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Abstract

In 2014, Xu and Du classified all regular covers of a complete bipartite graph Kn,n

minus a matching, denoted by Kn,n−nK2, whose covering transformation group is cyclic
and whose fibre-preserving automorphism group acts 2-arc-transitively. In this paper, a
further classification is achieved for all the regular covers of Kn,n − nK2, whose cover-
ing transformation group is isomorphic to Z2

p with p a prime and whose fibre-preserving
automorphism group acts 2-arc-transitively. Actually, there are only few covers with these
properties and it is shown that all of them are covers of K4,4 − 4K2.
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1 Introduction
Throughout this paper graphs are finite, simple and undirected. For the group- and graph-
theoretic terminology we refer the reader to [15, 17]. For a graph X , let V (X), E(X),
A(X) and AutX denote the vertex set, edge set, arc set and the full automorphism group
of X respectively. An edge and an arc of X are denoted by {u, v} and (u, v), respectively.
An s-arc of X is a sequence (v0, v1, . . . , vs) of s+ 1 vertices such that (vi, vi+1) ∈ A(X)
and vi 6= vi+2, and X is said to be 2-arc-transitive if AutX acts transitively on the set of
2-arcs of X .

Let X be a graph, and let P be a partition of V (X) into disjoint sets of equal size m.
The quotient graph Y := X/P is the graph with the vertex set P and two vertices P1 and
P2 of Y are adjacent if there is at least one edge between a vertex of P1 and a vertex of
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P2 in X . We say that X is an m-fold cover of Y if the edge set between P1 and P2 in X
is a matching whenever P1P2 ∈ E(Y ). In this case Y is called the base graph of X and
the sets Pi are called the fibres of X . An automorphism of X which maps a fibre to a fibre
is said to be fibre-preserving. The subgroup K of all those automorphisms of X which fix
each of the fibres setwise is called the covering transformation group. It is easy to see that
if X is connected then the action of K on the fibres of X is necessarily semiregular, that
is, Kv = 1 for each v ∈ V (X). In particular, if this action is regular we say that X is a
regular cover of Y.

The main motivation for the present paper is to contribute toward the classification of
finite 2-arc-transitive graphs. In [23, Theorem 4.1], Professor Praeger divided all the finite
2-arc-transitive graphs X into the following three subclasses:

(1) Quasiprimitive type: every nontrivial normal subgroup of AutX acts transitively on
vertices;

(2) Bipartite type: every nontrivial normal subgroup of AutX has at most two orbits
on vertices and at least one of them has two orbits on vertices;

(3) Covering type: there exists a normal subgroup of AutX having at least three orbits
on vertices, and thus X is a regular cover of some graphs of types (1) or (2).

During the past twenty years, a lot of results regarding the primitive, quasiprimitive
and bipartite 2-arc-transitive graphs have appeared [11, 18, 19, 20, 23, 24]. However, very
few results concerning the 2-arc-transitive covers are known, except for some covers of
graphs with small valency and small order. The first meaningful class of graphs to be
studied might be complete graphs. In [7], a classification of covers of complete graphs
is given, whose fibre-preserving automorphism groups act 2-arc-transitively and whose
covering transformation group is either cyclic or Z2

p. This classification is generalized in
[8] to covering transformation group Z3

p. In [26], the same problem as in [7] and [8] is
considered, but the covering transformation group considered is metacyclic.

As for covers of bipartite type, in [25], all regular covers of complete bipartite graph
minus a matching Kn,n − nK2 were classified, whose covering transformation group is
cyclic and whose fibre-preserving automorphism group acts 2-arc-transitively. In this pa-
per, we consider the same base graphs while the covering transformation group is Z2

p with
p a prime. Remarkably, we shall show that all the regular covers with these properties are
just covers of K4,4 − 4K2.

Note that to classify regular covers of given graphs such as Kn and Kn,n, whose cov-
ering transformation group is an elementary group Zkp and whose fibre-preserving auto-
morphism group acts 2-arc-transitively is a very difficult task. Essentially, it is related to
the group extension theory, the group representation theory and other specific branches of
group theory. We believe that the classification of all such covers for all the values k is
almost not feasible. Therefore, the first step might be to study the problem for small values
k and to construct some new interesting covers.

Except for the graph Kn,n − nK2, another often considered graph is the complete
bipartite graph Kn,n. In further research, we shall focus on the 2-arc-transitive regular
elementary abelian covers of this graph. For further reading on the topic of covers, see
[4, 5, 9, 13, 14, 22].

