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Abstract 

In this dissertation we present the development and evaluation of pulsed photothermal radiometric 
(PPTR) temperature depth profiling in biological tissues. Motivation for this work is incomplete 
success in laser therapy of port-wine stain birthmarks (PWS). PPTR technique, which utilizes infrared 
(IR) emission from materials following pulsed laser exposure, can provide information about PWS 
depth and epidermal thickness, both required to optimize the therapy. 

We develop three original reconstruction codes, which are based on truncated singular value 
decomposition (TSVD), conjugated gradient (CG) and the υ-method, respectively. All codes involve a 
non-negativity constraint to the sought temperature vector and automatic regularization. When applied 
to different test objects, all three codes produce reconstruction results, which are much more accurate 
than the results published in earlier PPTR studies. 

Calibration of PPTR signals and the error due to linearization of PPTR signal expression is analyzed. 
We find that the linearization error depends on temperature amplitude, absorber depth, acquisition 
time, and the spectral acquisition band. 

PPTR measurements commonly employ broad-band signal acquisition to increase signal-to-noise ratio 
(SNR), but all reported studies use a fixed effective IR absorption coefficient (µeff). We show that in 
samples with large spectral variation of µ(λ) in mid-IR, which includes most biological tissues, 
selection of µeff strongly affects the accuracy of the results. A novel analytical approach to 
determination of optimal µeff from spectral properties of the sample and radiation detector is presented. 
In extensive numerical simulation of PPTR temperature profiling in human skin using different IR 
detectors and spectral bands, we demonstrate that our approach predicts viable values of µeff. 

The influence of spectral filtering on the accuracy of temperature profiles is studied by a systematic 
experimental comparison of PPTR temperature profiling on agar tissue phantoms utilizing the 
customary spectral band of the InSb detector (λ = 3.0-5.6 µm) and a narrowed acquisition spectral 
band (λ = 4.5-5.6 µm). To support our experimental observations, we present also a detailed numerical 
simulation of the experimental procedure utilizing spectral acquisition bands with the lower 
wavelength limit varied between λl = 3.0 µm and 5.0 µm and the upper wavelength limit fixed at 5.6 
µm. The experimental and numerical simulation results indicate that spectral filtering reduces 
reconstruction error and broadening of temperature profiles, especially for shallower and more 
complex absorbing structures. Analogously, we performed the experiment and numerical simulation 
involving gelatin tissue phantoms, which more closely resemble human skin. Again, we find that a 
suitable spectral filtering (λl = 4.0–4.5 µm) is beneficial, despite the associated reduction of SNR.  

We determine experimentally the accuracy of PPTR temperature depth profiling in custom tissue 
phantoms composed of agar gel layers separated by single very thin absorbing layers. The laser-
induced temperature depth profiles, reconstructed from measured PPTR signals, correlate very well 
with absorber depths determined by magnetic resonance imaging and optical microscopy. We observe 
significant broadening and attenuation of reconstructed profiles with increasing depth of absorbing 
layer. Corresponding numerical analysis indicates that the broadening equals to ~13% of the absorber 
depth. Using a numerical simulation we also analyzed, how the accuracy of reconstructed temperature 
profiles depends on sampling frequency. 
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Povzetek 

 

V disertaciji je predstavljen razvoj in evalvacija sunkovne fototermalne radiometrije (SFTR) za 
temperaturno profilometrijo v bioloških tkivih. Motivacija za to delo je nepopoln uspeh laserske 
terapije ognjenih znamenj (OZ). SFTR tehnika, ki izrablja infrardeče (IR) sevanje snovi pogrete zaradi 
laserskega sunka, omogoča določitev globine OZ in debeline epidermisa, podatkov pomembnih za 
optimizacijo zdravljenja OZ. 

Zato smo razvili rekonstrukcijske algoritme, ki omogočajo reševanje inverznega problema SFTR. 
Algoritmi temeljijo na metodah dekompozicije po singularnih vrednostih (TSVD), konjugiranih 
gradientov (CG) in υ-metodi. V vse algoritme smo vključili pogoj nenegativnosti in avtomatsko 
regularizacijo. Ko smo jih preizkusili na različnih testnih objektih, vsi trije algoritmi vrnejo 
rekonstruirane rešitve, ki so precej natančnejše od rezultatov objavljenih v predhodnih študijah SFTR. 

Nato smo analizirali kalibracijo SFTR signalov in napako linearizacije izraza SFTR signala. Ugotovili 
smo, da je napaka odvisna od amplitude in globine temperaturnih profilov, časa zajemanja in 
spektralnega pasu zajemanja. 

SFTR meritve se običajno opravlja v širokem spektralnem pasu, saj se s tem izboljša razmerje med 
signalom in šumom. Vendar pa se hkrati uporablja konstantna vrednost IR absorpcijskega koeficienta 
µeff. Pokazali smo, da pri vzorcih z veliko variacijo IR spektra µ(λ), kar vključuje večino bioloških 
vzorcev, izbira µeff bistveno vpliva na kvaliteto rekonstrukcije. Predstavili smo nov pristop 
analitičnega določanja optimalne vrednosti µeff, ki vključuje spekter µ(λ) vzorca in spektralno 
občutljivost IR detektorja. Z obsežno numerično simulacijo smo pokazali, da naš analitični pristop da 
optimalne vrednosti µeff. 

Vpliv spektralnega filtriranja na točnost rekonstruiranih temperaturnih profilov smo proučili s 
sistematično eksperimentalno primerjavo temperaturne profilometrije SFTR v tkivnih fantomih iz 
agarja, pri čemer smo uporabili celoten (λ = 3,0–5,6 µm) in zožen spektralni pas (λ = 4,5–5,6 µm) 
detektorja. V podporo eksperimentalnim rezultatom so izvedli tudi numerično simulacijo eksperimenta 
za različne spektralne pasove med λ = 3,0 in 5,6 µm. Tako eksperimentalni kot numerični rezultati 
nakazujejo, da zoženje spektralnega pasu zmanjša napako rekonstrukcije in razširitev rekonstruiranih 
temperaturnih profilov, še posebej za plitve in kompleksnejše absorbirajoče strukture. Izvedli smo tudi 
eksperiment in numerično simulacijo za kolagenske tkivne fantome, ki posnemajo lastnosti človeške 
kože bolje kot agar. Tudi v tem primeru smo ugotovili, da spektralno filtriranje izboljša rezultate 
rekonstrukcije, navkljub zmanjšanem razmerju signal-šum. 

Eksperimentalno smo določili natančnost našega sistema SFTR na fantomih iz agarja, ki so vsebovali 
eno tanko plast absorberja na različnih globinah. Globine rekonstruiranih temperaturnih profilov se 
zelo dobro ujemajo z globinami, ki smo jih določili z optično mikroskopijo ali mikro magnetno 
resonančnim slikanjem. Očitna pa je razširitev in atenuacija temperaturnih profilov z naraščajočo 
globino absorbirajoče plasti. Izvedli smo tudi numerično simulacijo in na podlagi eksperimentalnih in 
numeričnig rezultatov ugotovili, da efekt razširitve znaša do 15% globine absorberja.  
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Chapter 1 
 

Introduction 
 

 

Nowadays, cooperation between physics and medicine has become tighter than ever before. Physics 
provides medicine with new explanations, tools for diagnostics and treatment, while medicine presents 
physics with challenges from a completely new world. There are countless areas of cooperation; just to 
name some of them: x-rays, MRI, biomedical optics.1 The advent of lasers had a great impact on 
modern surgery, diagnostics of eye diseases, cancer, etc. In the dissertation we are presenting the 
development and evaluation of a radiometric technique known as pulsed photothermal radiometry 
(PPTR). 

The motivation for this work is incomplete success in laser therapy of port-wine stain (PWS) 
birthmarks. PWS are permanent hypervascular lesions in human skin, which consist of an excess of 
ectacic blood vessels. These are usually fully contained within the most superficial millimeter of the 
skin. The exact depth varies from patient to patient, but on average, the highest fractional blood 
content is found 200–400 µm below the epidermal-dermal junction.2 PWS are currently treated by 
selective photocoagulation of the ectatic vasculature using pulsed green or yellow/orange laser. In 
order to optimize laser therapy parameters (pulse duration, radiant exposure, and light wavelength) on 
an individual patient basis, determination of PWS depth, epidermal thickness, and epidermal heating is 
required.3,4 

PPTR is a noncontact technique, which utilizes infrared (IR) emission from materials following pulsed 
laser exposure. Selective absorption of laser radiation in subsurface cromophores results in localized 
heating and may be detected as transient increase in IR emission from tissue surface. When thermal 
properties of the sample are known, the laser-induced temperature profile can be reconstructed from 
acquired radiometric signals. Such PPTR temperature profiling was recognized as a promising 
technique for non-invasive determination of structure and cromophore distribution in strongly 
scattering biological tissues and was extensively investigated.5–12 

In contrast to alternative diagnostic techniques, which utilize detection of scattered or frequency 
converted light from the irradiated tissue (e.g., optical coherence tomography,13 diffuse optical 
tomography,14 ultrasound-modulated optical tomography15), PPTR provides a signal amplitude that is 
directly related to the initial space-dependent temperature increase in targeted cromophores. An 
important advantage of PPTR over the photoacustic technique16 is that the measurement is made 
without touching the sample. For example, resting a photoacustic probe on the skin surface for several 
seconds may change the hydratation of stratum corneum, while slightly heavier contact will change 
the hemodynamics in the area under the probe. 

In the dissertation we present development and evaluation of a PPTR system for temperature profiling 
in biological tissues performed at the Complex Matter Department at the Jožef Stefan Institute in 
Ljubljana, Slovenia.  The work involved development of novel reconstruction algorithms, numerical 
analysis of PPTR profiling, construction and optimization of a laboratory PPTR system and 
experiments on tissue phantoms. 

The dissertation is structured as follows. The PPTR temperature profiling inverse problem is derived 
in Chapter 2. Chapter 3 describes the actual PPTR temperature profiling setup. Expressions for 
radiometric signal and measurement noise are derived, which are then used in experimental 
characterization of our PPTR temperature profiling system. In Chapter 4 we develop original 
reconstruction codes for solving the PPTR temperature profiling inverse problem. The calibration 
procedure and error estimation due to simplifications of PPTR signal expression are presented in 
Chapter 5. Chapter 6 presents the effect of the monochromatic approximation deficiency on 



14 Chapter 1   Introduction

 

reconstructed temperature profile for different spectral acquisition bands, and an analytical approach 
for determination of the optimal effective absorption coefficient. Chapter 7 analyzes the influence of 
the sampling rate. 

Second part of the dissertation presents experimental evaluation of the PPTR system performance. We 
begin with construction of tissue phantoms, which serve as test samples in our experiments 
(Chapter 8). The experiments and numerical simulations on agar (Chapter 9) and collagen gel tissue 
phantoms (Chapter 10) demonstrate the effect of spectral filtering on reconstructed temperature 
profiles. In Chapter 11 we analyze the accuracy of reconstructed temperature profiles, specifically the 
depth and width of reconstructed temperature profiles. In Chapter 12 we summarize the main ideas 
and conclusions. 
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Chapter 2 
 

Theoretical background 
 

 

The mechanism of PPTR signal generation was given in early work by Leung and Tam.17 Basic 
relations for PPTR temperature depth profiling were first derived in one dimension and 
monochromatic approximation,6–9 and later on extended to account for spectral variation of the sample 
IR absorption coefficient µ(λ) in the mid-IR detection range.18 The one-dimensional theory was also 
extended to three-dimensions.19 

We derive an expression for PPTR signal amplitude ∆S(t) in terms of the initial temperature depth 
profile ∆T(z, 0) in a tissue immediately following pulsed laser irradiation. For the purpose of our 
analysis, we assume that the tissue occupies a semi-infinite half-space. We use the one-dimensional 
heat equation for the temperature increase ∆T(z, t)20 

  
2

2 0T TD Q T
tz

∂ ∆ ∂∆
+ − ∆ =

∂∂
 (2.1) 

with a mixed boundary condition at the air-tissue interface 

  0
0
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=
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where D denotes the thermal diffusivity of tissue, which we assume is homogenous, h represents the 
reduced heat transfer coefficient at the air-tissue interface. In addition to heat diffusion, heat can be 
removed from the irradiated tissue also by the blood flow. The effect of blood flow is included in (2.2) 
as the blood perfusion rate Q. We do not include heat loss due to radiation in (2.1), because it is 
significantly smaller than heat conduction for typical experimental conditions. The Green’s function 
solution to (2.1)–(2.2)21 represents temperature increase in the tissue at depth z and time t in response 
to instantaneous release of a planar impulse heat source at depth z’ and time t = 0 
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and erfcx(u) = exp(u2) erfc(u), where erfc(u) is the complementary error function. Because the 
relaxation time due to blood perfusion (1/Q) in the microvasculature is much longer than the time of 
measurement, the exponent function involving Q can be neglected from (2.3). Using the Green's 
function solution, the temperature depth profile ∆T(z, t) at an arbitrary depth z and time t is written as 
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∆ = ∆∫  (2.4) 

The regular expression for radiometric signal of blackbody involving constant temperature Tb, can be 
generalized to correspond to objects with non-homogenous temperature distribution by including  
z-integral with factor µ(λ) exp(–µ(λ) z). Thus, the measured radiometric signal S(t) is then given by 
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integrating Planck's expression for radiative emission Bλ(Tb + ∆T(z, t)) over all depths 
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where λl and λh are the lower and upper limit of the detection spectral range, respectively, while R(λ) 
describes spectral sensitivity of the radiation detector. The constant C accounts for sample emissivity 
and other experimental specifics (e.g., losses of collection optics, radiation detector field of view, etc.). 
However, we obtain the regular expression for radiometric signal of blackbody by setting ∆T(z, t) = 0 
and integrating the z-integral.  

When the induced temperature rise ∆T(z, t) is significantly smaller than Tb, we can expand Bλ(Tb) in 
Taylor series, which leads to the linearized expression for the transient part of the spectrally composite 
radiometric signal 
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where Bλ'(Tb) represents the temperature derivative of Bλ(Tb). From (2.4) the PPTR signal is related to 
the laser-induced temperature profile ∆T(z,0) by a simple convolution 
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with the kernel function K(z,t) defined by (2.3)–(2.6): 
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When using a spectrally invariant value µ is justified (or assumed), K(z,t) can be simplified through 
factorization of the double integral in (2.8): 
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where, for given experimental conditions, the first integral yields a constant. This relation allows us to 
establish a direct correspondence with earlier reports on PPTR depth profiling, disregarding the 
spectral variation µ(λ). By inserting GT(z’, z, t), the second integral results in6 
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with erfcx(u) = [1 – erf(u)] exp(u2), /(2 )u Dt z Dtµ± = ± , 1 /(2 )u h Dt z Dt= + .  

In experimental practice, PPTR signals are represented by vectors, and relation (2.7) becomes 
multiplication of the initial temperature profile vector T (Tj = ∆T(zj,0)) with kernel matrix K (Ki,j= 
K(zj,ti) ∆z ) 

  =S K T  (2.11) 
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Chapter 3 
 

Experimental setup 
 

 

Figure 3.1 shows a schematic of an experimental PPTR system. The test object is irradiated with a 
single pulse from a pulsed laser. The irradiation spot size must be large (typical diameter ~ 5 mm) as 
compared to the surface of the studied volume of the sample (typical diameter ~ 1 mm), because one-
dimensional analysis is used. IR emission is monitored at normal incidence to the sample surface by a 
radiation detector. IR radiation is collected on the detector by an IR collection lens. The electrical 
response of the detector, after preamplification, is monitored by a fast analog-to-digital converter. A 
silicon photodiode is used to detect the laser pulse onset. Digitized signals are stored and processed in 
a personal computer. 

 
Figure 3.1: Experimental setup for PPTR temperature profiling in biological tissues. 

3.1          Pulsed laser source 
Any pulsed light source, which is selectively absorbed in the sample, can be used to induce the initial 
temperature profile. For PPTR temperature profiling in human skin, we most often apply the same 
light sources as used for laser therapy: pulsed green (KTP/YAG, λ = 532 nm) or yellow/orange lasers 
(flashlamp-pumped dye, 577 nm and 585-600 nm). Since the above wavelengths are preferentially 
absorbed in melanin and hemoglobin, which are located in epidermis and blood vessels, we obtain 
information about epidermal thickness and blood vessel distribution. Furthermore, temperature 
profiles similar to those induced during laser therapy are obtained when the above therapeutic lasers 
are used. 

The required pulse energies depend on the irradiation spot size, detector sensitivity and cromophore 
absorption. Clearly, it is desirable to avoid any thermal damage. Pulse length τ should ideally be about 
1 ms or less to prevent excessive heat diffusion from induced temperature profiles. Table 3.1 lists 
some combinations of excitation wavelength λ, radiant exposure H and pulse length τ used for PPTR 
temperature profiling in human skin. In our experiments we used a pulsed-dye laser (PDL) at 
wavelength 585 nm with pulse length 1.5 ms (ScleroPlus, Candela, Wayland, MA, USA) and a KTP 
laser generating 1 ms long 532 nm laser pulses (DualisVP, Fotona, Ljubljana). 
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Table 3.1: Some combinations of excitation wavelength λ, radiant exposure H and pulse length τ used for PPTR 
temperature profiling in human skin. PDL – pulsed dye laser, KTP – second harmonic Nd:YAG laser. 

Laser type λ (nm) H (J/cm2) τ (ms) References 

PDL 585 7.0 0.45 6 

PDL 577 0.5 0.001 9 

KTP 532 3.4 2–10 19 

PDL 585–600 5.0–6.0 1.5 18 

3.2          IR radiation detector 
Commercially available IR radiation detectors are divided into two groups: thermal and quantum 
detectors. The former are not applicable to PPTR temperature profiling, because they have a low 
signal-to-noise (SNR) ratios and they are not convenient for measurement of transient phenomena. 
Common IR detectors involved in PPTR temperature profiling are liquid nitrogen cooled photovoltaic 
InSb and photoconductive HgCdTe (MCT) quantum detectors. The main disadvantage of the 
photoconductive detector is that it requires a mechanical chopper to modulate IR radiation. The 
chopper limits the sampling rate to a few 1000 s-1, introduces additional measurement noise to the 
radiometric signal, requires a lock-in amplifier and generates air current, which increases the heat loss 
at the sample surface (h). Furthermore, InSb detector offers a more predictable responsivity,22 which is 
especially favorable for numerical simulations. In contrast, MCT detector yields larger PPTR signals, 
since wider spectral acquisition bands can be used, and the temperature derivative of Planck’s formula 
Bλ’(Tb) is larger for these spectral bands (see Fig. 3.3, dashed line). Considering the advantages and 
weaknesses of both detectors, we have decided to use the InSb detector in our experimental setup. 

 
Figure 3.2: Current mode preamplifier circuit for InSb detector. λ represents IR radiation, is signal current, Rf 
feedback resistor, and Vs signal voltage. 

Photovoltaic detectors are diodes made from semiconductor materials. InSb material typically has a 
band gap of 0.22 eV at temperature T = 77 K, thus only photons with λ ≤ 5.5 µm are detected. This 
maximal detectable wavelength is called the cut-off wavelength (λc). When the diode is exposed to IR 
radiation, it generates a current proportional to the photon arrival rate. Photovoltaic detectors are 
commonly used in a current preamplifier circuit (Fig. 3.2), where voltage drop across the detector is 
practically zero. 

When monochromatic radiation of wavelength λ and power P irradiates the photovoltaic detector, the 
signal current is equals22 

  0
s

ei P
hc

η λ
=  (3.1) 
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where η denotes quantum efficiency (about 0.64 for InSb), e0 is the electron charge, h represents the 
Planck’s constant and c the speed of light. The spectral responsivity of a radiation detector R(λ) is 
defined as the signal output is divided by the radiant input P, thus the theoretical spectral responsivity 
of InSb detector is easily deduced from (3.1) 

  0( )R e
hc
λλ η=  (3.2) 

Figure 3.3 shows relative spectral responsivity R(λ)/Rp for a specific InSb detector (P5968-100, 
Hamamatsu) with the peak responsivity Rp = 2.5 A/W at λp = 5.3 µm and a specific HgCdTe detector 
(P3257, Hamamatsu) with the peak responsivity at λp = 10 µm. 
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Figure 3.3: Relative spectral responsivity R(λ) of InSb and HgCdTe (MCT) detectors (solid lines) with peak 
responsivities at λp = 5.3 µm and 10.0 µm, respectively. Temperature derivative of Planck’s radiation formula 
Bλ’(Tb) at Tb = 303 K (dashed line) has the maximum at 8 µm.  

3.2.1          Measurement noise 

Noise present in an IR detection system originates from a number of sources.22,23 

Shot noise originates from the discrete nature of photodetection process. Its amplitude is 

  02sh sn e i f= ∆  (3.3) 

where ∆f represents frequency bandwidth. Frequency bandwidth is calculated as 1/(2tint), where tint is 
the  integration time. 

Johnson noise originates from random motion of free charges. Its amplitude is 

  4 B d
J

f

k T fn
R

∆
=  (3.4) 

where kB is the Boltzmann’s constant, Td represents temperature of the detector, and Rf is the feedback 
resistance (see Fig. 3.2). 

Other contributions to measurement noise include amplifier noise, digitalization noise and external 
noises. Inasmuch as multiple noise sources are present, we can use the central-limit theorem to 
estimate square of the total noise amplitude nt as the sum of squares of amplitudes of all noise 
contributions.  

While most noise contributions are spectrally invariant (“white”), so-called 1/f noise is often present in 
radiometric signals. In general, the presence of 1/f noise is characterized by the corner frequency fc and 
exponent α. The total noise spectral density tn%  is given by22 
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where whiten%  denotes the spectral density of white noise and f represents frequency. For discrete 
radiometric signals, the total noise amplitude nt and the noise spectral density tn% are correlated using 
the discrete Parseval’s theorem24 
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where fi  represent the discrete frequencies and N denotes the number of radiometric signal and 
spectral density data points. 

3.3          Infrared optics 
Figure 3.4 presents the transmittance T(λ) of three materials commonly utilized for mid-IR optics 
(λ = 3–5 µm). 
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Figure 3.4: Transmittance of broadband antireflex coated silicon (Tydex, St. Petersburg, Russia), sapphire 
(MellesGriot), and CaF2 (ThorLabs). 

In our setup we use the broadband antireflex silicon IR optics because of large transmittance in the λ = 
3–6 µm spectral band and good mechanical characteristics. The collection optics consists of two 
planoconvex silicon antireflex coated lenses (Galvoptics, Essex, UK) with transmittance T ≥ 98% at 
the 3–5 µm spectral band. The lenses are positioned in such a manner that magnification is M = 1 (Fig. 
3.5). 

 
Figure 3.5: Schematics of the 2-lens collection optics with magnification M = 1. The source area As equals the 
detector active area A, and the collection angle at the source θs matches the collection angle θ at the IR detector. 
Arrows indicate direction of IR radiation. 
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3.4          Radiometric signal 
Figure 3.5 presents a schematic of radiometric signal collection using the 2-lens collection optics with 
M = 1. The source area As equals the IR detector active area A and the collection angle at the source θs  
matches the collection angle θ of the IR detector. Expression for θ follows from Fig. 3.5 

  tan r
f

θ =  (3.7) 

where r is the lens radius (i.e., aperture) and f represents its focal length. 

The amount of radiant power emitted from the source area As at temperature Tb at wavelength λ and 
which falls within the solid angle dΩ around the direction specified by θs is 

  b s sd ( )cos dP B T Aλ λ
ε θ
π

= Ω  (3.8) 

where ε denotes the sample emissivity. The radiation power varies as the cosine of θs (Lambert’s law). 
The total radiation power Pλ emitted into the solid angle θs is found by integrating (3.8) 

  2
s s bsin ( )P A B Tλ λε θ=  (3.9) 

In absences of transmission lenses, the emitted power equals the collected power on the detector. 
However, the power must be reduced for the collection optic losses. Hence, the analogous expression 
to (3.8) for the collected radiation power is obtained 

  2
b( ) sin ( )P T A B Tλ λε λ θ=  (3.10) 

Accordingly, the radiometric signal is is detected in a broad spectral band between λl and λh 
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2
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λ

λ
λ

ε θ λ λ λ= ∫  (3.11) 

3.5          Experimental characterization of our PPTR system 
In our system, IR radiation is detected by a single-element InSb detector (P5968-100, Hamamatsu). 
The detector properties, as specified by the manufacturer, are active area A = 0.79 mm2 (d = 1 mm), 
half-angle of the field of view θ = 22.5°, and spectral responsivity R(λ) with peak value Rp = 2.5 A/W 
at λp = 5.3 µm (Fig. 3.3), while the cut-off wavelength is λc = 5.6 µm. 

In addition, the manufacturer has specified measurement noise under specific conditions, where small 
radiometric signal from a 500 K blackbody is detected in a background-limited regime (BLIP) at 
modulation frequency of 1200 Hz, and with a small frequency bandwidth ∆f (1 Hz). The peak 
detectivity Dp

*, as a standard figure of merit22 can be calculated from the reported noise standard 
deviation and the above detector parameters, resulting in Dp

* = 2.8 × 1011 cm Hz1/2/W. This value does 
not include 1/f noise, which may dominate at lower frequencies, and other noise sources (i.e., 
amplifier noise, external noise sources), which may be present in an actual PPTR system. Therefore, 
we have determined experimentally the noise parameters for our PPTR system. 

We measured the response of the IR detector using a blackbody (BB701, Omega Engineering, 
Stamford, CT, USA) set to different temperatures, TBB = 288–232 K. The entire detector's field of 
view was filled with radiation from the blackbody. The detector response at each TBB was acquired 
using the entire spectral band of the IR detector (λ = 3.0–5.6 µm). The radiometric values were 
acquired at a sampling rate of 50,000 s-1. We have numerically reduced the sampling rate by 
calculating the average value of 50 consecutive values (tint = 1 ms). This yielded radiometric signals 
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s(TBB) with the sampling rate f = 1000 s-1 and frequency bandwidth ∆f = 500 s-1.  

We determined theoretical values of s(TBB) by inserting the blackbody temperature TBB and the system 
parameters into (3.11) and completing the λ integral. The blackbody emissivity was ε = 0.94 and 
transmittance T = 0.98 (both specified by the manufacturers). Figure 3.6 presents the average of 
experimental radiometric signals (circles), which matches perfectly the theoretically predicted signal 
values (line); thus (3.11) adequately predicts the PPTR system response when the above R(λ) is used.   
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Figure 3.6: Experimental (circles) and theoretical (line) radiometric signal values is(TBB) determined for TBB = 
288–323 K and for the entire spectral band. 

To obtain the noise spectrum each determined signal s(TBB) was Fourier transformed using the fft 
function implemented in Matlab 14 (Mathworks, Natick, MA, USA). We fit (3.5) to the noise 
spectrum to determine the noise parameters fc and α. The total noise amplitude nt was determined as 
the standard deviation of s(TBB), albeit it could be found also from the noise spectrum using the 
discrete Parseval’s theorem (Eq. 3.6).  An example of a noise spectrum and the corresponding fit of 
(3.7) is presented in Fig. 3.7.  The 1/f noise evidently dominates at frequencies below ~20 s-1. 
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Figure 3.7: An example of a noise spectrum measured at TBB = 303 K using the entire spectral band (black line) 
and the best fit of function 2

tn% (Eq. 3.5) (gray line). The determined noise parameters are total noise amplitude nt 
= 3.2×1010 A, corner frequency fc = 15 s-1, and exponent α = 1.5. 

In order to accurately discern between detector-specific noise nd and shot noise nsh, the detector 
response at each TBB was acquired also using a long-pass IR filter (Barr Associates, Westford, MA; see 
Fig. 3.8) placed between the blackbody and the detector. 
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Figure 3.8: Transmittance of a long-pass IR filter with cut-on wavelength of λ = 5 µm (Barr Associates, 
Westford, MA). 

Then, we calculated shot noise amplitudes nsh for each temperature TBB and both spectral acquisition 
bands by substituting the measured radiometric signals s(TBB) into (3.3). Figure 3.9 presents the 
experimental noise amplitudes nt and shot noise amplitudes nsh as a function of TBB. For the entire 
spectral band (Fig. 3.9a), values nt are scattered around the average value 3.1 × 10-10 A with a standard 
deviation of ~10-11 A. Shot noise amplitudes nsh increase monotonically with increasing TBB, but are 
approximately 10 times smaller than nt. For the reduced spectral band (Fig. 3.9b), nt is  
(2.9 ± 0.1) × 10-10 A. Since detector-specific noise obviously dominates in our PPTR system and the 
average nt is almost identical for both spectral bands, a constant value nt = 3 × 10-10 A suitably 
characterizes the total noise in our PPTR signals at ∆f = 500 s-1. 
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Figure 3.9: Determined total noise amplitude nt (circles) and shot noise amplitude nsh (triangles) as functions of 
TBB for (a) the entire spectral band and (b) the reduced spectral band. 

Radiometric signals measured by our PPTR system are dominated by the 1/f-noise at low frequencies 
(Fig. 3.7). The average corner frequency is fc = 15 ± 10 s-1 and 10 ± 8 s-1 for the entire and reduced 
spectral acquisition band, respectively. The average exponent is α = 1.3 ± 0.4 for both spectral 
acquisition bands. 
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Reconstruction algorithms 
 

 

Ill-posed inverse problems arise quite often when one is interested in determining the internal structure 
of a physical system from the system's measured behavior. It is well known that a small perturbation 
of signal (i.e. noise) can substantially change the solution. Ordinary methods for solving algebraic 
equations (i.e., inversion) do not succeed in solving ill-posed problems therefore special methods must 
be used. A good survey of numerical methods applicable to general classes of algebraic equations is 
provided by Björck,25 while reconstruction algorithms suitable for the ill-posed problems are described 
by Hansen.26 

In this chapter, we analyze the PPTR inverse problem using the singular value decomposition (SVD). 
Then, we describe the development original reconstruction codes dedicated to solving the PPTR 
inverse problem. Finally, we show that our reconstruction codes perform significantly better than the 
general purpose algorithms available on the market and earlier dedicated codes for PPTR profilometry. 

