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Abstract

A Heffter array H(n; k) is an n × n matrix such that each row and column contains k
filled cells, each row and column sum is divisible by 2nk + 1 and either x or −x appears
in the array for each integer 1 6 x 6 nk. Heffter arrays are useful for embedding the
graph K2nk+1 on an orientable surface. An integer Heffter array is one in which each row
and column sum is 0. Necessary and sufficient conditions (on n and k) for the existence of
an integer Heffter array H(n; k) were verified by Archdeacon, Dinitz, Donovan and Yazıcı
(2015) and Dinitz and Wanless (2017). In this paper we consider square Heffter arrays that
are not necessarily integer. We show that such Heffter arrays exist whenever 3 6 k < n.
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1 Introduction
A Heffter array H(m,n; s, t) is an m× n matrix of integers such that:

(1) each row contains s filled cells and each column contains t filled cells;

(2) the elements in every row and column sum to 0 in Z2ms+1; and

(3) for each integer 1 6 x 6 ms, either x or −x appears in the array.

If the Heffter array is square, then m = n and necessarily s = t. We denote such
Heffter arrays by H(n; k), where each row and each column contains k filled cells. A
Heffter array is called an integer Heffter array if Condition (2) in the definition of a Heffter
array above is strengthened so that the elements in every row and every column sum to zero
in Z.

Archdeacon, in [1], was the first to define and study a Heffter array H(m,n; s, t). He
showed that a Heffter array with a pair of special orderings can be used to construct an
embedding of the complete graph K2ms+1 on a surface. This connection is formalised in
the following theorem. For definitions of simple and compatible orderings refer to [1].

Theorem 1.1 ([1]). Given a Heffter array H(m,n; s, t) with compatible orderings ωr of
the symbols in the rows of the array and ωc on the symbols in the columns of the array,
then there exists an embedding of K2ms+1 such that every edge is on a face of size s and a
face of size t. Moreover, if ωr and ωc are both simple, then all faces are simple cycles.

The embedding of K2ms+1 given in Theorem 1.1 provides a connection with the em-
bedding of cycle systems. A t-cycle system on n points is a decomposition of the edges of
Kn into t-cycles. A t-cycle system C on Kn is cyclic if there is a labeling of the vertex set
of Kn with the elements of Zn such that the permutation x→ x+1 preserves the cycles of
C. A biembedding of an s-cycle system and a t-cycle system is a face 2-colorable topolog-
ical embedding of the complete graph K2ms+1 in which one color class is comprised of the
cycles in the s-cycle system and the other class contains the cycles in the t-cycle system,
see for instance [4, 5, 6, 8, 9, 10, 11] for further details.

A number of papers have appeared on the construction of Heffter arrays, H(m,n; s, t).
The case where the array contained no empty cells was studied in [2], with results sum-
marised in Theorem 1.2.

Theorem 1.2 ([2]). There is an H(m,n;n,m) for all m,n > 3 and an integer Heffter
array H(m,n;n,m) exists if and only if m,n > 3 and mn ≡ 0, 3 (mod 4).

The papers [3, 7] focused on square integer Heffter arrays H(n; k) and verified their
existence for all admissible orders. This result is summarized in the following theorem.

Theorem 1.3 ([3, 7]). There exists an integer H(n; k) if and only if 3 6 k 6 n and
nk ≡ 0, 3 (mod 4).

Table 1 lists the possible cases and cites the article which verifies existence of square
integer Heffter arrays, where DNE represents a value that does not exist. In these cases
we will verify existence for the non-integer Heffter arrays H(n; k). The main result of this
paper is the following.

Theorem 1.4. There exists an H(n; k) if and only if 3 6 k 6 n.
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Table 1: Existence results for square integer Heffter arrays H(n; k).

n \ k 0 1 2 3

0 [3] [3, 7] [3] [3]
1 [3] DNE DNE [3]
2 [3] DNE [3] DNE
3 [3] [3, 7] DNE DNE

Table 2: Cases for non-integer Heffter arrays H(n; k).

Case A Case B Case C Case D Case E
k 2 (mod 4) 3 (mod 4) 3 (mod 4) 1 (mod 4) 1 (mod 4)
n 1, 3 (mod 4) 3 (mod 4) 2 (mod 4) 1 (mod 4) 2 (mod 4)

From Theorem 1.2 above, the case n = k has been solved, so we henceforth assume
that n > k. The cases that need to be addressed are set out in Table 2. Cases A, B, C, D and
E are solved by Theorems 3.2, 4.2, 5.2, 6.2 and 7.2, respectively, thus proving Theorem 1.4.

In this paper the rows and columns of a square n × n array are always indexed by the
elements of {1, 2, . . . , n}. Unless otherwise stated, when working modulo n, replace 0 by
n, so we use the symbols 1, 2, . . . , n instead of 0, 1, . . . , n−1. While rows and columns are
calculated modulo an integer, entries are always expressed as non-zero integers. Through-
out this paper A[r, c] = x denotes the occurrence of symbol x in cell (r, c) of array A.

By A±z we refer to the array obtained by replacing A[r, c] by A[r, c]+z (if A[r, c] > 0)
and A[r, c]−z (if A[r, c] < 0). If each row and each column of A contains the same number
of positive and negative numbers, then A± z has the same row and column sums as A. In
this case we say A is shiftable. The support of an array A is defined to be the set containing
the absolute value of the elements contained in A. If A is an array with support S and z a
nonnegative integer, then A± z has support S + z.

2 Increasing k from base cases
For each of the cases set out in Table 2 our overall strategy is to generate a base case
H(n; k) where k takes the smallest possible value and then increase k by multiples of 4,
adjoining 4 additional entries to each row and column. In this section we outline various
tools to enable this process. To this end, we introduce the following definitions.

We associate the cells of an n× n array with the complete bipartite graph Kn,n where
partite sets are denoted {ai | i = 1, 2, . . . , n} and {bj | j = 1, 2, . . . , n} and the edge
{ai, bj} corresponds to the cell (i, j). We say that in an n× n array a set of cells S forms
a 2-factor if the corresponding set of edges in the graph Kn,n forms a spanning 2-regular
graph and forms a Hamilton cycle if the corresponding set of edges forms a single cycle of
length 2n.

For each d ∈ {0, 1, . . . , n− 1}, we define the diagonal Dd to be the set of cells of the
form (r + d, r), 1 6 r 6 n (evaluated modulo n). Observe that the cells Di ∪Dj form a
Hamilton cycle whenever j − i is coprime to n.

