume (see Fig. 7). We compared the computation 
times of optimized versions of the separable flowing  
 

bilateral filters with Tukey's biweight functions kernels 
implemented on GPU and CPU multi-threads. CPU 
code is implemented using the openMP API. In 
addition to pre-compute filter’s spatial coefficients, 
the inner loop is parallelized on all cores for each of 
the passes of the filter, achieving in our case a quasi 
linear efficiency compared to a single core implemen-
tation. Fig. 6 illustrates the computation times for the 
different implementations described in the previous 
section. Firstly, it may be observed that the GPU 
implementations of the separable bilateral filter (cf. 
GPU SEP TUKEY and GPU FLOWING SEP TUKEY) 
outperform all the others implementations presented 
here. Indeed, it only needs a few seconds to treat a 
half GB data volume and bring it back to the CPU. 
Despite the use of a 3D texture cache, the regular 
bilateral filter GPU implementation (cf. GPU BRUTE 
FORCE) is very slow. We can notice that comparison 
with the CPU implementation (cf. CPU SEP TUKEY) 
can give an order of magnitude of the reachable 
speed-up compared to a GPU implementation. With a 
half kernel size of 39, an acceleration factor of 
approximately 20 is obtained. Considering a batch of 
4 voxels to be computed at the same time by each 
thread (i.e., via the loading of 4 rows into shared 
memory) we benefit from ILP and observe a 40% 
speed-up compared to the previously described 
separable implementation. Moreover, we notice no 
additional computation time change with the flowing 
bilateral filter considering the GPU or the CPU imple-
mentations.  
 

 
Fig. 6. Computation times of CPU/GPU implemen-
tations of flowing and regular bilateral filters.  
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Fig. 7. 3D volume of alumina catalyst (size 
512x512x512, resolution 1nm.voxel-1) obtained by 
electron tomography (Tran et al., 2014). Upper 
image: 3D observation by volume rendering; Left 
image: one region of interest (ROI) of one slice of the 
volume; Right image: same ROI after flowing 
bilateral filter (parameter spatial 4, intensity 15). 

CONCLUSION 

Seeing an image as peaks and valleys, we introduced 
the flowing bilateral filter, suppressing “halo” 
artifacts typically produced by the regular bilateral 
filter around a large peak surrounded by two valleys. 
The proposed methodology was to combine a 
morphological reconstruction in the tonal space in 
order to ensure the strict decreasing of the tonal 
weighting function. A separable version of this new 
filter was also proposed. This version requires only 
little change from the original approximate separable 
version of the bilateral filter algorithm. We also 
proposed GPU implementations of the separable 
flowing bilateral filter by using the NVidia CUDA 
API. With this version, the global memory of the 
GPU in the row, column or depth direction can be 
preloaded into a fast access buffer and is inducing a 
great speed up compared to a CPU implementation. 
Indeed, we can reach an acceleration factor up to 20 
compared to a CPU implementation parallelized on 4 
cores. Time computing of regular or flowing 
separable bilateral filters on CPU or GPU are almost 
identical. 
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