4.1          Discrete ill-posed problems 
Basic relations of PPTR temperature profiling were derived in Chapter 2. The expression for PPTR 
signal (2.7) represents a Fredholm integral equation of the first kind, which results in a discrete 
forward problem (2.11). The calculation of kernel matrix components Ki,j (see Eq. 2.10) is a delicate 
task, since it involves mathematical operations on very large (i.e., exponential function) and very small 
numbers (i.e., error function). Hence, one must consider the order of mathematical operations and 
include adequate approximations to avoid unwanted numerical errors (see the Appendix B). Equation 
(2.11) represents the PPTR inverse problem for T, which is commonly solved by iterative 
minimization of the residual norm || S – K T ||2, yielding the best approximate solution T. A statistical 
approach to the minimization problem can be found in Calvetti.28 The process of finding the 
approximate solution T is also referred to as reconstruction. 

4.1.1          Singular Value Decomposition 

Singular value decomposition (SVD) is a useful tool for analysis of discrete ill-posed problems.25,26 
The SVD of the matrix K is a unique decomposition of the form 

  T

1

n

i i i
i

σ
=

= = ∑K U ΣV u v  (4.1) 

where U ∫ IRm×n and V ∫ IRn×n are matrices with orthonormal columns, UTU = VTV = I. The diagonal 
matrix Σ has nonnegative diagonal elements σi sorted in nonincreasing order. The numbers σi are 
called singular values of K, while the vectors ui and vi are left and right singular vectors of K, 
respectively. 

Using the orthonormal basis vectors ui and vi, we can write 
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When (4.1) and (4.2) are inserted into (2.11), we obtain 

  ( ) ( )T T
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i i i i i
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σ
= =
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which leads to an expression for solution T 

  T
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( / )
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i i i
i

σ
=

= ∑T u S v  (4.4) 

We now illustrate the characteristics of the PPTR inverse problem (2.11). The kernel matrix K is 
calculated by evaluating (2.9), where the size of K is 1000 × 100, corresponding to time intervals ∆t = 
1ms over 1s and to spatial resolution ∆z = 10 µm extending to a depth of 1 mm. The heat diffusion 
constant is D = 0.11 mm2 s-1, the reduced heat transfer coefficient is h = 0.02 mm-1, and the IR 
absorption coefficient is µ = 50 mm-1. 

Singular values σi of the kernel matrix K are presented in Fig. 4.1. The singular values decay according 
to the exponential law (σi ~ exp(- α i)), thus the PPTR inverse problem is classified as severely ill-
posed.29 The more ill-posed is the problem, the slower is the convergence of regularization 
algorithms.30 Evidently, the accuracy of computed singular values is limited by the computational 
platform (e.g., a personal computer with 32-bit precision has ε = 2.22×10-16). As a result, σi settle at a 
level which is approximately equal to the machine precision. 
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Figure 4.1: Singular values σi of the kernel matrix K. Arrow indicates where the computer platform accuracy 
(32-bit personal computer) prevents accurate calculation of further singular values. 

Left singular vectors ui (white background) and right singular vectors vi (gray background) 
corresponding to the largest eight singular values of K are shown in Fig. 4.2. Vectors with larger 
indices i clearly present more sign changes. SVD gives an important insight the smoothing effect in 
forward direction. While σi decrease the singular vectors ui and vi become more and more oscillatory. 
The high-frequency components of T are more damped in S than the low-frequency components due 
to multiplication with small σi (see Eq. 4.3). In contrast, division by σi in (4.4) amplifies the high-
frequency oscillations in S, thus amplifying high frequency components including the noise in S, and 
deteriorating accuracy of the solution T. 
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Figure 4.2: Eight left singular vectors ui (white background) and right singular vectors vi (gray background) of 
K. Horizontal dashed lines represent zero value. 

4.2          Reconstruction algorithms 
From a general perspective, we can choose between two classes of reconstruction algorithms: direct 
algorithms that are based on decomposition, such as singular value decomposition (SVD), and 
iterative algorithms. 

A number of direct algorithms exist,25,26 but we focus on the truncated SVD (TSVD). An advantage of 
the direct regularization methods is that the computational effort can be estimated a priori, because 
they are based on standard operations and decompositions in numerical algebra. 

Iterative algorithms are based on iteration schemes that access the kernel matrix K only via matrix-
vector multiplications, and they produce a sequence of iteration vectors T(i), that converge toward the 
desired solution. When iterative algorithms are applied to discrete ill-posed problems, the iteration 
vector initially approaches the correct solution, but in later stages of the iterations, some other 
undesired vector is obtained.26 This is referred to as semiconvergence. Iterative methods are preferred 
when K is large, because explicit decomposition of K requires a large amount of computer memory. 
We discuss below two iterative methods: the υ-method and the conjugate gradient (CG) method. 

4.2.1          Truncated SVD 

In the ideal setting, without perturbations and rounding errors, the treatment of the PPTR inverse 
problems (2.11) is simple. The optimal solution is computed by means of (4.4). In practice, there are 
various types of errors in S, such as discretization and measurement errors, including noise. Also, K 
may not describe accurately all the involved physical processes. Finally, accumulation of the rounding 
errors cannot be avoided in computation of the inverse solution. 

Yet, the effect of perturbations and rounding errors can be minimized by a choice of such integer p<n 



28 Chapter 4   Reconstruction algorithms

 

that a solution Tp close to the correct solution to the PPTR inverse problem is obtained by truncating 
(4.4) after adding p SVD components to the solution. The solution Tp is referred to as the truncated 
SVD solution and the method is referred to as truncated SVD (TSVD).26 

4.2.2          υ-method 

The υ-method31 is an iterative method derived from the classical Landweber iterative method.26 
Landweber method has very slow convergence compared to the CG methods, but the υ-method is 
significantly accelerated by involving a weighted average of the last two iterates and allowing that 
weight factors µi and ωi (Algorithm 4.1) depend on iteration number i. The υ-method is presented 
Algorithm 4.1. Here, υ is a prescribed real constant satisfying υ ∫ (0,1). Since convergence of the 
method depends on value υ, we performed some tests using different values of υ, and find optimal 
value υ = 0.99 for our problem.  The υ–method does not converge if ||K||2 > 1, and the convergence is 
fastest if ||K||2 is slightly smaller than 1. Therefore we assured the convergence by substituting K and S 
with a modified kernel matrix and signal vector, i.e. A and b (see 1st and 2nd line of Algorithm 4.1). ), 
where ε is a small real constant (e.g., ε = 10-3). The υ–method features the semiconvergence, where the 
regularization parameter is number of iterations i. 
Algorithm 4.1: The υ-method. Vector Treg minimizes the expression ||S – K Ti||2. Vector S is provided as input. 

          A = K / (||K||2 + ε); 

          b = S / (||K||2 + ε); 

          i = 0; 

          T (0) = 0; 

          r (0) = b; 

          repeat: 
                    µi = 1 + (i – 1) (2i – 3) (2i + 2υ – 1) / [(i + 2υ -1) (2i + 4υ -1) (2i + 2υ -3)]; 

                    ωi = 4 (2i – 2υ – 1) (i – υ – 1) / [(i  – 2υ – 1) (2i + 4υ -1)]; 

                    T (i) = µi T (i – 1)
 + (1 – µi) T( i – 2) + ωi ATr (i – 1); 

                    r (i) = b – A T (i); 

                    i = i + 1; 

          until(stopping criterion) 

          Treg = T (i); 

4.2.3          Conjugate Gradients (CG) 

The basic CG iteration scheme for non-selfadjoint matrices K is well known,32 but several 
implementation variants exist. A comprehensive survey of different CG variants was provided by 
Hanke,33 while a simple and understandable text about CG method was published by Shewchuk.30 
Based on preliminary testing, we have selected the CG least-square (CGLS) algorithm presented in 
Algorithm 4.2.26 

An essential property of the CG iterates T (i) with residual vectors r (i) = S – K T (i) is that the 
corresponding vectors KT r (i) are orthogonal. An important consequence is that if the starting vector T 
(0) is zero, then the solution norm ||T (i)||2 increases monotonically with i and the residual norm ||r(i)||2 
decreases monotonically with i.33 The CG method produces iteration vectors in which the spectral 
components associated with the large singular values converge faster than the remaining components, 
hence the CG features an inherent semiconvergence. 
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Algorithm 4.2: The CG least-square (CGLS) algorithm. Vector Treg minimizes expression ||S – K Ti||2. Vector S 
is provided as input. 

          i = 0; 

          T (0) = 0; 

          r (0) = S – K T (0); 

          d (0) = KT r (0); 

          repeat: 
                    αi = ||KT r (i – 1)||22 / ||K d (i – 1)||22; 

                    T (i) = T (i – 1)
 + αi KTr (i – 1); 

                    r (i) = r (i – 1) – αi K d (i – 1); 

                    βi = ||KT r (i)||22 / ||KT r (i – 1)||22; 

                    d (i) = KT r (i) + βi d (i – 1) ; 

                    i = i + 1; 

          until(stopping criterion); 

          Treg = T (i); 

4.3          Regularization 
An ill-posed problem can be regularized by adding a regularization term to the problem (e.g. Tikhonov 
regularization),34 which penalizes large solution estimates. This regularization approach suffers from 
low computational efficiency, because the reconstruction is repeated several times for different values 
of regularization parameter. But the early termination approach significantly reduces computational 
costs since each successive reconstruction algorithm step represents a new regularized solution. 
Regarding the accuracy of reconstruction results of PPTR inverse problem, both approaches are 
equal,6 thus we use early termination. The regularization parameter in TSVD is the number p of right 
singular vectors vi included in the regularized solution T (p), while the iteration number i serves as the 
regularization parameter in CG and the υ-method. 

Since the experiments can often not be repeated, we would like to extract as much information as 
possible from the given data. If we choose a regularization parameter smaller than the optimal 
parameter, we leave out too much information and the regularization error dominates. In this case the 
solution is over-regularized. On the other hand, if we choose a regularization parameter larger than 
optimal, then the perturbation error dominates and the solution is under-regularized. 

So far we have presented three different reconstruction algorithms, but no method for selection of the 
regularization parameter. Although many parameter-selection methods exist,26 we discuss below the 
discrepancy principle, the generalized cross validation and the L-curve method, which can be 
successfully applied to our inverse problem.  

4.3.1          Discrepancy Principle 

In practice various types of errors are present in S and K. Common sources of error are measurement 
noise, approximations, errors due to the discretization process, and also the rounding errors. We 
denote the vector including all errors as e. If knowledge or an estimate of the norm of signal 
perturbation ||e||2 is available, the discrepancy principle suggests stopping the iteration when the 
corresponding residual norm is approximately equal to ||e||2 
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  ( )
e2

i δ− =S K T  (4.5) 

where δe ≥ ||e||2. In general, the discrepancy principle tends to produce over-regularized solutions. 

4.3.2          Generalized Cross-Validation 

Generalized cross-validation (GCV) was first presented by Craven35 and Golub.36 GCV is an ||e||2-free 
method for choosing the regularization parameter based on statistical considerations. The optimal 
regularization parameter iopt is found at the minimum of the following GCV function G(i) 
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where ρ(i) is the sum of all filter factors in the regularized solution T(i) (see Appendix A). 
Unfortunately, the minimum can be very flat, which leads to numerical difficulties in computing the 
minimum of G(i). 

For TSVD, ρ(i) = i and thus the GCV function is simplified to 
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A different approach to computing the denominator in the GCV function, which is particularly 
attractive for iterative methods, is to approximate the denominator by a statistical estimate. This 
approach is called Monte Carlo GCV.37 The idea is to simultaneously run the iterative method on the 
given left-hand side S and on a random left-hand side S whose elements have a zero mean and 
standard deviation σ0. If T (i) denotes the additional iteration vector corresponding to S, then 

  ( ) ( )T ( )2
0

in iσ ρ −  = −  S S K T  (4.8) 

This estimate can be used in the GCV function. However, the Monte Carlo CGV doubles the amount 
of work in an iterative regularization method. 
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Figure 4.3: G(i) as a function of added singular vectors i, when the unconstrained TSVD is applied to a 
simulated PPTR signal with SNR = 100 (Fig. 4.6). Arrow indicates the minimum. 

Figure 4.3 shows the GCV function G(i) (4.7) when the unconstrained TSVD is applied to a simulated 
PPTR signal with SNR = 100 (see Fig. 4.6). The minimum of the curve is indicated by the arrow (i = 
8). 
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4.3.3          L-Curve 

The L-curve criterion was first introduced by Lawson.38 It is based on a parametric plot of logarithm 
of the norm ||T(i)||2 versus logarithm of the corresponding residual norm ||S – K T(i)||2, with the iteration 
count i as the parameter. The L-curve theoretically consists of an almost horizontal and a steeply 
ascending part. The horizontal part corresponds to over-regularized solutions and the ascending part 
corresponds to under-regularized solutions. The L-shaped corner of the L-curve appears for 
regularization parameter close to the optimal value, which balances the regularization and perturbation 
errors in the regularized solution T (see Hansen,26 chapters 4 and 7). 

Figure 4.4 shows the L-curve for the same example as in Fig. 4.3. It features a characteristic L-shape 
with a distinct corner at i = 8. 
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Figure 4.4: L-curve for the unconstrained TSVD applied to a PPTR signal with SNR = 100 (Fig. 4.6). Arrow 
indicates the corner of L-curve (i = 8). 

4.3.3          Regularization and reconstruction algorithms: summary 

To find which combinations of regularization selection method and reconstruction algorithm are 
optimal, we performed an extensive numerical simulation. We have combined the unconstrained 
TSVD, υ-method and CGLS with the above regularization parameter selection methods, and applied 
these combined algorithms to PPTR signals for different test objects presented in the last section of 
this chapter. Since the study was extensive, and the study details are not essential for this thesis, we 
only summarize the results. 

Optimal results were obtained when the υ-method was combined with the Monte Carlo GCV, and 
CGLS was combined with the L-curve method, while TSVD yielded comparable results when 
combined with either GCV or L-curve. In contrast, the discrepancy principle was only useful if 
accurate noise information was available.  

We have found that GCV and L-curve occasionally yield under-regularized solutions, which was also 
reported by Hansen.26 Hence, we have included in our reconstruction codes also the discrepancy 
principle to improve their robustness. 

4.4          Non-negativity constraint 
One of the shortcomings of the discussed reconstruction algorithms is presence of unrealistic negative 
temperatures in the solutions. Because we know that the temperature changes in PPTR profilometry 
are strictly non-negative, it is very desirable that the reconstructed temperature profile T has only non-
negative values. Thus we search for solution of a constrained minimization problem 

  2min , subjec to 0, for alliT i− ≥S K T  (4.9) 
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Milner et al6 reported a successful implementation of the non-negativity constraint into the CG 
method. They observed significantly improved accuracy and increased robustness of reconstruction 
results, when the non-negatively constrained reconstruction algorithm was applied to the PPTR 
inverse problem. Unfortunately, the authors did not reveal the implementation details.  

Different techniques for computing regularized non-negative solutions (images) to linear discrete ill-
posed problems have been recently proposed in the literature. The projected Landweber method was 
discussed by Bertero and Boccacci.39 Hanke et al suggested the use of a nonlinear transformation of 
the unknown variable, which eliminates the need to explicitly impose the constraint.40 Nagy et al 
suggested a modified steepest descent method, referred to as MRNSD.41 Calvetti et al proposed two 
iterative schemes, based on the generalized minimum residual method (GMRES) or the CGLS 
method.42 Verkruysse et al demonstrated implementation of the non-negativity constraint into 
TSVD.46 The efficiency of various iterative reconstruction algorithms was studied by Favati et al.43 

In the following we present two approaches for implementation of the non-negativity constraint into 
the presented reconstruction algorithms. 

In addition to these, we have also tested three algorithms that do not require any special non-negativity 
strategy. The expectation-maximization algorithm (EM)44,41 and the image space reconstruction 
algorithm (ISRA)45, both popular in astronomy and medical imaging, have yielded poor reconstruction 
results. The MRNSD41 algorithm resulted in somewhat better solutions, but still significantly less 
accurate as compared to the reconstruction codes discussed below. 

4.4.1          Projection 

When projection is implemented into the reconstruction algorithm, all the negative components of 
iterative solutions T(i) are set to zero in each step of the algorithm (i.e., T(i) is cropped). This strategy 
can be successfully implemented into the υ-method, where semiconvergence is preserved.26 The non-
negatively constrained reconstruction algorithm based on the υ-method equals Algorithm 4.1, except 
that T (i) is cropped before the new residual vector r (i) is calculated (line 10). In contrast, a direct 
implementation of non-negativity constraint in CGLS conflicts with underlying assumptions of the 
method and severely degrades its convergence and stability. 

4.4.2          Projected-Restarted approach 

In the projected-restarted (PR) approach, the unconstrained reconstruction algorithm runs in the inner 
loop, while the non-negativity constraint is applied in the outer iteration loop.42 We now describe two 
new algorithms, where the PR approach is applied to the regularized CGLS and TSVD. 

We begin with an unbiased starting approximation (i.e., T (0) = 0), which makes the initial residual 
vector (r (0)) equal to the signal vector S. One full run of the inner loop (one of the unconstrained 
regularization methods) is then performed, yielding a temporary unconstrained solution t. This vector 
is truncated to become the first non-negative approximate solution of the outer loop (T (1)). Only the 
new residual vector (r (1) = S – KT (1)) is then passed to the inner loop for another run. In this way, each 
successive run of the inner loop result t provides an unconstrained correction to the current outer 
solution. After the sum of the two is cropped (i.e., (T (1) + t) ≥ 0), we obtain an improved non-negative 
solution (T(2)). This sequence is repeated until a predefined convergence criterion is reached, or until 
the number of outer iteration steps exceeds a preset maximal number (imax). The last T (i) represents the 
regularized solution of the minimization problem (2.11). 

Algorithm 4.3 presents a practical realization of the PR approach for the regularized CGLS and TSVD 
reconstruction algorithms. 
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Algorithm 4.3: Projected-restarted (PR) approach combined with the CGLS or TSVD reconstruction algorithm. 
The non-negativity constraint is implemented in the outer loop, while the inner loop performs the unconstrained 
regularization using either unconstrained regularization algorithm. (...)+ indicates the cropping operator. 

T (0) = 0; 

r (0) = S; 

i = 0; 

repeat: 

          t = CGLS(r (i)) or TSVD(r (i)); 

          T (i + 1) = (T (i)
 + t)+; 

          r (i + 1) = S – K T (i + 1); 

          i = i + 1; 

until (||T (i + 1) – T (i)||/|| T (i)|| < ε    or  i < imax); 

Treg = T (i); 

4.5          Performance of constrained reconstruction algorithms 
In this section we present reconstruction results of different test objects obtained by our non-
negatively constrained reconstruction algorithms with automatic regularization and results of other 
reported PPTR studies. 

4.5.1          Hyper-Gaussian test profile 

The performance of the dedicated CGLS reconstruction code is demonstrated here by re-evaluation of 
a test example from an earlier PPTR study,18 where a general-purpose commercial optimization 
software was used (Solver, part of Microsoft ExcelTM). In order to provide an objective evaluation of 
the algorithm performance, we present the basic outline and simulation parameters from the earlier 
study. 

The initial temperature profiles have a hyper-Gaussian form: ∆T(z, 0) = ∆T0 exp[–2(z–z0)4/w4] with 
∆T0 = 10 K, w = 0.1 mm and z0 = 0.3 mm. PPTR signal is computed according to (2.11) and is 
represented as vector S with 250 equidistant components (∆t = 2 ms), augmented by normally 
distributed white noise (SNR = 300). Mismatch between the image and test object is evaluated by 
calculating normalized quadratic norm of the difference between the image and object vectors 

  0 2

0 2
δ

−
=

T T
T

 (4.10) 

Figure 4.5 presents a comparison between the commercial (Fig.4.5a) and our dedicated (Fig.4.5b) 
reconstruction algorithm. Evidently, we have obtained a significantly improved reconstruction result 
(Fig.4.5b) for exact same test example and conditions. In particular, the broadening is substantially 
reduced and the pronounced deep artifact is completely eliminated from the image. The relative image 
error is δ = 0.46 for the earlier result, and is reduced almost 6 times (δ = 0.08) when the CGLS 
algorithm is used. Similar improvement is observed also for other test objects. 47 We also applied 
optimization algorithms implemented in Matlab 7 software (The MathWorks, Inc.) to different PPTR 
signals, and corresponding reconstruction results were significantly less accurate and less stable than 
those obtained by our dedicated algorithms. 
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Figure 4.5: Temperature profiles as obtained (a) by the commercial software (Solver, part of Microsoft ExcelTM) 
in an earlier PPTR study,18 and (b) by our dedicated non-negatively constrained reconstruction algorithm 
(PR-CGLS).47 The results obtained after i steps of the iterative algorithm are presented. 

Because the same computational platform was used in both studies (i.e., a personal computer with a 
32-bit Microsoft Windows operating system), this improvement can be attributed to our dedicated 
reconstruction code. In addition, the use of Chebyshev approximation and consideration of numerical 
errors (see the Appendix B) enables computation of the kernel matrix elements with higher accuracy 
than the approach used in the earlier study.18 

4.5.2          Two absorbing layers 

Milner et al6 used their non-negatively constrained reconstruction algorithm based on dedicated CG 
method and obtained prominently more accurate results as compared to other reported PPTR studies. 
We now compare the performance of our reconstruction algorithms by re-evaluating one of their 
examples. 

The initial temperature profile features two temperature peaks due to radiative absorption 

  ( ) ( )
E, E1 E2

P a 1 P1 P2,0 exp ,

0, elsewhere

T z z z

T z T z z z z zµ

∆ < <


∆ = ∆ − −  < <  



 (4.11) 

where ∆TE = 40 K, zE1 = 10 µm, zE2 = 50 µm, ∆TP = 20 K, zP1 = 350 µm, zP2 = 1000 µm, and 
µa = 5 mm-1. 

The size of the kernel matrix K is 256 × 128 corresponding to time interval of ∆t = 8 ms over 2.048 s 
and spatial resolution of ∆z = 8 µm extending to a depth of 1.02 mm. The diffusion constant is  
D = 0.11 mm2 s-1, the IR absorption coefficient is µ = 50 mm-1, and the reduced heat loss coefficient is 
h = 0.02 mm-1. The exact PPTR signal S0 corresponding to test problems is obtained using (2.9). 
Figure 4.6a presents temperature profile vector T0, and Figure 4.6b shows the calculated theoretical 
PPTR signal vector S0. Because the reconstruction results depend on specific realization of noise, we 
augment each theoretical signal S0 with 20 different realizations of zero-mean white noise at SNR = 
100, 500, and 1000, with SNR is determined as 
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1/ 22( )SNR S t e= ∆  (4.12) 

where <> represents a time average of either PPTR signal ∆S(t) or noise e2. 

From each signal vector S, the temperature profile T is reconstructed using the kernel matrix K and 
three reconstruction algorithms. We applied the PR-TSVD algorithm with the GCV regularization 
parameter selection method, the PR-CGLS algorithm with L-curve, and the υ-method with the Monte 
Carlo GCV, since numerical simulation results show that these combinations are optimal (section 4.3). 
The maximum number of iterations is imax = 20,000 and the convergence criterion is set to ε = 10-5. 
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Figure 4.6: (a) Temperature profiles T0 and (b) corresponding theoretical PPTR signals S0 for the test object 
featuring two absorbing layers 

Figure 4.7 presents a statistical analysis of 20 regularized solutions. Solid black lines connect the 
average solution values, while the gray bars indicate the standard deviation. At a given SNR, all three 
reconstruction algorithms result in comparable solutions. Standard deviation of the solution T 
decreases with increasing SNR for the PR-TSVD and PR-CGLS, but increases for the projected υ-
method – likely due to more right singular vectors vi included in the solution T. 
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Figure 4.7: Statistical analysis of 20 regularized solutions T for the second test object obtained using the PR 
TSVD (top row), PR CGLS (middle row), and projected υ-method (bottom row). SNR levels are 100 (left), 500 
(center), and 1000 (right). The actual object is presented for comparison (dark-gray line). Gray bars represent 
standard deviations. 

The corresponding relative image errors are presented in Fig. 4.8. The υ-method results in the smallest 
image error (dark-gray bars; δ = 0.27, 0.26, and 0.24 at SNR = 100, 500, and 1000, respectively). 
With this method, we also obtain minimal standard deviations of δ and minimal δmax, which is the 
maximal obtained image error value for the same example and SNR. However, the differences 
between δ obtained by different methods are insignificant at SNR = 500 and 1000. 
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Figure 4.8: Relative image errors δ (Eq. 4.10) of images of the second test object obtained using the PR TSVD 
(light-gray bar), PR CGLS (gray bars), and υ-method (dark-gray bars). Corresponding maximal obtained image 
error δ is represented by dashed-line bar. 

The temperature profiles reconstructed by our algorithms resemble the actual test object better than 
temperature profiles presented by Milner et al,6 especially the superficial temperature peak. 
Furthermore, the average image error error for the υ-method and SNR = 100 (δ = 0.27) is markedly 
smaller than the relative image error (δ = 0.35) reported in the previous study, albeit the previous study 
was performed on the more accurate computer platform (64-bit workstation). Therefore we conclude 
that our dedicated algorithms perform better than the algorithm used in their study. 

4.5.2          Simulated port-wine stain lesion 

The third test object is the temperature profile obtained from a Monte Carlo simulation of optical 
transport in digitalized histology of port wine stain lesion.12 This should provide a more realistic 
estimation of the reconstruction algorithm performance for real port-wine stain PPTR signals. 

The temperature profile is represented as a vector T0 with 750 equidistant components (∆z = 2 µm) 
over a maximum depth of 1.5 mm (Fig. 4.9a). There are 2000 equidistant components (∆t = 1 ms) in 
PPTR signal vector S0 (Fig. 4.9b) over a 2 s time interval. The assumed tissue constants are D = 0.11 
mm2 s-1, µ  = 26 mm-1, and h = 0.02 mm-1. 
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Figure 4.9: (a) Temperature profile T0 and (b) corresponding theoretical PPTR signal S0 for test object MCPWS.  

Figure 4.10 shows a statistical analysis of 20 reconstruction results for the MCPWS test object and 
SNR = 100, 500 and 1000. Similarly to the above example, the reconstruction robustness increases 
with SNR, most markedly for the υ-method (Fig. 4.10, bottom row). At SNR = 100, PRCGLS and 
PRTSVD produce solutions with more detail than the average solution obtained by the υ-method – 
likely because of stronger regularization. At SNR = 500 and SNR = 1000, all reconstruction 
algorithms yield very similar results. 

As seen in Figure 4.11, the PR CGLS algorithm results in minimal image errors (δ = 0.27 ± 0.03 and 
0.19 ± 0.02) at SNR = 100 and 1000, while the υ-method is optimal at SNR = 500 (δ = 0.22 ± 0.01). 
CGLS and the υ-method also present acceptably small δmax (dashed line). In contrast, the PR TSVD 
produces reconstruction results with largest standard deviation of δ (σδ = 0.06), and largest δmax. 
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Figure 4.10: Statistical analysis of 20 regularized solutions T for MCPWS test object obtained using the PR 
TSVD (top row), PR CGLS (middle row), and projected υ-method (bottom row). SNR levels are 100 (rigt), 500 
(center), and 1000 (left). The exact solution is presented for comparison (dark-gray line). Light-gray bars 
represent standard deviations. 
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Figure 4.11: Relative image errors δ (Eq. 4.12) of images of MCPWS test object obtained using the PR TSVD 
(light-gray bar), PR CGLS (gray bars), and υ-method (dark-gray bars). Corresponding maximal obtained image 
error δ is represented by dashed-line bar. 

4.6          Conclusions 
Our dedicated reconstruction algorithms with implemented non-negativity constraint and 
regularization parameter selection method produce markedly more accurate solutions of the PPTR 
inverse problem than the general-purpose optimization software. Furthermore, our algorithms result in 
temperature profiles with smaller image errors than temperature profiles presented in an earlier PPTR 
study and obtained also by a dedicated non-negatively constrained reconstruction algorithm. All three 
presented algorithms generate similar reconstruction results, but the PR CGLS and projected υ-method 
yield somewhat smaller image errors and more stable reconstructions as compared to PR TSVD.





 

39 

Chapter 5 
 

Calibration of radiometric signal 
 

 

In Chapter 2 we derived the expression for radiometric signal s(t) corresponding to the sample 
temperature Tb + ∆T(z, t) (Eq. 2.5). The absolute temperature rise ∆T(z, t) can not be determined from 
s(t), unless the exact value of constant C is known.  Moreover, (2.5) must be linearized (Eq. 2.6) to 
obtain the PPTR inverse problem (2.11) which can be solved using the reconstruction algorithms 
described in Chapter 4. Yet, radiometric signal s(t) does not depend linearly on ∆T(z, t). 

In order to overcome these limitations, it is customary to transform radiometric signals s(t) into 
radiometric temperature using a calibration process. The calibration eliminates the constant C and 
reduces the nonlinear dependence of ∆T(z, t) on s(t), but some error due to linearization of (2.6) may 
still exist. Therefore, in all reported PPTR studies authors justied utilization of (2.11) only for 
relatively small temperature rises.6,9,18 Because moderate temperature changes as compared to Tb can 
also be observed in temperature profiles reconstructed from PPTR signals measured on PWS 
birthmarks, we analyze the effect of linearization on the accuracy of reconstructed temperature 
profiles. 