Lemma 2.1. Let S1 and S2 be two disjoint sets of cells in an n×n array which each form



372 Ars Math. Contemp. 17 (2019) 369–395

Hamilton cycles. The cells of S1 ∪ S2 can be filled with the elements of {1, 2, . . . , 4n} so
that each row and column sum is equal to 8n+ 2.

Proof. Let the cells of S1 and S2 be {ei | 1 6 i 6 2n} and {fi | 1 6 i 6 2n}, respectively,
where:

• Cells ei and ei+1 are in the same row (column) whenever i is odd (respectively,
even);

• Cells fi and fi+1 are in the same row (column) whenever i is odd (respectively,
even);

• Cells e1 and f1 are in the same row.

Place 1 in cell e1, 4n in cell f1 and:

• 2n − 2i + 1 in cell e2i+1, where 1 6 i 6 n − 1; 2n + 2i − 1 in cell e2i where
1 6 i 6 n;

• 2n+2i in cell f2i+1 where 1 6 i 6 n− 1; 2n− 2i+2 in cell f2i where 1 6 i 6 n.

The entries in cells e1, e2, f1 and f2 add to 1 + (2n+ 1) + 4n+ 2n = 8n+ 2. For every
other row, there are two cells from S1 with entries adding to 4n+ 2 and two cells from S2

with entries adding to 4n. For every column, there are two cells from S1 adding to 4n and
two cells from S2 adding to 4n+ 2. See the example below.

We demonstrate Lemma 2.1 below when n = 9. The elements of S1 are underlined.

S1 ∪ S2

1 19 18 36

34 17 21 2

15 23 10 26

4 13 25 32

14 11 27 22

20 9 29 16

30 7 31 6

24 12 5 33

35 8 28 3

The following theorem will be crucial in Cases A and D.

Theorem 2.2. Let H(n; k) be a Heffter array such that each row and column sums to
2nk + 1. Suppose there exist Hamilton cycles H1 and H2 disjoint to each other and to the
filled cells of H(n; k). Then there exists an H(n; k+4) Heffter array with row and column
sums equal to 2n(k+ 4) + 1, where the filled cells are precisely the filled cells of H(n; k),
H1 and H2.

Proof. Let A0 represent the H(n; k) and negate each element so that each row and column
has sum equal to−(2nk+1). From Lemma 2.1, there exists an array A′1 on the cells of H1

and H2 such that each row and column sum is equal to 8n+2; add n(k+4)−(4n) = nk to
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each element of A′1 to create a new array A1 that has support {nk+1, nk+2, . . . , n(k+4)}.
Note that in A1 each row and column sum is equal to 8n+ 2+ 4nk. Let A be the union of
A0 with A1. The resulting array A has support {1, 2, . . . , n(k+4)}, with k+4 filled cells
in each row and column. Finally, each row and column sum of A is

−(2nk + 1) + (8n+ 2) + 4(nk) = 2n(k + 4) + 1,

as desired.

The following lemma generalizes Theorem 2.2 from [7], and is used in Cases B and C.

Lemma 2.3. Let S1 and S2 be two disjoint sets of cells in an n×n array which each form
Hamilton cycles. Then for any positive integers t and s > t+ 2n, the cells of S1 ∪ S2 can
be filled with elements to make a shiftable array with support {s + i, t + i | 1 6 i 6 2n}
so that the four elements in each row and each column sum to 0.

Proof. Let the sets of cells of S1 and S2 be {ei | 1 6 i 6 2n} and {fi | 1 6 i 6 2n},
respectively, where:

• Cells ei and ei+1 are in the same row (column) whenever i is odd (respectively,
even);

• Cells fi and fi+1 are in the same row (column) whenever i is odd (respectively,
even);

• Cells e1 and f1 are in the same row.

Place:

• s+ 2n in cell e1 and −(t+ 2n) in cell f1, with sum s− t;

• s+ 2i in cell e2i+1 and −(t+ 2i) in cell f2i+1, with sum s− t, for 1 6 i 6 n− 1,

• −(s+ 2i− 1) in cell e2i and t+ 2i− 1 in cell f2i, with sum t− s, for 1 6 i 6 n.

It now follows that the row sums are 0. Using similar arguments it can be seen that the
columns also sum to 0. Observe that there are two positive and two negative integers in
each row and column; thus the array is shiftable.

The proof of the following lemma is similar to the proof of Lemma 2.3; we use this in
Case E.

Lemma 2.4. Let n be even. Let S1 and S2 be two disjoint sets of cells in an n × n array
which each form 2-factors that are the union of two n-cycles. Then for any positive integers
s, t, u and v where s > t+ n, t > u+ n and u > v + n, the cells of S1 ∪ S2 can be filled
with elements to make a shiftable array with support {s+ i, t+ i, u+ i, v+ i | 1 6 i 6 n}
so that the four elements in each row and column sum to 0.

Proof. Let Ci, C ′i be the cycles of the 2-factor Si, i ∈ {1, 2}, where C1 and C ′1 share a row
and C2 and C ′2 share a row. Let the sets of cells of C1, C ′1, C2 and C ′2 be {ei | 1 6 i 6 n},
{fi | 1 6 i 6 n}, {gi | 1 6 i 6 n} and {hi | 1 6 i 6 n}, respectively, where:

• Cells ei and ei+1 are in the same row (column) whenever i is odd (respectively,
even);
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• Cells fi and fi+1 are in the same row (column) whenever i is odd (respectively,
even);

• Cells gi and gi+1 are in the same row (column) whenever i is odd (respectively,
even);

• Cells hi and hi+1 are in the same row (column) whenever i is odd (respectively,
even);

• Cells e1 and g1 are in the same row; cells f1 and h1 are in the same row.

Place:

• s+ n in cell e1, −(t+ n) in cell g1 and u+ n in cell f1, −(v + n) in cell h1;

• s+ 2i in cell e2i+1 and −(t+ 2i) in cell g2i+1, for 1 6 i 6 n/2− 1;

• −(s+ 2i− 1) in cell e2i and t+ 2i− 1 in cell g2i, for 1 6 i 6 n/2;

• u+ 2i in cell f2i+1 and −(v + 2i) in cell h2i+1, for 1 6 i 6 n/2− 1;

• −(u+ 2i− 1) in cell f2i and v + 2i− 1 in cell h2i, for 1 6 i 6 n/2.

It now follows that the row sums are 0. Using similar arguments it can be seen that the
columns also sum to 0.

3 Case A: k ≡ 2 (mod 4)

In this section we construct a Heffter array H(n; k), for n ≡ 1, 3 (mod 4) and k ≡ 2
(mod 4), where k < n. Row and column sums will always equal 2nk + 1. We start with
an example of our construction.

