UDK621.3:(53+54+621+66), ISSN0352-9045 Informacije MIDEM 33(2003)3, Ljubljana

AN EVOLUTIONARY APPROACH TO CHIP DESIGN: AN
EMPIRICAL EVALUATION

Gregor Papa

“Jozef Stefan” Institute, Ljubljana, Slovenia

Key words: chip design, area and time optimization, low-power circuits, evolutionary algorithms

Abstract: This paper presents a new method with an evolutionary approach to some parts of integrated-circuit {IC) design. This study, however, is focused
on application-specific integrated circuits (ASICs), which need an even more sophisticated design (in terms of size, speed and low-power) because of

their specific uses.

Optimally scheduled operations are not necessarily optimally allocated to units. To enable optimal allocation we need to consider some allocation criteria
while the scheduling is being done. Therefore, algorithms with concurrent scheduling and allocation produce the best results. It is obvious that we have
to deal with a trade-off between the quality of the solution and its design time. The main part of the paper is a presentation of an improved method of the
evolutionary search for the optimal design of ICs. The evolutionary approach considers scheduling and allocation constraints and ensures a globally

optimal solution in a reasonable time.

The evaluation of our method shows that the evolutionary method is able to find a solution that is more appropriate in terms of all the considered and
important objectives than is the case when working with classical deterministic methods.

Evolucijski pristop pri na¢rtovanju ¢ipov: empiriéno
ovrednotenje

Kiju€ne besede: nadrtovanje ¢ipov, energijsko varéna vezja, optimizacija velikosti in éasa, evolucijski algoritmi

lzvleéek: V delu je predstavijena metoda socasnega razvrééanja operacij in dodeljevanja enot, ki temelji na evolucijskem nacinu in je uporabna v postopku
nacrtovanja digitalnih integriranih vezij. Delo obravnava predvsem naértovanje namenskin vezij, ki potrebujejo zaradi svoje specifiénosti toliko bolj dode-
lano strukturo, tako s stalisca velikosti, kakor tudi s staligéa hitrosti delovanja in majhne porabe energije.

Optimalno razvrddenih operacij v splodnem ni mogode tudi optimalno dodeliti posameznim enotam. Da bi lahko operacije dodelili optimalno, je treba
pravila za dodeljevanje upostevati ze med razvrsCanjem. Problema smo se lotili z evolucijsko tehniko, ki ie pogosto uporabliena v metodah za iskanje
resitev na najrazliénejsih podro¢jih. Razvit je bil evolucijski algoritem, ki uposteva razvriéevalne in dodeljevalne zahteve, omogoca kratek naériovalni Gas
ter globalno optimalne resitve. Algoritem je bil tudi radunalnisko realiziran ter uporablien pri mnoZici preizkusnih vezij. Vezja so bila izbrana glede na
pogostost pojavljanja v sorodni literaturi, in sicer vezja razliénih velikosti z razliénim stevilom tipov operacij.

Obravnava rezultatov je pokazala, da je opisani evolucijski algoritem, v primerjavi s klasiénimi deterministiénimi metodami, sposoben poiskati resitev, ki je
v splognem ugodnejsa s stalisca vseh obravnavanih in pomembnih parametrov.

design and the final layout. Due to the interdependence of
these two tasks, the solution of one task depends on an
estimation of the solution of the other task, which is not
solved yet. The scheduling of the operation into different

1 Introduction

Whenever a new integrated circuit (IC) is designed the prob-
lem of selecting the best register-transfer level (RTL) spec-

ification has to be faced. And as circuits get bigger, so too
does the problem: more combinations have to be exam-
ined before the optimal combination is found. Therefore,
automatic circuit optimization is required, as this speeds
up the whole design process and eliminates some of the
errors.

High-level synthesis /2/, /4/ is an automatic design proc-
ess that transforms the initial behavioral description into
the final specification of the RTL. The process consists of
the following tasks: compilation, transformation, schedul-
ing, allocation and binding. Of these, the operation sched-
uling and the resource allocation are the most important
subtasks of the high-level synthesis because they are at
the core of the design and crucially influence both the

142

control steps therefore affects the allocation of operations
to different units. The interaction of these two tasks presents
formidable obstacles to the goal of optimization /1/. There
are, however, some approaches to concurrent solving, but
their solutions, to some extent, are less than optimal.