5.1          Linearization error in monochromatic approximation 
The calibration process consists of fitting measured PPTR signals to a PPTR setup response to IR 
radiation emitted by a blackbody set to different temperatures TBB. Here we assume that an IR detector 
detects emitted IR radiation in a narrow spectral band, thus constant values for wavelength λ, 
responsivity R(λ), IR absorption coefficient µ, and constant C can be used. Such monochromatic 
approximation is used in almost all reported PPTR studies.  

From (2.5), the expression for radiometric signal sBB(TBB) due to blackbody radiation at TBB is 

  BB BB BB( ) ( ) ( )s T C R B T Dλλ λ= ∆ +  (5.1) 

where D accounts for dark current. 
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Figure 5.1: Radiometric signal sBB(TBB) as a function of blackbody temperature TBB for three acquisition 
wavelengths λ (see labels). The detector responsivity is modeled as R(λ) = Rp λ/λp with λp = 5.0 µm and D = 0. 

Figure 5.1 presents blackbody radiometric signals sBB(TBB) as a function of TBB for three wavelengths λ 
= 3.0, 4.0, and 5.0 µm. The detector responsivity R(λ) is modeled as R(λ) = Rp λ/λp with λp = 5.0 µm. 
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Linearization of (5.1) at a fixed TBB results in an error, which increases with increasing temperature 
difference ∆T. So, when temperature is increased by ∆T = 20 K, the expression linearized at TBB = 300 
K yields 13% smaller values for λ = 5.0 µm, and even 24% smaller values for λ = 3.0 µm (see Fig. 5.1) 
as compared to the actual value of SBB. 

The expression (5.1) is fitted to the measured PPTR setup response to the IR radiation emited by the 
blackbody, and the constants C and D are determined, thus yielding a calibration curve sBB(T). When 
calibrating radiometric signal s(t), the corresponding radiometric temperature S(t) is then found by 
matching each s(ti) to the calibration curve sBB(T) 

  BB ( ( )) ( )i is S t s t=  (5.2) 

Thus the calibration procedure eliminates the constants C and D, and establishes a relation between 
s(t) and radiometric temperature S(t). 

An expression for Planck’s law of radiation is 
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which can be approximated with 
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since the exponential in Bλ(T) is much larger than 1. Using (5.3b) we find an expression for a 
monochromatic PPTR signal 
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and an expression for the calibration curve 
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We substitute (5.4a) and (5.4b) into (5.2) to get the expression for calibrated PPTR signal s(t) in 
radiometric temperature units 
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The calibration process eliminates the constant factor 2πC∆λhc2R(λ) and constant D. We expand the 
expression for ∆S(t) into Taylor series and neglect terms of the order ∆T(z, t)2 and higher, which 
results in a linearized expression for the PPTR signal 
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=

∆ = ∆∫  (5.6) 

All factors involving λ and Tb are canceled in (5.6), so that the linearized calibrated signal ∆SL(t) 
depends on acquisition wavelength λ only indirectly, through the value µ. 

We can estimate the linearization error by considering the quadratic term in Taylor series 
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Assuming that N2(∆T(z, t)) (5.7) is the largest contribution to the linearization error, we find an 
expression for the relative linearization error. First, we write the temperature rise as ∆T(z, t) = Tav f(z, 
t), where Tav is average temperature rise and f(z, t) is a normalized form function in the sense 
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Evidently, the linearization error increases proportionally with Tav. Furthermore, the error increases 
with decreasing Tb and λ.  

The above expression shows that for a sample with constant temperature T (i.e., f(z, t) = 1) the 
linearization error is zero; which indicates that the linearized expression ∆SL(t) is exact for 
homogenously heated samples. However, for non-homogenously heated samples (i.e., f(z, t) ≠ 0) the 
linearization error persist in spite of optimal calibration. For example, we evaluate (5.8) for a Gaussian 
initial temperature profile ∆T(z) = T0 exp(–(z – z0)2/2w2) with T0 = 20 K, z0 = 100 µm, and w = 30 µm 
for λ = 3 and 5 µm. Absorption coefficient µ = 26.5 µm. Thus, we obtain the linearization error  
N2/∆SL = 20% and 11% for λ = 3 and 5 µm, respectively. These errors are smaller than the 
corresponding errors for non-calibrated linearized radiometric signal (see Fig. 5.1). Since PPTR signal 
involves transient temperature rise ∆T(z, t), we perform a numerical simulation to consider evolution 
of the linearization error with time. 

5.1.1 Numerical simulation 

The initial temperature profiles have a hyper-Gaussian form: ∆T(z,0) = Tp exp[-2(z–z0)4/w4] with Tp = 
1 – 100 K, w = 30 µm, and central depths z0 = 100, 200, and 300 µm. The temperature profile ∆T(z’, t) 
at depth z’ and time t is calculated as a convolution of ∆T(z, 0) and the Green’s function GT(z, z’, t) 
(Eq. 2.3). Then, ∆S(t) and ∆SL(t) are calculated by inserting ∆T(z, t) into (5.5) and (5.6) and 
completing the z integrals. We use numerical integration routines implemented in Mathematica 4.1 
(Wolfram research, Champaign, IL) to compute signal vectors with 1000 components representing 
signal values acquired at a sampling rate 1000 s-1 for a total acquisition time of 1s. PPTR signals are 
simulated for λ = 4.5 µm, µ = 26.5 mm-1, and Tb = 303 K. Thermal constants in GT(z, z’, t) are D = 0.11 
mm2/s and h = 0.02 mm-1. 

Figure 5.2 presents PPTR signals calculated using the exact (solid line) and the linearized (dashed 
line) expressions for test objects with z0 = 100 µm and Tp = 1, 10, and 100 K (see the labels). For Tp = 
100 K, the exact signal features an initial spike (see the arrow), which is not present in the linearized 
signal. This difference between the simulated signals appears only at small times (t < 20 ms); while 
both signals are equal at later times. For the lower Tp (1 and 10 K), both signals are equal at al t. 
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Figure 5.2: Theoretical calibrated PPTR signals for hyper-Gaussian test objects with z0 = 100 µm, and Tp = 1, 
10, and 100 K (see labels). The exact ∆S(t) (Eq. 5.5; solid line) and linearized PPTR signals ∆SL(t) (Eq. 5.6; 
dashed line) are presented. 

In order to find how the linearization error affects temperature profiles, we simulate the exact PPTR 
signals (Eq. 5.5). Then we reconstruct initial temperature profiles ∆T(z, 0) from these signals using the 
linearized expression for PPTR signal (Eq. 2.11) and the monochromatic approximation (Eq. 2.9). The 
reconstruction algorithm used is the υ-method (chapter 4). We simulate PPTR signals for test objects 
located at z0 = 100 µm with Tp = 1–100 K, and test objects with Tp = 50 K located at z0 = 100-300 µm. 
Figure 5.3 presents the reconstructed temperature profiles (solid line) and the actual test objects 
(dashed line) for comparison. 
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Figure 5.3: Reconstructed temperature profiles ∆T obtained from the exact PPTR signals ∆S(t) for (a) test 
objects located at z0 = 100 µm with Tp = 1–100 K (see labels), and (b) test objects located at z0 = 100–300 µm 
with Tp = 50 K (see labels). The actual objects (dashed line) are plotted for comparison. Arrows indicate surface 
artifacts due to the linearization error. 

When reconstructed test object is located at z0 = 100 µm (Fig. 5.3a), the reconstruction results are not 
significantly deteriorated for Tp = 1 and 10 K, but we can observe a small artifact near the object 
surface (see the arrows). In contrast, reconstruction of test object with Tp = 100 K (bottom) results in a 
severely deformed temperature profile, and a significant surface artifact. Moreover, the temperature 
profile is shifted deeper as compared to original depth (z0 = 100 µm).  
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The effect of linearization error is reduced as z0 increases (Fig. 5.3b). The distinct surface artifact in 
reconstructed temperature profile of test object with z0 = 100 µm (top) and Tp = 50 K, diminishes as z0 
is increased to 200 µm (center), and disappears for z0 = 300 µm (bottom). The shift of temperature 
peak (~3 µm) is also present only for the temperature profile located at z0 = 100 µm. 

Occasionally, we observe such initial spikes in measured PPTR signals. Because the temperature 
profile reconstruction is performed using the linearized expression (5.6), superficial artifacts due to the 
linearization error can appear in reconstructed temperature profiles, especially when large temperature 
amplitudes are involved. 

In addition to the above reconstruction results, we present a systematic analysis of the linearization 
error. Figure 5.4 shows the normalized linearization error defined as (∆S(t) – ∆SL(t))/<∆S(t)> for all 
simulated hyper-Gaussian test objects. In general, the normalized linearization error increases with 
increasing Tp. However, the error practically vanishes in 10–100 ms for all depths z0 and temperatures 
Tp.  Specifically, for Tp = 100 K the linearization error is reduced below 1% in 20 ms and 46 ms for z0 
= 100 and 200 µm, respectively. The linearization errors for the test objects with z0 = 300 µm feature 
peak values at t = 40–50 ms, but are significantly smaller than for z0 = 100 and 200 µm.  
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Figure 5.4: The normalized linearization error for all 
simulated hyper-Gaussian test objects (see labels) 
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is the average value of ∆S(t). The peak temperatures 
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µm and the IR absorption coefficient µ = 26.5 mm-1. 

 

5.2          Broad-band signal acquisition 
Since the monochromatic calibration is accurate only for very narrow spectral bands,18,47 we analyze 
next the calibration process involving broadband signal acquisition. From (2.5), radiometric signal due 
to blackbody radiation at TBB is 
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where λl and λh are the lower and the upper limit wavelengths, respectively. Analogous to the 
monochromatic calibration, the expression (5.9) is fitted to the measured broad-band PPTR setup 
response to the IR radiation emited by the blackbody, and the constants C and D are determined, thus 
yielding a broad-band calibration curve sBB(T). The broad-band radiometric temperature S(t) is then 
found by matching each s(ti) to the calibration curve sBB(T) according to (5.2). By using the Taylor 
series expansion, the linearized expression for the calibrated spectrally composite PPTR signal is 
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With broad-band signal acquisition, the factors involving specific spectral properties (i.e., R(λ), 
Bλ’(Tb), µ(λ)) and Tb do not cancel out in the linearized calibrated PPTR signal ∆SL(t) (5.12). Because 
we can not derive the linearization in the spectrally composite PPTR signals ∆S(t) analytically, we 
perform a numerical simulation. 
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Figure 5.5: The normalized PPTR signal linearization 
error for all hyper-Gaussian test objects with peak 
temperatures are Tp = 1–100 K (see the labels) and the 
spectral bands with λl = 3.0–4.9 µm (see the legend). 

Figure 5.5 present the obtained relative linearization errors calculated as in subsection 5.1.1. Similarly 
to the monochromatic case, the linearization error practically vanishes in 20–30 ms, and increases with 
the temperature amplitude Tp for all spectral bands. In addition, the linearization error progressively 
decreases, when the spectral acquisition band is reduced from λl = 3.0–5.0 µm to λl = 4.9–5.0 µm. 

The initial temperature profiles ∆T(z, 0) have a hyper-Gaussian form, as in subsection 5.1.1. The 
profile central depth is fixed at z0 =100 µm, where the monochromatic linearization error was found to 
be largest. Detector spectral responsivity is modeled as R(λ) = Rp λ/λp, and the IR absorption 
coefficient µ(λ) is modeled as 75% of the values for water48 sampled with spectral interval of 0.1 µm. 

The exact spectrally composite PPTR signals ∆S(t) are computed in three steps. First, the radiometric 
signal s(t) is found by completion of the z and λ integrals (Eq. 2.5). Second, the blackbody radiometric 
signal ∆sBB(TBB) is determined for TBB = 273–373 K by completion of the λ integral (Eq. 5.9). Finally, 
∆S(t) is calculated by fitting s(ti) to the calibration curve sBB(T) (Eq. 5.2) at each time ti = i ∆t. 
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Meanwhile, the corresponding linearized spectrally composite PPTR signal ∆SL(t) is computed by 
completion of the z and λ integrals in (5.10). All computations were performed using Mathematica 4.1. 

Table 5.1 lists the maximum linearization error and the time t1%, when the linearization error drops 
below 1% of the maximum value for the entire-spectral band of the InSb detector (λ = 3.0–5.0 µm) and 
a reduced spectral band (λ = 4.5–5.0 µm).18,49 Maximal linearization error for λl = 3.0 µm is on average 
50% larger than the corresponding error for λl = 4.5 µm. t1% increases with Tp, and is smaller for λl = 
4.5 µm than for λl = 3.0 µm. 
Table 5.1: Maximal normalized linearization error (∆S(t)– ∆SL(t))/< ∆S(t)> and time t1%, when the linearization 
error drops below 1% of the maximum. Results are presented for spectral bands with λl = 3.0 µm and 4.5 µm, 
and for the monochromatic PPTR signals with λ = 4.5 µm and z0 = 100 µm (Fig. 5.5). 

 λ = 3.0–5.0 µm λ = 4.5–5.0 µm 
T0 (K) Error t1% (ms) Error t1% (ms) 

1 0.04 1 0.01 0 
2 0.05 2 0.03 1 

5 0.06 3 0.03 2 

10 0.11 8 0.07 6 

20 0.15 13 0.13 9 

50 0.52 16 0.35 14 

100 1.10 20 0.75 16 

 

5.3          Conclusions 
All nonlinearity between the radiometric signal and the radiometric temperature is eliminated, when a 
calibration in monochromatic approximation is performed. In linearized calibrated PPTR signals the 
factors involving the acquisition wavelength (i.e., Bλ(Tb) and R(λ)) cancel out from the resulting 
expression. The linearized expression is exact for samples with homogenous temperature distribution, 
but for samples with non-homogenous temperature distribution the linearization produces a 
linearization error.  

In general, the linearization error is significant for absorbing structures located at shallow depths and 
short after laser pulse. The error increases with increasing peak temperature, which is predicted by the 
analytical expression (5.8). This expression also indicates that linearization error decreases with 
increasing acquisition wavelength λ and baseline temperature Tb. 

Due to the linearization error we can observe in reconstructed temperature profiles superficial artifacts, 
which can be easily mistaken for superficial absorbing structures.  

Same trends are obtained for the spectrally composite calibrated PPTR signals. In addition, we observe 
also that the linearization error increases with spectral acquisition band broadening. 

Since temperature amplitudes are in general moderate, and most of absorbing structures (i.e., blood 
vessels) are deeper in the sample, the linearization error in typical PPTR temperature profiling in 
human skin is small. The error can be additionally reduced by appropriate spectral filtering.
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Chapter 6 
 

Effective infrared absorption coefficient  
 

 

Reconstruction of temperature profiles from PPTR signals involves tissue absorption coefficient at the 
detected IR wavelength, µ(λ). In general, soft biological tissues feature a pronounced spectral variation 
µ(λ) in mid-IR. Yet, all reported PPTR studies utilized a fixed effective value (µeff) to reduce 
computational complexity of the reconstruction process, albeit broad-band signal acquisition was used 
almost invariably to increase signal-to-noise ratio (SNR). In earlier PPTR studies two approaches of 
analytical estimation of µeff were presented,6,9 but no study has been done to find which approach is 
better. However, implications of monochromatic approximation for PPTR temperature profiling were 
analyzed numerically for specific case of two spectral bands of an InSb detector.18 

In this chapter, we focus on determination of the optimal effective value µeff for samples that exhibit a 
significant spectral variation µ(λ) within the IR detection band. Taking into account spectral 
characteristics of three common IR radiation detectors, we simulate realistic PPTR signals for four 
hyper-Gaussian temperature profiles centered at different depths below the sample surface. From each 
PPTR signal, the initial temperature profile is then reconstructed using the approximation with a 
constant µeff. Analysis of the mismatch between the actual and reconstructed temperature profiles at 
different values µeff enables determination of the optimal effective value, µopt. 

Because determination of µopt from numerical simulations is very tedious, we propose a novel 
analytical approach to the same task. Based on an implicit equation derived earlier11,18, this approach 
enables a direct estimation of µopt from spectral properties of the sample and radiation detector. In a 
systematic analysis, involving multiple acquisition spectral bands for each IR radiation detector, our 
analytically assessed values µopt match the numerical results very well, unlike the previously used 
analytical estimates.6,9 

6.1          InSb detector 

6.1.1          Numerical simulation 

All initial temperature profiles (“objects”) in our simulation examples have a hyper-Gaussian form: 
∆T(z,0) = ∆T0 exp[–2 (z–z0)4/w4] with ∆T0 = 10 K and w = 0.1 mm. With z0 varied from 0.1 to 0.4 mm, 
these profiles represent laser-induced temperature rise in subsurface vascular plexus (such as PWS) at 
different depths in skin. The corresponding vectors T0 represent temperature values at 100 equidistant 
positions over a depth of 1 mm. 

Each vector S0 has 1000 components, representing signal values acquired at a sampling rate of 1000 s-1 
(for a total acquisition time of 1 s). It is obtained by multiplying T0 with a spectrally composite matrix 
K. Based on (2.7) and (5.10), each matrix element of the latter is computed as a sum of N = 100 
monochromatic kernel functions κ(z, t) (Eq. 2.10) evaluated at equidistant wavelengths λk within the 
spectral acquisition band λl–λh 
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where ∆z denotes depth discretization. The absorption spectrum of human skin is modeled by adding 
75% of µ(λ) for water48 and 25% of µ(λ) for collagen51 (Fig. 6.1a). The thermal constants in κ(z,t) are 
set to52 D = 1.1 × 10-7 m2s-1 and h = 0.02 mm-1. 

InSb quantum radiation detector has peak sensitivity wavelength of λp = 5.3 µm and cut-off at λc = 5.6 
µm. The corresponding spectral responsivity R(λ) is modeled as increasing linearly with λ up to λp, 
then linearly decreasing to 10% of the maximal value at λc (Fig. 6.1b). The lower spectral limit (λl) is 
varied between 3.0 µm and λp, while λh is fixed at the respective λc. This simulates application of 
different cut-on filters to narrow the detection spectral band18,50. No noise is added to the simulated 
signals, because it would induce inconsistencies in the analysis.  

From each signal vector, the initial temperature profile is reconstructed using a range of simplified 
kernel matrices based on (2.9) and employing different effective values µeff. We apply the PR-CG 
method (chapter 4) to solve the inverse problem (2.11). The minimum in dependence of relative image 
error δ (4.10) on µeff indicates the optimal effective value (µopt) for a given combination of object, 
detector and acquisition spectral band. 
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Figure 6.1: (a) Model absorption coefficient of skin in mid-IR spectral region, µ (solid line), computed as 75% 
of µ for water48 (short dash) increased by 25% of µ for collagen51. (b) Temperature derivative of Planck’s 
radiation formula at Tb = 300 K (solid line) and spectral sensitivity R(λ) of a typical InSb detector (dashed line), 
and two HgCdTe detectors with peak sensitivity at 10 µm and 12 µm (dash-dot and short-dash line, 
respectively). 

Figure 6.2 presents three results, obtained from a simulated PPTR signal for the hyper-Gaussian object 
centered at z0 = 0.3 mm (dashed line) and employing the entire acquisition spectral band of the InSb 
detector (3.0–5.6 µm). Reconstructions were performed using the simplified, quasi-monochromatic 
kernel matrices based on (2.9) with varying µeff. At a sub-optimal value (µeff = 20.0 mm-1, top graph), 
the tails of the profile are squeezed and peak temperature is markedly overshot. The best match is 
obtained with µeff = 22.3 mm-1 (center), while an overestimated value (µeff = 25.0 mm-1, bottom) results 
in a narrowed peak with blurred tails. 

Figure 6.3 presents the dependence of relative image error δ (Eq. 4.10) on µeff, as obtained for four 
hyper-Gaussian profiles centered at different depths z0 (see labels in the graphs). The optimal µeff for 
each object is indicated by the minimum of the respective dependence (arrows). The results in Fig. 
6.3a represent the case where the entire spectral band of the InSb detector is used. With a narrowed 
acquisition spectral band (λl = 4.5 µm; Fig. 6.3b), the four optimal values µopt(z0) lie closer together 
and the respective image errors are significantly smaller. 
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Figure 6.2: Temperature depth profiles (solid lines) reconstructed from simulated PPTR signal employing the 
entire spectral band of the InSb detector (3.0–5.6 µm). The values of µeff used in reconstruction were, 
respectively, too low (top), near-optimal (center), and too high (bottom; values indicated in the graphs). The 
initial temperature profile is plotted for comparison (dashed line). 
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Figure 6.3: Relative image error (δ) as a function of µeff used for reconstructions of spectrally composite PPTR 
signals with acquisition band of: (a) 3.0–5.6 µm, and (b) 4.5–5.6 µm. Different symbols represent the results 
obtained for objects centered at different depths z0 (indicated in the graphs); arrows indicate the optimal values 
for each object, µopt(z0). 

3.0 3.5 4.0 4.5 5.0

20

21

22

23

24

25 (a)

µ o
pt
  [

m
m

-1
]

λl  [µm]

    z0 = 0.1 mm 
    z0 = 0.2 mm
    z0 = 0.3 mm
    z0 = 0.4 mm

3.0 3.5 4.0 4.5 5.0
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(b)

R
el

at
iv

e 
im

ag
e 

er
ro

r  

λl  [µm]

Figure 6.4: (a) Optimal effective absorption coefficient µopt(z0) for objects centered at different depths z0 (see the 
legend) as a function of lower spectral limit λl. The upper limit is fixed at λh = 5.6 µm.  (b) Relative image errors 
(δ) for the reconstruction results from figure 6.4a. 
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The results from such analyses with the lower limit wavelength λl varied from 3.0 to 5.3 µm are 
collected in Fig. 6.4. The optimal effective values µopt(z0) vary with λl, as dictated by spectral 
dependences µ(λ), R(λ), and Bλ’(Τb) in the respective acquisition bands (Fig. 6.4a). At the same time, 
the spread of values µopt(z0) obtained for the four test objects diminishes with increasing λl. Relative 
image errors (δ) for the same reconstruction results show a general trend of decreasing with increasing 
λl for all four test objects (Fig. 6.4b). 

6.1.2          Analytical approach 

Our approach to determine the optimal effective value µeff directly from sample IR absorption 
spectrum µ(λ), detector spectral sensitivity R(λ), and acquisition spectral band (λl, λh), is based on 
relation18 
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This implicit equation is obtained by substituting µ(λ) in (2.6) with a spectrally constant value µeff and 
requiring that the obtained expression equals the r.h.s. of (2.6) for abritrary ∆T(z,t).  

We begin by evaluating the first integral on the r.h.s. of (6.2) at 500 equidistant depths zi (from 0.001 
to 0.500 mm) using Simpson’s rule32. For each zi, equation (6.2) is then solved for µeff using the Jacobi 
iterative method. The solution µeff(z) is in general double-valued and varies with depth z (see Fig. 6.5). 
This demonstrates that a single value µeff, which could replace spectrally variable µ(λ) to yield the 
correct kernel function, does not exist. The optimal effective value, providing the closest 
approximation to the augmented kernel function is therefore determined from µeff(z) in the following 
manner.  

After selecting a reasonable starting approximation, µopt
(0), we calculate a weighted average  
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 (6.3) 

In computing both sums, only the value µeff(zi) from the solution branch that is closer to µopt
(0) is 

considered at each depth zi. Using the obtained value, µopt
(1), as improved approximation, the procedure 

is then repeated in the same manner. The successive approximations µopt
(m) converge toward the 

optimal effective absorption coefficient, µopt. 

The exponential weight function, exp[– µeff(z) z], was selected because the contribution of emitters 
from various depths z to the radiometric signal (Eq. 2.6) at any time t is governed by Beer’s law. After 
figuring out how to deal with the obtained relation (Eq. 6.2) involving the two-valued function µeff(z), 
everything fell into place. 

Figure 6.5 presents solutions µeff(z) of the implicit Eq. (6.2) for four acquisition spectral bands of the 
InSb detector (see the caption). The variation of µeff with depth (z) is most prominent for the widest 
acquisition band (Fig. 6.5a), and almost absent in the nearly monochromatic case (Fig. 6.5d). The 
dashed lines indicate the corresponding optimal values µopt assessed using our analytical approach (Eq. 
6.2). For the four presented examples they amount to 23.0 mm-1, 23.2 mm-1, 24.5 mm-1, and 20.7 mm-

1, respectively. It may seem odd that the optimal µeff depends also on the object depth, z0. But this is 
just a reminder that no constant value µeff used in Eq. (2.9) can entirely replicate the effect of the 
spectrally composite K(z,t) (2.8). 
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Figure 6.5: Effective absorption coefficient µeff(z) (Eq. 6.2) computed for InSb detector and detection band of: 
(a) 3.0–5.6 µm, (b) 3.9–5.6 µm, (c) 4.5–5.6 µm, and (d) 5.1–5.6 µm. Dashed lines indicate the corresponding 
values µopt determined using Eq. (6.3). 

Figure 6.6 presents the analytically assessed optimal values, µopt (Eq. 6.3), as a function of the lower 
limit wavelength, λl (solid line). For all included values λl, the analytical estimate falls within the range 
of values µopt(z0) obtained for the four test objects in numerical simulations (grey vertical stripes). 
Difference between the arithmetic mean of the latter (open circles) and µopt (Eq. 6.3) does not exceed 
0.6 mm-1 for any spectral band under test. For the most important case, employing the entire spectral 
band of the InSb detector (λl = 3.0 µm), the difference is only 0.25 mm-1 or 1.1% of the target value. 

For objective PPTR profiling of arbitrary samples, one would namely wish to obtain equally good 
performance at all subsurface depths. In reality, however, images of deeper objects are increasingly 
blurred due to higher susceptibility to experimental noise (chapters 7 and 11). To account for this, we 
consider also a weighted average which favors shallower test objects (black squares). The weight z0

-1 
was selected because it approximates scaling of the PPTR signal amplitude from a thin subsurface 
layer. 9 By considering a weighted average of µopt(z0) at each λl, µopt (Eq. 6.3) falls within 0.3 mm-1 off 
the mark for all detection bands included in the analysis. 

Two formerly applied analytical estimates perform significantly worse in such a comparison. The 
weighted average of µ(λ) with the weight set to R(λ)53,9 amounts to 62.3 mm-1 in the most relevant case 
of λl = 3.0 µm, overshooting the average of numerical values µopt(z0) by 174% (Fig. 6.6, short-dash 
line). The more elaborate expression used by Milner et al6,7 
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provides a better match to the numerical data (dash-dot line). Nevertheless, it exceeds the optimal 
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value for unfiltered InSb detector by a significant margin of 2.4 mm-1 (or 13%).  
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Figure 6.6: Analytically assessed values µopt as a function of the lower limit wavelength (λl) (solid line). Grey 
stripes indicate the range of µopt(z0) values obtained for the four test objects in numerical simulations; simple 
means and weighted averages of these values are marked by open circles and black squares, respectively. Two 
formerly used analytical estimates are plotted for comparison (dash-dot and short-dash lines). 

6.2          HgCdTe detectors 
We present similar analysis to the above for two HgCdTe detectors, also commonly used for PPTR 
temperature profiling. First HgCdTe detector has peak sensitivity at λp = 10 µm, the upper spectral 
limit (λh) is fixed at the cut-off wavelength of the detector, λc = 12 µm, while the lower limit is varied 
between 3.0 µm and λp.  
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Figure 6.7: Analytically assessed µopt (Eq. 6.2) as a function of λl (solid line) for the HgCdTe detector with peak 
sensitivity at 10 µm. Grey stripes indicate the range of µopt(z0) values obtained for the four test objects in 
numerical simulations; simple means and weighted averages of these values are marked by open circles and 
black squares, respectively. Two formerly used analytical estimates are plotted for comparison (dash-dot and 
short-dash lines; see text for details). 

Figure 6.7 presents the analytically assessed optimal absorption coefficient value, µopt (Eq. 6.3), as a 
function of the lower limit wavelength, λl (solid line). For all included spectral bands, the analytical 
estimate falls within (or just marginally deviates from) the range of values µopt(z0) obtained for the four 
test objects in numerical simulations (grey vertical stripes). For the maximal spectral band (λl = 3.0 
µm), the mismatch between µopt (Eq. 6.3) and simple mean of the latter (open circles) is 3.5 mm-1. If 
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the weighted average is taken as the target value (black squares), the mismatch is only 2.0 mm-1 
(3.8%). Clearly, our analytical estimate µopt (Eq. 6.3) provides a much better fit to the numerical data 
than the earlier used effµ% (Eq. 6.4) or convolution of µ(λ) with R(λ) (dash-dot and short-dash lines, 
respectively) for all 36 spectral bands included in this part of the study. 

For the HgCdTe detector with peak sensitivity at λp = 12 µm, our analytical estimate µopt (Eq. 6.3) (Fig. 
6.8, solid line) falls within the range of numerically determined values µopt(z0) (grey stripes) for each of 
the included spectral bands. The match is particularly good if the weighted average of the four µopt(z0) 
is considered at each λl (black squares). In contrast, the earlier used analytical estimates effµ% (Eq. 6.4) 
and weighted average of µ(λ) with weight R(λ) (dash-dot and short-dash lines, respectively) deviate 
significantly from the numerical results even for moderately wide detection bands (e.g., λl = 10 µm). 
With further decrease of λl, the mismatch between effµ% (Eq. 6.4) (dash-dot line) and simple mean of 
the numerical µopt(z0) (open circles) stays large and amounts to 25 mm-1 (or 43% of the target value) at 
λl = 3.0 µm. 
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Figure 6.8: Same as Fig. 9.7, but for HgCdTe detector with peak sensitivity at λp = 12 µm. 

6.3          Discussion 

Figure 6.2 illustrates how a ~10% deviation from the optimal value µeff deteriorates the reconstructed 
temperature profile (top, bottom). In soft biological tissue, such as human skin with µ(λ) in mid-IR 
varying by two orders of magnitude (Fig. 6.1), determining the optimal value µeff to such a narrow 
margin is certainly a nontrivial task. In a separate numerical study,47 white noise in the simulated 
signal (SNR = 300) suspended the high dependence of relative image error (δ) on µeff only within a 
very narrow interval around µopt. At deviations larger than 2–3% of the optimum value, the influence 
on δ was clearly present, rather than buried in the effect of noise, as is believed quite often. 