H(15; 6)

6 −4 89 81 1 8

12 −88 83 87 85 2

86 18 −82 77 3 79

73 80 24 −76 71 9

15 67 74 30 −70 65

59 21 61 68 36 −64
−58 53 27 55 62 42

−52 47 33 49 56 48

−46 41 39 43 50 54

−40 35 45 37 44 60

−34 29 51 31 38 66

−28 23 57 25 32 72

−22 17 63 19 26 78

−16 11 69 13 20 84

−10 5 75 7 14 90
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Lemma 3.1. For n ≡ 1, 3 (mod 4), n > 7 and k = 6 there exists a Heffter array H(n; 6).

Proof. We remind the reader that rows and columns are calculated modulo n but the array
entries are not. The array A = A[r, c] is defined as follows, where 1 6 i 6 n:

A[i, i] = 6i, A[i+ 2, i] = 6n+ 2− 6i,

A[i+ 1, n− 2 + i] = 6n+ 1− 6i, A[i+ 2, n− 2 + i] = 6i− 3,

A[i, n− 5 + i] = 6n+ 5− 6i, A[i+ 1, n− 5 + i] = −6n− 4 + 6i.

Then the support of A is {1, 2, . . . , 6n}. The sets of elements in rows 1, 2 and i,
3 6 i 6 n, are, respectively:

{6, 8, 1, 6n− 9, 6n− 1,−4},
{12, 2, 6n− 5, 6n− 3, 6n− 7,−(6n− 2)},
{6i, 6n+ 2− 6(i− 2), 6n+ 1− 6(i− 1), 6(i− 2)− 3,

6n+ 5− 6i,−6n− 4 + 6(i− 1)}.

Thus in each case the sum of elements in a row is 12n+ 1.
The set of elements in column i, 1 6 i 6 n− 5 is:

{6i, 6n+ 2− 6i, 6n+ 1− 6(i+ 2), 6(i+ 2)− 3,
6n+ 5− 6(i+ 5),−6n− 4 + 6(i+ 5)}.

The set of elements in columns n− 4, n− 3, n− 2, n− 1 and n are, respectively:

{6n− 24, 26, 13, 6n− 15, 6n− 1,−(6n− 2)},
{6n− 18, 20, 7, 6n− 9, 6n− 7,−(6n− 8)},
{6n− 12, 14, 1, 6n− 3, 6n− 13,−(6n− 14)},
{6n− 6, 8, 6n− 5, 3, 6n− 19,−(6n− 20)},
{6n, 2, 6n− 11, 9, 6n− 25,−(6n− 26)}.

Thus in each case the sum of elements in a column is 12n+ 1.

Theorem 3.2. There exists a Heffter array H(n; k) for all n ≡ 1, 3 (mod 4) and k ≡ 2
(mod 4), where n > k > 6.

Proof. Let k = 4p+ 6. Then 4p+ 6 6 n− 1 so p 6 (n− 7)/4. We have solved the case
p = 0 in Lemma 3.1 so we may assume p > 1. Observe that the Heffter array given in the
proof of that lemma uses only elements in diagonals D0, D2, D3, D4, D5 and D6 and so
does not intersect the diagonals D7, D8, . . . , Dn−1. We can apply Theorem 2.2 recursively,
where the diagonals D7, D8, . . . , D6+2p−1, D6+2p can be paired to give sets of cells S1

and D6+2p+1, D6+2p+2, . . . , D6+4p−1, D6+4p paired to give sets of cells S2. The result
is a Heffter array H(n; k) with constant row and column sum 2nk + 1 whenever k ≡ 2
(mod 4), n ≡ 1, 3 (mod 4) and n > k > 6.

4 Case B: k ≡ 3 (mod 4) and n ≡ 3 (mod 4)

In this section we construct a Heffter array H(n; k) where n = 4m + 3, k = 4p + 3 and
k < n.
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We will begin with k = 3. We first assume that m > 4 and construct an n × n
array which is the concatenation of three smaller arrays, A0 = A0[r, c], of dimension
(4m− 7)× (4m− 7), A1 = A1[r, c] of dimension 7× 7 and C of dimension 3× 3, each
containing 3 filled cells per row and column. So we see that n = 4m+ 3. The sum of the
rows and columns in A0 and A1 will be 0, while the sum of the rows and columns in C will
be 2nk + 1.

We begin with an example of the main construction of this section.

H(19; 3)

16 −48 32

17 27 −44

−33 −14 47

21 15 −36

−18 −13 31

29 −9 −20

−34 −12 46

45 −10 −35

−19 30 −11

−25 24 1

22 −50 28

3 37 −40

26 23 −49

−38 42 −4

−51 8 43

−2 41 −39

5 57 53

54 6 55

56 52 7

Lemma 4.1. For n ≡ 3 (mod 4) and n > 7 there exists a Heffter array H(n; 3).

Proof. Let n = 4m+ 3. We first assume that m > 4 and so n > 19. The small cases will
be dealt with at the end of the proof. Let A′0 be:

A′0[2i− 1, 2i] = 8m+ 1− i, 1 6 i 6 m,

A′0[2i, 2i− 1] = −(8m+ i), 1 6 i 6 m,

A′0[2i, 2i+ 1] = 12m− i, 1 6 i 6 m− 1,

A′0[2i+ 1, 2i] = −(4m+ 1 + i), 1 6 i 6 m− 1,

A′0[2m− 2 + 2i, 2m− 1 + 2i] = 5m+ i, 1 6 i 6 m− 3,

A′0[2m− 1 + 2i, 2m− 2 + 2i] = −(11m+ 1− i), 1 6 i 6 m− 3,
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A′0[2m− 1 + 2i, 2m+ 2i] = 9m+ i, 1 6 i 6 m− 4,

A′0[2m+ 2i, 2m− 1 + 2i] = −(7m+ 1− i), 1 6 i 6 m− 4,

A′0[i+ 1, i+ 1] = −(4m− 1− i), 1 6 i 6 2m− 2,

A′0[2m+ i, 2m+ i] = 2m− i, 1 6 i 6 2m− 8,

A′0[2m, 2m] = 4m− 1, A′0[1, 4m− 7] = −12m,

A′0[1, 1] = 4m, A′0[4m− 7, 1] = 4m+ 1,

A′0[4m− 7, 4m− 7] = 6m+ 3.

We illustrate A′0 in the case m = 4:

A′0(m = 4)

16 32 −48
−33 −14 47

−18 −13 31

−34 −12 46

−19 −11 30

−35 −10 45

−20 −9 29

−36 15 21

17 −44 27

First observe that the array A′0 is a (4m− 7)× (4m− 7) array that has 3 filled cells in
each row and column.

