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Abstract

We define what appears to be a new construction. Given a graph G and a positive
integer k, the reduced kth power of G, denoted G(k), is the configuration space in which
k indistinguishable tokens are placed on the vertices of G, so that any vertex can hold
up to k tokens. Two configurations are adjacent if one can be transformed to the other
by moving a single token along an edge to an adjacent vertex. We present propositions
related to the structural properties of reduced graph powers and, most significantly, provide
a construction of minimum cycle bases of G(k).

The minimum cycle basis construction is an interesting combinatorial problem that
is also useful in applications involving configuration spaces. For example, if G is the
state-transition graph of a Markov chain model of a stochastic automaton, the reduced
power G(k) is the state-transition graph for k identical (but not necessarily independent)
automata. We show how the minimum cycle basis construction of G(k) may be used to
confirm that state-dependent coupling of automata does not violate the principle of micro-
scopic reversibility, as required in physical and chemical applications.
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1 Introduction
Time-homogenous Markov chains [19] are used as a mathematical formalism in applica-
tions as diverse as computer systems performance analysis [21], queuing theory in op-
erations research [18], simulation and analysis of stochastic chemical kinetics [12], and
biophysical modeling of ion channel gating [10].
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Many properties of a Markov chain, such its rate of mixing and its steady-state probabil-
ity distribution, can be numerically calculated using its transition matrix [24]. A continuous-
time Markov chain X(t) (t ≥ 0) with a finite number of states {1, . . . , η} is defined by an
initial probability distribution, πi(0) = Pr{X(0) = i}, and a transition matrix Q = (qij)
where 1 ≤ i, j ≤ η, qij ≥ 0 for i 6= j and qii = −∑j 6=i qij , so called because, for i 6= j,
qij = limdt→0 Pr{X(t + dt) = j|X(t) = i}/dt. The requirement that Q has zero row
sums,

∑
j qij = 0, corresponds to conservation of probability,

∑
i πi(t) = 1, in the ordi-

nary differential equation initial value problem, dπ/dt = πQ with initial condition π(0),
solved by the time-dependent discrete probability distribution π(t) = (π1(t), . . . , πη(t))
where πi(t) = Pr{X(t) = i}.

A CTMC with a single communicating class of η < ∞ states is irreducible, positive
recurrent, and has a unique steady-state probability distribution that solves π̄Q = 0 subject
to
∑
i π̄i = 1 (by the Perron-Frobenius theorem). The Perron vector and steady-state

distribution π̄ is the limiting probability distribution of the Markov chain, limt→∞ ‖π(t)−
π̄‖ = 0, for any initial condition satisfying conservation of probability,

∑
i πi(0) = 1. In

general, the calculation of steady-state distributions and other properties for Markov chains
with η states requires algorithms of O(η3) complexity.

Many open questions in the physical and biological sciences involve the analysis of sys-
tems that are naturally modeled as a collection of interacting stochastic automata [3,17,23].
Unfortunately, representing a stochastic automata network as a single master Markov chain
suffers from the computational limitation that the aggregate number of states is exponential
in the number of components. For example, the transition matrix for k coupled stochastic
automata, each of which can be represented by an v-state Markov chain, has η = vk states
and requires algorithms of O(v3k) complexity.

Many results are relevant to overcoming combinatorial state-space explosions of cou-
pled stochastic automata. For example, memory-efficient numerical methods may use ordi-
nary Kronecker representations of the master transition matrix Q =

∑
`

⊗k
n=1R`n where

the R`n are size v, and many are identity matrices, eliminating the need to generate and
store the size vk transition matrix [9]. Kronecker representations may be generalized to
allow for matrix operands whose entries are functions that describe state-dependent tran-
sition rates, i.e., Q =

⊕k
n=1 Fn and Fn(i, j) : ×kn=1Xn → R where Xn(t) is the state

of the nth automata [5]. Hierarchical Markovian models may be derived in an automated
manner and leveraged by multi-level numerical methods [7].

Redundancy in master Markov chains for interacting stochastic automata can often be
eliminated without approximation. Both lumpability at the level of individual automata
and model composition have been extensively researched, though the latter reduces the
state space in a manner that eliminates Kronecker structure [4, 6, 13]. To see this, consider
k identical and indistinguishable stochastic automata, each with v states, that interact via
transition rates that are functions of the global state, that is, Q =

⊕k
F where F (i, j) :

×v`=1 n` → R where n`(t) =
∑k
n=1 I{Xn(t) = `} is the number of automata in state

`. As defined Q, is size vk, however, states may be lumped using symmetry in the model
specification to yield an equivalent master Markov chain of size η =

(
k+v−1
k

)
. Although

model reduction in this spirit is intuitive and widely used in applications, the mathematical
structure of the transition graphs resulting from such contractions does not appear to have
been extensively studied.

More concretely, letG represent the transition graph for an v-state automaton with tran-
sition matrix Q = (qij). As required in many applications, we assume that Q is irreducible
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and that state transitions are reversible (qij > 0 ⇔ qji > 0, i 6= j). Thus, the transition
graphG corresponding toQ is simple (unweighted, undirected, no loops or multiple edges)
and connected (by the irreducibility of Q). The transition graph G has adjacency matrix
A(G) = (aij) where aii = 0, and for i 6= j, aij = 0 when qij = 0 and aij = 1 when
qij > 0.

The transition graph for the master Markov chain for k automata with transition graphs
Gn is the Cartesian graph productG12G22 · · ·2Gk. If these k automata are identical, the
transition graph for the master Markov chain is the kth Cartesian power of G, that is, the
k-fold product Gk = G2G2 · · ·2G. The focus of this paper is the k-th reduced power
ofG, i.e., the transition graph of the contracted master Markov chain for k indistinguishable
(but not necessarily independent) v-state automata with isomorphic transition graphs.

The remainder of this paper is organized as follows. In Sections 2–3 we formally define
the reduced power of a graph and interpret it as particular configuration space. Sections 4–
6 present our primary result, the construction of minimal cycle bases of reduced graph
powers. Section 7 explicates the relevance of these minimal cycle bases to applications
that do not allow state-dependent coupling of automata to introduce nonequilibrium steady
states.