Being aware of the spectral variation µ(λ) in their gel samples, Prahl et al53,9 estimated the effective 
value µeff by averaging µ(λ) of water over the 8–12 µm detection band, using spectral sensitivity R(λ) 
of the HgCdTe detector as a weight. The closest match to such experimental conditions is found in 
Fig. 6.8 (short dash line, λl = 8.0 µm), which suggests that their estimate of µeff may have been too 
high. Of course, this comparison does not provide any indication of the possible implications of such 
deviation for their results. In fact, at such high values of µeff we would expect only a minimal effect on 
profiling, likely limited to the most superficial 10 µm of the sample. On the other hand, Fig. 6.6 leaves 
no doubt that applying the same approach to the commonly used InSb detector with λl = 3.0 µm would 
be disastrous. 

Milner et al6,7 applied a more elaborate expression effµ%  (Eq. 6.4) to HgCdTe detector used at 7–
11 µm, and 10–14 µm, respectively. As indicated by Figs. 6.7 and 6.8 (dash-dot line), the 
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improvement over the previous approach is only marginal. This can be attributed to the weak spectral 
variation of Bλ

’(Tb) in this part of the spectrum (Fig. 6.1b). On the other hand, a dramatic improvement 
is obtained for InSb detector at 3–5 µm (see Fig. 6.6, dash-dot vs. short-dash line) where Bλ

’(Tb) 
exhibits a large spectral variation. Nevertheless, the remaining discrepancy between effµ%  (Fig. 6.6, 
dash-dot line) and numerically determined µopt(z0) at λl = 3.0 µm (grey stripe) suggests that the value 
used for temperature profiling in human skin by Milner et al6 may have been overestimated. The 
possible effect of such a discrepancy can be guessed from Fig. 6.2 and extrapolation of data in Fig. 
6.3(a) - while keeping in mind the possible differences between the model functions µ(λ) and R(λ) in 
the two studies.  

The values µopt (Eq. 6.3) obtained with our novel analytical approach in general provide a much better 
fit to the numerical results than the previously used estimates (Figs. 6.6–6.8; solid, short-dash, and 
dash-dot lines, respectively). (The results converge towards the right end of Figs. 6.6 and 6.8). 
Moreover, µopt (Eq. 6.3) fall within the range of values µopt(z0) obtained in the numerical simulations 
(grey stripes) for most of the 68 detector/spectral band combinations tested in this study. The same is 
rarely the case for either earlier approach. 

Spectral variation of µ(λ) in water is most pronounced in the lower part of detection band for all three 
detectors in this study (Fig. 6.1). Narrowing of the acquisition band with a cut-on filter significantly 
improves the validity of quasi-monochromatic approximation (Eq. 2.9). This is evidenced by the 
decrease of relative image error (δ) for all test objects (Figs. 6.3b, 6.4b). The four optimal values 
µopt(z0) lie closer together (Figs. 6.3b, 6.4a), which should further improve the accuracy of depth 
profiling when absorbers are distributed at varying (or multiple) subsurface depths. 

On the other hand, narrower spectral bands will in general result in smaller PPTR signal amplitude and 
thus decrease SNR. The optimal detection band for given experimental conditions (i.e., µ(λ), R(λ)) can 
thus be determined only by consideration of the related experimental noise. Such analysis is presented 
in Chapters 9 and 10. 

Finally, broad-band IR detection is commonly employed also in other PTR techniques, such as 
measurements of thermal diffusivity, depth profiling of sample thermal conductivity, or non-
destructive evaluation using measurements in frequency domain. To our knowledge, most of these 
techniques also assume an effective absorption coefficient value µeff in the involved signal analysis. 
Selection of µeff and its influence on the results deserve some thought when these techniques are 
applied to biological tissues or other materials with significant variation of µ(λ) in the detection band. 
Because rather general relations describing formation of the radiometric signal were involved in our 
determination of µopt (Eq. 6.3), the same or slightly adapted approach might provide viable values 
might be applicable also to some PTR techniques beyond PPTR temperature profiling. 

6.4          Conclusions 
The presented approach enables analytical determination of viable effective IR absorption coefficients 
to be used in reconstruction of temperature profiles from PPTR signals at any combination of sample 
spectral properties, radiation detector, and acquisition spectral band. This is particularly important in 
samples with large spectral variation µ(λ) in mid-IR, such as most biological tissues, where previously 
used analytical estimates are not sufficiently accurate. 
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Sampling rate 
 

 

Signal sampling rate is one of the experimental parameters involved in PPTR temperature profiling. 
Reported PPTR studies in biological tissues6,7,18,19,49 utilized a wide range of sampling rates (f = 125–
1700 s-1), but the reasons for selecting the actual sampling rates were not discussed. Basic relation, 
which illustrates how the axial resolution ∆z depends on sampling time ∆t, is the well known 
expression for the heat diffusion length 4z D t∆ = ∆ . Evidently, the axial resolution increases with 
sampling frequency. However, this relation does not include the effects of µ, h and noise. 

In this chapter we study the effect of sampling rate on the accuracy of reconstructed PPTR temperature 
profiles. We simulate PPTR signals with different sampling rates for different temperature profiles, 
and then reconstruct initial temperature profiles. 

7.1         Methods 
We consider a temperature profile resulting from radiative absorption in a layer of width w located at 
depth z1 
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The corresponding theoretical PPTR signal is determined analytically by substitution of (7.1) into 
(2.7) and completing of the z integral6  
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 (7.2) 

where k represents light absorption coefficient and 2 / 4u k Dt z Dt= + . This temperature profile 
is convenient for our simulation, because exact PPTR signal values S0(ti) can be calculated by simple 
evaluation of (7.2) at time ti. 

We select the parameter values ∆T0 = 30 K and w = 50 µm, and we vary z1 from 50 µm to 500 µm and 
sampling rate f from 100 s-1 to 10,000 s-1. The total acquisition time is 1.0 s for all simulated signals. 
The thermal parameters are D = 0.143 mm2/s and h = 0.02 mm-1, while the effective absorption 
coefficient is µ = 27 mm-1, which corresponds to the entire spectral band of the InSb detector and agar 
substrate (chapter 8). 

Theoretical signals S0 calculated for temperature profiles with z0 = 50, 100, 200 and 400 µm are 
augmented with 10 different realizations of realistic noise. The noise is characterized by fc = 15 Hz, α 
= 1.3 and NE∆T = 6.7 mK determined at f = 10,000 s-1 (section 3.5). Based on (3.3) and (3.4), noise 
amplitudes for smaller sampling rates are scaled as 
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  1( ) 6.7 mK
10,000

fNE T f
s−∆ =  (7.3) 

Initial temperature profiles T are reconstructed from simulated PPTR signals using the monochromatic 
kernel K (2.9) with the above parameters. Reconstruction results consist of 200 temperature values 
over a depth range of 1.0 mm (∆z = 5 µm). A maximum of 5000 iterations of the projected υ-method 
are allowed per signal. 

7.2         Results 

7.2.1        Noiseless signals 

Figure 7.1 presents temperature profiles reconstructed from noiseless PPTR signals S0 at sampling rate 
100 (left), 1000 (center) and 10,000 s-1 (right). Each reconstruction result is obtained after 5000 
iterations of the reconstruction algorithm.  

Clearly, increasing the sampling rate improves quality of reconstruction results. All temperature 
profiles reconstructed from PPTR signals with f = 100 s-1 are markedly broader and attenuated as 
compared to temperature profiles reconstructed from PPTR signals with f = 1000 s-1 and f = 10,000 s-1. 
The quality of reconstruction results additionally improves, when f is increased from 1000 to 
10,000 s-1. Thus, temperature profile located at z1 = 50 µm roughly resembles sharp edges of the actual 
object (gray line).  

All tested sampling rates f = 100–10,000 s-1 yield equivalent peak temperature depths Z, except for test 
object located at z1 = 50 µm. For this object, in images corresponding to f = 5000 and 10,000 s-1 we 
observe some features of the lower edge of test object. 

Figure 7.2 presents the determined relative image error δ (Eq. 4.10) and width W as a function of z1. 
For all test objects, the relative image error δ decreases as sampling frequency increases (Fig. 7.2a). 
However, the increase is more notable for f =  100–1000 s-1 than for f larger than 1000 s-1. Optimal δ 
are obtained for f = 10,000 s-1. Similar trend is observed for width W (Fig. 7.2b). 

The above results agree well with the dependence of ∆z on f following from the heat diffusion length 
equation. But, the simulation involving noiseless signals do not correspond to real PPTR temperature 
profiling. Therefore we must include realistic noise in simulated PPTR signals to estimate, how the 
accuracy of reconstructed temperature profiles depends on f for real PPTR temperature profiling. 
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Figure 7.1: Temperature profiles reconstructed from theoretical signals for test objects located at different 
depths z1 (see labels). Results for sampling rates 100 (left), 1000 (center) and 10,000 s-1 (right) are presented. 
The actual test objects are plotted for comparison (gray line). 
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Figure 7.2: (a) Relative image error δ (Eq. 4.12) and (b) full-width at half-maximum of the temperature profiles 
W. Results for samplig rates f = 100–10 000 s-1 are presented (see legend). Gray line in (b) indicates the actual 
width (50 µm). 

7.2.2        Signals with noise 

Figure 7.3 presents simulated PPTR signals with realistic noise for f = 100 (left), 1000 (center) and 
10,000 s-1 (right). Four test objects located at z1 = 50–400 µm (see labels) are considered. Evidently, 
PPTR signals become more noisy as f increases (Fig. 7.4). 
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Figure 7.3: Simulated PPTR signals for test objects with z1 = 50, 100, 200 and 400 µm (see labels) and sampling 
rates of 100 (left), 1000 (center) and 10,000 s-1 (right) augmented by realistic noise. 
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Figure 7.4: SNR of the simulated PPTR signals as a function of sampling frequency f for test objects with z1 = 
50 (solid squares), 100 (open squares), 200 (solid circles) and 400 µm (open circles). 
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Figure 7.5 presents statistical analysis of the reconstruction results for three sampling rates. While 
images for f = 100 s-1 (left column) are similar to images reconstructed from noiseless signals with  
f = 100 s-1 (Fig. 7.1, left column) for all depths, the images of objects located at z = 200 and 400 µm for 
f = 1000 and 10,000 s-1 are evidently broadened and attenuated as compared to corresponding images 
reconstructed from noiseless signals (Fig. 7.1, center and right). Both effects are more expressed for f 
= 10,000 s-1 due to smaller SNR. 
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Figure 7.5: Average temperature profiles (black lines) and standard deviations (light-gray spots) reconstructed 
from 10 simulated PPTR signals with different noise realizations. Images of test objects with z1 = 50–400 µm 
(see labels) are reconstructed from PPTR signals with f = 100 (left), 1000 s-1 (center) and 10,000 s-1 (right). The 
actual test objects (dark-gray line) are plotted for comparison. 

In general, the accuracy of determined peak temperature depths Z is similar for f = 1000 and  
10,000 s-1.  However, for the deepest test object (z1 = 400 µm) Z obtained for f = 10,000 s-1 is markedly 
less accurate than for f = 1000 s-1.  

Relative image error δ and temperature peak width W as function of sampling rate for PPTR signals 
with noise are presented in Fig. 7.6. For test objects with z1 = 50 and 200 µm, we obtain the smallest 
image errors (δ = 0.29 and 0.31 for z1 = 50 and 200 µm, respectively) at f = 1000 s-1 (Fig. 7.6a), while 
the largest sampling rate f = 10,000 s-1 is optimal for object with z1 = 100 µm (δ = 0.28). On average, 
with f increased above the optimal f image error δ increases due to decreased SNR, and with f 
decreased below the optimal f image error δ decreases due to insufficient information in PPTR signal. 
Similar trends are observed for width W (Fig. 7.6b). 

In contrast to results obtained from noiseless signals, low SNR significantly deteriorates images 
reconstructed from PPTR signals with large sampling rates. While shallow test objects (z1 = 100 µm) 
benefit from large f, deeper test objects (z1 = 200 µm) are reconstructed more accurately at moderate 
sampling rates (f = 1000–2000 s-1). Low sampling rates (f = 100–200 s-1) yield robust and comparable 
reconstruction results for all depths z1, but markedly less accurate as compared to these obtained at 
moderate sampling rates. 
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Figure 7.6: (a) Relative image error δ, (b) full-width at half-maximum W, and (c) peak temperature Tp as a 
function of sampling rate f for test objects located at z1 = 50–400 µm (see legend) and PPTR signals with noise. 
Gray line indicates (b) the actual width (50 µm) and (c) the actual peak temperature. Arrows point to optimal 
values. 

7.3         Discussion 
Temperature profiles reconstructed from PPTR signals augmented with noise are markedly less 
accurate when large f is used. The results in Fig. 6.5 indicate that high sampling rate (f = 10,000 s-1) is 
preferred only for shallow object (z1 = 100 µm), while deeper temperature profiles are reconstructed 
more accurately with moderate sampling rates (f = 1000–2000 s-1). Equal trends are observed also for 
parameters of temperature profiles (Fig. 6.6). The image error δ as well the excessive width W are 
more prominent at high sampling rates (f = 5000 and 10,000 s-1) as compared to moderate sampling 
rates (f = 1000 and 2000 s-1). Both, δ and W, increase with increasing depth Z for these sampling rates, 
while they are almost independent of Z for small sampling rates (f = 100 and 200 s-1). Thus, low 
sampling rates can be used to reconstruct deep objects (z1 > 500 µm), where signals with larger f are 
significantly deteriorated by noise. In general, the optimal sampling frequency depends also on noise 
amplitude and depth discretization. 

Considering the results of this study, a good alternative to fixed sampling rate used in PPTR 
temperature profiling would be a non-uniform spacing in time (i.e., binning) as suggested by Sathyam 
and Prahl9. This would also reduce the signal vector lengths and kernel matrix size, thus reducing 
computational costs. 

7.4         Conclusions 
When temperature profiles are reconstructed from PPTR signals with large SNR, higher sampling 
rates always yield better reconstruction results. But in presence of realistic noise, high sampling rates 
(f ≈ 10,000 s-1) are optimal for shallowest temperature profiles (z ≤ 100 µm) only, while moderate 
sampling rates (f ≈ 1000 s-1) are optimal for other temperature profiles. However, for our PPTR system 
f = 1000 s-1 offers acceptable reconstruction results for all depths. In general, optimal sampling rate 
depends on specifics of experimental system and properties of the studied samples. 



 

61 

Chapter 8 
 

Tissue phantoms 
 

 

It is important for evaluation of PPTR temperature profilometry of human skin to develop reliable 
phantoms with well defined geometry that suitably mimic optical and thermal properties as well 
infrared absorption of human skin. The development of tissue phantom for PPTR involves the choice 
of matrix composition and absorber. In addition, one may also add scattering particles. An excellent 
review of tissue phantoms for medical optics is provided by Pouge and Patterson54, while Pifferi et al55 
suggested directions for designing and characterization of tissue phantoms for biomedical optics. 

Here we show preparation of agar and collagen tissue phantoms, including gel layer and absorption 
layer preparation. In addition, we present measured IR spectrum of both types of gel and write 
corresponding heat diffusion constants. 

8.1          Hydrogel layer 
Since the main component of human skin and both gels is water, matrix composition of tissue 
phantoms used for PPTR temperature profiling should have similar thermal and IR absorption 
properties as human skin. Tissue phantoms composed of thin collagen films are a perfect match for 
real skin.7 Due to good optical and thermal properties collagen and polcrylamide gels were also used 
for a PPTR temperature profiling.9 In our studies we use agar and collagen gels. 

8.1.1          Agar gel 

Agar gel was prepared by dissolving 0.15 mg of agar powder in 6 ml of distilled water, thus obtaining 
the agar solution with weight percent of agar 2.5 wt.%. When the agar powder was completely 
dissolved, the polymerization was initiated by heating the mixture to the boiling point in a microwave 
oven.  

Individual gel layers were produced by injecting the agar solution onto a wetted microscope slide with 
two identical spacers positioned near the ends of the slide (Fig. 8.1). To prevent the entrance of air 
bubbles, which were present mostly on the surface of the agar mixture, into the agar layer and to 
precisely control the quantity of the agar solution, a syringe was used. A second slide was placed on 
top of the agar mixture and gently pressed against the spacers. When polymerization was complete, 
the top slide was carefully removed, exposing the gel layer of uniform thickness (Fig. 8.2). 

 
Figure 8.1: Schematic of agar layer preparation. 

 
Figure 8.2: Prepared agar layer with scatterrers (TiO2) 
on a microscope glass slide. 
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Agar layers without scatterrer are transparent to visible light, because they are mostly composed of 
water. In contrast, agar gel is not transparent to infrared radiation. The sample infrared spectrum is 
required for PPTR temperature profiling, therefore we measured the IR spectrum of the prepared agar 
gel using an IR spectroscope. The measured agar gel absorption coefficient µ as a function of 
wavelength λ is presented in Figure 8.3. The agar spectrum (black line) agrees well with the spectrum 
of water (gray line) for λ = 3–6 µm, while at larger wavelengths protein peaks are present. 

Another important quantity is the thermal diffusivity constant D of agar gel. Reported values of 
diffusivities are D = 0.140 ± 0.007,56 0.1427,57 and 0.138 mm2/s 58 for 2.5% agar gel. All reported 
values are a little smaller when compared to the thermal diffusivity constant of water (D = 0.145 
mm2/s at T = 25° C) 59. In our studies, we have found that D = 0.143 mm2/s for agar gel yields optimal 
reconstruction results. 
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Figure 8.3: Measured IR absorption coefficient µ of the agar gel (black line). Absorption spectrum of water 
(gray line)48 is plotted for comparison. 

7.1.2          Collagen gel 

To obtain the gelatin solution with 25 weight percent of gelatin, we dissolved 1.25 g of gelatin powder 
(bovine skin, Sigma-Aldrich) in 3.75 ml of water with 0.2% of formaldehyde. Inclusion of 
formaldehyde increases the melting temperature of the gelatin matrix by increasing the crosslinking of 
the fibers while preserving the thermal and spectral properties.54 This allows the collagen phantoms to 
be used at room temperature. 

 
Figure 8.4: Schematic of gelatin layer preparation. 

We prepared the collagen layer by dissolving the gelatin powder in water at 70° C in water bath.60 
When the gelatin powder was completely dissolved under vigorous stirring for 2 min, the homogenous 
viscous solution was carefully poured onto a microscope slide with two identical spacers positioned 
near the ends of the slide (Fig. 8.4). The slide was covered by a thin Teflon stripe, since collagen gel 
sticks on glass substrate very strongly. A second microscope slide covered by a Teflon stripe was 
placed on top of the gelatin solution and gently pressed against the spacers. When the gelatin was 
cooled down to room temperature, we first carefully removed the top slide and then the top Teflon 
stripe to expose the gel layer. Because of the large viscosity of gelatin, we could not use a syringe. 
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Figure 8.5 presents the measured IR spectrum of the gelatin gel. The gelatin spectrum (black line) is 
about 75% of water spectrum (gray line) at λ = 3–6 µm, while at larger wavelengths protein absorption 
peaks dominate. 

The thermal diffusivity D of the gelatin gel is assumed to be that of human skin (D = 0.11 mm2/s), 
based on similar water content to that in human skin. 
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Figure 8.5: Measured IR absorption coefficient µ of the gelatin gel (black line). Absorption spectrum of water 
(gray line)48 is plotted for comparison. 

8.1.3          Scatterrer 

Human skin is a highly turbid medium with the reduced scattering coefficient of dermis61 µs’ = 4 mm-1 
and of epidermis µs’ = 12 mm-1. To better mimic skin properties, scattering particles were added to our 
tissue phantoms. Since gelatin and agar phantoms were used for a short period only and then 
discarded, we used inexpensive titanium dioxide (TiO2) scattering particles. To obtain the above 
scattering coefficient we mixed 4 mg and 12 mg of TiO2 (Sigma-Aldrich) into 1 ml of gel solution. 
These concentrations of TiO2 were found experimentally by measuring spectrum of visible light 
transmitted through thin gel layers with different concentrations of scatterers. Figs. 8.2, 8.7 and 8.9 
presents agar layers with TiO2 particles. 

8.2          Absorbing layer 
When we first started preparing tissue phantoms, we prepared the absorbing layers by powdering the 
surface of the gel layer with small amounts of fine carbon black powder, which was then cowered by 
another gel layer (Fig. 8.6). Carbon black powder was selected because it is hydrophobic and, 
therefore, does not diffuse into the gel, enabling preparation of stable thin absorbing layers.49 

 
Figure 8.6: Fine carbon black powder absorbing layer on a agar substrate covered by a thin (~100 µm) agar gel 
layer with scatterrers. 

Very thin absorbing layers can be prepared by placing a thin absorbing foil over the hydrogel layer. 
We used polyethylene foil of thickness ~10 µm. Since foil is crushed during preparation of tissue 
phantom (see Fig. 8.7), the effective thickness ((~20 µm) is larger than the actual thickness. 
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Figure 8.7: Absorbing foil covered by a thin (~100 µm) agar gel layer with scatterrers. 

Thicker absorbing layers (d > 30 µm) were prepared as a hydrogel layer with addition of black India 
ink as the absorber. Both techniques of absorbing layer preparation resulted in absorbing layers of well 
defined geometry and of homogenous absorber distribution.  

 
Figure 8.8: Schematic of a tissue phantom with a single absorbing layer. Water bath prevents the formation of 
air bubbles between adjacent layers. 

We put the prepared absorbing and hydrogel layers in water bath, where we constructed the tissue 
phantom (Fig. 8.8). Water bath effectively prevents formation of air bubbles between the adjacent 
layers. Finally, the composed tissue phantom was carefully removed from the water bath. Figure 8.9 
presents a finished tissue phantom with a single absorbing foil as the absorbing layer. 

 
Figure 8.9: Finished tissue phantom with a single absorbing foil as the absorbing layer. 

If tissue phantoms are not immediately used in an experiment, they must be kept sealed in airtight 
enclosures such as plastic bags or containers to prevent drying. Keeping the phantoms in vegetable oil 
has also been reported as an excellent way to preserve the water content.62 
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Spectral filtering 
 

 

Numerical simulations in Chapter 6 show how narrowing of the acquisition band improves the validity 
of quasi-monochromatic approximation (Eq. 2.9) and therefore improves the reconstruction results. 
However, this causes a reduction in signal, therefore lower SNR, which adversly affects the 
reconstruction results. Hence, the optimal detection band for given experimental conditions can be 
determined only by considering the related experimental noise. 

9.1          Experiments in agar tissue phantoms 

9.1.1          Materials and methods 

Agar gel tissue phantoms 

Three tissue phantoms evaluated in this study (samples A, B, and C) consisted of a 1–2 mm thick gel 
substrate, thin absorbing layer, and one superficial gel layer of varying thickness. Absorbing layers 
were prepared by powdering the agar gel layer surface with fine carbon black powder. Details of the 
agar layer preparation were presented in Chapter 8. The subsurface depths of the absorbing layers 
were approximately 130, 280, and 450 µm, respectively, which corresponded to the location of a 
vascular network in shallow, medium, and deep port-wine stain birthmarks, respectively. One tissue 
phantom (sample D) included two absorbing layers at approximate depths of 240 and 440 µm. In this 
sample, TiO2 powder was homogeneously dispersed in the substrate to enhance optical scattering. The 
increased light fluence in the deeper absorbing layer resulted in two temperature peaks with 
comparable amplitudes, despite strong attenuation of the incident laser pulse by the upper absorbing 
layer.63 

Pulsed photothermal profiling 

For each PPTR measurement, the sample was irradiated with a single 1.5 ms long 585 nm pulse from a 
pulsed dye laser. Radiant exposure near the center of a 10 mm diameter laser spot was ~3 J/cm2. 
Radiation emitted from the center of the irradiated area was collected on the focal-plane array of a fast 
IR camera (Phoenix, Indigo, Santa Barbara, CA, USA) using a macro IR objective with magnification 
M = 1. By limiting the data read-out to a 128 × 64 pixel sub-window and setting the integration time to 
tint = 0.5 ms, the acquisition rate was 1083 frames per second. The acquisition time was set to 1 s after 
the laser pulse. 

Radiometric signals were obtained from 3 different sites on each sample, separated by a few 
millimeters to prevent thermal interference between successive measurements. On each test site, up to 
three radiometric signals were acquired using the entire spectral band of the IR camera (λ = 3.0–5.6 
µm) and also with a custom long-pass IR filter (cut-on at 4.5 µm, Barr Associates, Westford, MA) 
fitted to the collection optics.18 The response of each array element was calibrated using a computer-
controlled black body (BB701, Omega Engineering, Stamford, CT, USA). Finally, the PPTR signals S 
(in absolute radiometric temperature units) were obtained by averaging data from 40 × 40 detector 
elements (active area A = 1.2 × 1.2 mm2) and subtracting the baseline value. 

Initial temperature profiles T (images) were reconstructed using the monochromatic approximation 
(Eq. 2.9) and the PR-CG reconstruction algorithm (chapter 4). Elements of the monochromatic kernel 
matrix K were calculated using the thermal parameter values D = 0.134 mm2/s and h = 0.02 mm-1. The 
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effective absorption coefficient was determined as µeff = 28.0 mm-1 for broad-band signal acquisition 
(λ = 3.0–5.6 µm) and µeff = 30.2 mm-1 for the narrowed spectral band (4.5–5.6 µm). These values were 
determined from IR spectral properties of the sample (Fig. 8.3) and radiation detector (Fig. 9.1) 
following the approach presented in Chapter 6. Each reconstruction result consisted of 140 
temperature values over a depth range of 0.7 mm (discretization step ∆z = 5 µm). 
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Figure 9.1: Relative responsivity of an InSb detector (J10, Judson Technologies, Montgomeryville, PA) in mid-
IR spectral region. 

Optical coherence tomography and histology 

Several cross-sectional images per sample were acquired using an OCT system64 with a central source 
wavelength of 1.3 µm. The axial and lateral scanning lengths were set to 800 µm and 2 mm, 
respectively. The images were saved in JPEG format (400×634 pixels) for further analysis. For 
purposes of presentation and analysis, the axial dimensions within the sample were corrected using an 
estimated index of refraction (1.32). Distance from the sample surface to the center of the absorbing 
layer was determined at six equidistant positions in each image. 

Finally, thin vertical sections were cut from the sample using a pair of blades and placed onto a clean 
microscope slide. The sections were inspected under a microscope at magnifications 4, 20, and 40, and 
photographed using a charge-coupled device (CCD) camera (resolution 552×744). Depth of the 
absorbing layer was determined from the microphotographs at ten locations per sample. 

9.1.2          Experimental results 

Pulsed photothermal profiling 
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Figure 10.2: PPTR signals acquired from agar gel samples A and C using the entire spectral band (λ = 3.0–5.6 
µm; dashed lines) and the reduced spectral band (4.5–5.6 µm; solid lines). 
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Figure 9.2 presents PPTR signals acquired from samples A and C. PPTR signals acquired using the 
entire spectral band (λ = 3.0–5.6 µm; dashed lines) differ in shape from those obtained using the 
reduced spectral band (λ = 4.5–5.6 µm; solid lines). 

Noise amplitude in PPTR signals is NE∆T = 6.5 and 10.9 mK for the full and reduced spectral band, 
respectively. SNR values are summarized in Table 9.1 for all measured PPTR signals. 
Table 9.1: Signal-to-noise ratios (SNR) for PPTR signals obtained from four agar gel samples (A–D) using the 
full (left column) and reduced spectral bands (right column). 

 SNR 

Sample λ = 3.0–5.6 µm λ = 4.5–5.6 µm 

A 496 245 

B 456 285 

C 295 155 

D 482 277 
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Figure 9.3: Reconstructed temperature profiles from three sites on samples A–D. Corresponding PPTR signals 
were obtained using the full-spectrum acquisition (λ = 3.0–5.6 µm, dashed line) and reduced-spectrum 
acquisition (λ = 4.5–5.6 µm, solid line), respectively. 



68 Chapter 9   Spectral filtering

 

Figure 9.3 presents temperature profiles reconstructed from PPTR measurements on three different 
sites on samples A–D, using the entire (dashed line) and reduced spectral band (solid line). Peak 
temperature depths Z determined on the same site with the two approaches do not differ significantly. 
The observed variation between different sites on the same sample is due to non-uniform thickness of 
the superficial gel layer. Yet, temperature profiles obtained with the reduced-spectrum acquisition 
appear narrower as compared to the full-spectrum acquisition. This effect is particularly evident in 
samples A and D. 
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Figure 9.4: Average widths of absorbing layers W and standard deviations (error bars) for samples A–C and 
both absorbing layers in sample D (D1 and D2). Temperature profiles were reconstructed from PPTR signals 
acquired using the full-spectrum (light gray) and the reduced-spectrum acquisition (dark gray). 

Table 9.2: Average peak temperature depths (Z) and full-widths at half-maximum (W) of the absorbing layers as 
determined for the full- (left column) and reduced-spectrum acquisition (right column). 