To confirm that the row and columns sums are 0, note that this array was constructed
by taking the first 4m − 8 rows and columns of the integer Heffter array H(4m; 3) given
in [3], then placing entry −12m in cell (1, 4m− 7), entry 4m+ 1 in cell (4m− 7, 1) and
entry 6m+ 3 in cell (4m− 7, 4m− 7). Thus we need only check the sum of row 4m− 7
which is (4m+ 1) + (6m+ 3)− (10m+ 4) = 0 and the sum of column 4m− 7 which is
−12m+ (6m− 3) + (6m+ 3) = 0. Hence each row and column in the array A′0 sums to
zero.

Although not necessary for the case k = 3, for larger values of k (see the following
theorem) we map the rows and columns of A′0 so that the filled cells are a subset of the
union of diagonals D0 ∪ D1 ∪ D2 ∪ Dn−2 ∪ Dn−1. This can be done by applying the
mapping

i 7→

{
2i− 1, when 1 6 i 6 2m− 3,

8m− 2i− 12, when 2m− 2 6 i 6 4m− 7,

to the rows and column of A′0. This does not change the row and column sum and the
support is still

{1, 2, . . . , 4m+ 3} \ {1, 2, . . . , 7, 2m, 6m− 2, . . . , 6m+ 2, 6m+ 4,
10m− 3, . . . , 10m+ 3, 12m+ 1, 12m+ 2, . . . , 12m+ 9}.

We call this rearranged array A0; see H(19; 3) above for A0 when m = 4.
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Next, let A1 be:

A1

−(6m+ 1) 6m 1

6m− 2 −(12m+ 2) 6m+ 4

3 10m− 3 −10m

6m+ 2 6m− 1 −(12m+ 1)

−(10m− 2) 10m+ 2 −4

−(12m+ 3) 2m 10m+ 3

−2 10m+ 1 −(10m− 1)

It is easy to check that this array has row and column sum 0 and support

{1, 2, 3, 4, 2m, 6m− 2, . . . , 6m+ 2, 6m+ 4,
10m− 3, . . . , 10m+ 3, 12m+ 1, 12m+ 2, 12m+ 3}.

We place A1 on the intersection of row and column sets {4m− 6, 4m− 5, . . . , 4m}.
Finally, place the block C on the intersection of the row and column sets {4m + 1,

4m + 2, 4m + 3}. Observe that the rows and columns sum to 2nk + 1. It is convenient
to express C in terms of n and k, as it will be part of more general constructions in the
next theorems. However, if k = 3, observe that {12m + 4, 12m + 5, . . . , 12m + 9} =
{nk − 5, nk − 4, . . . , nk}.

C

5 nk nk − 4

nk − 3 6 nk − 2

nk − 1 nk − 5 7

Let A be the concatenation of A0, A1 and C to obtain an H(4m + 3; 3) Heffter array
for all m > 4. An H(7; 3) is given in the Appendix. When n = 11 or 15, concatenating
the array B(n) given in the Appendix for these size with C will produce an H(n; 3) with
similar properties and support.

We now consider the case when k > 3; we apply the techniques developed in Section 2.

Theorem 4.2. There exists a Heffter array H(n; k) for all n ≡ 3 (mod 4) and k ≡ 3
(mod 4), where n > k > 3.

Proof. Given Lemma 4.1 we only need to address the case k = 4p+ 3 where 1 6 p < m.
Since k 6 n− 4, p 6 (n− 7)/4. First observe that the filled cells of H(n; 3) given in the
previous lemma are a subset the union of diagonals D0, D1, D2, Dn−2, Dn−1 with support
{1, 2, . . . , 12m+3}∪{nk−5, nk−4, . . . , nk}. We next identify p disjoint Hamilton cycles,
that are also disjoint from diagonals D0, D1, D2, Dn−2, Dn−1, by pairing the remaining
(n−5) diagonals. Then we apply Lemma 2.3, contributing {12m+4, 12m+5, . . . , nk−6}
to the support. The result is a Heffter array H(n; k) with each row and column sum equal
to 0 except for the final three rows and columns which sum to 2nk + 1.
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5 Case C: k ≡ 3 (mod 4) and n ≡ 2 (mod 4)

We construct a Heffter array H(n; k) where n = 4m+ 6 and k = 4p+ 3 for k < n.
As in the previous section, we will begin with k = 3. Firstly we will assume that m > 7

and construct an n× n array which is the concatenation of several smaller arrays. Here we
use four smaller arrays, A0 = A0[r, c] of size (4m − 13) × (4m − 13), A1 = A1[r, c] of
size 13× 13, A2 = A2[r, c] of size 3× 3 and A3 = A3[r, c] of size 3× 3, each containing
3 filled cells per row and column. The sum of the rows and columns in A0, A1 and A2 is
0, while the sum of the rows and columns in A3 is 2nk + 1.

Lemma 5.1. For n ≡ 2 (mod 4) and n > 34 there exists a Heffter array H(n; 3).

Proof. Let n = 4m+ 6 and m > 7. Let A′0 be:

A′0[2i− 1, 2i] = 8m+ 1− i, 1 6 i 6 m,

A′0[2i, 2i− 1] = −(8m+ i), 1 6 i 6 m,

A′0[2i, 2i+ 1] = 12m− i, 1 6 i 6 m− 1,

A′0[2i+ 1, 2i] = −(4m+ 1 + i), 1 6 i 6 m− 1,

A′0[2m− 2 + 2i, 2m− 1 + 2i] = 5m+ i, 1 6 i 6 m− 6,

A′0[2m− 1 + 2i, 2m− 2 + 2i] = −(11m+ 1− i), 1 6 i 6 m− 6,

A′0[2m− 1 + 2i, 2m+ 2i] = 9m+ i, 1 6 i 6 m− 7,

A′0[2m+ 2i, 2m− 1 + 2i] = −(7m+ 1− i), 1 6 i 6 m− 7,

A′0[i+ 1, i+ 1] = −(4m− 1− i), 1 6 i 6 2m− 2,

A′0[2m+ i, 2m+ i] = 2m− i, 1 6 i 6 2m− 14,

A′0[2m, 2m] = 4m− 1, A′0[1, 4m− 13] = −(12m),

A′0[1, 1] = 4m, A′0[4m− 13, 1] = 4m+ 1,

A′0[4m− 13, 4m− 13] = 6m+ 6.