2 Reduced Cartesian powers of a graph
There are several equivalent formulations of the reduced power of a graph. For the first
formulation, recall that given graphs G and H , their Cartesian product is the graph G2H
whose vertex set is the Cartesian product V (G)×V (H) of the vertex sets of G and H , and
whose edge set is

E(G2H) =
{

(x, u)(y, v) | xy ∈ E(G) and u = v, or x = y and uv ∈ E(H)
}
.

This product is commutative and associative [14]. For typographical efficiency we may
abbreviate a vertex (x, y) of G2H as xy if there is no danger of confusion.

The kth Cartesian power of a graph G is the k-fold productGk = G2G2 · · ·2G. The
symmetric group Sk acts on Gk by permuting the factors. Specifically, for a permutation
π ∈ Sk the map

(x1, x2, . . . , xk) 7→ (xπ(1), xπ(2), . . . , xπ(k))

is an automorphism of Gk. The kth reduced power of G is the graph that has as vertices
the orbits of this action, with two orbits being adjacent if Gk has an edge joining one orbit
to the other. Said more succinctly, the reduced kth power is the quotient Gk/Sk of Gk by
its Sk action.

Figure 1 shows a graph G next to G2 = G2G. The S2 action on G2 has as orbits
the singletons {aa}, {bb}, {cc}, {dd}, along with the pairs {ab, ba}, {ac, ca}, {ad, da},
{bc, cb}, {bd, db}, and {cd, dc}. Let us identify a singleton orbit such as {aa} with the
monomial aa = a2, and a paired orbit such as {ab, ba} with the monomial ab (with ab =
ba). The reduced power G(2) appears on the right of Figure 1. Note that two monomials
xy and uv are adjacent in G(2) provided that xy and uv have a common factor, and the
remaining two factors are adjacent vertices of G.

As each monomial xy corresponds uniquely to the 2-multiset {x, y} of vertices of G,
we can also define the reduced power G(2) as follows. Its vertices are the 2-multisets of
vertices of G, with two multisets being adjacent precisely if they agree in one element, and
the other elements are adjacent in G.
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Figure 1: A graph G, the Cartesian square G2 = G2G, and the reduced power G(2). For each
x ∈ V (G), the vertices {xv | v ∈ V (G)} induce a subgraph Gx ∼= G of G(2). These subgraphs are
shown dashed, dotted and solid in G(2). Note Gx and Gy intersect precisely at vertex xy if x 6= y.

In general, higher reduced powersG(k) can be understood as follows. Suppose V (G) =
{a1, a2, . . . , av}. Any vertex of G(k) is the Sk-orbit of some x = (x1, x2, . . . , xk) ∈
V (Gk). For each index 1 ≤ i ≤ v, say x has ni ≥ 0 coordinates equal to ai. Then∑v
i=1 ni = k, and the Sk-orbit of x consists precisely of those k-tuples in V (Gk) having

ni coordinates equal to ai, for 1 ≤ i ≤ v. This orbit – this vertex of G(k) – can then be
identified with either the degree-k monomial

an1
1 an2

2 · · · anv
v ,

or with the k-multiset

{ a1, a1, . . . , a1︸ ︷︷ ︸
n1

| a2, a2, . . . , a2︸ ︷︷ ︸
n2

| . . . . . . | av, av, . . . , av︸ ︷︷ ︸
nv

}, (2.1)

where v−1 dividing bars are inserted for clarity. We will mostly use the monomial notation
for V (G(k)), but will also employ the multiset phrasing when convenient. Let us denote the
set of monic monomials of degree k, with indeterminates V (G), asMk(G), withM0(G) =
{1}. The above, together with the definition of the Cartesian product, yields the following.

Definition 2.1. For a graph G with vertex set {a1, a2, . . . , av}, the reduced kth power
G(k) is the graph whose vertices are the monomials an1

1 an2
2 · · · anv

v ∈ Mk(G). For edges,
if aiaj is an edge of G, and f(a1, a2, . . . av) ∈ Mk−1(G), then aif(a1, a2, . . . , av) is
adjacent to ajf(a1, a2, . . . , av).

Figure 2 shows the three-cycle G = C3 and its reduced second and third powers.
Figure 3 shows the five-cycle and its reduced second and third powers.

The reduced power G(k) is not to be confused with the symmetric power of G, for
which each vertex represents a k-subset of V (G), and two k-subsets are joined if and only
if their symmetric difference is an edge of G [1, 2].

The multiset notation (2.1) gives a quick formula for the number of vertices of reduced
kth powers. This presentation describes the multiset as a list of length k+v−1 involving k
symbols ai, 1 ≤ i ≤ k, and v−1 separating bars. We can count the multisets by choosing k
slots for the ai’s and filling in the remaining slots with bars. Therefore, when |V (G)| = v,∣∣∣V (G(k)

)∣∣∣ =

(
k + v − 1

k

)
. (2.2)
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Figure 2: The three-cycle C3 and its second and third reduced powers C(2)
3 and C(3)

3 .

The number of vertices in Gk that are identified with vertex an1
1 an2

2 · · · anv
v ∈ V (G(k)) in

the quotient G(k) = Gk/Sk is given by the multinomial coefficient
(

k
n1 n2 ... nv

)
.

Definition 2.1 says that for each edge aiaj ofG, and for each monomial f ∈Mk−1(G),
there is an edge of G(k) from aif to ajf . Because there are

(
k+m−2
k−1

)
such monomials f ,∣∣∣E(G(k)

)∣∣∣ = |E(G)| ·
(
k + v − 2

k − 1

)
. (2.3)

3 Reduced graph powers as configuration spaces
The reduced power G(k) is the transition graph of the contracted master Markov chain for
k identical and indistinguishable v-state automata, each with transition graph G. Conse-
quently, an intuitive way of envisioning G(k) is to imagine it as a configuration space in
which k indistinguishable tokens are placed on the vertices of G, so that any vertex can
hold up to k tokens. The monomial an1

1 an2
2 · · · anv

v then represents the configuration in
which ni tokens are placed on each vertex ai. Two configurations are adjacent if one can
be transformed to the other by moving a single token along an edge of G to an adjacent
vertex. In this way G(k) is interpreted as the space of all such configurations. See [11] for
a related construction in which no vertex can hold more than one token.