The evolutionary technique is used in various search meth-
ods for a range of different optimization areas /8/. Its un-
determined approach, i.e., a probabilistic approach, re-
duces its popularity, but at the same time gives it an advan-
tage when it comes to multicriteria problems and problems
with more local optima. The genetic algorithm (GA), as a
frequent implementation of evolutionary techniques, is an
optimization method based on the mechanism of evolu-
tion and natural genetics.

G. Papa:

An Evolutionary Approach to Chip Design: An Empirical Evaluation

Informacije MIDEM 33(2003)3, sir. 142-148

2 Definitions

An |C described with a hardware description language, e.g.
VHDL, can be presented as a control/data-flow graph
(CDFG) /4/, and in our case it is enough to consider only
the data-flow part, i.e., the data-flow graph (DFG). Each
node | represents the operation to be executed, and the
type of node determines the type of operation. The edges
e represent dependencies between operations. An edge
gij, between nodes i and j, represents the data produced
by the node i and used by the node j. All edges are unidi-
rectional.

In the final design there is a group of resources that define
the implementation. Here we have different functional units
(FUs) FU; (i=1..N), where N is the number of different types
of functional units. There are also storage (registers Reg)
and connection (buses Bus) units, while T represents the
execution time of the DFG. Functional units (adders, mul-
tipliers, ...) perform transformations on data values, con-
nection units transport values from one unit to another, while
storage units preserve those values over time.

The parameters are calculated as follows:

- the number of FU; is the highest number of the /th
functional unit needed in a separate control step;

- the number of registers Reg is the highest number of
variables needed in a separate control step. We con-
sider variables that are needed by the functional unit
as input data, variables that are returned as output
data and variables that are not used at the moment
but will be used in some of the later control steps or
must be available until the end of the execution of all
operations. Of course, more functional units can use
the same data from the same register in a control step:

- the number of buses Bus is the highest number of
data transmissions (into or from the functional units)
in a separate moment;

- the execution time T is the time needed to execute all
the operations of the schedule;

- the weights w are the weights of the IC parameters to
be considered in the IC quality evaluation cost func-
tion. They depend on the ratio of different units’ (func-
tional, storage) sizes.

3 Concurrency

Optimally scheduled operations are not necessarily opti-
mally allocated to units. To be also optimally allocated some
allocation constraints should be considered during the
scheduling. Therefore, algorithms that perform concurrent
scheduling and allocation are better in terms of the opti-
mality of the solutions. These algorithms are, however, very
time consuming. Therefore, we have to deal with a trade-
off between the quality of the final solution and the length
of the design-time for it. There are some approaches to
concurrent solving, but their solutions, to some extent, are
less than optimal.

When tasks are performed separately (Figure 1a) the solu-
tion is not necessarily optimal; it is better to use an ap-
proach with iterative repetition of the scheduling and allo-
cation (Figure 1b). Here, though, the problem of the next
operation/unit to be changed appears, since the order of
changes can influence the final solution. It is a similar situ-
ation with the approach that involves partitioning of the
operations into small groups, within which there is an iter-
ative repetition of the scheduling and the allocation (Fig-
ure 1¢). Since there are fewer operations in the group there
is no problem with the order of changes, but there is a
problem with the appropriate partitioning of the operations.
Ohbviously, the best approach is the one with purely con-
current scheduling and allocation (Figure 1d), where the
iterative-refinement order does not influence the quality of
the solution /7/. Concurrency is achieved through the use
of algorithms that do not depend on the order of transfor-
mations. Therefore, there is no influence of the changed
start time on the allocated unit, nor is there any influence
of the allocated unit on the start time. When all the trans-
formations are made, then the appropriateness of the
changes is checked.

a) ~ b)
¥ N
scheduling scheduling
> ; E\/
‘\/J :\\'\\\ S
o S allocation
allocation l
1
‘\/} L
| e
L
c) 7 d) 1
(A |
!
partitioning , i
‘ scheduling

and allocation

| [, ‘\//
\ L j
| binding i S

i
{ k

'
J

e

Figure 1: Scheduling and allocation concurrency

4 The ECSA algorithm

The facts presented in the introduction paragraphs and the
promising results of different evaluations /8/, /9/ led us
to the ECSA (Evolutionary Concurrent Scheduling and Al-
location) design approach /7/. This approach considers
scheduling and allocation constraints, allows a short de-
sign time and can find globally optimal solutions. The input
description of the circuit is transformed into two basic (in-
itial) schedules, obtained with the ASAP and ALAP algo-

143

Informacije MIDEM 33(2003)3, str. 142-148

G. Papa:

An Evolutionary Approach to Chip Design: An Empirical Evaluation

rithms. The FUs used in the first case are those that are
the fastest for each operation, and in the second case are
those that are the slowest for each operation. These two
schedules present some kind of boundary solutions, since
all the other solutions are executed in between the time
limits defined by these two schedules. In other words, no
other solution can be faster or slower, irrespective of the
combinations of used units.