We illustrate A′0 when m = 7:

A′0(m = 7)

28 56 −84
−57 −26 83

−30 −25 55

−58 −24 82

−31 −23 54

−59 −22 81

−32 −21 53

−60 −20 80

−33 −19 52

−61 −18 79

−34 −17 51

−62 −16 78

−35 −15 50

−63 27 36

29 −77 48
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Observe that the array A′0 is a (4m − 13) × (4m − 13) array that has 3 filled cells in
each row and column. Similarly to the previous case, this array was constructed by taking
the first 4m − 14 rows and columns of the integer Heffter array H(4m; 3) given in [3],
then placing entry −12m in cell (1, 4m− 13), entry 4m+1 in cell (4m− 13, 1) and entry
6m + 6 in cell (4m − 13, 4m − 13). Thus we need only check the sum of row 4m − 13
which is (4m+1)+ (6m+6)− (10m+7) = 0 and the sum of column 4m− 13 which is
−12m + (6m − 6) + (6m + 6) = 0. Hence all rows and columns in the array A′0 sum to
zero. We apply the same mapping as in the proof of Lemma 4.1 to the rows and columns
so that all non-empty cells are a subset of the diagonals D0, D1, D2, Dn−2, Dn−1. Let A0

be the resultant array. The support for A0 is

{1, 2, . . . , 12m+ 8} \ {1, 2, . . . , 13, 2m, 6m− 5, 6m− 4, . . . , 6m+ 5, 6m+ 7,
10m− 6, 10m− 5, . . . , 10m+ 6, 12m+ 1, 12m+ 2, . . . , 12m+ 18}.

We now arrange the 57 missing symbols into a 13× 13 array A1 and two 3× 3 arrays
A2 and A3, where A2 and A3 ares shown below and A1 is given at the end of the Appendix.

A2

−8 nk − 2 −(nk − 10)

−(nk − 9) −9 nk

nk − 1 −(nk − 11) −10

A3

11 nk − 3 nk − 7

nk − 6 12 nk − 5

nk − 4 nk − 8 13

The support for A1 is

{1, 2, . . . , 7, 2m, 6m− 5, 6m− 4, . . . , 6m+ 5, 6m+ 7,
10m− 6, 10m− 5, . . . , 10m+ 6, 12m+ 1, 12m+ 2, . . . , 12m+ 6}.

Finally we give A2 and A3 with support

{8, 9, 10, 11, 12, 13} ∪ {nk − 11, nk − 10, . . . , nk}.

In the case k = 3, observe that {nk − 11, nk − 10, . . . , nk} = {12m + 7, 12m + 8,
. . . , 12m+ 18}.

The concatenation of A0, A1, A2 and A3 gives a H(4m+6; 3) Heffter array for m > 7.

Theorem 5.2. There exists a Heffter array H(n; k) for all n ≡ 2 (mod 4) and k ≡ 3
(mod 4), where n > k > 3.

Proof. An H(6; 3) is given in the Appendix. Otherwise let n = 4m + 6 where m > 1.
When 1 6 m 6 5 concatenate the B(4m+6) given in the Appendix with the array C given
in Case B to get an H(4m + 6; 3). Observe that when 1 6 m 6 4 the entries are only on
diagonals D0, D1, D2, Dn−2, Dn−1 as before. When n = 26 the entries are on diagonals
D0, D1, D2, D24, D25 and D9. We pair up the rest of the diagonals as {D2i, D2i+1} for
5 6 i 6 11, and {D3, D4}, {D5, D6}, {D7, D8} to get the required Hamilton cycles.
When m = 6, n = 30; an H(30; 3) is given in the Appendix. Two Hamilton cycles H
and K are also given as a reference on the array. These Hamilton cycles together with
H(30; 3) only have entries on diagonals D0, D1, D2, D3, D27, D28, D29, D18 and D11.
For the rest of the diagonals, pair them up as {D4, D5}, {D6, D7}, {D8, D9}, {D12, D13},
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{D14, D15}, {D16, D17} and {D2i−1, D2i} for 10 6 i 6 13 to get the necessary Hamilton
cycles.

When m > 7, a H(n; 3) exists by Lemma 5.1, then the proof follows as in Lemma 4.1.

6 Case D: k ≡ 1 (mod 4) and n ≡ 1 (mod 4)

In this section we construct a Heffter array H(n; k) where n = 4m + 1 and k = 4p + 1,
with k < n and hence m > 2. The case H(9; 5) is given in the Appendix and so henceforth
we assume m > 3.

We begin with k = 5 construct an n × n array for which the sum of each row and
column is 2nk + 1 = 40m + 11. First we give an example H(17; 5) of our construction.
(Note a Hamilton cycle H has been included for the case k > 5.)

H(17; 5)

85 -27 11 50 H H 52

68 84 -28 12 35 H H

67 83 -29 13 H H 37

66 82 -30 14 39 H H

65 81 -31 15 41 H H

64 80 -32 43 H 16 H

63 79 -33 17 45 H H

H H 62 78 -34 18 47

-20 H H 61 60 21 49

H H 77 59 -19 3 51

36 H H 76 58 -22 23

38 H H 75 57 -4 5

40 H H 25 74 56 -24
42 H H 73 55 -6 7

2 44 H H 72 54 -1
9 46 H 53 71 H -8

H 10 48 -26 H 70 69

Lemma 6.1. For n ≡ 1 (mod 4), n > 13 and k = 5 there exists a Heffter array H(n; 5).

Proof. Let n = 4m + 1 for m > 3. In every case here row and column sums will equal
40m+ 11.

We give the general construction of A below.

A[4m− 1, 4m] = −1, A[4m− 1, 1] = 2,

A[4m, 2] = 2m+ 1, A[4m+ 1, 3] = 2m+ 2,

A[2m− 2, 4m] = 4m, A[2m− 1, 2m+ 2] = 4m+ 1,

A[2m, 2m+ 3] = 4m+ 2, A[2m+ 2, 2m+ 3] = −(4m+ 3),

A[2m+ 1, 1] = −(4m+ 4), A[1, 2m] = 12m+ 2,
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A[4m+ 1, 2m+ 1] = −(6m+ 2), A[4m− 3, 2m+ 1] = 6m+ 1,

A[2m, 2m+ 2] = −(8m+ 2), A[2, 2m+ 1] = 8m+ 3,

A[3, 4m] = 8m+ 5, A[1, 4m+ 1] = 12m+ 4,

A[4m, 2m+ 2] = 12m+ 5, A[4m+ 1, 4m+ 1] = 16m+ 5.