The reduced power G(k) may also be interpreted as the reachability graph for a funda-
mental class of stochastic Petri nets with k tokens, v = |V (G)| places, and 2|E(G)| flow
relations (directed arcs) between places [8, 22]. The arc from place ai (origin) to place aj
(destination) has firing rate niqij given by the product of transition rate qij and the number
ni of tokens in the origin place. That is, the ai → aj firing time is the minimum of ni
exponentially distributed random variables with expectation 1/qij . The ai → aj firing rate
per token will be denoted qij [an1

1 an2
2 · · · anv

v ] when it is a function of the global state (token
configuration) of the stochastic Petri net.

The token interpretation can be helpful in deducing properties of reduced powers, such
as the following.
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Proposition 3.1. The vertex an1
1 an2

2 · · · anv
v of G(k) has degree

deg
(
an1
1 an2

2 · · · anv
v

)
=
∑
ni≥1

degG(ai).

Proof. The configuration an1
1 an2

2 · · · anv
v can be transformed to an adjacent configuration

only by moving a token on some vertex ai (with ni ≥ 1) to an adjacent vertex.
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Figure 3: The five-cycle C5 and its second and third reduced powers C(2)
5 and C(3)

5 .
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4 Cycle bases and minimum cycle bases
Here we quickly review the fundamentals of cycle spaces and bases. The following is
condensed from Chapter 29 of [14].

For a graph G, its edge space E (G) is the power set of E(G) viewed as a vector space
over the two-element field F2 = {0, 1}, where the zero vector is 0 = ∅ and addition is
symmetric difference. Any vector X ∈ E (G) is viewed as the subgraph of G induced on
X , so E (G) is the set of all subgraphs of G without isolated vertices. Thus E(G) is a
basis for E (G), and dim(E (G)) = |E(G)|. The vertex space V (G) of G is the power
set of V (G) as a vector space over F2. It is the set of all edgeless subgraphs of G and its
dimension is |V (G)|.

We define a linear boundary map δG : E (G)→ V (G) by declaring that δG(xy) = x+y
on the basis E(G). The subspace C (G) = ker(δG) is called the cycle space of G. It
contains precisely the subgraphs in E (G) whose vertices all have even degree (that is, the
Eulerian subgraphs). Because every such subgraph can be decomposed into edge-disjoint
cycles, each in C (G), we see that C (G) ⊆ E (G) is spanned by the cycles in G.

The dimension of C (G), denoted β(G), is called the (first) Betti number of G. If G is
connected, the rank theorem applied to δG yields

β(G) = |E(G)| − |V (G)|+ 1. (4.1)

A basis for the cycle space is called a cycle basis. To make a cycle basis of a connected
graph G, take a spanning tree T , so the set S = E(G)−E(T ) has |E(G)|− |V (G)|+ 1 =
β(G) edges. For each e ∈ S, let Ce be the unique cycle in T + e. Then the set B =
{Ce | e ∈ S} is linearly independent. As B has cardinality β(G), it is a basis (see Figure 4).

The elements of a cycle basis are naturally weighted by their number of edges. The
total length of a cycle basis B is the number `(B) =

∑
C∈B |C|. A cycle basis with the

smallest possible total length is called a minimum cycle basis, or MCB.

a2

e2

d2 c2

b2

ae

de

cd

bc

ab

be

ad

ce bd

ac

C
(2)
5

Figure 4: A spanning tree T of G = C
(2)
5 . The set S = E(G) − E(T ) has β(G) =

25 − 15 + 1 = 11 edges. For each e ∈ S, let Ce be the unique cycle in T + e. The set
{Ce | e ∈ S} is a cycle basis for G, but not a minimum cycle basis (see Figure 5).
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The cycle space is a weighted matroid where each elementC has weight |C|. Hence the
Greedy Algorithm [20] always terminates with an MCB: Begin with M = ∅; then append
shortest cycles to it, maintaining independence of M , until no further shortest cycles can
be appended; then append next-shortest cycles, maintaining independence, until no further
such cycles can be appended; and so on, until M is a maximal independent set. Then M
is an MCB.

Here is our primary criterion for determining if a cycle basis is an MCB. (See Exercise
29.4 of [14].)

Proposition 4.1. A cycle basis B = {B1, B2, . . . , Bβ(G)} for a graph G is an MCB if and
only if every C ∈ C (G) is a sum of basis elements whose lengths do not exceed |C|.

For graphs G and H , a weak homomorphism ϕ : G→ H is a map ϕ : V (G)→ V (H)
having the property that for each xy of G, either ϕ(x)ϕ(y) is an edge of H , or ϕ(x) =
ϕ(y). Such a map induces a linear map ϕ∗ : E (G) → E (H) defined on the basis E(G)
as ϕ∗(xy) = ϕ(x)ϕ(y) provided ϕ(x) 6= ϕ(y), and ϕ∗(xy) = 0 otherwise. Similarly we
define ϕ∗V : V (G) → V (H) as ϕ∗V (x) = ϕ(x) on the basis V (G). Thus we have the
following commutative diagram. (Check it on the basis E(G).)

E (G) E (H)

V (G) V (H)

δG δH

ϕ∗

ϕ∗V

From this, ϕ∗ restricts to a map C (G)→ C (H) on cycle spaces, because ifC ∈ C (G),
then δG(C) = 0, whence δHϕ∗(C) = ϕ∗V δG(C) = 0, meaning ϕ∗(C) ∈ ker(δH) =
C (H). Certainly if ϕ is a graph isomorphism, then ϕ∗ is a vector space isomorphism.

Of special interest will be the projections pi : Gk → G, where pi(x1, x2, . . . , xk) = xi.
These are weak homomorphisms and hence induce linear maps p∗i : C (Gk)→ C (G).

Another important map is the natural projection η : Gk → G(k) sending each k-tuple
x = (x1, x2, . . . , xk) to the monomial representing the Sk-orbit containing x. This map η∗

also is a weak homomorphism, inducing a linear map η∗ : C (Gk)→ C (G(k)).

Lemma 4.2. If G is connected, the map η∗ : C (Gk)→ C (G(k)) is surjective.

Proof. Because any element of C (G(k)) is an edge-disjoint union of cycles, it suffices to
show that any cycle C = f0f1 · · · fnf0 ∈ C (G(k)) equals η∗(C ′) for some C ′ ∈ C (Gk).
For each index i, let xiyi+1 ∈ E(Gk) be an edge for which η∗(xiyi+1) = η(xi)η(yi+1) =
fifi+1. (Each xi, yi is a k-tuple, and index arithmetic is modulo n.) Note that η(xi) =
η(yi), meaning xi and yi are in the same Sk-orbit, that is, yi equals xi with its coordinates
permuted.