Each solution has to be properly encoded (into the chro-
mosome), i.e., each operation’s start time and functional
unit have to exist in the chromosome. The initial popula-
tion is built upon the two initial solutions, which are multi-
plied to form the population with the so-called boundary
solutions. The optimal solution has to be somewhere in
between the boundaries, therefore genetic operators
(crossover, mutation, variation) transform those encoded
solutions. With the transformations their start times and
allocated functional units are changed. Within that, also
the multicycling solutions are supported by the approach.
The final solution obtained using the genetic operators is
also influenced by the simulated annealing algorithm, which
improves the solution if it stopped somewhere near the
globally optimal point.

4.1 Encoding

The performance of the algorithm depends on the proper
encoding. In the ECSA algorithm integer encoding is used,
i.e., in the chromosome string are the numbers that repre-
sent the starting time of each operation and the allocated
unit for each operation, where the position in the string
depends on the order of the operations in the input IC
description. This means that the chromosome consists of
pairs of time/unit information for each operation. And the
genetic operators can influence both parts of that informa-
tion, either together or separately.

Integer encoding was chosen, since it does not need any
transformation (into binary values) at the beginning and at
the end (back into decimal values). Also, the used imple-
mentation of genetic operators can check the changed
values instantly, without any transformation. The correct-
ness of the transformation, i.e., the crossover, the muta-
tion or the variation, can therefore be checked within the
function itself.

4.2 Cost function

One of the most important parts of the algorithm is its cost
function. Our algorithm is multi-objective /3/, which means
it takes control over more criteria or objectives. The cost
function, represented by Ean. 1, considers the number of
functional units, the number of registers, the number of
buses and the execution time of all the operations in the
DFG.

144

n

Cost = %/2 (costpy,)+ costﬁeg + costéw + cost%
i=]

costpy, = Wry, -FU;

COSIRe ¢ = WReg * Reg (1)

coStp,s = Wg,; - Bus

costy =wrp-T

To obtain the cost of a certain DFG, the algorithm has to
evaluate the required number of resources. In contrast to
the other multi-objective functions that give more than one
final solution, this one already includes the decision-mak-
ing part, i.e., it chooses one solution from all the solutions
on the Pareto front. The chosen solution has the shortest
distance to the origin, where the origin represents the ide-
al, costless, solution and the axis represents the consid-
ered objectives.

The main weakness /3/ of this approach is the difficulty in
determining the appropriate weights when there is not
enough information about the problem. Since we are aware
of the problem specifics and we know the cost weights of
the resources being used, this weakness is not so signifi-
cant.

4.3 Evolutionary operators

In each iteration (or generation) of the algorithm there are
four genetic operators that transform the chromosome.
They consider data dependencies and the given library of
available functional units. Each time after the genetic op-
erators transform the chromosome, the chromosome is
checked to see if it meets all the constraints by consider-
ing data dependencies and unit types. Besides the basic
implementation of the operators, we also applied the inde-
pendent operators, which do not need any parameter val-
ue to be set in advance: they depend only on the progress
of the search and on the size of the problem to be solved.

4.3.1 Basic operators

Selection. Based on the cost-function values the worst
solutions are aborted in the selection step. And to ensure
that the size of the population remains the same, these
solutions are replaced with the best solutions. This ensures
that the best solutions of a given generation are involved in
the creation of the next generation (elitism).

Crossover. In a crossover task, two approaches are used,
with each task expressing the dominancy of the character-
istics. After two crossover points are determined, in the
first case the unit information is changed between the two
chromosomes and the start times are adapted, and in the
second case the start times are changed and a suitable
unit is allocated. So the dominancy is expressed either in
functional units or the start times of operations.