A[i, i+ 3] = 2m+ i+ 2, 1 6 i 6 2m− 3, (6.1)
A[i+ 1, i] = 16m+ 5− i, 1 6 i 6 2m, (6.2)

A[i, i] = 20m+ 6− i, 1 6 i 6 2m, (6.3)
A[2m− i, 2m+ 1− i] = −(8m+ 2− i), 1 6 i 6 2m− 1, (6.4)

A[2m+ 3− i, 4m+ 2− i] = 12m+ 5− 2i, 1 6 i 6 2m− 1, (6.5)
A[2m+ i, 2m+ i] = 14m+ 5− i, 1 6 i 6 2m− 1, (6.6)

A[2m+ 1 + i, 2m+ i] = 18m+ 6− i, 1 6 i 6 2m, (6.7)
A[4m+ 2− i, 2m− i] = 12m+ 2− 2i, 1 6 i 6 2m− 1, (6.8)

A[2m+ 2i, 2m+ 2i+ 3] = 2i+ 1, 1 6 i 6 m− 1, (6.9)
A[2m+ 2i+ 2, 2m+ 2i+ 3] = −(2i+ 2), 1 6 i 6 m− 1, (6.10)
A[2m+ 2i− 1, 2m+ 2i+ 2] = 4m+ 2i+ 3, 1 6 i 6 m− 2, (6.11)
A[2m+ 2i+ 1, 2m+ 2i+ 2] = −(4m+ 2i+ 4), 1 6 i 6 m− 2. (6.12)

We note that the support of A contains:

• 3, 4, . . . , 2m by (6.9) and (6.10),

• 2m+ 3, 2m+ 4, . . . , 4m− 1 by (6.1),

• 4m+ 5, 4m+ 6, . . . , 6m by (6.11) and (6.12),

• 6m+ 3, 6m+ 4, . . . , 8m+ 1 by (6.4),

• 8m+ 4, 8m+ 6, 8m+ 7, . . . , 12m, 12m+ 1, 12m+ 3 by (6.5) and (6.8),

• 12m+ 6, 12m+ 7, . . . , 16m+ 4 by (6.6) and (6.2),

• 16m+ 6, 16m+ 7, . . . , 20m+ 5 by (6.7) and (6.3).

It follows that the support of A is {1, 2, . . . , 20m+ 5} as required.
To verify the sum of each row and column is 40m+11 we begin by noting that, respec-

tively, (6.1), (6.2), (6.3), (6.4) and (6.5) give the sum for row r (where 4 6 r 6 2m − 3)
and (6.1), (6.2), (6.3), (6.4) and (6.8) give the sum for column c (where 4 6 c 6 2m − 1)
as:

(2m+r+2)+(16m+6−r)+(20m+6−r)−(6m+r+2)+(8m−1+2r) = 40m+11

and

(2m+c−1)+(16m+5−c)+(20m+6−c)−(6m+1+c)+(8m+2+2c) = 40m+11.

For row 2m+ r, where 3 6 r 6 2m− 4 (or r = 2m− 2) and column 2m+ c, where
4 6 c 6 2m− 1, we argue as follows.
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Respectively (6.6), (6.7) and (6.8) give a partial sum of 40m + 10 for row r and (6.5),
(6.6) and (6.7) give a partial sum of 40m+ 12 for column c:

(14m+ 5− r) + (18m+ 7− r) + (8m− 2 + 2r) = 40m+ 10, (6.13)
(8m+ 1 + 2c) + (14m+ 5− c) + (18m+ 6− c) = 40m+ 12. (6.14)

Next (6.9) and (6.10) imply that if r is even, row 2m+ r contain the entries r + 1 and
−r giving a partial sum of 1. If r is odd, (6.11) and (6.12) imply that row 2m+ r contains
the entries 4m+ r+4 and−(4m+ r+3) also giving a partial sum of 1. Adding this to the
partial sum in (6.13) we get an overall row sum of 40m+ 11. Then (6.9) and (6.10) imply
that if c is odd, column 2m + c contains the entries c − 2 and −(c − 1) giving a partial
sum of −1. If c is even, (6.11) and (6.12) imply that column 2m + c contains the entries
4m+ c+ 1 and −(4m+ c+ 2) also giving a partial sum of −1. Adding this to the partial
sum in (6.14) we get a column sum of 40m+ 11.

The remaining rows and columns can be checked individually to complete the proof
that all rows and columns sum to 40m+11. Thus we have the required H(4m+1; 5).

Next, with care, we add up to 2(m−2) Hamilton cycles to obtain an H(4m+1; 4p+5)
where p 6 m− 2.

Theorem 6.2. For n ≡ 1 (mod 4) and k ≡ 1 (mod 4) there exists a Heffter array
H(n; k), where k < n.

Proof. Let n = 4m + 1. The Heffter array H(9; 5) is given in the Appendix. Otherwise,
an H(n; 5) exists by Lemma 6.1. This was labeled A in the proof of that lemma. Observe
that the occupied cells of A are a subset of the union of diagonals

D := Dn−3 ∪Dn−2 ∪Dn−1 ∪D0 ∪D1 ∪D4 ∪D2m−4
∪D2m−2 ∪D2m−1 ∪D2m ∪D2m+2.

For each m > 3, the following set of cells is a subset of D, that does not intersect A
and forms a Hamilton cycle H:

{(i, 2m+ 1 + i), (i, 2m+ 2 + i) | 1 6 i 6 2m− 3}
∪ {(2m− 2, 4m− 1), (2m− 2, 4m+ 1)}
∪ {(2m− 1, 4m+ 1), (2m− 1, 4m), (4m, 4m), (4m, 2m+ 1)}
∪ {(i, i− 2m+ 1), (i, i− 2m+ 2) | 2m 6 i 6 4m− 1}
∪ {(4m+ 1, 1), (4m+ 1, 2m+ 2)}.

(See the array H(17; 5) above for an example.) Thus there exists 4m+1−11 = 4(m−2)−2
diagonals that do not intersect A ∪ H and so it is possible to construct 2m − 5 disjoint
Hamilton cycles by pairing empty diagonals that are either distance 1 or 2 apart.

For m > 6 a possible pairing of diagonals is:

{D2, D3};
{D2m−5, D2m−3};
{D5+2i, D6+2i}, 0 6 i 6 m− 6;

{D2m+1, D2m+3};
{D2m+4+2i, D2m+5+2i}, 0 6 i 6 m− 4.
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When m = 4 we pair the diagonals as {D2, D3}; {D9, D11}; {D12, D13} and
when m = 5 we pair the diagonals as {D2, D3}; {D5, D7}; {D11, D13}; {D14, D15};
{D16, D17}.

Together with H this gives a total of 2m − 4 Hamilton cycles. Thus applying Theo-
rem 2.2 recursively, we can form a Heffter array for each k such that k ≡ 1 (mod 4) and
k 6 n− 4.