A cover of a given graph can be derived through a voltage assignment, see Gross and
Tucker [15, 16]. Let Y be a graph and K a finite group. A voltage assignment (or, K-
voltage assignment) on the graph Y is a function f : A(Y ) → K with the property that
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f(u, v) = f(v, u)
−1 for each (u, v) ∈ A(Y ). The values of f are called voltages, and K is

called the voltage group. The derived graph Y ×f K from a voltage assignment f has for
its vertex set V (Y )×K, and its edge set

{{(u, g), (v, f(v, u)g)}
∣∣ {u, v} ∈ E(Y ), g ∈ K}.

By the definition, the derived graph Y ×f K is a covering of the graph Y with the first
coordinate projection p : Y ×f K → Y, which is called the natural projection and with the
covering transformation group isomorphic to K. Conversely, each connected regular cover
X of Y with the covering transformation group K can be described by a derived graph
Y ×f K from some voltage assignment f . Moreover, the voltage assignment f naturally
extends to walks in Y. For any walk W of Y , let fW denote the voltage of W . Finally, we
say that an automorphism α of Y lifts to an automorphism α of X if αp = pα, where p is
the covering projection from X to Y .

Before stating the main result, we first introduce a family of derived graphs. Let Y =
K4,4 − 4K2 with the bipartition V (Y ) = {a, b, c, d} ∪ {w, x, y, z} as shown in Figure (a),
and fix a spanning tree T of K4,4 − 4K2 as shown in Figure (b). Identify the elementary
group Z2

p with the 2-dimensional linear vector space over Fp. Then we define a family of
derived graphs X(p) := (K4,4 − 4K2)×φ Z2

p with voltage assignment φ such that

φ(b, y) = (1, 0), φ(c, w) = φ(d,w) = φ(d, x) = (0, 1), φ(c, x) = (1, 1)

and φ(u, v) = 0 for any tree arc (u, v).
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Figure (a): the graph K4,4 − 4K2; (b): a spanning tree T of K4,4 − 4K2.

The following theorem is the main result of this paper.

Theorem 1.1. Let X be a connected regular cover of the complete bipartite graph minus a
matching Kn,n − nK2 (n ≥ 3), whose covering transformation group K is isomorphic to
Z2
p with p a prime and whose fibre-preserving automorphism group acts 2-arc-transitively.

Then n = 4 and X is isomorphic to X(p).

2 Preliminaries
In this section we introduce some preliminary results needed in Section 3.

The first result may be deduced from the classification of doubly transitive groups (see
[2] and [3, Corollary 8.3]).

Proposition 2.1. Let G be a 3-transitive permutation group of degree at least 4. Then one
of the following occurs.
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(i) G ∼= S4;
(ii) soc(G) is 4-transitive;

(iii) soc(G) ∼= M22 or A5, which are 3-transitive but not 4-transitive;
(iv) PSL(2, q) ≤ G ≤ PΓL(2, q), where the projective special linear group PSL(2, q)

is the socle of G which does not act 3-transitively, and G acts on the projective
geometry PG(1, q) in a natural way, having degree q + 1, with q ≥ 5 an odd prime
power;

(v) G ∼= AGL(m, 2) with m ≥ 3;
(vi) G ∼= Z4

2 oA7 < AGL(4, 2).

Let G be a finite group and H be a proper subgroup of G, and let D = D−1 be inverse-
closed union of some double cosets ofH inG\H. Then the coset graphX = X(G;H,D)
is defined by taking V (X) = {Hg

∣∣ g ∈ G} as the vertex set and E(X) = {{Hg1, Hg2}
∣∣

g2g
−1
1 ∈ D} as the edge set. By the definition, the size of V (X) is the number of right

cosets of H in G and its valency is |D|/|H|. It follows that the group G in its coset action
by right multiplication on V (X) is transitive, and the kernel of this representation of G is
the intersection of all the conjugates of H in G. If this kernel is trivial, then we say the
subgroup H is core-free. In particular, if H = 1, then we get a Cayley graph. Conversely,
each vertex-transitive graph is isomorphic to a coset graph (see [21]).

Let G be a group, let L and R be subgroups of G and let D be a union of double cosets
ofR and L inG, namely, D =

⋃
iRdiL. By [G : L] and [G : R], we denote the set of right

cosets of G relative to L and R, respectively. Define a bipartite graph X = B(G,L,R;D)
with bipartition V (X) = [G : L] ∪ [G : R] and edge set E(X) = {{Lg,Rdg}

∣∣ g ∈
G, d ∈ D}. This graph is called the bicoset graph of G with respect to L, R and D (see
[10]).

Proposition 2.2. ([10, Lemmas 2.3, 2.4])

(i) The bicoset graph X = B(G,L,R;D) is connected if and only if G is generated by
elements of D−1D.