λ = 3.0–5.6 µm λ = 4.5–5.6 µm Sample 
Z (µm) W (µm) Z (µm) W (µm) 

A 123 45 126 40
 146 55 143 45
 135 60 138 50

B 276 95 273 70
 283 115 278 90
 288 85 288 85
  
C 448 165 458 140
 453 140 458 150
 453 185 468 160

D 1st 243 45 223 36
  253 53 258 35
  208 46 213 43
 2nd 443 90 431 77
  443 75 453 48
  388 67 396 61

 

Average peak temperature depths Z and full-widths at half-maximums W as determined from all test 
sites using both experimental approaches are summarized in Table 9.2. Depths Z determined using   
the full-spectrum reconstruction results do not differ significantly from depths determined from the 
reduced-spectrum acquisition. In samples A and B, the difference between the corresponding depths is 
smaller than the temperature profile discretization (∆z = 5 µm), and slightly larger in samples C and D 
(~10 µm). But, lobe widths W are significantly larger when the full-spectrum acquisition is used 
(Table 9.2, left column), as compared to reduced-spectrum acquisition (right column). 
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This difference in the broadening effect is illustrated in Figure 9.4, where average widths W and 
standard deviations are presented for all samples and both acquisition approaches. Clearly, widths W 
for the reduced-spectrum acquisition (dark gray) are smaller as compared to widths for the full-
spectrum acquisition (light gray). 

Optical coherence tomography and histology 

An OCT cross-sectional image of sample A (Fig. 9.5a) shows clearly the sample surface (upper arrow) 
and the absorbing layer (lower arrow) due to strong scattering of incident laser light at these two 
boundaries. Blurring of both boundary lines, which amounts to ~20 µm precludes, accurate and 
reliable determination of the top layer’s thickness. If the center of each line is selected to represent the 
boundary location, the average depth of the absorbing layer is determined as 120 µm with a standard 
deviation of 15 µm. Sample B (Fig. 9.5b) displays the largest variation of the top layer thickness, 
which is determined as 290 ± 32 µm. 

Characteristic “ringing” artifacts are present around the surface line in the image of sample D (Fig. 
9.5c; top arrow). Nevertheless, both absorbing layers are easily discernible (mid- and bottom arrow, 
respectively), and their average depths are determined at 240 and 412 µm. Pronounced optical 
scattering due to TiO2 particles in the gel substrate underneath the deeper absorbing layer is clearly 
visible in the image. The OCT results from all samples are presented in Table 9.3. 

 

 

 
Figure 9.5: OCT images of tissue phantoms: (a) sample A and (b) sample B. The upper arrow indicates the 
sample surface, and the lower one indicates the absorbing layer. (c) Sample D: The middle arrow indicates the 
first absorbing layer, and the bottom one indicates the deeper absorbing layer. The substrate (underneath the 
latter) shows scattering due to TiO2 particles. 

Figure 9.6a presents histology of sample C under an optical microscope. Sample surface is indicated 
by the top arrow. Carbon powder granules are confined to the boundary between the top agar layer and 
the thicker substrate layer (note the 500 µm scale bar). The absorbing layer depth varies with location, 
resulting in an average value of 450 µm with a standard deviation of 30 µm. 

Histology of sample D is presented in Fig. 9.6b. The upper arrow indicates the sample surface and the 
middle arrow the first absorbing layer. The optically scattering substrate layer underneath the second 
absorbing layer (bottom arrow) appears darker in this transillumination microphotograph. The 
absorbing layer depths as determined from histology in all samples are presented in Table 9.3. 
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Figure 9.6: Histology of (a) sample C: The upper arrow indicates the sample surface, and the lower arrow 
indicates the absorbing layer. (b) Sample D: The upper arrow indicates the sample surface, the middle arrow the 
upper absorbing layer, and the bottom arrow the deeper absorbing layer. The substrate layer in sample D appears 
darker because of pronounced optical scattering (microscope objective, 4×). 

Table 9.3: Average depths and widths of the absorbing layers as determined with three measurement techniques. 

PPTR,3–5 µm PPTR,3–5 µm OCT   Histology Sample 
Z (µm) W (µm) Z (µm) W (µm) Z (µm) W (µm) Z(µm) 

A 135 ± 12 53 ± 8 136 ± 9 45 ± 5 120 ± 15 20 125 ± 15 
B 282 ± 6 98 ± 15 280 ± 8 82 ± 10 290 ± 32 20 287 ± 15 

C 451 ± 3 163 ± 23 461 ± 6 150 ± 10 472 ± 15 30 450 ± 30 

D    1st 235 ± 24 48 ± 4 231 ± 24 38 ± 4 240 ± 3 40 200 ± 4 

       2nd 425 ± 32 77 ± 12 427 ± 29 62 ± 15 412 ± 7 40 340 ± 4 

 

9.2          Numerical simulation 

9.2.1          Methods 

Initial temperature profiles in our numerical simulation have a hyper-Gaussian form: ∆T(z, 0) = ∆T0 
exp[–2 (z–z0)4/w0

4]. To simulate the experimental data, we select the parameter values ∆T0 = 30 K and 
w0 = 30 µm and set z0 to 133 µm (object A), 282 µm (object B), and 468 µm (object C). An additional 
test profile is composed of two hyper-Gaussian lobes of width w0 centered at z1 = 223 µm and z2 = 403 
µm (object D). The corresponding vectors T0 consist of 140 values evaluated at equidistant depths 
within a depth of 0.7 mm. Theoretical signals vectors S0 are calculated from T0 using Eq. (2.11). These 
have 1083 components which represent PPTR signal values acquired at a sampling rate of 1083 s–1.  

We simulated different spectral acquisition bands, with the lower wavelength limit λl varied from 3.0 
to 5.0 µm and the upper wavelength limit fixed at the InSb radiation detector cut-off wavelength (Fig. 
9.1), λh = 5.6 µm. The corresponding kernel matrices K are calculated by dividing each spectral 
acquisition band into N intervals of width 0.02 µm and adding up their contributions using (6.1), where 
µ(λ) is IR absorption spectrum of agar gel. 

Each theoretical PPTR signal S0 is augmented by realistic noise. To calculate noise equivalent 
temperature rise NE∆T for each simulated spectral band, we must first determine the total noise 
amplitude nt. In the following, we apply the parameters of the experimental system: active area of the 
detector A = 1.44 × 10–2 cm2, collection half angle θ = 11.3°, frequency bandwidth ∆f = 1000 Hz, and 
baseline temperature Tb = 298 K. Peak responsivity of the InSb radiation detector is estimated to Rp = 
3.0 A/W. For simplicity, we set both ε and C to 1 (Eq. 3.11), because their influence on the simulation 
results is minimal. Using the relation, which follows from (2.6) and (3.11) 
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we can determine nt from the experimentally determined NE∆T values (6.5 and 10.9 mK for spectral 
bands of λ = 3.0–5.6 µm and 4.5–5.6 µm, respectively). The result is almost identical for both spectral 
bands, nt = 3.0 × 10–10 A, since the shot noise amplitudes nsh computed by using (3.4) and (3.11) are 
markedly smaller than nt (nsh = 2.0 × 10–11 A and 1.7 × 10–11 A for λl = 3.0 and 4.5 µm, respectively). 
Hence, we calculate NE∆T using (9.1) with nt = 3.0 × 10-10 A for all simulated spectral bands. In 
addition, the presence of 1/f noise is characterized by a corner frequency fc = 330 Hz and an exponent 
α = 1 (Eq. 3.5), so we simulate noise that contains appropriate contributions of zero-mean white noise 
and 1/f noise. 

Initial temperature profiles T are reconstructed from simulated PPTR signals using the monochromatic 
approximation. Elements of the monochromatic kernel matrix K (2.9) are calculated using the 
effective absorption coefficient values µeff, determined separately for each spectral band as presented in 
Chapter 6.1.2.  

Because reconstruction results are very sensitive to specific noise realizations, each theoretical signal 
S0 is augmented with 10 different realizations of noise and the results are analyzed statistically. 

9.2.2          Simulation results 

Simulated PPTR signals for test objects A–C are presented in Fig. 10.6 for acquisition spectral bands 
with λ = 3.0–5.6 µm, 4.5–5.6 µm and 5.0–5.6 µm. The narrowest spectral band (right) presents a 
significantly larger NE∆T as compared to the entire spectral band (left). 
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Figure 9.6: Simulated PPTR signals for test objects A–C and spectral bands λ = 3.0–5.6 µm (left), 4.5–5.6 µm 
(center) and 5.0–5.6 µm (right). All signals are augmented by realistic noise.  
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Figure 9.7: NE∆T for the simulated spectral acquisition bands (solid circles) as a function of λl. SNR of the 
simulated PPTR signals (open symbols) decreases with λl for all test objects (A–D). 
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Figure 9.7 presents the NE∆T values (9.1) as a function of λl (solid circles). NE∆T increases 
monotonically from 6.9 mK at λl = 3.0 µm to 21.1 mK at λl = 5.0 µm. Consequently, SNR of simulated 
PPTR signals decreases with λl for all test objects (open symbols). 

Effective IR absorption coefficients µeff (6.3) for the simulated spectral acquisition bands are presented 
in Fig. 9.8. The values µeff vary between 25.0 mm-1 and 30.2 mm-1, as dictated by spectral dependences 
of µ(λ), R(λ) and Bλ(Tb) in the corresponding spectral bands. 
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Figure 9.8: Effective IR absorption coefficient µeff as a function of λl for the simulated spectral bands. 

Figure 9.9 presents statistical analysis of reconstruction results for three spectral acquisition bands: λ = 
3.0–5.6 µm (left column), 4.5–5.6 µm (center), and 5.0–5.6 µm (right). In each panel, black lines 
connect the average temperature values and light-gray bars indicate standard deviations. The actual 
test objects are depicted for comparison (dark-gray lines). 
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Figure 9.9: Average temperature profiles (black lines) and standard deviations (light-gray bars) reconstructed 
from 10 simulated PPTR signals with different noise realizations. Images of four test objects (see the labels) are 
reconstructed from PPTR signals with spectral bands: λ = 3.0–5.6 µm (left), 4.0–5.6 µm (center) and 5.0–5.6 µm 
(right). The actual test objects are plotted for comparison (dashed lines).  

For the reduced spectral bands (center and right), reconstructed temperature profiles of object A (top 
row) are narrower and higher as compared to the full spectral band (left). Similar trends are observed 
for objects B and C (2nd and 3rd row, respectively), while object D (bottom row) is reconstructed 
optimally, when the spectral band with λ = 4.5–5.6 µm is used. But spectral band reduction 
compromises the stability of the reconstruction results (i.e., increased standard deviation), due to 
reduced SNR. 

Figure 9.10a presents relative image errors δ as a function of λl. For object A (circles), the minimal 
average error is obtained at λl = 3.8 µm (δ = 0.088; note the arrow). With λl increased above λl = 4.0 
µm, δ increases progressively due to decreasing SNR (δ = 0.19 at λl = 5.0 µm). With λl decreased 
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below 3.8 µm, δ increases monotonically due to increasing deficiency of the monochromatic 
approximation, reaching δ = 0.14 at λl = 3.0 µm. The same trend is present also for standard deviation 
of δ. Standard deviation presents a minimum at λl = 3.8 µm (σδ = 0.02) and significantly increases 
when spectral band is ether broadened (σδ = 0.05 at λl = 3.0 µm) or narrowed (σδ = 0.10 at λl = 5.0 µm).  
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Figure 9.10: (a) Relative image error δ as a function of λl for test objects A (circle), B (square), C (diamond) 
and D (triangle). (b) Analogous results for the full-width at half maximum of reconstructed temperature peaks 
(W). The widths of both peaks are analyzed for object D (D1, D2; bottom). Standard deviations are presented as 
error bars. Dotted lines in (b) indicate the actual object width, W = 47 µm. Arrows indicate minimums of δ and 
W.  

Similar trend is observed for object B (Fig. 9.10a, squares), where the minimum δ = 0.36 at 
 λl = 3.8 µm is markedly larger as compared to test object A due to the broadening. Standard deviation 
σδ tends to increase with λl (σδ = 0.04, 0.08 and 0.19 at λl = 3.0, 3.8 and 5.0 µm, respectively). Relative 
image errors δ for object C (diamonds) decrease with λl, albeit this trend is almost concealed by large 
standard deviations σδ.  

The minimum of δ for test object D (bottom) is obtained at λl = 4.0 µm (δ = 0.27; arrow), while values 
within the range λl = 3.5–4.5 µm can be considered adequate due to large standard deviations (σδ ~ 
0.11). For λl outside of this range, δ and its standard deviation both tend to increase, in particular 
toward larger λl (δ = 0.52 ±0.17 at λl = 5.0 µm).  

The difference between δ of full-spectrum acquisition and δ of the filtered approach with λ = 4.0–5.6 
µm (Table 10.4) is most prominent for objects A (δfull = 14% and δreduced = 9%) and D (δfull = 37% and 
δreduced = 27%). 

As demonstrated in Figure 9.10b, the reconstructed temperature profiles are in general broader than 
the test objects (W = 47 µm; note the dashed line). For test object A (circles) the optimal result (W = 
51 µm; arrow) is fairly accurate. The indicated optimal degree of spectral filtering (λl = 3.8–4.0 µm) is 
the same as that from analysis of image errors (Fig. 9.10a, circles), although the minimum is less 
pronounced. The image widths W increase in particular for broader spectral bands (lower λl), and 
standard deviations σW increase when λl is changed from the optimal range in either direction (but 
more so toward larger λl). 

The reconstructed images of test objects B and C (Fig. 9.10b, squares and diamonds, respectively) are 
much broader than for object A. The closest match (W = 72 µm and 111 µm, respectively) is obtained 
at λl = 4.0 µm and the general trends appear equivalent to those observed for object A, although they 
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are almost concealed by large standard deviations. 

For the two-lobed test object D (Fig 9.10b, bottom), the results from the first peak (up triangles) 
suggest the optimal value around λl = 3.5–4.5 µm, if both widths W and their standard deviations are 
considered. For the second peak, the trends in W(λl) are concealed by large standard deviations σW , 
which tend to increase toward both ends of the explored spectral range.  

Average peak temperature depths Z and widths W (together with standard deviations) are presented in 
Table 9.4 for all test objects and spectral bands with λl = 3.0 (unfiltered), 4.0 (near-optimal) and 4.5 
µm (as used in the experiments; section 9.1). The depths Z deviate from the actual central depths z0 by 
1% (object C) or less (objects A, B, and D2), and ~2% for the first peak of object D, regardless of the 
spectral acquisition band. When we compare the optimal results to widths W determined for the full 
spectral band (λl = 3.0 µm), we find that spectral filtering reduces W by 7 ± 1%, 10 ± 3%, 13 ± 8%, 2 ± 
1% and 14 ± 11% for test objects A, B, C, the 1st peak and the 2nd peak of D, respectively. 

Table 9.4: Average depths Z and widths W of reconstructed temperature profiles determined for the full (λ = 
3.0–5.6 µm), near-optimal (4.0–5.6 µm) and reduced spectral band as used in the experiments (4.5–5.6 µm). The 
actual width W for all objects is 47 µm, the central depth z0 is given in the first column. 

Sample 3.0–5.6 µm 4.0 –5.6 µm 4.5–5.6 µm 
 z0 (µm) Z (µm) W(µm) Z (µm) W(µm) Z (µm) W(µm) 

A 133 133 ± 0 55 ± 4 133 ± 0 51 ± 2 132 ± 1 51 ± 4 
B 283 283 ± 0 80 ± 7 282 ± 2 72 ± 8 281 ± 3 77 ± 18 

C 468 462 ± 0 128 ± 27 465 ± 3 111 ± 20 464 ± 2 112 ± 24 

D          1st  223 218 ± 2 51 ± 14 219 ± 2 50 ± 6 218 ± 3 49 ± 6 

             2nd  403 403 ± 5 81 ± 20 405 ± 4 70 ± 13 405 ± 5 72 ± 12 

 

In contrast, spectral filtering has a larger effect on image width, W. As illustrated in Fig. 9.11, the 
reconstructed images are on average broader and more sensitive to the presence of noise when using 
the full spectral band (λl = 3.0 µm) as compared to either narrowed spectral band (λl = 4.0 µm or 4.5 
µm), for all test objects. The difference between the latter spectral bands is not very large, although the 
near-optimal spectral band (λl = 4.0 µm) yields smaller widths W (except for the superficial peak in 
sample D, D1), and smaller standard deviations σW (except for the deep peak in sample D, D2). 
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Figure 9.11: Average widths W of temperature lobes in reconstructed images of all test object for the full (λl = 
3.0 µm), near-optimal (λl = 4.0 µm) and reduced spectral band as used the experiments (λl = 4.5 µm). Bars 
indicate standard deviations, dotted line indicates the correct object width (W = 47 µm). 

Quality of reconstructed image is in general diminished by two independent effects, deficiency of 
monochromatic approximation and the presence of noise in PPTR signals. To highlight their 
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respective roles, we perform analysis for test objects A with varied peak temperature, ∆T0 = 5–60 K. 
SNR values of simulated PPTR signals for these test objects are presented in Fig. 9.12a. 

As seen in Fig. 9.12b, reconstruction of the object with the lowest amplitude (∆T0 = 5 K) is optimal 
when using the full spectral band (3.0–5.6 µm). Reconstruction of this object is compromised 
primarily by the high level of noise in the PPTR signal (SNR = 70). For all other test objects, image 
errors show distinct minimums (around λl = 4.0–4.5 µm) when reduced spectral acquisition bands are 
used.  
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Figure 9.12: (a) SNR values for test objects with peak temperature ∆T0 from 5 K to 60 K. (b) Relative image 
errors δ (in logarithmic scale) for the spectral bands with λl = 3.0, 3.5, 4.0, 4.5 and 5.0 µm.  

Figure 9.13 presents statistical analysis of the widths W for the same range of amplitudes 
(∆T0 = 5–60 K) and three acquisition spectral bands. Similarly to Fig. 9.11, the full-spectrum approach 
(λ = 3.0–5.6 µm) invariably yields larger widths W than the reduced-spectrum approach, thus resulting 
in worse reconstructions. In contrast to relative image error δ (Fig. 9.11b), widths W determined for 
the experimental reduced spectral band (λ = 4.5–5.6 µm) are more accurate and feature smaller 
standard deviations as compared to the theoretically optimal spectral band (λ = 4.0–5.6 µm), although 
the difference does not appear significant 
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Figure 9.13: Average widths W and standard deviations for test objects with peak temperature ∆T0 = 5–60 K and 
for the full (λl = 3.0 µm), optimal (λl = 4.0 µm) and experimental reduced spectral bands (λl = 4.5 µm). Bars 
indicate standard deviations, dotted line indicates the correct object width (W = 47 µm). 

9.3          Discussion 
The depths of peak temperature Z in tissue phantoms reconstructed from PPTR measurements using 
the full and the reduced-spectrum acquisition are very similar (Tables 9.2 and 9.3). The absorbing 
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layer depths assessed from PPTR measurements matched adequately the results from OCT and 
histology (see Table 9.3). These findings are supported by our numerical simulation results where 
peak temperature depths Z deviate from the actual object depths z0 by less than 2% (see Table 9.4). 
The experimental and numerical simulation results confirm that selection of the spectral band does not 
significantly influence the accuracy of peak temperature depth, Z. 

Experimental results show that appropriate spectral filtering of PPTR signals improves the quality of 
reconstructed temperature profiles. In sample A, temperature profiles reconstructed from experimental 
PPTR signals with the reduced-spectrum acquisition are significantly narrower (W = 45 ± 5 µm) as 
compared to the full-spectrum acquisition (W = 53 ± 8 µm). Hence, spectral filtering reduces W by 15 
± 4% in sample A (see Table 9.2). The advantage of spectral filtering is less apparent, but still present, 
in samples B and C (W is reduced by 16 ± 7% and 8 ± 3% for samples B and C, respectively). Samples 
B and C feature deeper absorbing layers, so the temperature profiles are increasingly broadened 
regardless of the spectral acquisition band, as presented in Chapter 11. In sample D, with two 
absorbing layers (Table 9.2), both temperature peaks obtained with spectrally narrowed acquisition are 
on average markedly narrower than for the full-bandwidth approach (by 21 ± 5% and 20 ± 10% for the 
1st and the 2nd peak, respectively). 

Similar trends are found also in results of numerical simulation. For all test objects, the minimal 
differences between determined widths W and the actual value W = 47 µm are obtained for the spectral 
acquisition bands with λl = 3.8–4.0 µm. Standard deviations of the widths σW are also smallest for λ ≈ 
4.0–5.6 µm (Table 9.4). This indicates that appropriate spectral filtering improves robustness of PPTR 
temperature profiling, despite the related decrease in SNR. The accuracy of determined width W in 
general decreases with increasing SNR (Fig. 9.13). However, for a given test object and temperature 
rise optimal widths W and minimal standard deviations σW are obtained with appropriate filtering. 
Thus, we conclude that appropriate spectral filtering (e.g., λl = 3.8–4.0 µm) reduces the profile 
broadening in a large range of realistic SNR values. 

For test objects with different ∆T0, distinct minimums are present for narrowed spectral bands (i.e., 
4.0–5.6 µm, see Fig. 10.12b), except for the object with ∆T0 = 5 K. For the latter, the high amount of 
noise in simulated PPTR signals concealed the dependence of δ on spectral band. 

The effects of noise and monochromatic approximation deteriorate reconstruction quality in PPTR 
profiling. The former is most expressed for narrow spectral bands, while the latter is most expressed 
for broad spectral bands (see Chapter 6). Thus in general, an optimal spectral band exists which yields 
a minimal reconstruction error. Results of the numerical simulations suggest that the optimal spectral 
acquisition bandwidth is λl = 3.8–4.2 µm for the simulated objects and PPTR system. In general, the 
optimal spectral band depends on object structure, peak temperature and experimental system 
characteristics. 

9.4          Conclusions 
In PPTR temperature profiling of agar tissue phantoms, spectral filtering reduces the reconstruction 
error δ and broadening of temperature peaks, especially for shallower and more complex absorbing 
structures. A suitable amount of spectral filtering is thus beneficial, despite the associated reduction of 
SNR. However, spectral filtering is not beneficial, when PPTR signals are significantly deteriorated by 
noise. For the simulated objects and PPTR system, results of numerical simulations suggest an optimal 
spectral band with λl = 3.8–4.2 µm. In general, the optimal spectral band depends on specifics of 
experimental system, spectral property of tissue and temperature profile. 
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Chapter 10 
 

Spectral filtering in collagen samples 
 

 

In the previous chapter we showed that appropriate spectral filtering improves reconstruction results, 
when the monochromatic approximation is used. Albeit this approximation reduces computational 
costs, it results in the deficiency, which deteriorates reconstruction results, especially for absorbing 
structures close to the sample surface. But when the exact IR absorption spectrum is known, a 
spectrally composite kernel matrix can be computed and applied to reconstruction of temperature 
profiles. 

The study presented in Chapter 9 involved agar tissue phantoms, which are different from our intended 
application, temperature profiling in human skin. The differences include different IR absorption 
spectrum, heat diffusion constant and complexity of the temperature profile. In this chapter we present 
a follow-up study involving numerical simulation and experimental studies on collagen tissue 
phantoms, which more realistically resemble human skin. Besides the monochromatic approximation 
we use also spectrally composite kernel matrices and compare reconstruction results obtained by these 
two approaches. 

10.1          Numerical simulation 
The initial temperature profiles in our numerical simulation have a hyper-Gaussian form: ∆T(z, 0) = 
∆T0 exp[–2 (z–z0)4/w0

4]. We set the parameter values ∆T0 = 30 K and w0 = 33 µm and choose z0 to be 
50 µm (test object A), 110 µm (B), 280 µm (C), 430 µm (D) or 640 µm (E). An additional test profile 
(AC) is composed of two hyper-Gaussian lobes of width w0 centered at z1 = 50 µm and z2 = 280 µm. 
Theoretical signal vectors S0 are calculated from T0 using Eq. (2.11), and have 1000 components, 
which represent PPTR signal values acquired at a sampling rate of 1000 s-1.  

We simulate different spectral acquisition bands, with λl = 3.0–5.0 µm and λh = 5.6 µm (InSb detector; 
Fig. 3.3). The corresponding kernel matrices K are calculated by dividing each spectral acquisition 
band into N intervals of width 0.02 µm and adding up their contributions in accordance with (6.1). We 
use the IR absorption spectrum of gelatin tissue phantoms (Fig. 8.6), and apply thermal parameter 
values D = 0.11 mm2/s and h = 0.02 mm-1. 

For comparison of PPTR profiling performance utilizing different spectral acquisition bands, we 
augment simulated PPTR signals with realistic noise. We use specifications of our PPTR system 
(chapter 3), determined noise parameters (nt = 3×10-10 A, fc = 15 Hz and α = 1.3) and emissivity ε = 1, 
which is representative of human. Noise-equivalent temperature rises (NE∆T) are calculated using 
Eq.(9.1). Because reconstruction results are very sensitive to specific noise realizations, we augment 
each theoretical signal S0 with 30 different realizations of noise, yielding PPTR signals S. 

Initial temperature profiles T are reconstructed from simulated PPTR signals S using both the 
monochromatic kernel matrix, κ (2.10) and spectrally composite kernel matrix, K (6.1). Elements of 
the matrix κ are calculated using the effective absorption coefficient values µeff

 (6.3), determined 
separately for each spectral band. We use the projected υ-method (chapter 4) to reconstruct 
temperature profiles T, which consist of 200 temperature values over a depth range of 1.0 mm 
(discretization step ∆z = 5 µm). 

10.1.2          Results 

Simulated PPTR signals S for test objects A–E are presented in Figure 10.1 for spectral acquisition 



78 Chapter 10   Spectral filtering in collagen samples

 

bands of λ = 3.0–5.6 µm (left) and λ = 5.0–5.6 µm (right). 
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Figure 10.1: Simulated PPTR signals for test objects A–E and spectral bands of λ = 3.0–5.6 µm (left) and λ = 
5.0–5.6 µm (right). All signals are augmented by realistic noise. 

Figure 10.2 presents NE∆T (9.1) as a function of λl (solid circles). The values increase from 3.3 mK at 
λl = 3.0 µm to 7.1 mK at λl = 5.0 µm. Consequently, SNR computed from simulated PPTR signals 
decrease with λl, albeit not monotonically due to different realizations of 1/f noise (empty symbols).  

3.0 3.5 4.0 4.5 5.0
0

200

400

600

800

2

4

6

8

S
N
R

λl (µ)

A

B

C

D

E

N
E

∆T
 (m

K
)

 
Figure 10.2: NE∆T for the simulated spectral acquisition bands (solid circles) as a function of λl, and SNR of the 
simulated PPTR signals for test objects A–E (empty symbols). 
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Figure 10.3: Effective IR absorption coefficient µeff as a function of λl. 

Effective IR absorption coefficients µeff (6.2) used in monochromatic reconstruction of temperature 
profiles are presented in Fig. 10.3. The values lie between µeff = 21.2 mm-1 at λl = 5.0 µm and µeff = 
24.2 mm-1 at λl = 4.5 µm. 

Figure 10.4a presents statistical analysis of the reconstruction results for object A. When 
monochromatic reconstruction is used, the best reconstruction result is obtained for λ = 4.3–5.6 µm 
(second row), albeit corresponding standard deviations is somewhat larger than for λ = 3.0–5.6 µm 
(first row). Spectral reconstruction (λ = 3.0–5.6 µm; bottom row) results in temperature profile similar 
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to the optimal monochromatic result, yet with smaller standard deviation. Similar trends as for object 
A are observed in reconstructed temperature profiles of test objects B–D (Figs. 10.4b–10.4d), except 
that on average reconstruction results obtained with spectral reconstruction somewhat better resemble 
the actual objects and feature smaller standard deviations.  

0

10

20

30

0

10

20

30

0

10

20

30

0.0 0.2 0.4 0.6 0.8
0

10

20

30

λl = 4.3 - 5.6 µm 

λl = 3.0 - 5.6 µm

Spectral

λl = 5.0 - 5.6 µm

 
a

 z (mm)

∆T
 (K

)

 

0

10

20

30

0

10

20

30

0

10

20

30

0.0 0.2 0.4 0.6 0.8
0

10

20

30

λl = 4.3 - 5.6 µm 

λl = 3.0 - 5.6 µm

Spectral

λl = 5.0 - 5.6 µm

 

b

 z (mm)

∆T
 (K

)

 

0

10

20

30

0

10

20

30

0

10

20

30

0.0 0.2 0.4 0.6 0.8
0

10

20

30

λl = 4.3 - 5.6 µm 

λl = 3.0 - 5.6 µm

Spectral

λl = 5.0 - 5.6 µm

 

c

 z (mm)

∆T
 (K

)

 

0

10

20

30

0

10

20

30

0

10

20

30

0.0 0.2 0.4 0.6 0.8
0

10

20

30

λl = 4.3 - 5.6 µm  

λl = 3.0 - 5.6 µm

Spectral

λl = 5.0 - 5.6 µm

 

d

 z (mm)

∆T
 (K

)

 
Figure 10.4: Average temperature profiles (black lines) and standard deviations (light-gray bars) reconstructed 
from 30 simulated PPTR signals with different noise realizations. Images of test objects (a) A, (b) B, (C), and (d) 
D are reconstructed from PPTR signals with spectral bands of λ = 3.0–5.6 µm (first row), λ = 4.3–5.6 µm (second 
row) and λ = 5.0–5.6 µm (third row) using monochromatic reconstruction. Images are reconstructed also using 
spectral reconstruction and spectral acquisition band λ = 3.0–5.6 µm (bottom row). The actual test objects are 
plotted for comparison (dashed line).  
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Temperature peak depths Z determined from temperature profiles reconstructed by using 
monochromatic reconstruction are equal to depths Z determined for spectral reconstruction. All depths 
Z are 2.5 µm smaller than the actual depth z0 for all test objects. Hence, the results of numerical 
simulation indicate that PPTR temperature profiling results in accurate temperature peak depths Z 
when either monochromatic reconstruction with optimal µeff or spectral reconstruction are used. 