7 Case E: k ≡ 1 (mod 4) and n ≡ 2 (mod 4)

In this section we construct a Heffter array H(n; k) where n = 4m + 2 and k = 4p + 1,
where k < n.

We demonstrate the following construction in the case m = 4 with an example of an
H(18; 5); the cycles H and K will be needed later for the case k > 5.

H(18; 5)

2 51 20 −38 −35

−40 4 53 19 −36

−42 −28 6 37 27

39 −44 −29 8 26

41 25 −46 −30 10

43 24 −48 −31 12

45 23 −50 −32 14

47 22 −52 −33 16

49 21 −54 −34 18

1 81 K H 69 −60 K 90 H

H 3 80 K H 70 −61 K 89

88 H 5 79 K H 71 −62 K

72 87 H 7 78 K H K −63

−55 K 86 H 9 77 K H 64

K −56 K 85 H 11 76 65 H

75 66 −57 K 84 H 13 H K

K H 67 −58 K 83 H 15 74

H K H 68 −59 K 82 73 17

Lemma 7.1. For n ≡ 2 (mod 4), n > 6 there exists a Heffter array H(n; 5).

Proof. Let n = 4m + 2. The case H(n; k) = H(6; 5) is given in the Appendix and so
henceforth we assume m > 2. Our Heffter array will be the concatenation of an array A0

in the first 2m+1 rows and columns and an array A1 in the last 2m+1 rows and columns.
The row and column sums of A0 will be 0 and the row and column sums of A1 will be
2nk + 1.

In our definition of A0, rows and columns are calculated modulo 2m+1 rather than n.
We begin by defining a (2m+ 1)× (2m+ 1) array A′0 which has support

{2, 4, 5, . . . , 4m+ 2} ∪ {4m+ 3, 4m+ 4, . . . , 12m+ 6}
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and for which each row sums to 0 and each column sums to 0 except for columns 1 and
2m + 1, which sum to −(2m + 1) and 2m + 1, respectively. Then we swap the entry
−(8m+ 4) in cell (2, 1) with the entry −(8m+ 8) in cell (2, 2m+ 1) and swap the entry
6m+ 2 in cell (4, 1) with the entry 8m+ 7 in cell (4, 2m+ 1). The result will be an array
A0 defined on row and column set {1, 2, . . . , 2m + 1} with row and column sums equal
to 0.

To this end, for 1 6 i 6 2m+ 1 let

A′0[i, i] = 2i; A′0[3− i, 2m+ 1− i] = 4m+ 2 + i;

A′0[2 + i, 1 + i] = −(6m+ 3 + i); A′0[2 + i, i− 2] = 8m+ 3 + 2i;

A′0[i, i− 2] = −(8m+ 4 + 2i).

Now let

A0[r, c] =



−(8m+ 8), (r, c) = (2, 1),

−(8m+ 4), (r, c) = (2, 2m+ 1),

8m+ 7, (r, c) = (4, 1),

6m+ 2, (r, c) = (4, 2m+ 1),

A′0[r, c], otherwise.

The case m = 4 is illustrated in the example H(18; 5) given above. It will be useful
to note that the non-empty cells of this (2m+ 1)× (2m+ 1) array A0 are a subset of the
union of diagonals

D0 := D0 ∪D1 ∪D2 ∪D3 ∪D4.

Next, we define a (2m + 1) × (2m + 1) array A1, on row and column set {2m + 2,
2m + 3, . . . , 4m + 2} with support {1, 3, 4, . . . , 4m + 1} ∪ {12m + 7, 12m + 8, . . . ,
16m + 8} ∪ {kn − 4m − 1, kn − 4m, . . . , kn}. For the case k = 5, observe that
{kn − 4m − 1, kn − 4m, . . . , kn} = {16m + 9, 16m + 10, . . . , 20m + 10}. Thus when
k = 5 the support of A0 ∪ A1 is {1, 2, . . . , 20m+ 10} as required. Each row and column
of A1 will sum to 2nk + 1. We first give A1 for the cases m = 2 and m = 3 separately;
then we present the general formula.

A1(m = 2, n = 10)

1 10k − 4 −31 10k − 2 37

39 3 10k −34 10k − 7

−33 40 5 10k − 8 10k − 3

10k − 1 10k − 6 36 7 −35
10k − 5 −32 10k − 9 38 9

A1 (m = 3, n = 14)

1 14k −43 14k − 7 50

14k − 1 3 51 14k − 8 −44
−45 5 14k − 2 55 14k − 12

14k − 3 7 14k − 11 54 −46
56 −47 9 14k − 13 14k − 4

14k − 6 53 −48 14k − 9 11

−49 14k − 10 14k − 5 52 13
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Otherwise m > 4 and we define A1 as follows. The rows and columns are defined
modulo 2m+ 1 rather than modulo n. To construct the overall Heffter array, the array A1

is then shifted by adding 2m+ 1 (as an integer) to each row and column.

A1[4, 1] = 14m+ 8; A1[5, 2m+ 1] = 14m+ 9; (7.1)
A1[6, 2m] = 16m+ 8; A1[2m− 1, 1] = kn− 4m+ 1; (7.2)

A1[2m, 2m+ 1] = kn− 4m; A1[2m+ 1, 2m] = kn− 4m− 1; (7.3)
A1[i, i] = 2i− 1, 1 6 i 6 2m+ 1; (7.4)

A1[i, 2m− 1 + i] = kn+ 1− i, 1 6 i 6 2m+ 1; (7.5)
A1[i, i+ 1] = kn− 2m− i, 1 6 i 6 2m− 2; (7.6)
A1[4 + i, i] = −(12m+ 6 + i), 1 6 i 6 2m+ 1; (7.7)

A1[6 + i, 1 + i] = 14m+ 9 + i, 1 6 i 6 2m− 2. (7.8)

We note that the support for A1 is the union of the sets:

• {1, 3, 5, 6, . . . , 4m+ 1} (by (7.4)),

• {12m+ 7, 12m+ 8, . . . , 14m+ 7} (by (7.7)),

• {14m+ 8, 14m+ 9} (by (7.1)),

• {14m+ 10, . . . , 16m+ 7} (by (7.8)),

• {16m+ 8} (by (7.2)),

• {kn− 4m− 1, kn− 4m, kn− 4m+ 1} (by (7.2), (7.3)),

• {kn− 4m+ 2, . . . , kn− 2m− 1} (by (7.6)) and

• {kn− 2m, . . . , kn} (by (7.5)).

We next check the row and column sums. For row r in the range 7 to 2m+1, (7.5) and
(7.6) give a partial sum of

(kn+ 1− r) + (kn− 2m− r) = 2kn− 2m+ 1− 2r,

while (7.7) and (7.8) give a partial sum of

(−12m− 6− (r − 4)) + (14m+ 9 + (r − 6)) = 2m+ 1.