Mutation. We also have two similar approaches for trans-
forming the chromosome. In both cases the starting time

G. Papa:

An Evolutionary Approach to Chip Design: An Empirical Evaluation

Informacije MIDEM 33(2003)3, str. 142-148

is changed. Either it is moved to later control steps, with
the use of faster functional units, or it is moved to earlier
control steps, if data dependencies allow this, with slower
units.

Variation. After two operations are selected, and when
they are of the same type, e.g. additions, their functional
units are switched. If needed, their start times are also
updated.

4.3.2 Independent operators

The advantage of the independent GA approach /12/ is
that there is no need to preset some working parameters,
e.g. the number of generations, the population size, and
the probabilities of crossover, mutation and variation. These
parameters are set automatically during the optimization
phase, depending on the progress and the speed of the
optimization.

Setup. If the chromosome that presents a solution is large,
then the population size also has to be large enough to
ensure that a lot of different chromosomes will be involved
in a search. The population size therefore depends on the
size of the chromosome or the complexity of the problem.

Crossover. Considering four candidates - two parents and
their two offspring - only the first and the third, rated ac-
cording to their fitness, pass to the next generation. This
forces at least one of the offspring to be passed to the
next generation in addition to the best candidate. Other-
wise the offspring have only a small influence on new gen-
erations, since the crossing of two good parents probably
produces offspring that are not so good; however, they
might be good after a few more transformations.

Mutation. Chromosomes with low fitness are mostly ex-
posed to mutation. Each bit in the chromosome is mutat-
ed if that position of the chromosome is of the same value
in the majority of chromosomes in the population. This is
the way to change the bad characteristics in “poorly fitted”
chromosomes and to redirect the search to another direc-
tion. In the case of “well-fitted” chromosomes, bits are
mutated if the value of the bit differs from majority of bits in
other good chromosomes at the same position. This en-
sures faster convergence in the final stages of the optimi-
zation.

Variation. The interchange of the values of two bits, as
described for the basic operators, is performed if the fre-
quency of the value in that position in the population of
one bit is high and the frequency of another bit is low.

4.3.3 Simulated annealing

When the GA finishes its work and the most appropriate
solution is found, that solution is additionally influenced by
the simulated annealing algorithm. It checks whether the
search for the optimal solution stopped in the vicinity of
the global optimum, and it changes the solution if needed.

5 Evaluation

The appropriateness of the proposed approach was test-
ed by a computer implementation of the ECSA algorithm,
which was used with test-bench ICs. The ICs used for the
evaluation were chosen based on their appearance in the
literature and similar studies. They differ in terms of size
and the number of operation types.

5.1 Test-bench circuits

5.1.1 Differential equation

The relatively small circuit of differential equation /14/ has
only 11 operations, but 4 different operation types (6 mul-
tiplications, 2 additions, 2 subtractions, 1 comparison).
This circuit is useful when testing libraries with different
implementations of the same operation types.

5.1.2 Elliptic filter

This filter /6/ consists of 34 operations, but only two op-
eration types: 26 additions and 8 multiplications. The cir-
cuit is suitable for comparison, due to its size and opera-
tion dependencies, since they form two independent, sim-
ilar critical paths, both influencing the circuit delay.

5.1.3 Bandpass filter

One of the implementations of the bandpass filter /5/ is
the circuit used for our evaluation. It consists of 29 opera-
tions: 11 multiplications, 10 additions and 8 subtractions.
Due to data dependencies, almost all the operations influ-
ence the circuit delay.

5.1.4 lLeast-mean-square filter

This filter for signal adaptation (noise reduction) is based
on the least-mean-square method /2/. It consists of 47
operations: 24 multiplications and 23 additions. This test-
bench circuit is useful due to its size and unique data de-
pendencies.

5.2 Functional units

For an easier and more realistic comparison of different
algorithms when testing the size and delay of implemented
circuits we made alibrary of different functional units, which
differ in terms of their sizes and delays. Table 1 shows the
sizes and delays of various implementations of the arith-
metic logic operations. Here, different types of logic were
used to make the units with different delays and sizes. The
values are based on an analysis of data on circuits and
their complexities /11/. The number of gate transitions de-
fines the delay, while the overall number of gates needed
to implement the unit defines its size. These values are
just for orientation, since the real numbers depend on the
chosen technology /11/. The delays presented in Table 1
are relative, e.g., normalized to the fastest functional unit
among all the operations. Most of the units are multifunc-
tional, i.e., they can perform different types of operation.