(ii) Let Y be a bipartite graph with bipartition V (Y ) = U(Y ) ∪W (Y ), let G be a
subgroup of Aut (Y ) acting transitively on both U and W , let u ∈ U(Y ) and w ∈
W (Y ), and set D = {g ∈ G

∣∣ wg ∈ Y1(u)}, where Y1(u) is the neighborhood of u.
ThenD is a union of double cosets ofGw andGu inG, and Y ∼= B(G,Gu, Gw;D).
In particular, if {u,w} ∈ E(Y ) and Gu acts transitively on its neighborhood, then
D = GwGu.

Proposition 2.3. ([17, Satz 4.5]) LetH be a subgroup of a groupG. Then CG(H) is a nor-
mal subgroup of NG(H) and the quotient NG(H)/CG(H) is isomorphic with a subgroup
of AutH .

Let G be a group and N a subgroup of G. If there exists a subgroup H of G such that
G = NH and N ∩H = 1, then the subgroup H is called a complement of N in G. The
following proposition is due to Gaschütz.

Proposition 2.4. ([17, Satz 17.4]) Let G be a finite group. Let A and B be two subgroups
of G such that A is abelian normal in G, A ≤ B ≤ G and (|A|, |G : B|) = 1. If A has a
complement in B, then A has a complement in G.
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Proposition 2.5. ([7, Lemma 2.7]) If p is a prime, then the general linear group GL(2, p)
does not contain a nonabelian simple subgroup.

A central extension of a group G is a pair (H,π) where H is a group and π : H →
G is a surjective homomorphism with ker(π) ≤ Z(H). A central extension (G̃, π) of
G is universal if for each central extension (H,σ) of G there exists the unique group
homomorphism α : G̃ → H with π = ασ. If G is a perfect group, namely G′ = G,
then up to isomorphism, G has the unique universal central extension, say (G̃, π), (see [1,
pp.166-167]). In this case, G̃ is called the universal covering group of G and ker(π) the
Schur multiplier of G.

Proposition 2.6. ([6, page xv]) The Schur multiplier of the simple group PSL(2, q) is Z2

for q 6= 9, and Z6 for q = 9.

The following proposition is quoted from [9].

Proposition 2.7. ([9, Lemma 2.5]) Let Y be a graph and let B be a set of cycles of Y
spanning the cycle space CY of Y . If X is a cover of Y given by a voltage assignment f
for which each C ∈ B is trivial, then X is disconnected.

3 Proof of Theorem 1.1
Now we prove Theorem 1.1. Let U = {1, 2, · · · , n} and W = {1′, 2′, · · · , n′}. Set
Y = Kn,n − nK2 (n ≥ 3) with the vertex set V (Y ) = U ∪W and edge set E(Y ) =
{{i, j′}

∣∣ i 6= j, i, j = 1, 2 · · · , n}. Let X be a cover of Y with the covering projection
φ : X → Y and the covering transformation group K ∼= Z2

p, where p is a prime.
Suppose that n = 3. Then Y is a 6-cycle and there is only one cotree arc. Since X is

assumed to be connected, all the voltage assigned to the cotree arcs in Y should generate
K. It means that K is a cyclic group, a contradiction.

Suppose that n = 4. In [12, Theorem 4.1], all regular covers of K4,4 − 4K2 were
classified, whose covering transformation group K is either cyclic or elementary abelian,
and whose fibre-preserving automorphism group acts arc-transitively. Among them, X(p)
is the unique cover whenK ∼= Z2

p and the fibre-preserving automorphism group acts 2-arc-
transitively.

In what follows, we will assume n ≥ 5. Since our aim is to find the covers of Y
whose fibre-preserving automorphism group acts 2-arc-transitively, this group module the
covering transformation group K should be isomorphic to a 2-arc-transitive subgroup of
AutY , in other word, there exists a 2-arc-transitive subgroup of AutY to be lifted. Now,
let A ≤ AutY be a 2-arc-transitive subgroup, and let G ≤ A be the corresponding index
2 subgroup of A fixing U and W setwise. Let Ã and G̃ be the respective lifts of A and G.
Clearly, Aut (Y ) = Sn × 〈σ〉, where σ is the involution exchanging every pair i and i′.