We will argue that each pair yi, xi can be joined by a path Pi in Gk, with η∗(Pi) = 0.
This will prove the lemma because then

C ′ = P0 + x0y1 + P1 + x1y2 + P2 + . . .+ Pn + xny0 ∈ C (Gk)

satisfies η∗(C ′) = C.
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Consider two vertices (. . . a . . . b . . .) and (. . . b . . . a . . .) ofGk that are identical except
for the transposition of two coordinates a and b. Take a path a = v0v1 · · · vq = b from a to
b in G. Now form the following two paths in Gk

Q = (. . . a . . . b . . .)(. . . v1 . . . b . . .)(. . . v2 . . . b . . .) . . . (. . . b . . . b . . .)
R = (. . . b . . . a . . .)(. . . b . . . v1 . . .)(. . . b . . . v2 . . .) . . . (. . . b . . . b . . .).

Concatenation of Q with the reverse of R is a path from (. . . a . . . b . . .) to (. . . b . . . a . . .).
Moreover η∗(Q+R) = 0 because the images of the jth edges ofQ andR are always equal;
hence the edges cancel in pairs. As yi and xi differ only by a sequence of transpositions
of their coordinates, the above construction can be used to build up a path Pi from yi to xi
with η(Pi) = 0.

We have seen that the projections pi : Gk → G induce linear maps C (Gk) → C (G).
But there seems to be no obvious way of defining a projectionG(k) → G. Still, it is possible
to construct a natural linear map p∗ : C (G(k)) → C (G). To do this, recall that any edge
of G(k) has form af bf where ab ∈ E(G) and f ∈ Mk−1(G). We begin by defining p∗

on the edge space. Put p∗(af bf) = ab for each edge af bf in the basis E(G(k)) and
extend linearly to a map p∗ : E (G(k)) → E (G). Note that

∑k
i=1 p

∗
i = p∗ ◦ η∗. (Confirm

it by checking it on the basis E(Gk) of E (Gk).) Now, if X ∈ C (G(k)), then Lemma 4.2
guarantees X = η∗(Y ) for some Y in the cycle space of Gk. Then p∗(X) = p∗(η∗(Y )) =∑k
i=1 p

∗
i (Y ) ∈ C (G).

We now have a linear map p∗ : C (G(k))→ C (G) for which p∗(af bf) = ab.
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Figure 5: The union {C5a} ∪B is an MCB for C (C
(2)
5 ) = C (C5 a)

⊕
S (C

(2)
5 ).
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5 Decomposing the cycle space of a reduced power
This section explains how to decompose the cycle space of a reduced power into the direct
sum of particularly simple subspaces.

To begin, notice that if f is a fixed monomial in Mk−1(G), then there is an embedding
G→ G(k) defined as x 7→ xf . Let us call the image of this map Gf . Notice that Gf is an
induced subgraph of G(k) and is isomorphic to G.

Proposition 5.1. For any fixed f ∈Mk−1(G), we have C (G(k)) = C (Gf)
⊕

ker(p∗).

Proof. Consider the map p∗ : C (G(k)) → C (G). Its restriction C (Gf) → C (G) is a
vector space isomorphism. The proof now follows from elementary linear algebra.

Next we define a special type of cycle in a reduced power. Given distinct edges ab and
cd of G and any f ∈ Mk−2(G), we have a square in G(k) with vertices acf, bcf, bdf, adf .
Let us call such a square a Cartesian square, and denote it as (ab2cd)f . See Figure 6.

acf

adf

bcf

bdf

Figure 6: A Cartesian square (ab2cd)f in G(k) with k ≥ 2.

We regard this as a cycle in the cycle space; it is the subgraph of G(k) that is precisely
the sum of edges acf bcf + bcf bdf + bdf adf + adf acf. (Observe that this sum is zero
if and only if ab = cd.) We remark that although a subgraph Gf may have squares, they
are not Cartesian squares because they do not have the form specified above. Define the
square space S (G(k)) to be the subspace of C (G(k)) that is spanned by the Cartesian
squares.

If S is a Cartesian square, then p∗(S) = 0, so S (G(k)) ⊆ ker(p∗). In the remainder
of the paper we will show that in fact S (G(k)) = ker(p∗), so that Proposition 5.1 gives
C (G(k)) = C (Gf)

⊕
S (G(k)). Simultaneously we will craft a simple MCB for G(k) by

concatenating MCBs of C (Gf) and S (G(k)). See Figure 5 for an example.

6 Cycle bases for reduced powers
This section describes a simple cycle basis for the reduced kth power of a graphG. IfG has
no triangles, this cycle basis will be an MCB. (We do not consider MCBs in the cases that
G has triangles because the applications we have in mind do not involve such situations.
Constructing MCBs when G has triangles would be an interesting research problem.)

Let G be a connected graph with v vertices and e edges. Recall that by Equations (2.2)
and (2.3), the graph G(k) has

(
k+v−1
k

)
vertices, identified with the monomials Mk(G), and

e
(
k+v−2
k−1

)
edges. Thus any cycle basis has dimension

β(G(k)) = e

(
k + v − 2

k − 1

)
−
(
k + v − 1

k

)
+ 1. (6.1)

We first examine the square space. Any pair of distinct edges ab and cd of G corre-
sponds to a Cartesian square (ab2cd)f , where f ∈ Mk−2(G), so there are

(
e
2

)(
k+v−3
k−2

)



R. H. Hammack and G. D. Smith: Cycle bases of reduced powers of graphs 193

such squares. But this set of squares may not be independent. Our first task will be to
construct a linearly independent set of Cartesian squares.

To begin, put V (G) = {a1, a2, . . . , av}. Let T be a rooted spanning tree ofG with root
a1, and arrange the indexing so its order respects a breadth-first traversal of T , that is, for
each i the vertex ai is not closer to the root than any aj for which j < i (see Figure 7).

a1

a2

a3

a4

a5

a6
a7

a8

a9

a10 . . .

a11 . . .

Figure 7: A rooted spanning tree T of G with V (G) = {a1, a2, . . . , av}, root a1, and
indexing that respects a breadth-first traversal of T .