145

informacije MIDEM 33(2003)3, str. 142-148

G. Papa:

An Evolutionary Approach to Chip Design: An Empirical Evaluation

Table 1. Technical characteristics of the functional units

functional unit delay [No. of steps] No. of
{operations} gates
FEl {+, -} 6,6 370
FE2 {+, -} 1,1 665
FE3 {<} 6 353
FE4 {+, -, <} 1,1,1 696
FES5 {x} 4 3040
FE6 {X} 2 7296
FE7 {+} 21 3040
FES§ {+} 9 7296
FE9 {x,+} 4,21 3344
FEL0 {x,~} 2,9 8025
FEIL {+, -, <, X,+} 1,1,1,4,21 3692
FE12 {+, -, <,%,+} 1,1,1,2,9 8373

5.3 Parameters

By considering 18750 different schedules of each circuit
with the ECSA algorithm and 3125 different combinations
of the parameters, we statistically compared (using the
procedure described in /10/) the results according to their
cost function (Eq. 1). To ensure that most solutions were
time-constrained, i.e., executed in shortest possible time,
the weight wr was set to an extremely high value.

As presented in Table 2, the high-quality solutions are
mostly obtained with the following values of the parame-
ters: probability of crossover, 0.7; probability of mutation,
0.04; and probability of variation, 0.03. In addition, con-
sidering the sizes of the circuits, the number of genera-
tions and the population size should be set to 3-times and
3.5-times the size of the circuit, respectively.

Table 2. Optimal values of the parameters for different
testbench circuits

Differential | Fifth-order | Bandpass |Least-mean-i Average
equation | elliptic filter| filter ! square filter | optimal values
mumber of generations 40 100 90 130 3 x DFG size
population size 55 120 110 160 3.5 x DFG size
probability of crossover | 0.8 0.6 0.7 0.0 0.7
probability of mutation 0.04 0.05 0.04 0.05 0.04
probability of variation 0.04 002 | 002 0.05 0.03

The values of the parameters in this combination are re-
ferred to as the optimal values. These optimal values are
determined on the basis of the percentage of soiutions
with certain parameters from among the good solutions. A
parameter value that is to be considered as optimal should
have at least a 25% share of the high-quality solutions, as
well as having a less than 10% share of the low-guality so-
lutions.

The ECSA algorithm was used with the values of the pa-
rameters as presented in Table 2. Other parameters need-
ed to run the FDS and ECSA algorithms and the cost func-
tion depended on the sizes of the FUs.

5.4 Results

The ECSA algorithm was evaluated by a comparison with
nearly optimal / 13/ force-directed scheduling (FDS) /12/.

146

FDS tries to optimally schedule the DFG considering a
uniform distribution the operations of the same type over
the available control steps.

Table 3 presents the results of the following evaluations:
FDS with fast units, FDS with slow units, and ECSA with
basic and independent genetic operators. There are two
types of DFGs for each circuit. The first, or plain, is an
ordinary data-flow graph with nodes that represent opera-
tions, as described in similar studies; and the second, or
improved, considers the input variables (start registers) via
some additional nodes to ensure a more accurate estima-
tion of the registers and the buses needed to implement
the circuit.

5.4.1 Differential equation

Because of the small circuit size there is no improvement
in the solutions obtained with the ECSA algorithm (either
basic or independent) when considering an ordinary DFG
- all the solutions are of alarger size. But when we consid-
erthe start registers (input variables) there are some ECSA
solutions with a slightly larger size and a smaller number of
buses.

5.4.2 Fifth-order elliptic filter

The evolutionary method with a basic approach found a
smaller circuit with a smaller number of buses and a slight-
ly fonger execution time for the ordinary DFG, while the
independent approach could not find any improved solu-
tion. When dealing with the improved DF G, both approach-
es (basic and independent) found considerably smaller
circuits with a slight increase in the execution time, while
the independent approach also found the solution with a
substantial decrease in the required number of registers
and buses.

5.4.3 Bandpass filter

Both ECSA methods found, when dealing with the ordi-
nary DFG, the solutions with a smaller number of registers
and buses; the basic approach also found the smaller cir-
cuit, but with a slightly longer execution time. When deal-
ing with the improved DFG, both approaches found the
solutions with the same circuit size and execution time as
the comparable FDS solution, but the required number of
registers and buses was considerably smaller for the ECSA
solutions.