Now, we show that G has a faithful 3-transitive representation on the two biparts of Y .
Take arbitrary two different triples {u1, v1, w1} and {u2, v2, w2} with ui, vi, wi ∈ U and
i ∈ {1, 2}. Since (u1, v

′
1, w1) and (u2, v

′
2, w2) are both 2-arcs, and since A acts 2-arc-

transitively on Y , there exists an element g ∈ A such that (u1, v
′
1, w1)g = (u2, v

′
2, w2),

noting that v′g1 = v′2 implying vg1 = v2. Moreover, it is obvious that g fixes two biparts set-
wise so that g ∈ G. So G acts 3-transitively on U . By the symmetry, G acts 3-transitively
on another bipart. Therefore, G should be one of the 3-transitive groups listed in Proposi-
tion 2.1. Since n ≥ 5, we conclude the following four cases from Proposition 2.1:
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(1) either soc(G) is 4-transitive or soc(G) ∼= M22;

(2) n = 5 and soc(G) = A5;

(3) soc(G) = PSL(2, q) with q ≥ 5;

(4) G is of affine type, that is the last two cases of Proposition 2.1.

To prove the theorem, we shall prove the non-existence for the above four cases separately
in the following subsections.

3.1 Either soc(G) is 4-transitive or soc(G) ∼= M22

Lemma 3.1. There exist no regular covers X of Kn,n − nK2, whose fibre-preserving
automorphism group acts 2-arc-transitively and whose covering transformation group is
isomorphic to Z2

p with p a prime, such that either soc(G) acts 4-transitively on two biparts
or soc(G) ∼= M22.

Proof. Suppose that G has a nonabelian simple socle T := soc(G) which is either 4-
transitive or isomorphic to M22. Let T̃ be the lift of T so that T̃ /K = T . In view of
Proposition 2.3, we have

(T̃ /K)/(CT̃ (K)/K) ∼= T̃ /CT̃ (K) ≤ Aut (K) ∼= GL(2, p). (3.1)

Since CT̃ (K)/K � T̃ /K and T̃ /K is simple, we get CT̃ (K)/K = 1 or T̃ /K. If the first
case happens, then Eq(3.1) implies that GL(2, p) contains a nonabelian simple subgroup,
which contradicts Proposition 2.5. Thus, CT̃ (K) = T̃ , that is, K ≤ Z(T̃ ). It was shown
in [9, pp.1361-1364] that the voltages on all the 4-cycles and 6-cycles of the base graph
Y are trivial, provided K ≤ Z(T̃ ) and either T is 4-transitive or T ∼= M22. Therefore,
Proposition 2.7 implies that the covering graph X is disconnected. This completes the
proof of the lemma.

3.2 n = 5 and soc(G) = A5

Lemma 3.2. Suppose that n = 5 and soc(G) = A5. Then, there are no connected graphs
X arising as regular covers of Y whose covering transformation group K is isomorphic to
Z2
p with p a prime, and whose fibre-preserving automorphism group acts 2-arc-transitively.

Proof. Since G is isomorphic to either A5 or S5, it suffices to consider the case G ∼= A5.
Let G̃ be a lift of G, that is, G̃/K = G. As in Lemma 3.1, a similar argument shows that
K ≤ Z(G̃). Set T̃ := G̃′. In what follows, we divide our proof into four steps.

Step 1: Show T̃ ∩K = 1 or Z2.

Set T̃ := G̃′. Since G′ = G, we get

T̃ /T̃ ∩K ∼= T̃K/K = (G̃/K)′ = G′ = G = G̃/K ∼= A5, (3.2)

which implies that G̃ = T̃K. As K ≤ Z(G̃), we have

T̃ = [G̃, G̃] = [T̃K, T̃K] = [T̃ , T̃ ] = T̃ ′.



W. Xu et al.: 2-Arc-Transitive regular covers of Kn,n − nK2. . . 275

Thus, T̃ ∩ K ≤ T̃ ′ ∩ Z(T̃ ) and Eq(3.2) implies that T̃ is a proper central extension of
T̃ ∩ K by G ∼= A5. By Proposition 2.6, we know that the Schur Multiplier of A5 is Z2.
Thus, T̃ ∩K is either 1 or Z2.

Let u ∈ V (Y ) be an arbitrary vertex, and take ũ ∈ φ−1(u), where φ is the covering
projection from X to Y .

Step 2: Show D4 ≤ G̃ũ ∩ T̃ .

Now, we have G̃ũ ∼= Gu ∼= A4 and so

G̃ũ/G̃ũ ∩ T̃ ∼= G̃ũT̃ /T̃ ≤ G̃/T̃ = T̃K/T̃ ∼= K/K ∩ T̃ . (3.3)

Since G̃ũ ∩ T̃ � G̃ũ ∼= A4, it follows that G̃ũ ∩ T̃ ∼= 1, D4 or A4. If G̃ũ ∩ T̃ = 1, then
Eq(3) implies that G̃ũ ∼= A4 is isomorphic to a quotient group of K ∼= Z2

p, a contradiction.
So, we get D4 ≤ G̃ũ ∩ T̃ .