With this labeling, any edge of T is uniquely determined by its endpoint aj that is
furthest from the root. For each 2 ≤ i ≤ v, let ej be the edge of T that has endpoints ai
and aj , with aj further from the root than ai. Let Mk−2(a1, a2, . . . aj) denote the monic
monomials of degree k − 2 in indeterminates a1, a2, . . . , aj , with 1 ≤ j ≤ v. Define the
following sets of Cartesian squares in G(k).

Υ = {(ei2ej)f | 2 ≤ i < j ≤ v, f ∈Mk−2(a1, a2, . . . , aj)} ,
Ω = {(a`am2ej)f | a`am ∈ E(G)−E(T ), 2 ≤ j ≤ v, f ∈Mk−2(a1, a2, . . . , aj)} .

Shortly we will show that Υ∪Ω is linearly independent. But first a few quick informal
words about why we would expect this to be the case. Suppose k ≥ 3 and take three
distinct edges aiaj , a`am and apaq in G, and let f ∈ Mk−3(G). Figure 8 indicates that
these edges result in a cube in the kth reduced power. Each of the six square faces of this
cube is in the square space. But the faces are dependent because any one of them is a sum
of the others. Call a square face such as (aiaj2a`am)aqf a “top square” of a cube if the
monomial aqf involves an indeterminate at with t > max{i, j, `,m}. Sets Υ and Ω are
constructed so as to contain no top squares.

aia`aqf

aia`apf

aja`aqf

aja`apf

aiamaqf

aiamapf

ajamaqf

ajamapf

Figure 8: A Cartesian cube (aiaj2a`am2apaq)f in the reduced power G(k).
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(A configuration of the type illustrated in Figure 8 may not always be a cube in the
combinatorial sense. The reader is cautioned that if aiaj , a`am and apaq are the edges of
a triangle in G, then two of the diagonally opposite vertices of the “cube” are the same, as
in K(3)

3 , shown in Figure 2. Here there is only one cube, which takes the form of a central
vertex connected to the six vertices of a hexagon. This will cause no difficulties in what
follows, even if we entertain the possibility that G does indeed have triangles.)

There is another kind of dependency that is ruled out in the definition of Υ and Ω, and
we now sketch it. First, imagine G2. Consider two cycles A and B in G each having
exactly one edge not in T , say aiaj and a`am, respectively. Envision A2B is as a torus in
G2 with square faces, each edge shared by two faces. In adding up all the faces, the edges
cancel in pairs, giving 0, so the squares are dependent. Removing the face aiaj2a`am
removes the dependency. Such squares aiaj2a`am show up in G(2)f ⊆ G(k) as squares
(aiaj2a`am)f with aiaj , apaq ∈ E(G)− E(T ). Sets Υ and Ω contain no such squares.

Proposition 6.1. The set B = Υ ∪ Ω is linearly independent.

Proof. We first show that Υ is linearly independent. Let X =
∑

(ei2ej)fn be a sum of
elements of Υ. Form the forest F ⊆ T consisting of all edges ei and ej that appear as edges
of a squares in this sum, and let ab be an edge of F for which b is a leaf. Then any term
(a`am2ab)fn of the sum is the unique square in the sum containing the edge a`bfn ambfn.
Because no term can cancel this edge, we get X 6= 0, so Υ is linearly independent.

To see that Ω is linearly independent, consider a sum X =
∑

(a`am2ej)fn of squares
in Ω. Again form a forest F ⊆ T of the edges ej and let ab be as before. Then any
term (a`am2ab)fn is the unique square in the sum containing the edge a`bfn ambfn.
Then X 6= 0 because no other term in the sum can cancel this edge; hence Ω is linearly
independent.

Now we argue that the spans of Υ and Ω have zero intersection. By the previous para-
graph, any nonzero linear combination of squares in Ω has edges of form (a`am2ab)fn,
with a`am ∈ E(G) − E(T ). But no linear combination of squares in Υ has such edges.
Hence the spans have zero intersection, so B is linearly independent.

Our next task is to show that B is actually a basis for the square space. In fact, we will
show more: it is also a basis for ker(p∗), and S (G(k)) = ker(p∗). Our dimension counts
will involve finding |Υ| and |Ω|, and for this we use the following formulas. The first is
standard; both are easily verified with induction.

(
r
r

)
+
(
r+1
r

)
+
(
r+2
r

)
+ · · · +

(
r+n
r

)
=

(
r+n+1
r+1

)
(6.2)

0
(
r
r

)
+ 1
(
r+1
r

)
+ 2
(
r+2
r

)
+ · · · + n

(
r+n
r

)
= n

(
r+n+1
r+1

)
−
(
r+n+1
r+2

)
(6.3)

Take an edge ej of T with 3 ≤ j. From its definition, Υ has (j − 2)
(
k+j−3
k−2

)
squares of

form (ei2ej)f . We reckon as follows, using Equations (6.2) and (6.3) as appropriate.
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|Υ| =

v∑
j=3

(j − 2)

(
k + j − 3

k − 2

)

=

v∑
j=1

(j − 2)

(
k + j − 3

k − 2

)
+ 1

=

v∑
j=1

(j − 1)

(
k + j − 3

k − 2

)
−

v∑
j=1

(
k + j − 3

k − 2

)
+ 1

= (v − 1)

(
k + v − 2

k − 1

)
−
(
k + v − 2

k

)
−
(
k + v − 2

k − 1

)
+ 1

= (v − 1)

(
k + v − 2

k − 1

)
−
(
k + v − 1

k

)
+ 1. (6.4)

Now, given and edge ej of T with 2 ≤ j, the set Ω has β(G)
(
k+j−3
k−2

)
squares of form

(a`am2ej)f . Consequently

|Ω| = β(G)

v∑
j=2

(
k + j − 3

k − 2

)

= β(G)

 v∑
j=1

(
k + j − 3

k − 2

)
− 1


= β(G)

(
k + v − 2

k − 1

)
− β(G). (6.5)

Proposition 6.2. The set B = Υ ∪ Ω is a basis for the square space of the reduced kth
power of G. Moreover, the square space equals ker(p∗).

