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Abstract

In this dissertation we present the development and evaluation of pulsed photothermal radiometric
(PPTR) temperature depth profiling in biological tissues. Motivation for this work is incomplete
success in laser therapy of port-wine stain birthmarks (PWS). PPTR technique, which utilizes infrared
(IR) emission from materials following pulsed laser exposure, can provide information about PWS
depth and epidermal thickness, both required to optimize the therapy.

We develop three original reconstruction codes, which are based on truncated singular value
decomposition (TSVD), conjugated gradient (CG) and the v-method, respectively. All codes involve a
non-negativity constraint to the sought temperature vector and automatic regularization. When applied
to different test objects, all three codes produce reconstruction results, which are much more accurate
than the results published in earlier PPTR studies.

Calibration of PPTR signals and the error due to linearization of PPTR signal expression is analyzed.
We find that the linearization error depends on temperature amplitude, absorber depth, acquisition
time, and the spectral acquisition band.

PPTR measurements commonly employ broad-band signal acquisition to increase signal-to-noise ratio
(SNR), but all reported studies use a fixed effective IR absorption coefficient (). We show that in
samples with large spectral variation of u(4) in mid-IR, which includes most biological tissues,
selection of u.s strongly affects the accuracy of the results. A novel analytical approach to
determination of optimal ¢ from spectral properties of the sample and radiation detector is presented.
In extensive numerical simulation of PPTR temperature profiling in human skin using different IR
detectors and spectral bands, we demonstrate that our approach predicts viable values of g

The influence of spectral filtering on the accuracy of temperature profiles is studied by a systematic
experimental comparison of PPTR temperature profiling on agar tissue phantoms utilizing the
customary spectral band of the InSb detector (A = 3.0-5.6 um) and a narrowed acquisition spectral
band (4 = 4.5-5.6 pm). To support our experimental observations, we present also a detailed numerical
simulation of the experimental procedure utilizing spectral acquisition bands with the lower
wavelength limit varied between 4, = 3.0 pm and 5.0 um and the upper wavelength limit fixed at 5.6
pum. The experimental and numerical simulation results indicate that spectral filtering reduces
reconstruction error and broadening of temperature profiles, especially for shallower and more
complex absorbing structures. Analogously, we performed the experiment and numerical simulation
involving gelatin tissue phantoms, which more closely resemble human skin. Again, we find that a
suitable spectral filtering (4, = 4.0-4.5 pum) is beneficial, despite the associated reduction of SNR.

We determine experimentally the accuracy of PPTR temperature depth profiling in custom tissue
phantoms composed of agar gel layers separated by single very thin absorbing layers. The laser-
induced temperature depth profiles, reconstructed from measured PPTR signals, correlate very well
with absorber depths determined by magnetic resonance imaging and optical microscopy. We observe
significant broadening and attenuation of reconstructed profiles with increasing depth of absorbing
layer. Corresponding numerical analysis indicates that the broadening equals to ~13% of the absorber
depth. Using a numerical simulation we also analyzed, how the accuracy of reconstructed temperature
profiles depends on sampling frequency.

PACS: 02.30.Zz, 42.30.Wb, 42.62.Be, 87.57.Gg, 87.63.it, 87.64.Cc, 87.50.W-, 87.61.Ff

Keywords: pulsed photothermal radiometry (PPTR), temperature depth profiling, image
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Povzetek

V disertaciji je predstavljen razvoj in evalvacija sunkovne fototermalne radiometrije (SFTR) za
temperaturno profilometrijo v bioloskih tkivih. Motivacija za to delo je nepopoln uspeh laserske
terapije ognjenih znamenj (OZ). SFTR tehnika, ki izrablja infrardece (IR) sevanje snovi pogrete zaradi
laserskega sunka, omogoca dolocitev globine OZ in debeline epidermisa, podatkov pomembnih za
optimizacijo zdravljenja OZ.

Zato smo razvili rekonstrukcijske algoritme, ki omogocajo reSevanje inverznega problema SFTR.
Algoritmi temeljijo na metodah dekompozicije po singularnih vrednostih (TSVD), konjugiranih
gradientov (CG) in v-metodi. V vse algoritme smo vkljucili pogoj nenegativnosti in avtomatsko
regularizacijo. Ko smo jih preizkusili na razlicnih testnih objektih, vsi trije algoritmi vrnejo
rekonstruirane resitve, ki so precej natancnejse od rezultatov objavljenih v predhodnih $tudijah SFTR.

Nato smo analizirali kalibracijo SFTR signalov in napako linearizacije izraza SFTR signala. Ugotovili
smo, da je napaka odvisna od amplitude in globine temperaturnih profilov, ¢asa zajemanja in
spektralnega pasu zajemanja.

SFTR meritve se obicajno opravlja v sirokem spektralnem pasu, saj se s tem izbolj$a razmerje med
signalom in Sumom. Vendar pa se hkrati uporablja konstantna vrednost IR absorpcijskega koeficienta
Uesr- Pokazali smo, da pri vzorcih z veliko variacijo IR spektra u(4), kar vkljucuje vecino bioloskih
vzorcev, izbira s bistveno vpliva na kvaliteto rekonstrukcije. Predstavili smo nov pristop
analiticnega dolocCanja optimalne vrednosti ., ki vkljuCuje spekter u(1) vzorca in spektralno
obcutljivost IR detektorja. Z obsezno numeri¢no simulacijo smo pokazali, da na$ analiti¢ni pristop da
optimalne vrednosti .