Step 3: Show T̃ ∼= A5 and G̃ = T̃ ×K.

By Step 1, we know that T̃ ∩K = 1 or Z2. If T̃ ∩K ∼= Z2, then Eq(3.2) implies that
T̃ ∼= SL(2, 5) which has the unique involution, contradicting the fact that D4 ≤ G̃ũ ∩ T̃ .
Hence, it follows that T̃ ∩K = 1, and so T̃ ∼= A5 and G̃ = T̃ ×K.

Step 4: Show the nonexistence of the covering graph X .

Suppose that

V (Y ) = {1, 2, 3, 4, 5}∪{1′, 2′, 3′, 4′, 5′} and E(Y ) = {{i, j′}
∣∣ i 6= j, 1 ≤ i, j ≤ 5}.

Since T̃ ∼= A5, we may identify T̃ with A5. In T̃ , set

x = (23)(45), y = (25)(34), z = (234), b = (15)(23).

Then, G̃F = (〈x, y〉o 〈z〉)×K, where F = φ−1(1) is the fibre over the vertex 1 ∈ V (Y ).
Take ũ ∈ F. Since D4 ≤ G̃ũ ∩ T̃ , one may deduce that D4

∼= 〈x, y〉 ≤ G̃ũ so that
L := G̃ũ = 〈x, y〉o〈zk1〉 for some k1 ∈ K. Note that G̃F = G̃F ′ , where F ′ = φ−1(1′) is
the fibre over the vertex 1′ ∈ V (Y ). Then, one may assume thatR := G̃w̃ = 〈x, y〉o〈zk2〉
for some k2 ∈K and w̃ ∈ F ′.

By Proposition 2.2, the covering graph X should be isomorphic to a bicoset graph
X ′ = B(G̃, L,R;D), where D = Rbk3L for some k3 ∈ K with two biparts:

Ũ ′ = {Lk
∣∣ k ∈ K} ∪ {Lbxiyjk ∣∣ i, j = 0, 1, k ∈ K},

W̃ ′ = {Rk
∣∣ k ∈ K} ∪ {Rbxiyjk ∣∣ i, j = 0, 1, k ∈ K}.

Moreover, X ′ should satisfy the following two conditions.

(i) d(X ′) = 4:
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Since the length of the orbit of L containing the vertex Rbk3L is 4, zk1 must fix the
vertex Rbk3, that is,

Rbk3 = Rbk3zk1 = Rbk3zk1(bk3)−1bk3 = Rzbk1bk3 =

Rz−1k−12 k2k1bk3 = Rbk3k2k1,

which implies that
k2 = k−11 . (3.4)

(ii) Connectedness property:

By Eq(4), we have

〈D−1D〉 = 〈LbRbL〉 = 〈L, Rb〉 = 〈x, y, zk1, xb, yb, zbk2〉 ≤ T̃ × 〈k1〉 6= G̃.

It follows from Proposition 2.2(i) that the bicoset graph X ′ is disconnected, which com-
pletes our proof.

3.3 G is of affine type

Lemma 3.3. Suppose that either G ∼= AGL(m, 2), where m ≥ 3 or G ∼= Z4
2 o A7 <

AGL(4, 2). Then, there are no connected graphs X arising as regular covers of Y whose
covering transformation group K is isomorphic to Z2

p with p a prime, and whose fibre-
preserving automorphism group acts 2-arc-transitively.

Proof. The arguments in both cases are exactly the same, and so here we just discuss the
first case in details. Suppose that G ∼= AGL(m, 2) ∼= Zm2 o GL(m, 2), and let G̃ be a lift
of G, namely G̃/K = G.

Since
CG̃(K)/K � G̃/K ∼= Zm2 o GL(m, 2),

it follows that CG̃(K)/K=1, Zm2 or G̃/K. By Proposition 2.3, we have

(G̃/K)/(CG̃(K)/K) ∼= G̃/CG̃(K) ≤ Aut (K) ∼= GL(2, p). (3.5)

If the first two cases happen, then Eq(3.5) implies that GL(2, p) contains a nonabelian
simple subgroup, which contradicts Proposition 2.5. Thus, CG̃(K) = G̃, that is K ≤
Z(G̃).

Let Ã be the group of fibre-preserving automorphism of X acting 2-arc-transitively.
Let Ũ and W̃ be the two biparts of X . Take a fibre F in Ũ and take a vertex ũ1 ∈ F . Set
M̃ := G̃ũ1

∼= GL(m, 2) and T̃ /K = soc(G̃/K) ∼= Zm2 . Then G̃ = T̃ o M̃ . Let F ′ denote
the unique corresponding fibre in W̃ without edges leading to F and take a vertex w̃1 ∈ F ′.
Then G̃F = G̃F ′ . Since M̃ is the unique subgroup isomorphic to GL(m, 2) in K × M̃ , it
follows that G̃w̃1

= M̃ .