Proof. By Proposition 6.1, the set B is linearly independent; and it is a subset of the square
space by construction. We saw earlier that the square space is a subspace ker(p∗). To finish
the proof we show that ker(p∗) has dimension |B|. By the rank theorem applied to the
surjective map p∗ : C (G(k))→ C (G) we have dim ker(ϕ∗) = β(G(2))−β(G). This with
Equations (6.1), (6.4) and (6.5), as well as the fact that (v − 1) + β(G) = e, gives

|B| = |Υ|+ |Ω|

= (v − 1)

(
k + v − 2

k − 1

)
−
(
k + v − 1

k

)
+ 1 + β(G)

(
k + v − 2

k − 1

)
− β(G)

= e

(
k + v − 2

k − 1

)
−
(
k + v − 1

k

)
+ 1− β(G)

= β(G(2))− β(G)

= dim ker(p∗).

Therefore B is a basis for both S (G(k)) and ker(p∗).

If k = 2, then B = {ab2cd | ab, cd ∈ E(G)} − {ab2cd | ab, cd ∈ E(G) − E(T )},
so |B| =

(
e
2

)
−
(
β(G)
2

)
. It is interesting to note that if β(G) ≤ 1, then

(
β(G)
2

)
= 0 and B

consists of all squares in the square space; in all other cases it has fewer squares.
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e2

e5

e4

e3

a1

a2

a3a4

a5
T ⊂ C5

ab

de

cd

bc

ae
a

b

cd

e
C5

abe

abc

bcd

ade

a2b

ab2

bd2

b2e

ad2

a2c

ace

bce

acd

bde

C
(3)
5 (ab2bc)a ∈ Υ

(ae2bc)b ∈ Ω

(ae2bc)a ∈ Ω

(ab2de)c ∈ Υ

(cd2de)b ∈ Υ(ab2cd)d ∈ Υ

(cd2de)a ∈ Υ

(ab2de)d ∈ Υ

Figure 9: With T as indicated, the sets of squares Υ and Ω form a basis B = Υ ∪ Ω of
the square space of C(3)

5 . Here Υ = {(ab2bc)f | f ∈ {a, b, c}} ∪ {(ab2cd)f, (bc2cd)f |
f ∈ {a, b, c, d}} ∪{(ab2de)f, (bc2de)f, (cd2de)f | f ∈ {a, b, c, d, e}}. Also Ω =
{(ae2ab)f | f ∈ {a, b}} ∪ {(ae2bc)f | f ∈ {a, b, c}} ∪ {(ae2cd)f | f ∈ {a, b, c, d}} ∪
{(ae2de)f | f ∈ {a, b, c, d, e}}. Note |Υ| = 24 and |Ω| = 14. The square (ab2cd)e /∈ B
is the “top square” of the Cartesian cube ab2cd2de.

We now can establish the main result of this section, namely a construction of an MCB
for the reduced kth power. Take an f ∈Mk−1(G). Propositions 5.1 and 6.2 say

C (G(k)) = C (Gf)
⊕

S (G(k)). (6.6)

To any cycle C = c1c2 . . . cn inG, there corresponds cycle Cf = c1f c2f . . . cnf inG(k).

Theorem 6.3. Take a cycle basis C = {C1, C2, . . . , Cβ(G)} for G, and let B be the
basis for S (G(k)) constructed above. Fix f ∈ Mk−1(G) and put C f = {C1f, C2f, . . . ,
Cβ(G)f}. Then C f ∪B is a cycle basis for G(k). If C is an MCB for G, and G has no
triangles, then this basis is an MCB for G(k).

Proof. That this is a cycle basis follows immediately from Equation (6.6).
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Now suppose C is an MCB for G, and that G has no triangles. It is immediate that
G(k) has no triangles either. The proof is finished by applying Proposition 4.1. Take any
C ∈ C (G(k)), and write it as

C =
∑
i∈I

Gi +
∑
j∈J

Bj ,

where theGi are from C f and theBj are from B. According to Proposition 4.1, it suffices
to show thatC has at least as many edges as any term in this sum. CertainlyC is not shorter
than any square Bj (by the triangle-free assumption). To see that it is not shorter than any
Gi in the sum, apply p∗ to the above equation to get

p∗(C) =
∑
i∈I

p∗(Gi) .

Because p∗ : C (Gf)→ C (G) is an isomorphism, the terms p∗(Gi) are part of an MCB for
G, and thus |p∗(C)| ≥ |p∗(Gi)| = |Gi| for each i, by Proposition 4.1. Also |C| ≥ |p∗(C)|
(as some edges may cancel in the projection) so |C| ≥ |Gi|.

Although Theorem 6.3 gives a simple MCB for reduced powers of a graph that has no
triangles, the constructed basis is definitely not minimum if triangles are present. Several
different phenomena account for this. Consider the case k = 2. First, if G has triangles,
then for each vertex x of G, the second reduced power contains a copy Gx of G. These
copies are pairwise edge-disjoint; an MCB would have to capitalize on triangles in each of
these copies at the expense of squares in the square space. Moreover, as Figure 2 demon-
strates, some of the squares in the square space will actually be sums of two triangles. The
figure also shows that for a triangle ∆ = abc in G, we do not get just the three triangles
∆a, ∆b and ∆c, but also a fourth triangle ab bc ca not belonging to any Gx. We do not
delve into this problem here.

7 Discussion
We have defined what appears to be a new construction, the kth reduced power of a graph,
G(k), and have presented a theorem for construction of minimal cycle bases of G(k).

When G is the transition graph for a Markov chain, G(k) is the transition graph for
the configuration space of k identical and indistinguishable v-state automata with transi-
tion graph G. Symmetry of model composition allows for interactions among stochastic
automata, so long as the transition rates qij for i, j ∈ {1, 2, · · · , v}, i 6= j are constant
or functions of the number of automata n`(t) in each state, 0 ≤ n`(t) ≤ k, 1 ≤ ` ≤ v.
G(k) does not pertain if transition rates depend on the state of any particular automaton,
Xn(t) ∈ {1, 2, · · · , v}, n ∈ {1, 2, · · · , k}, as this violates indistinguishability.