5.4.4 Least-mean-square filter

At the expense of a small increase in the delay, the basic
ECSAwas able to decrease the size and lower the number
of registers and buses of the ordinary DFG; but the inde-
pendent ECSA was not able to improve any parameter.
When dealing with the improved DFG, the basic ECSA was
able to keep the initial delay, to decrease the circuit size
and to lower the number of required registers and buses.
The independent ECSA was only able to decrease the
number of buses while increasing the circuit size.

G. Papa:

An Evolutionary Approach to Chip Design: An Empirical Evaluation

informacije MIDEM 33(2003)3, str. 142-148

Table 3. The evaluation results of the ECSA algorithm with different test-bench ICs

algorithm | functional units Isize |registers [buses |delay |runtime [s]
differential equation
FDS-fast 1XFE2 + 1xFE4 + 3xFE6 23249 17 6 6 0.01
FDS-slow 2xFEl + 1xFE3 + 2xFES 7173 18 6 20 0.01
ECSA-basic 2xFE2 + 1xFE4 + 3xFE6 23914 18 8 6 0.11
ECSA-independent | 2xFE2 + 1xFE4 + 3xFE6 23914 17 6 6 0.09
differential equation with start registers
FDS-fast 1XFE2 + 1xFE4 + 3xFE6 23249 10 9 6 0.01
FDS-slow 2xFE1 + 1xFE3 + 2xFES 7173 11 9 20 0.01
ECSA-basic 2xFE2 + 1xFE4 + 4xFE6 31210 10 7 6 0.15
ECSA-independent | 2xFE2 + 1xFE4 + 3xFE6 23914 10 7 6 0.35
[ifth-order elliptic filter
FDS-fast 3xFE2 + 3xFE6 23883 26 8 17 0.02
FDS-slow 5xFE1 + 3xFES 10970 30 6 78 0.03
ECSA-basic 2xFE2 + IxFES5 + 2xFE6 18962 29 4 21 3.80
ECSA-independent |4xFE2 + 4xFE6 31844 30 8 17 1.60
[ifth-order elliptic filter with start registers
FDS-fast 3xFE2 + 3xFE6 23883 21 16 17 0.02
FDS-slow 5xFE1 + 3xFES 10970 25 16 78 0.04
ECSA-basic 2xFE2 + IxFES + 2xFE6 18962 24 16 19 4.80
ECSA-independent |2xFE2 + 2xFE6 15922 18 9 21 3.40
bandpass filter
FDS-fast 3xFE2 + 4xFE6 31179 34 10 10 0.01
FDS-slow 4xFE1 + 3xFES 10600 35 8 44 0.04
ECSA-basic 3xFE2 + 3xFE6 23883 33 8 11 1.70
ECSA-independent 3xFE2 + 1xFES5 + 4xFE6 34219 33 8 10 1.30
bandpass filter with start registers
FDS-fast 3xFE2 + 4xFE6 31179 25 23 10 0.02
FDS-slow 4xFE1 + 3xFES 10600 26 23 44 0.04
ECSA-basic 3xFE2 + 4xFE6 31179 23 19 10 2.40
ECSA-independent | 3xFE2 + 4xFE6 31179 23 19 10 2.90
least-mean-square filter
FDS-fast 3xFE2 + 6xFE6 45771 68 12 13 0.40
FDS-slow 3xFE1 + 4xFES 13270 72 8 70 2.79
ECSA-basic 3xFE2 + 6xFES5 + 3xFE6 42123 67 10 14 6.30
ECSA-independent | 9xFE2 + 6xFES + 9xFE6 89889 69 30 15 8.05
least-mean-square filter with start registers
FDS-fast 3xFE2 + 6xFE6 45771 33 29 13 0.48
FDS-slow 3xFE!1 + 4xFES 13270 37 27 70 3.52
ECSA-basic 4xFE2 + 2xFES + 5xFE6 45220 32 25 13 9.20
ECSA-independent | 5xFE2 + 3xFES + 7xFE6 63517 33 25 13 12.30

6 Conclusions

Optimally scheduled operations are not necessarily opti-
mally allocated to functional units. To enable optimal allo-
cation we need to consider some allocation criteria while
the scheduling is being done. This paper describes such
an evolutionary approach that considers scheduling and

allocation constraints and ensures a globally optimal sofu-
tion in a reasonable time. To evaluate our method we built
an algorithm and implemented it with a computer. It was
used with a group of test-bench ICs. These circuits were
chosen because the same type were used in similar stud-
ies. They differ in terms of their size and the number of
operation types.