First, suppose that p 6= 2. Now, G̃F = K×M̃ . Since (|G̃ : G̃F |, |K|) = (2m, p2) = 1,
by Proposition 2.4, K has a complement in G̃. So, we may suppose that G̃ = K ×
(L̃ o M̃), where L̃ ∼= Zm2 . Since G̃ is transitive on W̃ , there exists an element x ∈ G̃
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such that (ũ1, w̃
x
1 ) ∈ E(X). By Proposition 2.2(ii), X is isomorphic to a bicoset graph

B(G̃, M̃ , M̃x;D), where D = M̃M̃x. Since L̃o M̃ � G̃, we get 〈D−1D〉 = 〈M̃, M̃x〉 ≤
L̃o M̃ 6= G̃. It follows from Proposition 2.2(i) that X is disconnected.

Next, suppose that p = 2, namely K ∼= Z2 × Z2. Let F = {ũ1, ũ2, ũ3, ũ4} and
F ′ = {w̃1, w̃2, w̃3, w̃4}. Clearly, M̃ has four orbits on Ũ \F and W̃ \F ′, respectively, say

∆1, ∆2, ∆3, ∆4; ∆′1, ∆′2, ∆′3, ∆′4.

For i = 0, 1, 2, · · · , by Xi(ũ1) we denote the set of vertices of distance i from ũ1. Without
loss of generality, let X1(ũ1) = ∆′1. Since M̃ acts 2-arc-transitively on the arcs initialed
from ũ1, it follows that X2(ũ1) is an orbit of M̃ , that is, X2(ũ1) = ∆i for some i ∈
{1, 2, 3, 4}. Then X3(ũ1) = {w̃j}, for some j ∈ {1, 2, 3, 4}. Clearly, X4(ũ1) = ∅ and
therefore X is disconnected.

3.4 soc(G) = PSL(2, q) for q ≥ 5

In this subsection, identify V (Y ) with two copies of the projective line PG(1, q).

Lemma 3.4. Suppose that PSL(2, q) ≤ G ≤ PΓL(2, q), where q = rl ≥ 5 is an odd
prime power. Then, there are no connected graphs X arising as regular covers of Y whose
covering transformation group K is isomorphic to Z2

p with p a prime, and whose fibre-
preserving automorphism group acts 2-arc-transitively.

Proof. Let G̃ be the lift of G so that G̃/K = G. Since PΓL(2, q)′ = PSL(2, q) and
PSL(2, q) ≤ G ≤ PΓL(2, q), we have G′ = PSL(2, q). Hence, G̃ is insolvable and there
exists a positive integer m such that G̃(m) = G̃(m+1). Suppose that T̃ = G̃(m), it follows
that

T̃ /T̃ ∩K ∼= T̃K/K = G̃(m)K/K = (G̃/K)(m) = G(m) ∼= PSL(2, q). (3.6)

Therefore, T̃K/K is simple and so (T̃K/K) ∩ (CG̃(K)/K) = 1 or T̃K/K.
Again, by Proposition 2.3 and 2.5, we have T̃K/K ≤ CG̃(K)/K, implying that T̃ ∩

K ≤ Z(T̃ ). Thus, by Eq(3.6), T̃ is a proper central extension of T̃ ∩K by PSL(2, q). In
viewing of Proposition 2.6, the Schur Multiplier of PSL(2, q) is either Z2 for q 6= 9 or Z6

for q = 9.
It is obvious that T̃ ∩K ∼= 1 or Z2 for q 6= 9. Next, we show it is also true for q = 9.

Assume, the contrary, that T̃ ∩ K ∼= Z3 for q = 9. Since T̃K/K ∼= PSL(2, 9), we get
(T̃K)ũ ∼= Z2

3 o Z4. Let Z2
3
∼= H̃ ≤ (T̃K)ũ. As H̃ ∩K = 1 and (|T̃K : H̃K|, |K|) = 1,

it follows from Proposition 2.4 that K has a complement in T̃K, say Ñ . Thus, T̃K =
K × Ñ ∼= Z2

3 × PSL(2, 9). Since [K, T̃ ] = 1, one may get

Ñ = Ñ ′ = (T̃K)′ = [T̃K, T̃K] = [T̃ , T̃ ] = T̃ ′ = T̃ ,

contradicting T̃ ∩ K = Z3. Therefore we have either T̃ ∩ K = 1 or T̃ ∩ K = Z2. In
what follows, we discuss these two cases respectively. Set M̃ := T̃K so that M̃/K ∼=
PSL(2, q).