For concreteness, consider a stochastic automata network composed of three identical
automata, each with transition graph C5 and generator matrix,

Q =


� qab[·] 0 0 qae
qba � qbc 0 0
0 qcb � qcd 0
0 0 qdc � qde
qea 0 0 qed �

 (7.1)
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where �’s indicate the values required for zero row sum, qii = −∑j 6=i qij < 0, and qab[·]
indicates a functional transition rate that depends on the global state of the three automata.
Assume constant transition rates qbc = qcd = qde = qea = µ > 0 and qba = qcb = qdc =
qed = qae = ν > 0. Further assume that the automata may influence one another through
the state-dependent transition rate,

qab[·] = λ+ α (na[·]− 1) + β nb[·] + γ nc[·] + δ nd[·] + ε ne[·], (7.2)

where α, β, γ, δ, ε ≥ 0 and [·] denotes the global state ap11 a
p2
2 · · · apvv that is the functional

transition rate’s argument. The transition rate qab : Mk(a1, a2, · · · , av)→ R is a function
of the global state via n` : Mk(a1, a2, · · · , av) → N defined by n`[a

p1
1 a

p2
2 · · · apvv ] =

p`. The three automata are uncoupled when α, β, γ, δ, ε = 0 because this eliminates the
dependence of qab[·] on the global state.

(In this model specification, coupling an isolated component automaton to itself is
equivalent to absence of coupling. Because qab[·] is the rate of an a → b transition, qab[·]
is only relevant when the isolated automaton is in state a. This functional transition rate
has the property that qab[a] = λ when α, β, γ, δ, ε > 0 because nx[y] = 1 for x = y and
0 otherwise.)

The transition matrix for the master Markov chain Q(3) is defined by the model spec-
ification in the previous paragraph. For example, the transition rate from global state
ad2 to global state abd is q(3)[ad2, abd] = 2µ because nd[ad2] = 2 and qdb = µ is
not a function of the global state. Other examples are q(3)[c3, c2d] = nc[c

3]qcd = 3ν,
q[a2c, a2d] = nc[a

2c]qcd = ν,

q(3)[abe, b2e] = na[abe]qab[abe]

= λ+ α (na[abe]− 1) + β nb[abe] + γ nc[abe] + δ nd[abe] + ε ne[abe]

= λ+ β + ε

q(3)[a3, a2b] = na[a3]qab[a
3]

= 3
(
λ+ α (na[a3]− 1) + β nb[a

3] + γ nc[a
3] + δ nd[a

3] + ε ne[a
3]
)

= 3 (λ+ 2α)

q(3)[a2c, abc] = na[a2c]qab[a
2c]

= 2
(
λ+ α (na[a2c]− 1) + β nb[a

2c] + γ nc[a
2c] + δ nd[a

2c] + ε ne[a
2c]
)

= 2 (λ+ α+ γ) .

This process of unpacking the model specification yields a master Markov chain with η =(
k+v−1
k

)
=
(
3+5−1

3

)
= 35 states. The master Markov chain has 210 transition rates qij > 0

corresponding (in pairs) to the 5
(
3+5−2
3−1

)
= 105 edges of the master transition graph C(3)

5 .
The construction of minimal cycle bases of G(k) provided by Theorem 6.3 is espe-

cially relevant to stochastic automata networks that arise in physical chemistry and bio-
physics [15]. For many applications in these domains, the principle of microscopic re-
versibility requires that the stationary distribution of uncoupled automata satisfying global
balance, π̄Q = 0 subject to

∑
i π̄i = 1, also satisfies a stronger condition known as de-

tailed balance,
π̄i
∑
i6=j

qij =
∑
j 6=i

qjiπ̄j .
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n`[i`f ]q`m[i`f ]

ni[imf ]qij [imf ]

nm[jmf ]qm`[jmf ]

nj [j`f ]qji[j`f ]

nm[imf ]qm`[imf ]

nj [jmf ]qji[jmf ]

n`[j`f ]q`m[j`f ]

ni[i`f ]qij [i`f ]

i`f

imf

j`f

jmf

Figure 10: Many cycles of the directed, weighted transition graph for a master Markov
chain for k coupled v-state automata correspond to Cartesian squares (ij2`m)f of the
minimal cycle basis for the undirected, unweighted transition graphG(k), where i, j, `,m ∈
{a1, a2, · · · , av} and f ∈Mk−2(a1, a2, · · · , av).

In other words, nonequilibrium steady states are forbidden. Markov chains have this prop-
erty when the transition rates satisfy the Kolmogorov criterion, namely, equality of the
product of rate constants in both directions around any cycle in the transition matrixQ [16].
For an isolated automaton with transition graph C5 and transition matrix (7.1), the Komol-
ogorov criterion is

qab[a] qbc qcd qde qea = qae qed qdc qcb qba. (7.3)

Substituting the transition rates of the model specification, both those that are constant as
well as qab[a] = λ (7.2), yields the following condition on model parameters,

λµ4 = ν5, (7.4)

that ensures the stationary distribution of an isolated automaton will satisfy detailed bal-
ance.

By constructing the minimal cycle basis of C(3)
5 , we may verify that the master Markov

chain for three uncoupled automata, each with transition graph C5, also exhibits micro-
scopic reversibility under the same parameter constraints.

To see this, recall that the minimal cycle basis of C(3)
5 has 39 linearly independent

cycles. Microscopic reversibility for the master Markov chain for three uncoupled automata
requires that, given (7.4) and α, β, γ, δ, ε = 0, 39 Komolgorov criteria are satisfied, each
corresponding to a Ci in the MCB for C(3)

5 .
One cycle in the MCB for C(3)

5 takes the form C5f for fixed f ∈M2(a, b, c, d, e). The
Kolmogorov criterion for this cycle is

na[af ]qab[af ] · nb[bf ]qbc[bf ] · nc[cf ]qcd[cf ] · nd[df ]qde[df ] · ne[ef ]qea[ef ]

= na[af ]qae[af ] · ne[ef ]qed[ef ] · nd[df ]qdc[df ] · nc[cf ]qcb[cf ] · nb[bf ]qba[bf ],

where, for typographical efficiency, here and below, we drop the superscripted (3) on the
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transition rates q(3)[·, ·] of Q(3). Canceling identical terms of the form nx[xf ] gives

qab[af ] · qbc[bf ] · qcd[cf ] · qde[df ] · qea[ef ] = qae[af ] · qed[ef ] · qdc[df ] · qcb[cf ] · qba[bf ].

When this expression is evaluated, the result is another instance of (7.4), which is satisfied
by assumption.