Relative image errors δ (Eq. 4.10)  for test objects A and B are presented in Fig. 10.5. For object A 
and monochromatic reconstruction (Fig. 10.5a, solid circles), we observe the minimal image error at λl 
= 4.3 µm (δ = 0.09 ± 0.01; see arrow). With λl increased above λl = 4.3 µm, image error δ and standard 
deviation σδ increase due to increased SNR. However, both δ and σδ also increases when λl is below λl 
= 4.2 µm, due to increasing deficiency of the monochromatic approximation. For spectral 
reconstruction, the image error δ does not vary significantly between λl = 3.0 and 4.7 µm (δ ≈ 0.7 ± 
0.01) (open circles), while δ and σδ progressively increase with λl above 4.7 µm due to increased SNR. 
In general, spectral reconstruction results in smaller δ and σδ, but the difference between the two 
approaches is small for optimal spectral filtering, λl = 4.0–4.5 µm. 

For object B and monochromatic reconstruction (Fig. 11.5b, solid circles), the minimal image error is 
obtained at λl = 4.4 µm (δ = 0.09 ± 0.02). However, spectral bands of λl = 4.1–4.5 µm yield δ ≈ 0.10 
and σδ ≈ 0.02, both reasonably small. When spectral reconstruction is used (open circles), average δ 
and σδ are almost constant for λl = 4.0–4.3 µm, and increase with λl above 4.5 µm. Standard deviation 
σδ is smaller for spectral reconstruction in most spectral band than for monochromatic reconstruction.  
All trends are almost concealed by the large standard deviations for both reconstruction approaches. 

For objects C–D, standard deviation σδ is even more pronounced as for object B, effectively 
concealing all trends in δ. Image errors δ and standard deviations σδ are similar for both reconstruction 
approaches: 0.15 ± 0.6, 0.45 ± 0.10, and 0.70 ± 0.12 for test object C, D, and E, respectively.  
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Figure 10.5: Relative image error δ and standard deviation σδ (error bars) as a function of λl for monochromatic 
(solid circles) and spectral reconstruction (open circles). Image error δ is determined from temperature profiles 
of test objects (a) A and (b) B. Arrows indicate optimal λl. 

Full-widths at half maximum (W) of the reconstructed images are presented in Fig. 10.6 for test 
objects A and B. For monochromatic reconstruction (Fig. 11.6a, solid circles), the reconstructed 
temperature profiles are narrower than the actual object (W = 50 µm; dashed line), except for λl = 4.0–
4.4 µm, where accurate widths are obtained. In contrast, accurate widths are obtained for all simulated 
spectral bands when spectral reconstruction is used (open circles). For object B, spectral acquisition 
bands with λl = 4.0–4.5 µm yield near optimal width W ≈ 51 µm and standard deviation σW ≈ 3 µm 
when monochromatic reconstruction is used (Fig. 11.6b, solid circles). For test objects C–E, all trends 
are concealed by large standard deviation σW (W ≈ 54 ± 7, 76 ± 13, and 200 ± 50 for test objects C, D, 
and E, respectively). 

The last parameter determined from the reconstructed temperature profile, peak temperature Tp, is 
presented in Fig. 10.7. Spectral reconstruction yields peak temperatures Tp closer to the actual 
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temperature amplitude ∆T0 (30 K; dashed lines) as compared to monochromatic reconstruction. For 
test object A (Fig. 10.7a), monochromatic reconstruction (solid circles) results in Tp ≈ 33 K and 
standard deviation σT = 0.7 K for λl = 4.0–4.5 µm, while spectral reconstruction (open circles) results 
in Tp ≈ 32 K and σT = 0.7 K for λl = 3.0–4.5 µm. For test object B (Fig. 10.7b), we obtain Tp ≈ 36 K 
and σT = 2 K for λl = 4.1–4.3 µm and monochromatic reconstruction (solid circles), but Tp ≈ 34 K and 
σT = 2 K for λl = 3.0–4.5 µm. For test objects C–E, the two reconstruction approaches are equally 
efficient in determination of Tp for all spectral bands. 

3.0 3.5 4.0 4.5 5.0

40

45

50

55

60

65

 Monochromatic
 Spectral

W
 (µ

m
)

λl (µm)

a

3.0 3.5 4.0 4.5 5.0

40

45

50

55

60

65

 Monochromatic
 Spectral

W
 (µ

m
)

λl (µm)

b

Figure 10.6: Full-widths at half maximum W and standard deviations σW (bars) as a function of λl for 
monochromatic (solid circles) and spectral reconstruction (open circles). Width W is determined from 
temperature profiles of test objects (a) A and (b) B. Dotted lines indicate the actual object width (W = 50 µm). 
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Figure 10.7: Peak temperature Tp and standard deviation (error bars) as a function of λl for monochromatic 
(solid circles) and spectral reconstruction (open circles). Peak temperature Tp is determined from temperature 
profiles of test objects (a) A and (b) B. Dotted lines indicate the actual object amplitude (∆T0 = 30 K). 

Statistical analysis of reconstructed images of test object AC, featuring two lobes are presented in Fig. 
10.8 for spectral bands with λl = 3.0, 4.3, and 5.0 µm. Monochromatic reconstruction results in 
temperature profiles with a very narrow and high first peak (AC1), while the second peak (AC2) is 
broadened as compared to the actual object (dashed line). In comparison, spectral reconstruction 
(right-bottom) yields lower and broader first peaks, and higher and narrower second peaks as 
compared to the results for monochromatic reconstruction. Because of decreased SNR, spectral 
narrowing compromises the stability of the images reconstructed with either reconstruction approach. 
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Figure 10.8: Average temperature profiles (black lines) and standard deviations (light-gray bars) reconstructed 
from 30 simulated PPTR signals with different noise realizations. Images of test object AC are reconstructed 
from PPTR signals with spectral bands of λ = 3.0–5.6 µm,  4.3–5.6 µm, and 5.0–5.6 µm using monochromatic 
reconstruction (see labels). Temperature profile for λ = 3.0–5.6 µm is obtained also using spectral reconstruction 
(right-bottom). The actual test objects are plotted for comparison (dashed line). 
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Figure 10.9: (a) Relative image error δ, (b) lobe width 
W, and (c) peak temperature Tp as a function of λl for 
test object AC, which features two lobes located at z0 = 
50 µm (circles) and z0 = 280 µm (squares). 
Temperature profiles are reconstructed by using 
monochromatic (solid symbols) and spectral 
reconstruction (open symbols). Error bars indicate 
standard deviation. 

 

 

Figure 10.9 presents image parameters δ, W, and Tp, determined from images of object AC. When 
monochromatic reconstruction is used, the minimal relative image error is obtained at λl = 4.3 µm 
(δ = 0.33 ± 0.02) (Fig. 10.9a, solid circles). With λl decreased below λl = 4.2 µm image error increases 
due to the monochromatic approximation deficiency.  
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For monochromatic reconstruction (Fig. 10.9b, solid symbols), the optimal widths for the first peak are 
obtained at λl = 3.0 µm and λl = 3.8–5.0 µm (W = 40 µm), while the spectral bands between yield even 
narrower peaks. The optimal widths for the second peak, obtained at λl = 3.3 µm and λl = 4.9 µm, is 
almost 2-times larger (W = 78 µm), than the actual width. But, spectral reconstruction (Fig. 10.9b) 
yields wider first peaks (W ≈ 46 µm) and narrower second peaks (W ≈ 68 µm) than monochromatic 
reconstruction. 

Analogous results are also obtained for peak temperature Tp. Monochromatic reconstruction (Fig. 
10.9c, solid symbols) results in markedly higher than optimal Tp of the first peak (Tp = 35 ± 6 K at λl = 
4.3 µm), and lower than optimal Tp of the second peak (Tp = 18 ± 5 K at λl = 4.3 µm). Peak 
temperature of the first peak reconstructed by using spectral reconstruction is closer to optimal, 
average value is Tp = 33 ± 5 K, while the second peak presents peak temperature similar to results for 
monochromatic reconstruction. In general, all spectral dependencies are hidden by large standard 
deviation. 

Considering the above results for object AC we conclude that spectral reconstruction performs 
significantly better than monochromatic reconstruction for more complex temperature profiles. 

Table 10.1 lists image widths W for all test objects and spectral bands with λl = 3.0, 4.3, and 5.0 µm. 
Table 10.1: Temperature peak widths W for test objects A–C and spectral bands with λl = 3.0, 4.3, and 5.0 µm 
for monochromatic reconstruction. The last column shows widths for spectral reconstruction and λ = 3.0–5.6 µm. 
The object width is W0 = 50 µm. 

Object 
λl = 3.0 µm 

(µm) 

λl = 4.3 µm 

(µm) 

λl = 5.0 µm 

(µm) 

Spectral 

(µm) 

A 45 ± 5 50 ± 0 49 ± 2 50 ± 0 

B 53 ± 5 52 ± 3 59 ± 3 52 ± 3 

C 61 ± 7 56 ± 8 50 ± 9 54 ± 6 

D 87 ± 15 83 ± 11 71 ± 13 75 ± 14 

E 177 ± 94 215±130 342±120 185±116 

AC – 1st 40 ± 0 40 ± 0 40 ± 0 47 ± 3 

AC – 2nd 84 ± 6 81 ± 5 81 ± 10 70 ± 7 

 

Overiteration 

To find which reconstruction approach and spectral acquisition bands are less sensitive to 
overiteration, we also obtained overiterated temperature profiles. Since test objects with larger z0 
(objects C–D) are not markedly deteriorated by non-optimal regularization, we present overiterated 
reconstruction results of test objects A and B only (Fig. 10.4).  

For spectral bands with λl = 3.0 and 5.0 µm, monochromatic reconstruction (Fig. 10.10a, upper three 
rows) results in temperature profiles, which are markedly higher and narrower as compared to the 
actual object (dashed line). But, for the spectral band with λl = 4.3 µm similar results as with optimal 
regularization are obtained (Fig. 10.4a). In contrast, spectral reconstruction yields results equal to 
those obtained by optimal regularization (Fig. 10.4, bottom). Similar trends, but less prominent, can be 
observed for object B (Fig. 10.10b).  

Figure 10.11 presents relative image error δ for test objects A and B and both reconstruction 
approaches when overiteration is present. One can recognize a prominent minimum of image error (δ 
= 0.10 ± 0.01) at λl = 4.4 µm for monochromatic reconstruction of object A (Fig. 10.11a, solid circles). 
However, acceptably low image errors (δ ≤ 0.13) similar to optimal regularization are obtained for 
spectral bands with λl = 4.0–4.5 µm. Image error is δ ≈ 0.08 and standard deviation σδ ≈ 0.02 for 
spectral bands with λl = 3.0–4.5 µm (Fig. 10.11a, open circles), when spectral reconstruction is applied 
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to PPTR signals of test object A. We find similar trends for object B. The minimum of δ = 0.15 ± 0.06 
is obtained at λl = 4.3 µm. However, image error less than 0.17 is obtained for λl = 4.1–4.3 µm, when 
monochromatic regularization is used (Fig. 10.11b, solid circles). For spectral reconstruction (Fig. 
10.11b, open circles) the image error is roughly constant (δ ≈ 0.11 and σδ ≈ 0.05) for λl = 3.0–4.5 µm. 

In general, the standard deviation σδ progressively increases with spectral band narrowing for both 
reconstruction approaches and both test objects. Image errors δ obtained for spectral reconstruction are 
on average similar to those obtained with optimal reconstruction, while δ for monochromatic 
reconstruction are larger than δ obtained with optimal reconstruction.  
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Figure 10.10: Average of overiterated reconstruction results (black lines) and standard deviations (light-gray 
spots) reconstructed from 30 simulated PPTR signals with different noise realizations. Images of test objects (a) 
A and (b) B are reconstructed from PPTR signals with spectral bands of λ = 3.0–5.6 µm (left), 4.3–5.6 µm 
(center), and 5.0–5.6 µm (right) using monochromatic reconstruction (see labels). Images are reconstructed 
using also spectral reconstruction from PPTR signal with λ = 3.0–5.6 µm. The actual test objects (dshed line) are 
plotted for comparison. 
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Figure 10.11: Relative image error δ and standard deviation σδ (bars) as a function of λl for monochromatic 
(solid circles) and spectral reconstruction (open circles). Image error δ is determined from overiterated 
temperature profiles of test objects (a) A and (b) B. Arrows indicate optimal λl. 
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Figure 10.12 shows the effect of overiteration on widths W determined from images of test objects A 
and B. For monochromatic reconstruction and object A (Fig. 10.12a, solid circles), W are exceedingly 
small (W ≈ 40 µm), except for λl = 4.2 and 4.3 µm (W = 49 ± 2 µm). But, W equals the actual width for 
λl = 3.0–4.3 µm, and decreases at λl > 4.3 µm, when spectral reconstruction is used (Fig. 10.12a, open 
circles). For object B (Fig. 10.12b), widths of images reconstructed by using spectral reconstruction 
(W ≈ 47 ± 4 µm at λl = 3.0–4.5 µm) are in general close to the actual width, but for monochromatic 
reconstruction acceptable widths (W ≈ 44 ± 4 µm) are obtained only for λl = 4.1–4.3 µm. 
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Figure 10.12: Image width W and standard deviation (error bars) as a function of λl for monochromatic (solid 
circles) and spectral reconstruction (open circles). Widths W are determined from overiterated temperature 
profiles of test objects (a) A and (b) B. 

Considering the above results, we conclude that temperature profiles obtained using the 
monochromatic reconstruction are markedly deteriorated in case of overiteration. But, when 
appropriate spectral filtering is involved (λl ≈ 4.0–4.5 µm), the error due to overiteration is smaller. 
Spectral reconstruction results in temperature profiles similar to those obtained with optimal 
regularization for all spectral bands. 

10.2          Experiment 

10.2.1          Materials and methods 

Gelatin tissue phantoms 

Our test samples are composed of a ~2 mm thick gelatin gel substrate, absorbing foil and one 
superficial gel layer of varying thickness (chapter 8). The subsurface depths of the absorbing layers 
were approximately 50, 110, 280, 430, and 640 µm, respectively, which corresponds to test objects A–
E involved in the numerical simulation.  

Experimental setup 

For each PPTR measurement, the sample was irradiated with a single 1 ms 532 nm pulse from a KTP 
Nd:YAG laser. The radiant exposures (H) near the center of a 7 mm diameter laser spot were ~ 3.0, 
5.0 and 7.8 J/cm2. Radiation emitted from the center of the irradiated area was collected on our InSb 
detector (chapter 3). The acquisition rate was 50,000 s-1, and the acquisition time was set to 1 s after 
the laser pulse. 

Radiometric signals were obtained from 3 different sites on each sample, separated by a few 
millimeters to prevent thermal interference between successive measurements. On each test site, one 
of three radiant exposures and the entire spectral band of the IR detector (λ = 3.0–5.6 µm) was used. 
Finally, the PPTR signals S were obtained by averaging data from 50 subsequent calibrated signals, 
thus numerically reducing the acquisition rate 1000 s-1, and subtracting the baseline value. 
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Reconstruction of temperature profiles 

Similar to the numerical simulation, initial temperature profiles T were reconstructed using the 
monochromatic kernel matrix κ and the spectrally composite kernel matrix K, both computed for the 
entire spectral acquisition band (λ = 3.0–5.6 µm). The initial temperature profiles were reconstructed 
using the projected υ-method, and the result consisted of 200 temperature values over a depth range of 
1.0 mm. 

10.2.2          Experimental results 
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Figure 10.13: PPTR signals acquired from collagen gel samples A–E using the entire spectral band (λ = 3.0–5.6 
µm) and H = 3.0 J/cm2. 

Figure 10.13 presents PPTR signals acquired from samples A–E using the full-spectrum acquisition. 
SNR of measured PPTR signals are summarized in Table 10.2.  SNR decreases with depth of 
absorbing layer Z, and increases with radiant exposure H.  
Table 10.2: Signal-to-noise ratios (SNR) for PPTR signals obtained from five collagen gel samples (A–E) using 
the full-spectrum acquisition (λ = 3.0–5.6 µm) and three radiant exposures. 

Sample H = 3.0 J/cm2 H = 5.0 J/cm2 H = 7.8 J/cm2

A 695 1127 1852 
B 655 1008 1260 

C 354 597 873 

D 249 469 665 

E 119 189 287 

 

Figure 10.14 shows images of samples A–E reconstructed by using monochromatic (solid lines) and 
spectral reconstruction (dashed lines) for λ = 3.0–5.6 µm. On average, spectral reconstruction does not 
perform markedly better than monochromatic reconstruction. The reconstruction results for the same 
sample but different radiant exposures (H) are qualitatively similar.  

Since W does not significantly depend on radiant exposure for the same test object and reconstruction 
approach (Fig. 10.14), we can combine three values into average width W and corresponding standard 
deviation (Fig. 10.15). For monochromatic reconstruction, the average widths for objects A–E are W = 
27 ± 3, 40 ± 0, 47 ± 3, 70 ± 5, and 112 ± 6 µm, respectively. For spectral reconstruction, the average 
widths for objects A–E are W = 28 ± 6, 38 ± 4, 45 ± 5, 67 ± 10, and 107 ± 6 µm, respectively. Thus, 
spectral reconstruction yields better results for all samples, except sample A. 
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Figure 10.14: Reconstructed temperature profiles of 
samples A–E (a–e, respectively) for three radiant 
exposures (H = 3.0, 5.0 and 7.8 J/cm2, see labels). The 
profiles were obtained using monochromatic (solid 
line) and spectral reconstruction (dashed line) for 
spectral band of λ = 3.0–5.6 µm. 
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Figure 10.15: Average widths W of temperature lobes in reconstructed images of samples A–E for 
monochromatic (gray bars) and spectral reconstruction (light-gray bars). Error bars indicate standard deviation. 



88 Chapter 10   Spectral filtering in collagen samples

 

10.3          Discussion 
The numerical simulation for test objects A, B and C result in the image errors δ, which have distinct 
minimums at λl = 4.3–4.4 µm, when optimal regularization is applied. But, reasonably low δ are 
obtained also at λl = 4.0–4.5 µm for objects A, B and AC. In contrast, the effect of spectral filtering is 
less apparent for test objects C–E, featuring deep temperature peaks, since all trends are concealed by 
the large standard deviations σδ. When images of test objects A and B are overiterated, the benefit of 
spectral filtering is even more obvious (Figs. 10.10 and 10.11). The spectral bands in-between (λl = 
4.0–4.5 µm) provide reconstruction results with reasonably small image errors for both test objects in 
case of overiteration. Thus, for monochromatic approximation applied to PPTR signals of shallow and 
more complex structures in collagen samples appropriate spectral filtering reduces image error. 

The widths W of temperature profiles reconstructed using monochromatic approximation are optimal 
at λl = 4.0–4.4 µm and at λl = 4.0–4.5 µm for test objects A and B, respectively. The widths are equal 
or almost equal to the actual width. In contrast, for deeper objects (C–E) determined widths increase 
with increasing depth of temperature peak z0. This broadening effect due to increasing z0 is well 
known (chapter 11). But, we also observe broadening of W with broadening of acquisition spectral 
band for objects B–E (Table 10.1), but the trend is less obvious than for agar gel (chapter 9), since it is 
almost completely concealed by the large standard deviations σW. 

In general, spectral reconstruction results in images with smaller image errors than monochromatic 
reconstruction. However, for spectral bands with λl = 4.0–4.5 µm and objects A–E both approaches 
yield similar results. Yet, spectral reconstruction performs significantly better than monochromatic 
reconstruction for test objects AC. We obtain 1.5-times smaller δ using spectral approach. And when 
overiteration is present, images obtained by spectral approach are significantly more stable and 
accurate. 

The findings of the numerical simulation are supported by our experimental results, where the 
reconstruction results obtained by the optimally regularized monochromatic approximation and 
spectral reconstruction are similar, which agrees with the results of the numerical simulation for test 
objects A–E. 

10.4          Conclusions 
In PPTR temperature profiling of collagen tissue phantoms, spectral filtering reduces the 
reconstruction error δ and improves accuracy of temperature peak width W, when the monochromatic 
reconstruction is used. For the simulated objects and PPTR system, results of numerical simulations 
suggest an optimal spectral band with λl = 4.0–4.5 µm. Spectral reconstruction results in more accurate 
and stable reconstructions than monochromatic reconstruction, especially for more complex and 
shallower absorbing structures. Therefore, use of spectrally composite matrix is preferred when the IR 
spectrum of the sample and responsivity of IR detector are known. 
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Chapter 11 
 

Accuracy of temperature profiling 
 

 

Since PPTR temperature profiling is used for determination of temperature profiles in biological 
tissues, the question about accuracy of determined temperature profiles arises. The accuracy is limited 
by measurement noise, efficiency of reconstruction algorithms, and also by the involved physical 
processes (i.e., ill-posed problem). It is known that depths of absorbing structures are determined fairly 
well,6 but PPTR temperature profiling fails to predict accurate temperatures due to the broadening and 
attenuation effects, especially at greater depths,9,10 

In this chapter we study the accuracy of temperature profiles obtained using our PPTR system. First, 
we perform experiments on agar tissue phantoms involving one very thin absorbing layer located at 
different depths. Second, we perform a numerical simulation to support our experimental results. 
Finally, we compare the obtained limitations of our PPTR system to those reported in earlier PPTR 
studies.6,9,10 

11.1          Experiments on agar tissue phantoms 

11.1.1          Materials and methods  

Agar tissue phantoms 
We prepared agar tissue phantoms composed of one superficial agar gel layer of varying thickness, 
one thin absorbing layer and a ~2 mm thick gel substrate. Absorbing layers were made of absorbing 
foil. Seven tissue phantoms (A–G) evaluated here had the subsurface depths of the absorbing layers 
approximately 40, 130, 270, 420, 600, 750 and 900 µm. Three tissue phantoms (B1–D1) were 
prepared for PPTR and NMR measurement. The depths of their absorbing layers were ~180, 300 and 
480 µm. Details about agar gel tissue phantom preparation are presented in Chapter 8. 

Pulsed photothermal profiling 
For each PPTR measurement, the sample was irradiated with a single 1 ms long 532 nm pulse from a 
KTP/Nd:YAG laser. Three different radiant exposures were used with samples A–G. The radiant 
exposures (H) near the center of a 7 mm diameter laser spot were H ≈ 3.0, 5.0 and 7.8 J/cm2. However, 
only H = 3.0 J/cm2 was used with samples B1–D1 to avoid damage due to laser irradiation. IR 
radiation emitted from the center of the irradiated area was collected on the InSb detector. Radiometric 
signals were obtained from 3 different sites on each sample, separated by a few millimeters to prevent 
thermal interference between successive measurements. On each site one of three radiant exposures 
and the entire spectral band of the IR detector (λ = 3.0–5.6 µm) was used. The acquisition rate was 
50,000 s-1 and the acquisition time was set to 1.5 s after the laser pulse. The PPTR signals S were 
obtained by averaging 50 subsequent calibrated data points, thus computationally reducing the 
acquisition rate from 50,000 s-1 to 1000 s-1, and subtracting the baseline value. 

The initial temperature profiles T were reconstructed using the spectrally composite kernel matrix K 
(6.1). We used the measured IR absorption spectrum µ(λ) of agar tissue phantom (Fig. 8.3), spectral 
responsivity of the InSb detector (Fig. 3.3) and thermal parameters D = 0.143 mm2/s and  
h = 0.02 mm-1. The projected υ-method was used to reconstruct temperature profiles T consisting of 
300 temperature values over a depth range of 1.5 mm. 
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Optical microscopy and micro magnetic resonance imaging (micro-MRI) 
The depth of the absorbing layer in samples A–G was determined after each PPTR measurement by 
means of optical microscopy. We used magnification 40×. We focused the microscope on the surface 
of the sample and then on the boundary between the surface gel layer and the foil. At the same time 
we measured optical path between the surface and the boundary using calibrated fine focus. We 
corrected measured optical path using the index of refraction of water (1.33), thus obtaining the 
absorbing layer depth Z. The accuracy of Z determined by microscope focusing was approximately 
±30 µm, which was found as the minimal shift of microscope focus yielding blurred image of the 
boundary. Z was determined at 4 locations per sample. 

After PPTR measurement, cross-sectional images of samples B1–D1 were acquired using a micro-
MRI system (TecMag, Bruker, Oxford, B = 2.35 T). 3D spin echo imaging technique was used with 
echo time/repetition time (TE/TR) = 7/1000 resulting in T1-weighted image. Field of view was 
16×2×8 mm with 31 µm isotropic resolution. The image was stored in JPEG format (512 × 128 
pixels). Distance from the sample surface to the absorbing layer Z was determined from the image at 
10 positions for each sample. 

11.1.2          Experimental results 
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Figure 11.1: PPTR signals acquired from samples A–G (see labels) with radiant exposure H = 3.0 J/cm2. 

PPTR signals acquired from samples A–G at H = 3.0 J/cm2 are presented in Figure 11.1. Noise-
equivalent temperature rise, determined as standard deviation of radiometric signals before the laser 
exposure, equals NE∆T = 2.2 mK. Average SNR as a function of the absorbing layer depth Z are 
presented in Figure 11.2 for all measured signals and radiant exposures. SNR decreases roughly 
exponentially with increasing Z. 
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Figure 11.2: SNR as a function of the absorbing layer depth Z for H = 3.0 J/cm2 (black circles), 5.0 J/cm2 (gray 
circles) and 7.8 J/cm2 (open circles). Error bars indicate standard deviation of Z and SNR. 

Figure 11.3 presents statistical analysis of the reconstruction results for the three radiant exposures and 
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samples A–G (see labels). Solid lines connect the average temperatures and light-gray bars indicate 
standard deviations. As expected, temperature profiles broaden with increasing depth of the peak 
temperature Z for all H. The reconstructed images of all samples are evidently broadened for  
H = 3.0 J/cm2 as compared to H = 5.0 and 7.8 J/cm2. Moreover, images of samples A–D feature largest 
standard deviations for H = 3.0 J/cm2, and smallest for H = 7.8 J/cm2. Thus, the broadening effect is 
smaller and the reconstruction is more robust when larger radiant exposures are used. We observe 
surface artifacts in images of sample A for H = 5.0 J/cm2 and of samples A–C for H = 7.8 J/cm2. 
Because the artifacts are present only in images of shallow samples (Z = 50–300 µm) and for large 
radiant exposures, we believe that the artifacts are consequence of the linearization error (chapter 5). 
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Figure 11.3: Average temperature profiles (solid lines) and standard deviations (light-gray bars) reconstructed 
from 10 PPTR signals acquired from samples A–G using radiant exposures H = 3.0 J/cm2 (left), 5.0 J/cm2 
(center) and 7.8 J/cm2 (left). 

Peak temperature depth 
Figure 11.4 presents peak temperature depths Z determined from PPTR reconstruction results for the 
three radiant exposures and absorbing layer depths determined by optical microscopy. Absorbing layer 
depths determined by PPTR temperature profiling, on average, match the results obtained by the 
microscope within respective uncertainties. Possible origin of the observed discrepancy is shrinking of 
the surface agar layer upon evaporation of water during microscopy, which can explain the 
discrepancy present for samples E–G. Apparently, the match between Z determined by PPTR and 
microscopy does not improve with increasing H. 

We also compared absorbing layer depths obtained by PPTR profiling with those found by micro-MRI 
for samples B1–D1. Figure 11.5 presents reconstructed temperature profiles and micro-MRI images of 
samples B1–D1. Micro-MRI image of samples B1–D1 clearly show samples surfaces (upper arrow) 
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and the absorbing layers (lower arrow). Peak temperatures in Fig. 11.5a are higher as compared to 
peak temperatures in Fig. 8.3, because a thicker absorbing foil (~30 µm) was used in preparation of 
samples B1–D1 to improve contrast in micro-MRI images, and consequentially more light was 
absorbed in absorbing layers. 

Peak temperature depths Z determined from reconstruction results (Fig.11.5a) and absorbing layer 
depths determined from micro-MRI images (Fig. 11.5b) agree very well (Fig. 11.6). The largest 
discrepancy (10 µm) is found in sample D1, and is 3 times smaller than the micro-MRI resolution  
(∆z = 30 µm), which limits the accuracy of the determined absorbing layer depth. The above results 
indicate that the accuracy of absorbing layer depths found by PPTR temperature profiling is good, and 
is not significantly deteriorated by SNR or the absorbing structure depth. 
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Figure 11.4: The absorbing layer depth Z from the PPTR reconstruction results and the microscope focusing for 
samples A–G and radiant exposures H = 3.0 J/cm2 (black squares), 5.0 J/cm2 (gray circles) and 7.8 J/cm2 (open 
circles). The dashed line represents the case of Z-microscope = Z-PPTR. 
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Figure 11.5: (a) Average temperature profiles (solid lines) and standard deviations (error bars) reconstructed 
from 10 PPTR signals acquired from samples B1–D1 using radiant exposures H = 3.0 J/cm2. (b) A micro-MRI 
image of samples B1 (left), C1 (center) and D1 (right). The upper arrow indicates the sample surface and the 
lower one indicates the absorbing layer. 
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Figure 11.6: The absorbing layer depth Z from the PPTR reconstruction results and the micro-MRI for samples 
B1–D1 (open circles). The dashed line represents the case of Z-micro-MRI = Z-PPTR. 

Temperature peak width 
Temperature peak widths W as a function of peak temperature depth Z are presented in Figure 11.7 for 
samples A–G and radiant exposures H = 3.0 J/cm2 (left), 5.0 J/cm2

 (center) and 7.8 J/cm2 (right). 
Widths of reconstructed temperature profiles increase almost linearly with Z, except at depths 
Z < 300 µm. For these depths the actual absorbing layer width w0 prevails over the broadening effect. 
Determined widths W for H = 3.0 J/cm2 are on average 19% larger as compared to H = 5.0 J/cm2, 
while the differences between widths for H = 5.0 J/cm2 and H = 7.8 J/cm2 are not significant. Hence, 
we conclude that SNR influences significantly the temperature profile widths when SNR is low, while 
the effect of SNR on W is insignificant when SNR is large (e.g., SNR = 1000).  
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Figure 11.7: The temperature peak width W as a function of the peak temperature depth Z for samples A–G and 
radiant exposures H = 3.0 J/cm2 (left), 5.0 J/cm2 (center) and 7.8 J/cm2 (right). Bars are standard deviations of W 
and Z. 