Case 1: T̃ ∩K = 1
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In this case, we have M̃ = T̃ × K and T̃ ∼= PSL(2, q), and we shall identify T̃ with
PSL(2, q). In PSL(2, q), set

ti =

(
1 i
0 1

)
, x =

(
θ 0
0 θ−1

)
, y =

(
0 1
−1 0

)
.

where F∗q = 〈θ〉 and i ∈ Fq . Let Q = 〈ti
∣∣ i ∈ Fq〉 ∼= Zlr and Q̃ ≤ T̃ be the lift of Q.

Acting on PG(1, q), set H := (PSL(2, q))∞ = Qo 〈x〉 and the points i ∈ PG(1, q) \ {∞}
correspond to the cosets Hyti.

Take ũ ∈ φ−1(∞) and set H̃ := M̃ũ. Since H̃ is a lift of H , we may assume that
H̃ = Q̃1 o 〈xk1〉 for some k1 ∈ K, and Q̃1 ≤ Q̃×K. Actually, we are showing Q̃1 = Q̃
below.

Suppose that Q̃ 6= Q̃1, it follows that p = r. Then, there exist two nontrivial elements
c1 ∈ Q̃ and k ∈ K such that c1k ∈ Q̃1. Moreover, we have |Q̃1 ∩ Q̃| ≥ rl−2.

If l > 2, then there exists a nontrivial element c2 ∈ Q̃1 ∩ Q̃. Since 〈x〉 has two orbits
both with length q−1

2 on Q\{1} by conjugacy action, 〈xk1〉 has the same property on Q̃1 \
{1}, whose two orbits should be B1 := {(c1k)〈xk1〉} = {c〈xk1〉1 k} and B2 := {c〈xk1〉2 }.
Therefore, Q̃1 = B1 ∪ B2 ∪ {1}. Noting r ≥ 3, the inverse (c1k)−1 of c1k ∈ Q̃1 is not
contained in B1 ∪B2 ∪ {1}, a contradiction.

If l = 1, then we get Q̃1 ∩ Q̃ = 1. As q = rl = r ≥ 5, there exist two nontrivial
elements c2 ∈ Q̃ and k′ ∈ K such that c2k′ ∈ Q̃1. Again, Q̃1 = {c〈xk1〉1 k} ∪ {c〈xk1〉2 k′} ∪
{1}. Since p = r ≥ 5, take ks ∈ K \{1, k, k′} for some integer s. Then, (c1k)s = c1

sks ∈
Q̃1 is neither contained in {c〈xk1〉1 k} nor in {c〈xk1〉2 k′}, a contradiction.

If l = 2 and r ≥ 5, we shall have the same discussion as in the case l = 1. Now, we
only need to consider l = 2 and r = 3, that is, q = rl = 9. Since c1k ∈ Q̃1, it is easy to
check that

(xk1)−1(c1k)(xk1) = cx1k = c−11 k ∈ {(c1)〈xk1〉k} ⊂ Q̃1.

Hence, 1 6= (c1k)(c−11 k) = k2 ∈ Q̃1, a contradiction again.

By the above discussion, we may assume that L := M̃ũ = Q̃o 〈xk1〉 andR := M̃ũ′ =

Q̃o 〈xk2〉 for some k1, k2 ∈ K and ũ′ ∈ φ−1(∞′). Then by Proposition 2.2, our graph X
is isomorphic to a bicoset graph X ′ = B(M̃, L,R;D) for some double coset D with two
biparts:

Ũ ′ = {Lk
∣∣ k ∈ K} ∪ {Lytik ∣∣ i ∈ Fq, k ∈ K},

W̃ ′ = {Rk
∣∣ k ∈ K} ∪ {Rytik ∣∣ i ∈ Fq, k ∈ K}.

Since there is only one edge from L to the block {Ryk
∣∣ k ∈ K}, we may assume that the

neighbor of L corresponds to the bicoset D = Ryk3L for some k3 ∈ K. Then X ′ should
satisfy the following two conditions.

(i) d(X ′) = q:

Since the length of the orbit of L containing the vertexRyk3L is q, we have xk1 should
fix the vertex Ryk3, that is,

Ryk3 = Ryk3xk1 = Ryk3xk1(yk3)−1yk3 = Ryxyk−12 k1yk3
= Rx−2k−12 k1yk3 = Rk2k1yk3,



W. Xu et al.: 2-Arc-Transitive regular covers of Kn,n − nK2. . . 279

which implies that
k2 = k−11 . (3.7)

(ii) Connectedness property:

By Eq(3.7), we have

〈D−1D〉 = 〈L(yk3)−1R(yk3)L〉 = 〈L, Ry〉
= 〈Q̃, xk1, Q̃y, xyk2〉 = 〈Q̃, xk1, Q̃y, xyk−11 〉 ≤ T̃ × 〈k1〉 6= M̃.