147

Informacije MIDEM 33(2003)3, str. 142-148

G. Papa:

An Evolutionary Approach to Chip Design: An Empirical Evaluation

It turned out that the evolutionary method (either basic or
independent) is able to find a solution that is more appro-
priate in terms of all the considered and important param-
eters than is the case when working with classical deter-
ministic methods. There are slightly longer runtimes when
the ECSA algorithm is used. But considering the speed (a
few seconds) and the computational dependence, where
the runtimes for larger circuits increase enormously {ex-
ponentially) when the FDS algorithm is used, we can con-
clude that small and large circuits can be designed and
optimized with the use of the proposed evolution-based
algorithm, which exhibits a linear increase in the design
time with an increase in circuit size.

References

/1/ J. R. Armstrong, F. G. Gray, VHDL Design: Representation and
Synthesis, Prentice Hall, Upper Saddle River, 2000.

/2/ J. Benesty, P. Duhamel, A Fast Exact Least Square Adaptive
Algorithm, |EEE Transactions on Signal Processing 40, 1992,
pp. 2904-2920.

/3/ C. A. Coello Coello, A Comprehensive Survey of Evolutionary-
Based Muttiobjective Optimization Techniques, Knowledge and
Information Systems, Vol. 1, No. 3, pp. 269-308, August 1999.

/4/ D. Gajski, N. Dutt, A. Wu, S. Lin, High-Level Synthesis: Intro-
duction to Chip and System Design, Norwell, Massachusetts,
Kiuwer Academic Publishers, 1992.

/5/ G. W. Grewal, T. C. Wilson, An Enhanced Genetic Algorithm for
Solving the High-Level Synthesis Problems of Scheduling, Allo-
cation, and Binding, Intl. Journal of Computational Intelligence
and Applications. 1, 2001, pp. 91-110.

/6/ T. Kung, H. J. Whitehouse, T. Kailath, VLS! and Modern Signal
Processing, Prentice Hall, 1985.

/7/ G. Papa, Concurrent operation scheduling and unit allocation
with an evolutionary technique in the process of integrated-cir-
cuit design, Ph.D. Thesis, Faculty of Electrical Engineering,
University of Ljubljana, Ljubljana, 2002.

148

/8/ G. Papa, B. Korousi¢-Seljak, B. Benedi¢i¢, T. Kmecl, Universal
motor efficiency improvement using evolutionary optimization,
accepted for publication in IEEE Transactions on Industrial Elec-
fronics.

/9/ G. Papa, J. Silc, Automatic Large-Scale Integrated Circuit Syn-
thesis Using Allocation-Based Scheduling Algorithm, Microproc-
essors and Microsystems 26, 2002, pp. 139-147.

/10/ G. Papa, J. Silc, Evolutionary Synthesis Algorithm - Genetic
Operators Tuning, In: A. Grmela, N. Mastorakis (ed.) Advances
in Intelligent Systems, Fuzzy Systems, Evolutionary Computa-
tion, WSEAS Press, 2002, pp. 256-261.

/11/ B. Parhami, Computer Arithmetic: Algorithms and Hardware
Designs, Oxford University Press, New York, 2000.

/12/ P. G. Paulin, J. P. Knight, Force-directed Scheduling in Auto-
matic Data Path Synthesis, Proc. 24th ACM/IEEE Design Auto-
mation Conference, Miami, USA, June 1987, pp. 195-202.

/13/ P.G. Paulin, J. P. Knight, Scheduling and Binding Algorithms for
High-Level Synthesis, Proc. 26th ACM/IEEE Design Automa-
tion Conference, Las Vegas, NE, pp. 1-6, June 1989.

/14/ P.G. Paulin, J. P. Knight, E. F. Girczyc, HAL: A Multiparadigm
Approach to Automatic Data Path Synthesis, Proc. 23rd ACM/
IEEE Design Automation Conference, Las Vegas, USA, June
1986, pp. 263-270.

Gregor Papa

Institut "JoZef Stefan”

Computer Systems Department,
Jamova c. 39, 1000 Ljubljana, Slovenia
tel. +386 1 4773 514

fax. +386 1 4773 882

Email: gregor.papa@ijs.si

Prispelo (Arrived): 13.05.2003 Sprejeto (Accepted). 26.08.2003