11.2          Numerical simulation 
Delta functions are frequently used in science and engineering as an input into an unknown system, 
because the corresponding output specific information about the system. As the input we use a delta 
function located at depth z0, the unknown system is a simulated PPTR system and the output is the 
reconstructed temperature profile. The extracted specific information is the accuracy of determined 
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impulse depth, and broadening and attenuation of reconstructed temperature peaks. 

Our initial temperature profile is a delta function (i.e., a planar impulse) 

  ( ) ( )0 0 0,0T z T w z zδ= −  (11.1) 

where T0w represents the impulse amplitude. When we substitute delta function (11.1) into expression 
for the PPTR signal amplitude (2.7), we obtain an expression for PPTR signal of planar impulse 

  ( ) ( )0 0 ,S t T w K z t∆ =  (11.2) 

We simulate theoretical signal vectors S0 using (11.2) and the spectrally composite kernel matrix K 
(6.1) equal to the kernel matrix in previous section. To correlate the numerical simulation with the 
experimental results we use similar depths of temperature profiles z0 = 42.5 (object A), 132.5 (object 
B), 272.5 (object C), 422.5 (object D), 602.5 (object E), 742.5 (object F) and 902.6 µm (object G). The 
impulse amplitudes are T0w = 0.15, 0.75, 1.25, 1.95 and 5.00 mmK. Each S0 has 1500 components, 
representing signal values acquired at a sampling rate of f = 1000 s-1 (for a total acquisition time was 
1.5 s). 

Each theoretical signal is augmented by 30 different realizations of zero mean noise with the noise 
amplitude NE∆T = 2.2 mK, thus resulting in realistic PPTR signals S. The parameters of 1/f-noise 
characteristic for our PPTR system are fc = 15 s-1 and α = 1.3 (section 3.5). Each realization of noise is 
calculated using the noise spectrum ( )n f% (3.5) 

  
1

( ) ( ) cos(2 )
N

k k i
i

n t n i t N t i t Nπ δ
=

= ∆ ∆ +∑ %  (11.3) 

where ∆t is the sampling interval (1 ms), N number of signal components and  tk = k ∆t, where k is an 
integer between 0 and N–1.  δi

 is a random number between –π and π, obtained by function randn in 
Matlab 14. n(tk) is then normalized so that it has a standard deviation of 1. Finally, the obtained noise 
vector is multiplied by NE∆T and added to theoretical signal S0, yielding a simulated PPTR signal S. 

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

S 
(K

)

t (s)

A

B

C
D

E F G

 
Figure 11.8: Simulated PPTR signals for planar impulses with T0w = 0.15 mmK for test objects A–G (see 
labels). 

Figure 11.8 presents simulated PPTR signals for T0w = 0.75 (top), 1.25 (center) and 1.95 mmK 
(bottom). Signal-to-noise ratio (SNR) as a function of z0 is presented in Figure 11.9 for all simulated 
PPTR signals. SNR values decrease with increasing z0 and decreasing T0w.  
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Figure 11.9: SNR as a function of impulse depth z0 for T0w = 0.15–5.00 mmK (see labels). 
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Figure 11.10: Average temperature profiles (solid lines) and standard deviations (error bars) reconstructed from 
30 simulated PPTR signals with different noise realizations. Images of test objects (see labels) were 
reconstructed from PPTR signals with impulse amplitudes T0w = 0.15 mmK (left), 1.25 mmK (center) and 5.00 
mmK (left). 

Temperature profiles T of simulated planar impulses are reconstructed from corresponding PPTR 
signals S using the projected υ-method with automatic regularization. The temperature profile vectors 
T consisted of 300 temperature values over a depth range of 1.5 mm (discretization step ∆z = 5 µm). 

Figure 11.10 presents statistical analysis of the reconstruction results for three impulse amplitudes: 
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T0w = 0.15 mmK (left), 1.25 mmK (center) and 5.00 mmK (left). Obviously, width of reconstructed 
temperature profile W decreases with depth z0. In addition, W increases with decreasing SNR (i.e., 
T0w). 

Depth Z 

Figure 11.11 presents peak temperature depth Z as a function of impulse location z0 for all impulse 
energies T0w. We calculate relative depth error as δz = (z0 - Z)/z0. For objects A–C (z0 = 40–300 µm), Z 
absolutely matches z0 for all T0w. For objects D–F, we find ~1% error for T0w = 0.15 mmK, while δz 
for other T0w is negligible. Only for the deepest object G, error δz = 1–3% occurs for all T0w. Hence, 
neither z0 nor T0w significantly deteriorate the accuracy of temperature peak location Z. 
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Figure 11.11: Determined peak temperature depth Z (open circle) as a function of the actual impulse depth z0 for 
three impulse amplitudes (see legends). Dashed line illustrates the ideal agreement (i.e., Z = z0). 

Broadening and attenuation 

Since planar impulses are infinitesimally thin, width W of ideally reconstructed planar impulse would 
be equal to depth discretization ∆z and the corresponding peak temperature equal to T0w/∆z. Yet, 
Figure 11.10 shows, that widths of reconstructed planar impulses are larger than ∆z (5 µm). 

Figure 11.12a presents widths W of temperature profiles as a function of z0 for all T0w. On average, W 
increases linearly with z0, while it decreases with T0w. Figure 11.12b presents W as a function of SNR 
for test objects A–G. For constant z0, W tends to decrease with increasing SNR. 
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Figure 11.12: (a) Width of reconstructed planar impulse W increases almost linearly with depth z0 (see gray 
line). (b) W as a function of SNR for all impulse amplitudes T0w (see labels). Standard deviations are represented 
by error bars. 

Considering the above observations, we propose the following approximation for the broadening w as 
a function of z0 and SNR 
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= +  (11.4) 

We fit (11.4) on data in Fig. 11.12b and determine parameters p1z0 and p2 for all z0 (Figs. 11.13a–b).  
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Figure 11.13: Parameters (a) p1z0 and (b) p2 as a function of z0 obtained by fitting (11.4) on data in Fig. 11.12b. 
Gray lines present (a) the linear fit and (b) the simple mean of data points. 

By fitting data in Fig.8.14a with linear function we obtain p1 = 0.133 ± 0.004. Furthermore, we 
determined simple mean and standard deviation from values presented in Fig. 11.13b to obtain the 
second parameter in (11.4) p2 = 2000 ± 200 µm. Finally, the approximation for the impulse broadening 
is 

  0 0
2000( , ) 0.133 mw z SNR z

SNR
µ

= +  (11.5) 

We estimated the broadening of our experimental temperature profiles w(z0, SNR) (Fig. 11.14, dashed 
line) using the above approximation (11.5) and experimental depths Z (Fig. 11.4) and SNR values 
(Fig. 11.2). Experimental widths W of samples A–G, already presented in Fig. 11.7, are included also 
in Fig. 11.14 (open circles). 
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Figure 11.14: Broadening w(z0, SNR) of a planar impulse (dashed line) calculated using (11.5) with 
experimental depths Z (Fig. 11.4) and SNR values (Fig. 11.2) for radiant exposures H = 3.0 J/cm2 (left), 5.0 
J/cm2 (center) and 7.8 J/cm2 (right). Estimated total width W of temperature profiles (black circles) including the 
broadening w(z0, SNR) and the estimated thickness of absorbing layer (w0 = 30, 27, 27 µm for H = 3.0, 5.0 and 
7.8 J/cm2, respectively). The actual widths W of samples A–G (open circles) are plotted for comparison. 

Widths W determined from the experimental temperature profiles for samples A–G deviate from the 
corresponding broadening w(z0, SNR), especially for shallow absorbing layers (samples A and B). The 
absorbing layers are of finite width w0, which must also be considered in an estimation of 
reconstructed temperature profile width. We estimate the total width W as W = (w(z0, SNR)2 + w0

2)1/2. 
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We fit this expression with the broadening (11.5) to the experimental widths W to obtain estimations 
for the absorbing layer width, w0 = 30 ± 9, 27 ± 2 and 27 ± 6 µm for H = 3.0, 5.0 and 7.8 J/cm2, 
respectively. Next, we calculate the estimated total width W (Fig. 11.14, black circles) using the 
determined w(z0, SNR) and w0. Since the deviation between the estimated W and the experimental W is 
within the experimental uncertainty, we conclude that (11.5) can be used to estimate the broadening 
effect in reconstructed temperature profiles. 

11.3          Discussion 
Milner et al,6 who performed PPTR temperature profiling on layered collagen tissue phantoms with 
absorption layers located at z0 = 70–440 µm, reported the standard deviation of the difference between 
Z deduced by PPTR temperature profiling and optical low-coherence reflectometry was 2 µm. 
Sathyam and Prahl,9 who presented results of numerical simulation involving planar impulses and 
experiment, also showed that PPTR temperature profiling is fairly efficient at determining Z. But, the 
uncertainty in the depth markedly increase with the depth, hence limiting the technique to a depth of 
500 µm. In contrast, the results of our study show that we can successfully determine the temperature 
peak depths Z at least up to 900 µm, while the accuracy of determined Z is not significantly 
deteriorated by low SNR. 

The broadening effect involved in PPTR temperature profiling is well known.6,7,9 It is a reconstruction 
artifact, which increases with object depth, thereby significantly limiting resolution of PPTR 
temperature profiling. Sathyam and Prahl9 reported that a resolution about equal to the depth could be 
expected with PPTR temperature profiling. Smithies et al10 presented simulation results, where the 
broadening of temperature peaks was approximately 25% of peak temperature depths Z, although 
monochromatic PPTR signals without noise were used. But results of our experiment combined with 
the numerical results, show that the broadening effect equals to ~15% of Z, although our experimental 
results are deteriorated by the linearization error (chapter 5) and measurement noise. At lower SNR the 
additional broadening due to noise in PPTR signals becomes significant (11.5). 

The attenuation of peak temperature Tp accompanies the broadening. As illustrated in Figs. 11.3 and 
11.10, Tp decreases with depth Z. Therefore PPTR temperature profiling fails to accurately determine 
temperatures, especially at larger depths. Because the broadening effect and the temperature 
attenuation are less prominent for larger SNR values, one should reduce noise in PPTR signals to 
adequately small level. 

11.4          Conclusions 
PPTR temperature profiling accurately predicts locations of absorbing layers at least up to a depth of 
900 µm. Since reconstructed temperature profiles are progressively broadened and attenuated with 
depth, PPTR temperature profiling fails to accurately determine widths and temperatures of deeper 
absorbing structures. For agar tissue phantoms, our PPTR system and large SNR the broadening 
equals to ~13% of peak temperature depth, which is significantly better than the smallest broadening 
(i.e., ~25% of peak temperature depth) reported in any earlier PPTR study. 
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Summary and conclusions 
 

 

In this concluding chapter, we summarize the main achievements and findings presented in the 
dissertation, and discuss possible directions for further research. 

To solve the ill-posed PPTR inverse problem, we have developed three novel reconstruction 
algorithms based on the truncated singular value decomposition (TSVD) method, conjugated gradient 
method (CG), and υ-method, respectively. All algorithms include the non-negativity constraint and 
automatic regularization, which substantially facilitates the reconstruction process. The optimal 
regularization approach is also determined for each algorithm. We demonstrate that these algorithms 
produce substantially more accurate solutions than commercially available general-purpose software. 
Furthermore, our algorithms result in more accurate temperature profiles than presented in an earlier 
PPTR study utilizing a dedicated non-negatively constrained reconstruction algorithm. All three 
presented algorithms generate similar reconstruction results. 

An expression for a linearized monochromatic calibrated PPTR signal is used in all reported PPTR 
studies. However, the linearization error was not systematically evaluated in earlier PPTR studies. We 
demonstrate that the linearization error can markedly deteriorate the reconstructed temperature profiles 
when temperature amplitudes larger than ~20 K are involved. Due to the linearization error we can 
observe in reconstructed temperature profiles superficial artifacts. In general, the linearization error 
decreases as temperature profile depth and acquisition time increase. We derived an analytical 
expression for the linearization error, which indicates that linearization error decreases with increasing 
acquisition wavelength λ and baseline temperature Tb. For the spectrally composite calibrated PPTR 
signals, we observe also that the linearization error decreases with spectral acquisition band 
narrowing. Because temperature amplitudes are typically less than ~20 K, the linearization error is 
small for typical PPTR temperature profiling in human skin, especially for deeper absorbing 
structures. 

In PPTR temperature profiling, broad-band signal acquisition is used almost invariably to increase the 
signal-to-noise ratio (SNR). But all reported PPTR studies utilized a fixed effective infrared (IR) 
absorption coefficient value (µeff) to reduce computational complexity of the reconstruction process. 
When a non-optimal µeff is utilized in reconstruction, the resulting temperature profiles are 
deteriorated. A mere 5% deviation of µeff from the optimum can increase the relative image error by 
33%. We present a novel analytical approach for analytical determination of viable effective IR 
absorption coefficients to be used in reconstruction of temperature profiles from PPTR signals at any 
combination of sample spectral properties, radiation detector, and acquisition spectral band. This is 
particularly important in samples with large spectral variation µ(λ) in mid-IR, such as most biological 
tissues, where previously used analytical estimates are not sufficiently accurate. The analytical 
approach is supported by numerical simulation. The numerical results show also that the reduction of 
spectral acquisition band significantly improves the validity of quasi-monochromatic approximation. 

We analyzed the effect of sampling frequency on the accuracy of reconstruction results. Clearly, 
broadened and attenuated temperature profiles are obtained by undersampling due to insufficient 
information in PPTR signals. On the other hand, SNR of PPTR signals is severely reduced when large 
sampling frequencies are used, and again deteriorated temperature profiles are obtained. Our 
numerical results show that higher sampling rates always yield better reconstruction results when 
measurement noise is small. In presence of realistic noise, high sampling rates (f ≈ 10,000 s-1) are 
preferred only for shallowest temperature profiles (z ≤ 100 µm), while moderate sampling rates (f ≈ 
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1000 s-1) are optimal for other temperature profiles. In general, optimal sampling rate depends on 
specifics of experimental system and studied samples. 

Since the reduction of spectral acquisition band leads to smaller SNR, one must balance the deficiency 
of the monochromatic approximation and the effect of noise. To find the optimal spectral acquisition 
band, we performed an experiment on agar tissue phantoms, supported by numerical simulation. The 
results show that spectral filtering can reduce the image error δ and broadening of temperature peaks, 
especially for shallower and more complex absorbing structures. A suitable amount of spectral 
filtering is thus beneficial, despite the associated reduction of SNR. For the agar tissue phantoms and 
our PPTR system, numerical simulation results suggest an optimal long-pass filter with a cut-on 
wavelength of λl = 3.8–4.2 µm.  

We also present a study involving experiments and numerical simulation of PPTR temperature 
profiling in collagen tissue phantoms, which more realistically resemble IR optical and thermal 
properties of human skin. Similar to the study involving agar tissue phantoms, the results indicate that 
appropriate spectral filtering significantly improves reconstruction results. Optimal results for gelatin 
tissue phantoms are obtained for spectral acquisition bands with λl = 4.0–4.5 µm. Furthermore, the 
reconstruction results are less affected by overiteration, when these spectral bands are used. 

The monochromatic approximation can result in a significant image error, especially when non-
optimal µeff is utilized. Therefore, we analyze also the reconstruction where the correct, spectrally 
composite kernel matrix is used. In general, this approach performs significantly better than the 
conventional monochromatic reconstruction regarding both accuracy and stability issues. However, 
the weaknesses of this approach are that the IR absorption spectrum of the sample must be known, and 
increased computational complexity of the kernel matrix. 

Earlier PPTR studies suggested that PPTR temperature profiling is fairly efficient at determining 
temperature profile depths. But it was found using numerical simulations that the broadening of 
temperature profile is at least ~25% of the absorber depth, which limits the technique to the depth of 
500 µm. To find limitations of our PPTR temperature profiling system, we performed an experiment 
on agar tissue phantoms and a numerical simulation involving planar impulses. Our experimental 
results indicate that PPTR temperature profiling accurately predicts locations of absorbing structures at 
least up to 900 µm. Still more, the average width of our experimental temperature profiles equals 15% 
of the absorbing layer depth in spite of noise and the linear error in measured PPTR signals. In 
addition, from numerical results we estimate the broadening to 13% of temperature profile central 
depth. Thus, our PPTR system performs significantly better than the earlier PPTR systems. 

The evaluation of PPTR temperature profiling presented in the dissertation suggests that this technique 
can provide valuable information about internal structure of samples (i.e., temperature distribution). 
Therefore the technique can be used as a link between the actual structure of the lesion, parameters 
used in laser therapy of a vascular lesion, and the therapy outcome. We designed our PPTR system to 
be portable and as such can be clinically used, but a small and handy PPTR temperature profiling 
device would better suit clinical needs. The next step in the PPTR temperature profilometry could be 
the miniaturization of the setup, so that in future PPTR temperature profiling could be used in clinical 
practice for diagnostic characterization of vascular lesions and, possibly individual guidance of laser 
therapy.
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Filter factors 
 

 

Purpose of regularization of a discrete ill-posed problem is finding out which SVD components to 
filter out and how to filter them out. We introduce filter factors fi, since they illustrate the effect of 
regularization and because they are necessary for implementation of generalized cross validation 
(GCV) method (chapter 4). Regularized solution Treg produced by our reconstruction algorithm can be 
obtained by inserting filter factors fi into (4.4) 

 T
reg

1
( )

n

i i i i
i

f σ
=

= ∑T u S v  (A.1) 

Thus expression for the corresponding residual vector is 
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The filter factors fi for the particular reconstruction algorithm characterize the damping or filtering of 
the SVD components. For some methods, there exist expilicit formulas for the filter factors (e.g., 
Tikhonov regularization, TSVD); for other methods, there are no known expressions for filter factors 
(e.g., CG). The filter factors are typically close to 1 for large σi and much smaller than 1 for small σi. 
Therefore the contributions to the regularized solution corresponding to the smaller σi are effectively 
filtered out. Evidently, Treg contains only SVD components, which are not dominated by errors in S, 
and the residual vector contains only components due to errors, when optimal filter factors are chosen. 
As an example, the filter factors for TSVD algorithm are 
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The sum of the filter factors ρ(p)  appears in the definition of the GCV function (4.6) 
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where p represents the regularization parameter. When we insert (A.3) and (A.4) into (4.6), we obtain 
the expression for the GCV function for TSVD (Eq. 4.7). 
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Chebyshev approximation for erfcx(x) 

 

 
The monochromatic kernel matrix is derived in Chapter 2 as 

[ ]2
1

1 2( , ) exp[ /(4 )] erfcx( ) erfcx( ) erfcx( ) erfcx( )
2

hz t z D t u u u u
h

κ
µ− + +

 
= − + + − 

− 
 (A.1) 

with erfcx(u) = erfc(u) exp(u2), /(2 )u Dt z Dtµ± = ± , 1 /(2 )u h Dt z Dt= + .  

Since erfc(x) quickly decreases to zero and exp(x2) increases to infinity as x becomes large (e.g., 
erfc(10) = 2.1×10-45 and exp(102) = 2.7×10-43), one must very carefully consider evaluation of 
functions erfcx(x) in (A.1) to avoid unacceptable overflow/underflow and numerical errors. 

A Chebyshev approximation of erfcx(x) function65 used in our code is presented in Algorithm A.1. 
Values obtained by this approximation match values obtained by MathematicaTM 4.0 with precision set 
to the machine precision (32-bit PC) for all x relevant for PPTR temperature profiling .  

If an argument of exponential function exceeds ~ ±709.782 on a 32-bit platform, exponential function 
can not be evaluated due to overflow or underflow. Yet, uz = –z2/4Dt can be smaller than -709.782 for 
small time t or large depth z, therefore we must assure that underflow does not happen. Algorithm A.2 
shows our implementation of κ(z, t) calculation, where we used the Chebyshev approximation of erf(x) 
function. Values of κ(z, t) obtained in such a manner match values found by MathematicaTM 4.0. 

 
Algorithm A.1: A Chebyshev approximation for function erfcx(x) 

 
t = 3.97886080735226 / (fabs(x) + 3.97886080735226); 
u = t - 0.5; 
y = (((((((((0.00127109764952614092 * u + 1.19314022838340944e-4) * u -  
        0.003963850973605135) * u - 8.70779635317295828e-4) * u +  
        0.00773672528313526668) * u + 0.00383335126264887303) * u -  
        0.0127223813782122755) * u - 0.0133823644533460069) * u +  
        0.0161315329733252248) * u + 0.0390976845588484035) * u +  
        0.00249367200053503304; 
y = ((((((((((((y * u - 0.0838864557023001992) * u -  
        0.119463959964325415) * u + 0.0166207924969367356) * u +  
        0.357524274449531043) * u + 0.805276408752910567) * u +  
        1.18902982909273333) * u + 1.37040217682338167) * u +  
        1.31314653831023098) * u + 1.07925515155856677) * u +  
        0.774368199119538609) * u + 0.490165080585318424) * u +  
        0.275374741597376782) * t; 
if(x < 0) 
        return(2*exp(x*x)-y); 
else 
        return(y); 
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Algorithm A.2: Calculation of κ(z, t) (Eq. A.1) 
 
if(uz < -708 and uz + u–2 > -708) 
        κ(z, t) = exp (uz + u–2) erf(u–); 
if(uz < -708 and uz + u–2 < -708) 
        κ(z, t) = 0; 
else 
        κ(z, t) = exp(uz)(erfc(u+)+ erfc(u–)+ 2h (erfc(u+)– erfc(u1))/(µ - h)); 
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Extended abstract in Slovenian language 

Povzetek disertacije v slovenščini 
 

Sunkovna fototermalna radiometrija (SFTR) je brezdotična tehnika, ki temelji na infrardečem (IR) 
sevanju kot posledici laserskega obsevanja snovi. Svetloba se selektivno absorbira v absorberjih, kar 
ima za posledico lokalni dvig temperature, ki ga zaznamo kot prehodno povečanje IR sevanja vzorca. 
Izmerjena sprememba IR sevanja omogoča določitev globinskega temperaturnega profila, če so 
poznane termične lastnosti vzorca. S temperaturno profilometrijo SFTR je mogoče uspešno določiti 
porazdelitev absorberjev v močno sipajočih bioloških tkivih. Prednost temperaturne profilometrije 
SFTR pred komplementarnimi tehnikami je njena neinvazivnost.  

V disertaciji bomo predstavili razvoj in evalvacijo sistema SFTR za temperaturno profilometrijo v 
bioloških tkivih. Delo je potekalo na Odseku za kompleksno snov Instituta Jožef Stefan, Ljubljana, 
Slovenija in je obsegalo razvoj rekonstrukcijskega algoritma, numerično analizo, postavitev in 
optimizacijo laboratorijskega sistema SFTR ter eksperimente s tkivnimi fantomi. 

Povod za to delo je nepopolna uspešnost laserske terapije ognjenih znamenj. Ognjena znamenja so 
prirojene kožno-žilne tvorbe, ki jih sestavljajo patološko pomnožene in razširjene krvne žile v 
zgornjem milimetru kože. Zdravi se jih s selektivno fotokoagulacijo patoloških žil, pri čemer se 
uporabljata sunkovni zeleni laser (KTP; 532 nm) in rumeni/zeleni laser (sunkovni barvilni; 577 nm, 
585–600 nm). Ker se globina in velikost žil, količina krvi ter globina epidermisa spreminjajo od 
pacienta do pacienta, je potrebna individualna določitev parametrov (dolžina sunka, intenziteta in 
valovna dolžina svetlobe), kar omogoča temperaturna profilometrija SFTR. 

C.1          Teoretično ozadje 
Signal SFTR je konvolucija začetnega temperaturnega profila ∆T(z, t) 
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kjer sta λl in λh spodnja in zgornja meja spektralnega pasu, v katerem se zajema signal, R(λ) predstavlja 
občutljivost detektorja IR, Tb je osnovna temperatura, Bλ'(Tb) je odvod Planckovega zakona po 
temperaturi, µ(λ) je IR absorpcijski koeficient vzorca in GT(z', z, t) je enodimenzionalna Greenova 
funkcija za toplotno difuzijo. Konstanta C vsebuje emisivnost vzorca in ostale značilnosti sistema 
(izgube na lečju, vidni kot IR detektorja, itd.). 

Kadar smemo namesto µ(λ) uporabiti spektralno neodvisen koeficient µ, dvojni integral v (C.2) 
razpade na dva samostojna integrala 
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kjer je za dane eksperimentalne razmere prvi integral konstanten. Ko izračunamo drugi integral, 
dobimo analitičen izraz 
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1 2( , ) exp[ /(4 )] erfcx( ) erfcx( ) erfcx( ) erfcx( )
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hz t z D t u u u u
h

κ
µ− + +
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kjer  je erfcx(u) = [1 – erf(u)] exp(u2), /(2 )u Dt z Dtµ± = ± , 1 /(2 )u h Dt z Dt= + . Pri 
eksperimentalnem delu sta tako signal kakor temperaturni profil diskretna, zato (C.1) postane 
algebraična enačba, kjer je signalni vektor S enak produktu jedrne matrike K s temperaturnim 
vektorjem T 

  =S K T  (C.5) 

C.2          Postavitev eksperimenta 
Slika C.1 prikazuje shemo sistema SFTR. Na vzorec posvetimo s sunkom laserske svetlobe, pri čemer 
mora biti osvetljena površina precej večja kot površina, s katere zajemamo radiometrični signal, da se 
zagotovi veljavnost enodimenzionalnega približka predstavljenega zgoraj. Radiometrični signal se 
preko lečja IR zbere na detektorju IR. Signal z detektorja se ojača na predojačevalniku in se prenese 
preko analogno-digitalnega pretvornika v računalnik. S fotodiodo določimo čas, ko je bil izsevan 
laserski sunek. 

 
Slika C.1: Shema eksperimentalne postavitve sistema za temperaturno profilometrijo SFTR. A/D – analogno-
digitalni pretvornik. 

Kot izvir svetlobnega sunka pri tehniki SFTR se lahko uporabi katerikoli sunkovni izvor svetlobe, 
vendar v našem primeru uporabimo laser KTP (λ = 532 nm), saj tako zagotovimo enake razmere kot v 
primeru laserske terapije. Radiometrični signal zberemo na detektorju IR (InSb, λ = 3–5 µm,  
P5968-100, Hamamatsu) s silicijevimi lečami prevlečenimi z antirefleksno plastjo, ki zagotavlja ~98% 
prepustnost za svetlobo v srednjem območju IR (λ = 3–5 µm). Naš detektor IR ima vrh občutljivost pri 
λp = 5,3 µm,  največjo občutljivost Rp = 2,5 A/W, površino 0,78 mm2 in vidni kot 45°. Slika C.2 
prikazuje spektralni občutljivosti uporabljenega detektorja, alternativnega HgCdTe detektorja ter 
temperaturni odvod Planckovega zakona Bλ'(Tb). 
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Slika C.2: Relativna spektralna občutljivost R(λ) detektorjev InSb in HgCdTe (polni črti) in temperaturni odvod 
Planckovega zakona Bλ’(Tb) pri Tb = 303 K z največjo vrednostjo pri λ = 8 µm. 

V izmerjenemu radiometričnemu signalu se pojavi šum, ki ima več prispevkov. Prispevek, ki je 
odvisen od vpadne moči sevanja, je šum štetja, katerega amplituda je enaka 

  02sh sn e i f= ∆  (C.6) 

Pri tem so is signalni tok, ∆f frekvenčna širina in e0 osnovni naboj. Drugi prispevki so še termični šum, 
šum ojačevalnika, šum diskretizacije, itd. V radiometričnih signalih se pojavlja tudi 1/f šum, katerega 
spektralno gostoto opišemo kot 

  2 2 c
t bel 1fn n

f

α  
 = + 
   

% %  (C.7) 

pri čemer so f frekvenca zajemanja, fc kolenska frekvenca, α značilni eksponent in nbel spektralna 
gostota belega šuma. 

Eksperimentalno smo določili šum našega sistema in dobili sledeče vrednosti: amplituda celotnega 
šuma pri ∆f = 500 s-1 je približno nt = 3 × 10-10 A, kolenska frekvenca je fc = 15 ± 10 s-1 in eksponent  
α = 1,3 ± 0,4. 

C.3          Rekonstrukcijski algoritmi 
Inverzni problem SFTR (C.5) spada med slabo pogojene probleme, za katere je značilno, da so njihove 
rešitve zelo občutljive na motnje (npr., merski šum v signalu). Zato je reševanje tovrstnih problemov 
kompleksno in zahteva posebej prilagojene rekonstrukcijske algoritme. V ta namen smo razvili tri 
rekonstrukcijske algoritme. Prvi algoritem temelji na dekompoziciji po singularnih vrednostih (SVD), 
drugi na metodi konjugiranih gradientov (CG) in tretji na υ-metodi. 