Again, Proposition 2.2(i) implies that the graph X ′ is disconnected.

Case 2: T̃ ∩K = Z2 and T̃ ∼= SL(2, q)

In this case, we have K ∼= Z2 × Z2 and identify T̃ with SL(2, q).
In SL(2, q), set

e =
(

−1 0
0 −1

)
, ti =

(
1 i
0 1

)
, x =

(
θ 0
0 θ−1

)
, y =

(
0 −1
1 0

)
,

where F∗q = 〈θ〉 and i ∈ Fq . Let Q̃ = 〈ti
∣∣ i ∈ Fq〉 ∼= Zlr.

Take ũ ∈ φ−1(∞), one may assume that M̃ũ = Q̃1 o 〈xk〉 ∼= Zlr o Z q−1
2

, where

Q̃1 ≤ K× Q̃ and k ∈ K. Since Q̃ ∼= Zlr and r is an odd prime, we get Q̃1 = Q̃. Moreover,
as (xk)

q−1
2 = 1 and K ∼= Z2 × Z2, it follows that k

q−1
2 = e, that is, k = e and q−1

2 is
odd. Hence, we may assume that L := M̃ũ = Q̃o 〈xe〉 and R := M̃ũ′ = Q̃o 〈xe〉, where
ũ′ ∈ φ−1(∞′).

Finally, with the same discussion as Case 1, one may get the nonexistence of X .

Combining the lemmas in Subsections 3.1, 3.2, 3.3 and 3.4, we complete our proof of
Theorem 1.1.
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[9] S.F. Du, A. Malnič and D. Marušič, Classification of 2-arc-transitive dihedrants, J. Comb. The-
ory B 98 (2008), 1349–1372.

[10] S.F. Du, M.Y. Xu, A classification of semisymmetric graphs of order 2pq, Comm. in Algebra
28 (2000), 2685–2715.

[11] X.G. Fang, G. Havas and C.E. Praeger, On the automorphism groups of quasiprimitive almost
simple graphs, J. Algebra 222 (1999), 271–283.

[12] Y.Q. Feng, J.H. Kwak and K.S. Wang, Classifying cubic symmetric graphs of order 8p or 8p2,
Europ. J. Combin. 26 (2005), 1033–1052.

[13] C.D. Godsil and R.A. Liebler and C.E. Praeger, Antiposal distance transitive covers of complete
graphs, Europ. J. Combin. 19 (1992), 455–478.

[14] A. Gardiner and C.E. Praeger, Topological covers of complete graphs, Math. Proc. Camb. Phil.
Soc. 123 (1998), 549–559.

[15] J.L. Gross and T.W. Tucker, Topological Graph Theory, Wiley-Interscience, New York, 1987.

[16] J.L. Gross and T.W. Tucker, Generating all graph coverings by permutation voltage assign-
ments, Discrete Math. 18 (1977) 273–283.

[17] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.

[18] A.A. Ivanov and C.E. Praeger, On finite affine 2-arc-transitive graphs, Europ. J. Combin. 14
(1993), 421–444.

[19] C.H. Li, On finite s-transitive graphs of odd order, J. Comb. Theory B 81 (2001), 307–317.

[20] C.H. Li, The finite vertex-primitive and vertex-biprimitive s-transitive graphs for s ≥ 4, Tran.
Amer. Math. Soc. 353 (2001), 3511–3529.

[21] P. Lorimer, Vertex-Transitive Graphs: Symmetric Graphs of Prime Valency, J. Graph Theory 8
(1984), 55–68.

[22] D. Marušič, On 2-arc-transitivity of Cayley graphs, J. Comb. Theory B 87 (2003), 162–196.

[23] C.E. Praeger, An O’Nan-Scott theorem for finite quasiprimitive permutation groups and an
application to 2-arc transitive graphs, J. London Math. Soc. 47 (1993), 227–239.

[24] C.E. Praeger, On a reduction theorem for finite, bipartite, 2-arc-transitive graphs, Australas J.
Combin. 7 (1993), 21–36.

[25] W.Q. Xu and S.F. Du, 2-arc-trantive cyclic covers of Kn,n − nK2, J. Algebraic Combin. 39
(2014), 883–902.

[26] W.Q. Xu, S.F. Du, J.H. Kwak and M.Y. Xu, 2-arc-transitive metacyclic covers of complete
graphs, J. Comb. Theory B 111 (2015), 54–74.