Now combined with (7.4) the sum of these rows is

(2nk − 2m+ 1− 2r) + (2m+ 1) + (2r − 1) = 2nk + 1,

as required.
For column c in the range 2 to 2m− 1, (7.5) and (7.6) give a partial sum of

(kn+ 1− (c+ 2)) + (kn− 2m− (c− 1)) = 2kn− 2m− 2c,

while (7.7) and (7.8) give a partial sum of

(−12m− 6− c) + (14m+ 9 + (c− 1)) = 2m+ 2.
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Now combined with (7.4) the sum of these columns is

(2nk − 2m− 2c) + (2m+ 2) + (2c− 1) = 2nk + 1.

The sum of the remaining rows and columns can be calculated individually and overall the
rows and columns of A1 sum to 2nk + 1 as required. Thus the concatenation of A0 with
A1 gives an H(4m+ 2; 5).

Theorem 7.2. For n ≡ 2 (mod 4), n > 6 and k ≡ 1 (mod 4) there exists a Heffter array
H(n; k), where k < n.

Proof. Let n = 4m + 2 and k = 4p + 1. A H(n; 5) exists by Lemma 7.1. Otherwise,
k > 9 and m > 2. We take the array A = A0 ∪A1 from the previous lemma.

We will construct m − 2 cycles of length n (that is, on 2(2m + 1) = n cells) in the
upper left-hand (A0) and lower right-hand (A1) quadrants, and m further cycles of length
n in each of the remaining quadrants. Together these form 2m− 2 disjoint 2-factors.

From the proof of Lemma 7.1, within A0 there are 2m + 1 − 5 = 2(m − 2) empty
diagonals, which we take in pairs to obtain m − 2 cycles of length n. Next take the inter-
section of the last 2m+1 rows and columns, this is the (2m+1)× (2m+1) subarray that
contains A1. We will refer to diagonals within that subarray only, recalling that the rows
and columns are calculated modulo 2m+1. We aim to find m− 2 cycles of length n from
this subarray. The case m = 2 is trivial and for the case m = 3, observe that the empty
cells of A1 in the previous lemma form a cycle of length 14. Otherwise m > 4 and the
array A1 occupies diagonals D0, D1, D2, D3, D4, D5, D7, D2m−2 and D2m.

Next take the following cells

H =
(
{(i+ 1, i), (2m− 2 + i, i) | 1 6 i 6 2m+ 1} \

{(2m− 1, 1), (2m+ 1, 2m)}
)
∪ {(2m− 1, 2m), (2m+ 1, 1)}

K =
(
{(3 + i, i), (7 + i, i) | 1 6 i 6 2m+ 1} \

{(4, 1), (6, 2m)}
)
∪ {(4, 2m), (6, 1)}.

In the example H(18; 5) above these cycles are shown in cells marked by H and K,
respectively. Observe that H and K form two cycles of length 4m+2 disjoint from A1 but
are a subset of

D1 ∪D2m−2 ∪D2m ∪D3 ∪D7 ∪D5.

Thus there exists 2m+1− 9 = 2(m− 4) diagonals that do not intersect A1 ∪H ∪K.
For m > 6, we can thus form m− 4 cycles of length n by taking pairs of diagonals:

{D6, D8};
{D2m−3, D2m−1};
{D9+2i, D10+2i}, 0 6 i 6 m− 7,

and when m = 5, 2m + 1 = 11 so we get one cycle of length n by taking the diagonals
D6 and D9. Thus with H and K we have m − 2 cycles of length n that are disjoint from
A1 and each other; together these form m − 2 2-factors, each consisting of two cycles of
length n.

We can create a further m cycles of length n in each of the remaining quadrants, as these
cells are all empty. Altogether we have 2m − 2 disjoint 2-factors. Thus by Lemma 2.4,
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we can fill 4(p− 1) cells in each row and column with support {16m+ 9, 16m+ 10, . . . ,
kn− 4m− 2} without changing the row and column sums, where k = 4p+ 1. Thus there
exists an H(4m+ 2; 4p+ 1) Heffter array for each m > 2 and p 6 m.
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Appendix

Case B

H(7; 3)

15 −13 −2
−11 14 −3
−4 −8 12

−1 10 −9
5 21 17

18 6 19

20 16 7

B(11)

−1 18 −17
24 −2 −22
−23 −3 26

−16 20 −4
19 −8 −11
−9 21 −12
−10 25 −15

−13 −14 27

B(15)

1 −36 35

−34 −3 37

33 −22 −11
39 −21 −18
−14 −12 26

−15 −17 32

28 −19 −9
30 −10 −20
−16 24 −8

−13 38 −25
−29 31 −2

−4 −23 27
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Case C

H(6; 3)

−1 −16 17

−11 −4 15

12 −9 −3
−2 10 −8

13 −7 −6
18 14 5

B(10)

1 22 −23
17 2 −19
−18 15 3

−24 14 10

9 11 −20
4 −16 12

13 −21 8

B(14)

−34 −1 35

−2 24 −22
36 −32 −4
−23 −3 26

−20 28 −8
30 −9 −21
−10 −19 29

−11 27 −16
25 −12 −13
−14 −17 31

−15 33 −18

B(18)

1 21 −22
−36 −4 40

35 −12 −23
−17 33 −16

−11 42 −31
−28 41 −13

−18 43 −25
−26 45 −19

−14 34 −20
−30 −2 32

27 −24 −3
−15 44 −29

−8 46 −38
−39 −9 48

47 −37 −10
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Cases D and E

H(9; 5)

45 36 20 −18 8

−16 24 43 34 6

44 35 22 7 −17
5 42 −15 33 26

9 −10 32 41 19

1 40 −2 21 31

−12 23 30 39 11

25 3 −4 38 29

28 −14 27 13 37

H(6; 5)

1 2 3 −25 19

5 6 16 4 30

23 7 9 8 14

11 15 12 10 13

24 18 17 29 −27
21 22 20 −28 26

H(13; 9)

65 −21 H 9 38 K K H 40

52 64 −22 H 10 27 K K H

H 51 63 −23 H 11 K K 29

50 62 −24 H H 31 K 12 K

H H 49 61 −25 13 33 K K

K K H 48 60 H −26 14 35

−16 K K 47 46 H H 17 37

K K H 59 45 −15 H 3 39

28 H K K 19 58 44 −18 H

30 K K H 57 43 −4 H 5

2 32 H K K 56 42 −1 H

H 7 34 K 41 H 55 K −6
K 8 36 −20 K H H 54 53