Rešitev inverznega problema SFTR je potrebno primerno regularizirati, t.j. omejiti množico rešitev z 
vnaprej določenim kriterijem in tako pridobiti uporabno rešitev. Najprej izpostavimo regularizacijske 
parametre za naše tri algoritme. Parameter je v primeru SVD število singularnih vektorjev vključenih 
v rešitev p (metoda postane skrajšana SVD oz. TSVD) ter v primeru CG in υ-metode število iteracij i. 
Nato smo poiskali metodo določanja optimalnih vrednosti regularizacijskih parametrov iz množice 
razpoložljivih metod za vsak rekonstrukcijski algoritem posebej. V obsežni numerični simulaciji smo 
preizkusili kombinacije gornjih treh rekonstrukcijskih algoritmov s tremi metodami izbire 
regularizacijskih parametrov: princip razlike (DP), L-krivulja in metoda GCV. Rezultati simulacije so 
pokazali, da so optimalne sledeče kombinacije: CG in L-krivulja, TSVD in GCV ter υ-metoda in 
Monte Carlo GCV. Monte Carlo GCV je posebna različica GCV metode, ki je posebej prilagojena za 
iterativne algoritme. 
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Gornji rekonstrukcijski algoritmi lahko dajo rešitve, ki vsebujejo nefizikalne nenegativne vrednosti 
rekonstruiranih temperaturnih profilov. Zato je potrebno v algoritme vgraditi nenegativni pogoj, ki to 
pomanjkljivost odpravi. Tako smo v primeru υ-metode uporabili princip projekcije (P), ki poreže vse 
negativne vrednosti rešitve pri vsaki iteraciji algoritma. V primeru metod TSVD in CG smo bili 
primorani uporabiti princip projekcije-ponovitve (PR), saj P znatno zmanjša učinkovitost teh dveh 
algoritmov. Princip PR je razdeljen na notranjo in zunanjo zanko. V notranji zanki se izvaja 
nespremenjen regulariziran rekonstrukcijski algoritem, v zunanji zanki pa se po izteku notranje zanke 
njena rešitev prišteje rešitvi v zunanji zanki, ki se ji nato odrežejo negativne vrednosti. Zaporedje 
notranje in zunanje zanke se ponavlja, dokler ni zadoščeno vnaprej določenim kriterijem. Algoritme, 
ki vključujejo nenegativnost in avtomatsko regularizacijo, smo poimenovali P υ-metoda, PR-TSVD in 
PR-CGLS. 

Razvite algoritme smo nato primerjali z drugimi razpoložljivimi algoritmi in nato še med seboj. 
Najprej smo rezultate rekonstrukcije, objavljene v predhodni študiji SFTR, kjer je bil uporabljen 
komercialni algoritem Solver vključen v Microsoft Excel, primerjali z rezultati našega algoritma PR 
CGLS (Slika C.3). 
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Slika C.3: Temperaturni profili rekonstruirani (a) s komercialnim algoritmom (Solver v Microsoft Excel-u) in 
(b) našim namenskim algoritmom PR-CGLS. Prikazani rezultati so dobljeni v n oz. i korakih algoritmov. 

Očitno naš namenski rekonstrukcijski algoritem (Slika C.3b) omogoča natančnejšo rekonstrukcijo 
začetnega temperaturnega profila kot komercialni algoritem (Slika C.3a). Opravili smo tudi 
primerjavo med rekonstrukcijskimi rezultati, ki so jih dobili v eni izmed predhodnih študij SFTR z 
namenskim rekonstrukcijskim algoritmom, ki je temeljil na metodi CG in našimi tremi 
rekonstrukcijskimi algoritmi. Ugotovili smo, da imajo temperaturni profili, dobljeni z našimi 
algoritmi, približno 20% manjšo napako rekonstrukcije kot predhodni rezultati. Na koncu smo 
primerjali učinkovitost naših algoritmov med seboj in ugotovili, da so v povprečju rezultati vseh treh 
algoritmov primerljivi, vendar z algoritmom PR-TSVD občasno dobimo premalo regularizirano 
rešitev. 

C.4          Kalibracija  
Pri kalibraciji izmerjen signal SFTR prilagajamo na izmerjen odziv sistema SFTR na sevanje črnega 
telesa pri različnih temperaturah TBB. S kalibracijo odpravimo eksperimentalne značilnosti, kot so 
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prepustnost lečja, kot zajemanja in podobno ter odpravimo nelinearnost med radiometričnim signalom 
ter temperaturo telesa. 

Kalibracija se običajno opravlja v monokromatskem približku, kjer predpostavimo eno valovno 
dolžino λ, konstantno občutljivost detektorja R in IR absorpcijskega koeficienta µ. Izraz za kalibriran 
monokromatski signal ∆S(t) je enak 
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kjer sta h in c Planckova konstanta in svetlobna hitrost in kB je Boltzmannova konstanta. Kalibriran 
izraz se dodatno poenostavi, če ga lineariziramo 
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V lineariziranem monokromatskem signalu ∆S(t)L ni več prisotnih faktorjev, ki bi bili odvisni od λ. 
Vendar pa linearizacija, ki je sicer potrebna za reševanje inverznega problema SFTR (C.5), privede do 
linearizacijske napake. Z razvojem (C.8) v Taylorjevo vrsto in ohranitvijo členov reda velikosti  
∆T(z, t)2 dobimo oceno za velikost linearizacijske napake kalibriranega signala SFTR 
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Ocena (C.11) nam pokaže, da napaka pada s padanjem amplitude temperaturnega dviga ∆T(z, t) ter z 
naraščanjem valovne dolžine λ ter osnovne temperature Tb. V podporo analitični oceni smo izvedli 
numerično simulacijo, kjer smo izračunali napako zaradi linearizacije. V ta namen smo simulirali 
signale SFTR temperaturnih objektov s hiper-gaussovo obliko: ∆T(z,0) = Tp exp[-2(z–z0)4/w4] with Tp 
= 1 – 100 K, w = 30 µm in centralnimi globinami z0 = 100, 200 in 300 µm. Točne in linearizirane 
signale smo izračunali z integraloma (C.8) in (C.9), in sicer v 1000 točkah v časovnem intervalu 1 s. 
Uporabljeni eksperimentalni parametri so: λ = 4,5 µm, µ = 26,5 mm-1, Tb = 303 K, D = 0,11 mm2/s in  
h = 0,02 mm-1. 

Iz točnih signalov (enačba C.8) smo rekonstruirali temperaturne profile (Slika C.4), da bi ugotovili, 
kako napaka vpliva na kvaliteto rekonstrukcij. Za rekonstrukcijo smo uporabili P-υ-metodo.  

Iz slike C.8 je razvidno, da se vpliv linearizacijske napake zmanjšuje z manjšanjem amplitude Tp in 
večanjem globine objekta z0. Poleg površinskih artefaktov (glej puščice) se v primeru amplitud Tp = 50 
in 100 K ter globine z0 = 100 µm pojavi tud premik objekta proti večjim globinam. 

Poleg rekonstrukcij smo izračunali relativno napako linearizacije (slika C.9) za vse simulirane objekte. 
Relativna napaka skoraj izgine v 10–100 ms.  

Simulirali smo tudi točne ter linearizirane signale SFTR  za spektralne pasove s spodnjo mejo λl = 3,0–
4,9 µm in izračunali relativno napako na enak način kot v primeru monokromatskih signalov. Poleg 
enakih trendov kot v monokromatskem primeru, smo opazili, da linearizacijska napaka pada tudi z 
zožitvijo spektralnih pasov. 
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Slika C.8: Rekonstruirani temperaturni profili ∆T iz točnih monokromatskih kalibriranih signalov SFTR ∆S(t) 
(enačba C.8) za  (a) testne objekte na globini z0 = 100 µm s Tp = 1–100 K (glej označbe) in (b) testne objekte na 
globinah z0 = 100–300 µm s Tp = 50 K (glej označbe). Pravi testni objekt je dodan za primerjavo (črtkane črte). 
Puščice označujejo površinske artefakte zaradi linearizacijske napake. 
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Slika C.9: Relativna linearizacijska napaka za objekte 

z z0 = 100, 200 in 300 µm izračunana kot (∆S(t) – 

∆SL(t))/<∆S(t)>, kjer je <∆S(t)> povprečna vrednost  

∆S(t). Vrednosti temperaturnih amplitud so Tp = 1 – 

100 K (glej označbe), valovna dolžina je λ = 4,5 µm in 

IR absorpcijski koeficient je µ = 26,5 mm-1. 
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C.5          Efektivni IR absorpcijski koeficient 
V temperaturni profilometriji SFTR se običajno uporablja širok spektralni pas, saj se s tem izboljša 
razmerje med signalom in šumom (SNR). Hkrati se za rekonstrukcijo uporablja konstanten efektivni 
IR absorbcijski koeficient µeff, zato da se zmanjša računsko zahtevnost. Uporaba tovrstnega približka 
pri profilometriji v bioloških vzorcih SFTR, kjer je prisotna velika variabilnost µ(λ), lahko povzroči 
napake v rekonstrukciji temperaturnih profilov. 

Da bi ugotovili, kakšen je vpliv monokromatskega približka na kvaliteto rekonstrukcij in da bi poiskali 
optimalne vrednosti µeff za različne spektralne pasove, smo izvedli numerično simulacijo. Naši testni 
objekti so imeli hiper-gaussovo obliko (glej zgoraj) s parametri ∆T0 = 10 K, w = 100 µm in  
z0 = 100–400 µm. Uporabili smo spektralne (75% µ(λ) vode in 25% µ(λ) kolagena) in termične 
lastnosti (D = 0,11 mm2/s in h = 0,02 mm-1) značilne za človeško kožo. Spektralne signale SFTR smo 
simulirali za različne spektralne pasove detektorjev InSb (λ = 3,0–5,6 µm) ter dveh HgCdTe (λ = 3,0–
12,0 µm in λ = 3,0–14,0 µm). Temperaturne profile smo rekonstruirali iz simuliranih signalov z 
uporabo različnih vrednosti µeff. Kvantitativno smo ocenili napako rekonstrukcije kot 
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 (B.11) 

kjer sta T vektor rekonstruiranega profila in T0 vektor testnega objekta. Slika C.10 prikazuje 
rekonstrukcije testnega objekta na globini z0 = 300 µm, kjer so bile uporabljene premajhna (zgoraj), 
pravšnja (sredina) in prevelika (spodaj) vrednost µeff. Tako premajhna kot prevelika vrednost µeff 
očitno zmanjšata kvaliteto rekonstrukcije. 
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Slika B.10: Temperaturni globinski profil (sklenjene črte) rekonstruirane iz simuliranega signala SFTR za 
celoten pas detektorja InSb (λ = 3,0–5,6 µm). Uporabljena vrednost µeff je bila premajhna (zgoraj), skoraj 
optimalna (sredina) in prevelika (spodaj). Testni objekt je prikazan za primerjavo (črtkana črta). 

Za vsak simuliran spektralni pas in testni objekt smo določili optimalno vrednost µeff tam, kjer je bila 
napaka rekonstrukcije δ najmanjša. Slika C.11a prikazuje optimalne efektivne IR absorpcijske 
koeficiente µopt. Očitno vrednost µopt pada z globino objekta. Iz slike C.11b, ki prikazuje ustrezne 
vrednosti δ, je razvidno, da se napaka rekonstrukcije δ zmanjšuje z zoženjem spektralnega pasu, zaradi 
izboljšane veljavnosti monokromatskega približka. Iz slike je tudi razvidno, da napaka δ narašča z 
globino objekta. µopt(z0) smo uravnotežili z 1/z0 faktorjem ter tako dobili uteženo povprečje  µopt

 (Slika 
C.12), ki da zadovoljive rezultate za vse globine.  

Ker je določanje µopt iz rezultatov numerične simulacije zelo zamudno, smo izpeljali nov analitičen 
pristop za določanje µopt, ki sloni na rešitvah enačbe 
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Iz rešitev (C.12) µeff za dane spektralne pasove se nato izračuna µopt kot uteženo povprečje 
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Slika C.11: (a) Optimalni efektivni IR absorpcijski koeficient µopt(z0) za objekte na globinah z0 = 100–400 µm 
kot funkcija spodnje meje spektralnega pasu λl

 detektorja InSb. Zgornja meja spektralnega pasu je bila ves čas λh 
= 5,6 µm. (b) Pripadajoče relativne napake rekonstrukcije. 

Optimalni absorpcijski koeficienti µopt določeni iz rezultatov numerične simulacije in z našim 
analitičnim pristopom (C.12 in C.13) za detektor InSb, se zelo dobro ujemajo (Slika C.12). Za 
primerjavo so prikazane tudi µopt izračunane, kot je bilo predlagano v predhodnih študijah SFTR. 
Očitno je ujemanje slednjih z rezultati numerične simulacije precej slabše, kot v primeru novega 
analitičnega pristopa. 

Podobne rezultate smo dobili tudi za oba detektorja HgCdTe, kar nakazuje, da je predstavljen pristop 
uporaben za določitev µopt za poljuben detektor IR, spektralni pas in vzorec, če poznamo njihove 
spektralne odvisnosti. 
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Slika C.12: Analitične vrednosti µopt (C.13) kot funkcija λl (polna črta). Sivi trakovi označujejo interval, na 
katerem se nahajajo vrednosti µopt(z) za objekte na globinah z0 = 100–400 µm; beli krogi in črni kvadrati 
označujejo navadno in uteženo povprečje. Rezultati dveh predhodnih analitičnih pristopov k določitvi µopt so 
prikazani s črtkanima črtama. 
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C.6          Frekvenca zajemanja 
Parameter sistema SFTR je tudi frekvenca zajemanja podatkov f. V člankih na temo SFTR se 
pojavljajo frekvence med 200 in 2000 s-1, vendar brez navedbe dejstev, zakaj so bile take vrednosti 
izbrane. Odvisnost natančnosti rekonstruiranih temperaturnih profilov od f smo preverili z numerično 
simulacijo. Simulirali smo signale SFTR v pasu λ = 3,0–5,0 µm za testne objekte, kot posledico 
absorpcije svetlobe v plasti absorberja debeline 50 µm z začetkom na globinah  
z1 = 50–500 µm. Prednost takšnih testnih objektov je, da je mogoče analitično izračunati integral (C.1) 
in tako dobiti analitični izraz za ∆S(t). Signale smo izračunali za frekvence zajemanja  
f = 100–10.000 s-1 v času t = 1 s. 

Iz simuliranih signalov smo rekonstruirali pripadajoče temperaturne profile T in ugotovili, da v 
primeru, ko v signalu SFTR ni prisotnega šuma, signali z višjo frekvenco f omogočijo natančnejšo 
rekonstrukcijo temperaturnih profilov. 

V nadaljevanju smo simuliranim signalom dodali realističen šum z amplitudo ustrezno pasovni širini 
zajemanja ∆f. Iz signalov s šumom smo rekonstruirali profile testnih objektov, določili napako 
rekonstrukcije δ (Slika B.13a) in širino W (Slika C.13b). 
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Slika C.13: (a) Relativna napaka rekonstrukcije δ in (b) širina profila W kot funkciji frekvence zajemanja f za 
testne objekte na globinah z1 = 50–400 µm (glej oznake) in zašumljene signale SFTR. Siva črta v (b) označuje 
pravo širino objekta. Puščice kažejo optimalne vrednosti. 

Iz Slike C.13 je razvidno, da je v primeru zašumljenih signalov visoka frekvenca 10.000 s-1 optimalna 
samo za objekt na globini 100 µm, medtem ko je za globlje objekte optimalna frekvenca f = 1000–
2000 s-1. Prenizke frekvence (~100 s-1) vedno povzročijo neoptimalno rekonstrukcijo, kar je posledica 
pomanjkanja informacij v zajetem signalu. Zaradi nizkih vrednosti SNR signali zajeti z visoko 
frekvenco ne omogočajo kvalitetne rekonstrukcije globljih objektov. 

C.7          Tkivni fantomi 
Razvoj nove diagnostične tehnike zahteva izdelavo vzorcev z dobro definirano zgradbo in poznanimi 
snovnimi lastnostmi. Zato smo v namen evalvacije našega sistema SFTR izdelali tkivne fantome, ki 
temeljijo na vodnih gelih, katerih dobra lastnost je, da imajo podobne IR optične in termične lastnosti 
kot človeška koža. 

Prvi izmed uporabljenih gelov je agar, katerega prednost je preprosta izdelava tankih plasti. Mešanico 
agarja in vode smo pripravili tako, da smo v 6 ml destilirane vode vmešali 0,15 mg agarja v prahu. 
Polimerizacijo smo sprožili v mikrovalovki, nakar smo tekočo zmes vlili v pripravljen kalup. Ko je 
agar polimeriziral, smo dobili homogene plasti agarja, katerih debelina je bila od nekaj 10 µm 
navzgor. 

Drugi uporabljen vodni gel je želatin. Mešanico želatina smo pripravili tako, da smo v 75 masnih % 
vode vmešali 25 masnih % želatina v prahu. Mešanico smo segreli v vodni kopeli pri temperaturi  
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75 °C ter tako sprožili polimerizacijo. Tekočo zmes želatina in vode smo vlili v kalup, ga postavili v 
hladilnik in počakali na konec polimerizacije. Na tak način smo dobili plasti želatina poljubnih debelin 
(najmanjša debelina je bila ~30 µm).  

Za obe vrsti gelov smo izmerili IR spekter µ(λ) ter poiskali vrednosti difuzijskih konstant. V gele smo 
vmešali tudi ustrezno količino sipalca, da bi lastnosti tkivnih fantomov še dodatno približali pravi 
koži. 

Naslednja stopnja je bila priprava absorpcijske plasti. Možen način priprave je tanek nanos finega 
ogljikovega prahu na površino gela, nakar se to plast prekrije z drugo plastjo gela. Drug način priprave 
je uporaba tanke absorbirajoče folije, ki se jo vloži med dve plasti gela. Tretji način je vmešanje 
absorberja v plast gela (npr. črnilo). Več plasti gela in absorberjev se sestavi v tkivni fantom, ki ga 
shematsko prikazuje Slika C.14.  

 
Slika C.14: Shema tkivnega fantoma z eno plastjo absorberja. Vodna kopel prepreči nastanek zračnih 
mehurčkov na stiku med plastmi. 
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Slika C.15: Rekonstruirani temperaturni profili s treh mest na vzorcih A in D. Signali SFTR so bili zajeti s 
polnim (črtkana črta; λ = 3,0–5,6 µm) in zoženim spektralnim pasom (polna črta; λ = 4,5–5,6 µm). 

Kot se je izkazalo v primeru iskanja optimalne vrednosti µeff, zoževanje spektralnega pasu izboljša 
veljavnost monokromatskega približka. Vendar pa zoževanje povzroči zmanjševanje SNR zajetih 
signalov SFTR, kar pa tudi poslabša kvaliteto rekonstrukcije. Torej obstajajo spektralni pasovi, kjer je 
skupen efekt obeh motenj minimalen in s tem omogočajo optimalno rekonstrukcijo. Zato smo izvedli 
eksperiment na tkivnih fantomih iz agarja, ki so vsebovali eno plast absorberja na globini 130, 280 in 
450 µm (vzorci A, B in C) ter dve plasti absorberja na globinah 240 in 440 µm (vzorec D). Signale 
SFTR smo zajeli v spektralnem pasu λ = 3,0–5,6 µm in v zoženem spektralnem pasu λ = 4,5–5,6 µm. 
Za oba pasova smo določili µopt ter iz signalov rekonstruirali temperaturne profile v vzorcih. Globine 
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absorpcijskih plasti smo hkrati določili tudi z optično koherenčno tomografijo (OCT) in histološko 
rezino pod optičnim mikroskopom. 

Slika B.15 prikazuje rekonstruirane profile vzorcev A in D v primeru celotnega (črtkana črta) in 
zoženega spektralnega pasu (cela črta) na treh različnih mestih na vzorcu. V obeh primerih je 
izboljšanje rekonstrukcij zaradi zoženja spektralnega pasu očitno. V primeru globljih vzorcev B in C 
izboljšanje rekonstrukcij ni tako očitno. 

Slika C.16 prikazuje slike OCT vzorcev A in D. Globine absorpcijskih plasti določenih iz 
rekonstruiranih profilov in iz slik OCT se ujemajo v okviru merske napake. Razlike med globinami 
določenimi z OCT ali SFTR ter tistimi, določenimi iz histološke slike, so nekoliko večje, kar je 
posledica priprave histološke rezine. Pomembna ugotovitev je tudi, da se globine določene za poln oz. 
zožen spektralni pas ne razlikujejo bistveno, kar pomeni, da spektralno filtriranje ne vpliva bistveno na 
natančnost določenih globin. 

 

 
Slika B.16: Sliki OCT vzorcev (a) A in (c) D. Zgornji puščici kažeta površino vzorca, spodnji puščici globoko 
absorpcijsko plast in sredinska puščica v primeru vzorca D kaže prvo plast absorberja. 
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Slika C.17: (a) Relativna napaka rekonstrukcije δ kot funkcija λl za testne objekte A–D (glej oznake). (b) Širina 
rekonstruiranih temperaturnih profilov W. D1 in D2 predstavljata prvi in drugi vrh objekta D. Standardne 
deviacije so prikazane kot palice. Črtkana črta v (b) prikazuje točno širino testnih objektov (W = 47 µm). Puščice 
kažejo optimalne vrednosti.  
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Eksperimentalne rezultate smo podprli z rezultati numerične simulacije, kjer smo simulirali signale 
SFTR za testne objekte, ki so ponazarjali eksperimentalne temperaturne profile. Signale SFTR smo 
simulirali za različne spektralne pasove s spodnjo mejno valovno dolžino λl = 3,0–5,0 µm in zgornjo 
mejno valovno dolžino λh = 5,6 µm. Rezultati simulacij so pokazali, da primerno spektralno filtriranje 
(λl = 3,8–4,0 µm) zmanjša napako rekonstrukcij δ (Slika C.17a) in razširitev profilov W (Slika C.17b). 

C.9          Spektralno filtriranje v kolagenskih vzorcih 
Učinek spektralnega filtriranja na kakovost rekonstrukcij smo preverili tudi v kolagenskih vzorcih, ker 
so ti po lastnostih bolj podobni človeški koži kakor vzorci iz agarja. Najprej smo izvedli numerično 
simulacijo, kjer smo simulirali signale SFTR temperaturnih profilov s hiper-gaussovo obliko na 
globinah z0 = 50–640 µm in širino w = 33 µm in signale temperaturnega profila z dvema hiper-
gaussovima vrhovoma na globinah 50 in 280 µm. Signale SFTR smo simulirali za spektralne pasove 
detektorja InSb z λl = 3,0–5,0 µm ter jim dodali ustrezno količino realističnega šuma, ki je vključeval 
tudi 1/f šum. Ker so rezultati rekonstrukcije zelo občutljivi na praktično izvedbo šuma, smo vsakemu 
brezšumnemu signalu SFTR dodali po 30 različnih realizacij šuma. Iz signalov smo rekonstruirali 
temperaturne profile z uporabo υ-metode. Pri rekonstrukciji smo uporabili dva pristopa: rekonstrukcija 
z monokromatsko jedrno matriko (monokromatska rekonstrukcija), kjer smo µopt določili, kot je 
opisano zgoraj, ter s točno jedrno matriko (spektralna rekonstrukcija). Rezultate smo statistično 
obdelali in določili relativno napako rekonstrukcije δ in širino W. 
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Slika C.18: Relativna napaka rekonstrukcije δ in standardna deviacija σδ (palice) kot funkciji λl za primer 
monokromatske rekonstrukcije (črni krogci) in spektralne rekonstrukcije (prazni krogci). Napake so bile 
določene za testne objekte na globinah (a) z0 = 50 µm in (b) z0 = 100 µm. Puščice kažejo optimalno λl. 

Izkaže se, da monokromatska rekonstrukcija v primeru spektralnih pasov λl = 4,0–4,5 µm da najbolj 
kvalitetne rekonstrukcije, kar je razvidno iz Slike C.18, kjer je prikazana relativna napaka 
rekonstrukcije δ v odvisnosti od λl za objekta na globinah z0 = 50 in 100 µm. Podobne rezultate za δ 
smo dobili tudi za temperaturni objekt z dvema vrhoma. Pri globljih objektih je efekt spektralnega 
filtriranja zakrit v standardni deviaciji relativne napake δ, ki je posledica nižjih vrednosti SNR. 
Podobne trende kot za δ smo dobili tudi za W in Tp. Slika C.18 prikazuje tudi napako rekonstrukcije δ 
za primer spektralne rekonstrukcije in za temperaturna objekta na globinah z0 = 50 in 100 µm. Za 
razliko od monokromatske rekonstrukcije, vsi spektralni pasovi z λl = 3,0–4,5 µm dajo rekonstrukcije 
primerljive kvalitete. S spektralno rekonstrukcijo dobljeni temperaturni profili imajo manjšo napako δ 
kakor tisti dobljeni z monokromatsko rekonstrukcijo pri istem spektralnem pasu. Podobne rezultate 
kot za objekta z z0 = 50 in 100 µm smo dobili tudi za objekt z dvema temperaturnima vrhoma, medtem 
ko je za globlje objekte odvisnost od spektralnega pasu skrita v standardni deviaciji δ. Podobne trende 
kot za δ smo opazili tudi pri W. 

Numerične rezultate smo podprli tudi z eksperimentom na kolagenskih vzorcih. Signale SFTR smo 
zajeli v celotnem spektralnem pasu detektorja InSb. Tako z monokromatsko kot spektralno 
rekonstrukcijo smo dobili primerljive rezultate. 



C.10          Natančnost temperaturne profilometrije SFTR 117

 

Če povzamemo, spektralno filtriranje izboljša natančnost rekonstruiranih profilov, kadar se uporabi 
monokromatska rekonstrukcija. V primeru spektralne rekonstrukcije taka izboljšava ni opazna. 
Upoštevati pa je potrebno, da naša simulacija ni vključevala napake linearizacije, za katero smo 
ugotovili, da se zmanjšuje s spektralnim filtriranjem.  

C.10          Natančnost temperaturne profilometrije SFTR 
Pri temperaturni profilometriji SFTR je znan pojav razširitve in atenuacije temperaturnih profilov z 
globino, medtem ko je določanje lege absorbirajočih struktur precej dobro. Da bi ocenili omejitve 
našega sistema SFTR, smo izvedli eksperiment na tkivnih fantomih iz agarja. 

Pripravili smo 7 tkivnih fantomov z eno plastjo absorberja na globinah 40, 130, 270, 420, 600, 750 in 
900 µm ter tri fantome (B1–D1) z absorpcijsko plastjo na globinah 180, 300 in 470 µm. Za absorber je 
služila tanka folija debeline ~20 µm. Vsak vzorec smo osvetlili z 1 ms dolgimi  laserskimi sunki 
svetlobe iz laserja KTP/Nd:YAG (λ = 532 nm; DualisVP, Fotona, Ljubljana, Slovenija). Uporabili smo 
tri različne energije sunkov (H = 3,0, 5,0 in 7,8 J/cm2). Signale s frekvenco 50.000 s-1 smo zajemali z 
uporabo celotnega pasu InSb detektorja (λ = 3,0–5,6 µm). S povprečenjem smo znižali  frekvenco 
signalov na 1000 s-1 in frekvenčno širino zajemanja na 500 s-1. Na ta način smo zmanjšali amplitudo 
šuma v signalih. Profile smo rekonstruirali z uporabo spektralne jedrne matrike, kjer je µ(λ) ustrezal 
izmerjenem spektru za agar. Poleg profilometrije SFTR smo izmerili globino vseh vzorcev še z 
optičnim mikroskopom in na treh ločenih vzorcih (B1–D1) z mikro magnetno resonančnim slikanjem 
(MRI). 
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Slika C.19: (a) Povprečni temperaturni profili (polne črte)  in standardne deviacije (sive palice) rekonstruirani iz 
10 signalov SFTR zajetih z vzorcev B1–D1 pri H = 3,0 J/cm2. (b) Mikro-MRI vzorcev B1 (levo), C1 (center) in 
D1 (desno). Zgornje puščice kažejo površino fantoma in spodnje puščice kažejo absorpcijsko plast. 

Slika C.19a prikazuje rekonstruirane profile vzorcev B1–D1 in Slika C.19b mikro-MRI istih vzorcev. 
Ugotovili smo, da se globine absorpcijskih plasti določene s SFTR popolnoma ujemajo z globinami 
določenimi z mikro-MRI. Podobno ujemanje smo dobili za preostale vzorce med SFTR in optično 
mikroskopijo. Iz slike C.19a je razvidno tudi, da se temperaturni profil z globino razširja in niža. 
Izkaže se, da na razširitev poleg globine vpliva tudi SNR. Da bi dobili oceno razširitve, smo izvedli 
numerično simulacijo, kjer smo za testne objekte uporabili delta plasti, ki se nahajajo na istih globinah 
kot eksperimentalne absorpcijske plasti. Signale SFRT smo simulirali pri enakih pogojih, kot je 
potekal eksperiment, kar pomeni, da smo jim dodali tudi ustrezen šum z eksperimentalno določeno 
amplitudo. Na podlagi numeričnih rezultatov smo predpostavili sledečo zvezo za oceno razširitve 
temperaturnih profilov 

0 0
2000 m( , ) 0,133w z SNR z

SNR
µ

= +   (C.14) 
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Iz (C.14) je razvidno, da je v primeru visokega SNR razširitev profilov enaka ~13% globine profila. 
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Slika C.20: Razširitev w(z0, SNR) delta plasti (črtkane črte) izračunane z (C.14) za globine in SNR vrednosti, 
dobljene pri eksperimentu za energije H = 3,0 (levo), 5,0 (center) in 7,8 J/cm2 (desno). Ocenjena širina, ki 
vključuje efekt razširitve w(z0, SNR) in dejanske debeline plasti (črni krogci) ter izmerjena širina 
eksperimentalnih temperaturnih profilov (prazni krogci). 

Slika C.20 prikazuje širine absorpcijskih plasti izmerjene iz rekonstruiranih temperaturnih profilov v 
vzorcih A–G (prazni krogci), razširitev ocenjeno z (C.14) (črtkana črta) in oceno, ki upošteva tako 
razširitev kakor dejansko širino absorpcijske plasti (polni krogci). Ujemanje med dejansko širino in 
ocenjeno širino je zadovoljivo, kar kaže, da je (C.14) dobra ocena razširitve za naš SFTR sistem in 
dane eksperimentalne pogoje. Pomembno je navesti, da so v prejšnjih SFTR študijah objavili oceno za 
spodnjo mejo razširitve 25% globine profila, ki je bila dobljena z numerično simulacijo brezšumnih 
signalov in brez napake linearizacije. Naša ocena razširitve je skoraj 2-krat manjša. 
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