The remaining 38 Ci in the MCB for C(3)
5 are Cartesian squares (see Figure 10) that

yield Kolmogorov criteria of the form,

ni[imf ]qij [imf ] · nm[jmf ]qm`[jmf ] · nj [j`f ]qji[j`f ] · n`[i`f ]q`m[i`f ]

= nm[imf ]qm`[imf ] · ni[i`f ]qij [i`f ] · n`[j`f ]q`m[j`f ] · nj [jmf ]qji[jmf ],

where f ∈ M1(a, b, c, d, e). For x 6= y, nx[xyf ] = nx[x] + nx[y] + nx[f ] = 1 + nx[f ],
so this criterion simplifies to

(1 + ni[f ])qij [imf ] · (1 + nm[f ])qm`[jmf ] · (1 + nj [f ])qji[j`f ] · (1 + n`[f ])q`m[i`f ]

= (1 + nm[f ])qm`[imf ] · (1 + ni[f ])qij [i`f ] · (1 + n`[f ])q`m[j`f ] · (1 + nj [f ])qji[jmf ].

Canceling identical terms of the form (1 + nx[f ]) gives

qij [imf ] qm`[jmf ] qji[j`f ] q`m[i`f ] = qm`[imf ] qij [i`f ] q`m[j`f ] qji[jmf ] (7.5)

for (ij2`m)f ∈ B = Υ ∪ Ω with f ∈ M1(a1, a2, . . . , av). When the automata are not
coupled, α, β, γ, δ, ε = 0, the transition rates are not functions of the global state, and every
factor on the left hand side has an equal partner on the right. Consequently, the 38 squares
of B correspond to cycles in Q(3) that satisfy Komolgorov criteria.

We have shown that every cycle in the MCB for C(3)
5 , given by C5a ∪B, corresponds

to a cycle in Q(3) that satisfies a Komolgorov criterion. For every cycle in Q(3), there is a
representative in the cycle space C (C

(3)
5 ) that is a linear combination (over the field F2) of

elements of the MCB. It follows that every cycle in the master Markov chain satisfies the
Komolgorov criterion. Thus, we conclude that the master Markov chain for three uncou-
pled automata exhibits microscopic reversibility provided an isolated automaton has this
property. This property is expected, and yet important for model verification.

In many applications, it is important to establish whether or not model composition (i.e.,
the process of coupling the automata) results in a master Markov chain with nonequilibrium
steady states, in spite of the fact that an isolated component automaton satisfies detailed
balance. Such nonequilibrium steady states may be objects of study or, alternatively, the
question may be relevant because the master Markov chain is not physically meaningful
when model composition introduces the possibility of nonequilibrium steady states [15].

Our construction of minimal cycle bases of reduced graph powers provides condi-
tions sufficient to ensure that model composition does not introduce nonequilibrium steady
states. In general, it is sufficient that (7.5) hold of every Cartesian square (ij2`m)f of the
MCB for the undirected, unweighted transition graph G(k). In the example under discus-
sion, many of these Komolgorov criteria do not involve the functional transition rate qab[·];
these conditions are satisfied without placing any constraints on the coupling parameters
α, β, γ, δ, ε. The remaining constraints take the form

qab[amf ] qm`[bmf ] qba[b`f ] q`m[a`f ] = qm`[amf ] qab[a`f ] q`m[b`f ] qba[bmf ] (7.6)
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for `m ∈ {bc, cd, de, ae}. The Cartesian squares of concern are elements of the set
{(ab2`m)f | `m ∈ {bc, cd, de}} ⊂ Υ and (ae2ab)f ∈ Ω. Note that `m 6= ab and, con-
sequently, qm`[bmf ] = qm`[amf ], q`m[a`f ] = q`m[b`f ] and qba[b`f ] = qba[bmf ] = ν.
Thus, (7.6) simplifies to

qab[a`f ] = qab[amf ] `m ∈ {bc, cd, de, ae}. (7.7)

To see how this requirement constrains the coupling parameters α, β, γ, δ, ε, we expand
both sides of (7.7) using (7.2), for example,

qab[a`f ] = λ+ α(na[a`f ]− 1) + βnb[a`f ] + γnc[a`f ] + δnd[a`f ] + εne[a`f ]

= λ+ αna[`f ] + βnb[`f ] + γnc[`f ] + δnd[`f ] + εne[`f ]

where we used na[a`f ] = 1 + na[`f ]. Subtracting both sides of (7.7) by λ + αna[f ] +
βnb[f ] + γnc[f ] + δnd[f ] + εne[f ] and using nx[`f ] = nx[`] + nx[f ] we obtain

αna[`]+βnb[`]+γnc[`]+δnd[`]+εne[`] = αna[m]+βnb[m]+γnc[m]+δnd[m]+εne[m]

for `m ∈ {bc, cd, de, ae}. These four equations yield four parameter constraints that ensure
detailed balance in the master Markov chain for the three coupled stochastic automata, for
example, `m = bc gives

αna[b] +βnb[b] + γnc[b] + δnd[b] + εne[b] = αna[c] +βnb[c] + γnc[c] + δnd[c] + εne[c],

which implies that β = γ. Substituting `m = cd, de and ae, we find γ = δ, δ = ε and
α = ε, respectively. We conclude that α = β = γ = δ = ε.

In our example, the three automata are coupled when one or more of α, β, γ, δ, ε is
positive. The analysis of Cartesian squares in the MCB for C(3)

5 shows that coupling the
three automata in the manner specified by (7.2) will introduce nonequilibrium steady states
unless the coupling parameters are equal. This result is intuitive because

∑
i ni[·] = k = 3

and, consequently, equal coupling parameters α = β = γ = δ = ε correspond to a
functional transition rate that, for every global state, evaluates to the constant qab[·] =
λ+ α(k − 1) = λ+ 2α.

The simplicity of this parameter constraint is a consequence of evaluating (7.5) in the
context of the example model specification. In general, the resulting constraints may be
more complex and less restrictive. Any choice of model parameters that simultaneously
satisfies

qij [imf ] qm`[jmf ] qji[j`f ] q`m[i`f ] = qm`[imf ] qij [i`f ] q`m[j`f ] qji[jmf ]

for (ij2`m)f ∈ B = Υ ∪ Ω with f ∈ Mk−2(a1, a2, . . . , av) are conditions sufficient to
ensure that the process of model composition (i.e., coupling k identical and indistinguish-
able v-state automata) does not introduce a violation of microscopic reversibility.
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