Vpliv spektralnega filtriranja na tocnost rekonstruiranih temperaturnih profilov smo proucili s
sistematicno eksperimentalno primerjavo temperaturne profilometrije SFTR v tkivnih fantomih iz
agarja, pri ¢emer smo uporabili celoten (4 = 3,0-5,6 um) in zoZen spektralni pas (1 = 4,5-5,6 um)
detektorja. V podporo eksperimentalnim rezultatom so izvedli tudi numeri¢no simulacijo eksperimenta
za razlicne spektralne pasove med A = 3,0 in 5,6 um. Tako eksperimentalni kot numeric¢ni rezultati
nakazujejo, da zozenje spektralnega pasu zmanjsa napako rekonstrukcije in razsiritev rekonstruiranih
temperaturnih profilov, e posebej za plitve in kompleksnejse absorbirajoce strukture. Izvedli smo tudi
eksperiment in numeri¢no simulacijo za kolagenske tkivne fantome, ki posnemajo lastnosti ¢loveske
koze bolje kot agar. Tudi v tem primeru smo ugotovili, da spektralno filtriranje izboljSa rezultate
rekonstrukcije, navkljub zmanj$anem razmerju signal-Sum.

Eksperimentalno smo dolocili natan¢nost nasega sistema SFTR na fantomih iz agarja, ki so vsebovali
eno tanko plast absorberja na razli¢nih globinah. Globine rekonstruiranih temperaturnih profilov se
zelo dobro ujemajo z globinami, ki smo jih dolocili z opticno mikroskopijo ali mikro magnetno
resonan¢nim slikanjem. OCcitna pa je razSiritev in atenuacija temperaturnih profilov z narasc¢ajoco
globino absorbirajoc¢e plasti. Izvedli smo tudi numeri¢no simulacijo in na podlagi eksperimentalnih in
numericnig rezultatov ugotovili, da efekt razsiritve znasa do 15% globine absorberja.

PACS: 02.30.Zz, 42.30.Wb, 42.62.Be, 87.57.Gg, 87.63.it, 87.64.Cc, 87.50.W-, 87.61.Ff

Klju¢ne besede: sunkovna fototermalna radiometrija (SFTR), temperaturna globinska profilometrija,
rekonstrukcija slike, infrardeca absorpcija
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Chapter 1

Introduction

Nowadays, cooperation between physics and medicine has become tighter than ever before. Physics
provides medicine with new explanations, tools for diagnostics and treatment, while medicine presents
physics with challenges from a completely new world. There are countless areas of cooperation; just to
name some of them: x-rays, MRI, biomedical optics." The advent of lasers had a great impact on
modern surgery, diagnostics of eye diseases, cancer, etc. In the dissertation we are presenting the
development and evaluation of a radiometric technique known as pulsed photothermal radiometry
(PPTR).

The motivation for this work is incomplete success in laser therapy of port-wine stain (PWS)
birthmarks. PWS are permanent hypervascular lesions in human skin, which consist of an excess of
ectacic blood vessels. These are usually fully contained within the most superficial millimeter of the
skin. The exact depth varies from patient to patient, but on average, the highest fractional blood
content is found 200-400 um below the epidermal-dermal junction.” PWS are currently treated by
selective photocoagulation of the ectatic vasculature using pulsed green or yellow/orange laser. In
order to optimize laser therapy parameters (pulse duration, radiant exposure, and light wavelength) on
an indiviéizlal patient basis, determination of PWS depth, epidermal thickness, and epidermal heating is
required.™

PPTR is a noncontact technique, which utilizes infrared (IR) emission from materials following pulsed
laser exposure. Selective absorption of laser radiation in subsurface cromophores results in localized
heating and may be detected as transient increase in IR emission from tissue surface. When thermal
properties of the sample are known, the laser-induced temperature profile can be reconstructed from
acquired radiometric signals. Such PPTR temperature profiling was recognized as a promising
technique for non-invasive determination of structure and cromophore distribution in strongly
scattering biological tissues and was extensively investigated.” '

In contrast to alternative diagnostic techniques, which utilize detection of scattered or frequency
converted light from the irradiated tissue (e.g., optical coherence tomography,"” diffuse optical
tomography,'* ultrasound-modulated optical tomography'”), PPTR provides a signal amplitude that is
directly related to the initial space-dependent temperature increase in targeted cromophores. An
important advantage of PPTR over the photoacustic technique'® is that the measurement is made
without touching the sample. For example, resting a photoacustic probe on the skin surface for several
seconds may change the hydratation of stratum corneum, while slightly heavier contact will change
the hemodynamics in the area under the probe.

In the dissertation we present development and evaluation of a PPTR system for temperature profiling
in biological tissues performed at the Complex Matter Department at the Jozef Stefan Institute in
Ljubljana, Slovenia. The work involved development of novel reconstruction algorithms, numerical
analysis of PPTR profiling, construction and optimization of a laboratory PPTR system and
experiments on tissue phantoms.

The dissertation is structured as follows. The PPTR temperature profiling inverse problem is derived
in Chapter 2. Chapter 3 describes the actual PPTR temperature profiling setup. Expressions for
radiometric signal and measurement noise are derived, which are then used in experimental
characterization of our PPTR temperature profiling system. In Chapter 4 we develop original
reconstruction codes for solving the PPTR temperature profiling inverse problem. The calibration
procedure and error estimation due to simplifications of PPTR signal expression are presented in
Chapter 5. Chapter 6 presents the effect of the monochromatic approximation deficiency on

13



14 Chapter 1 Introduction

reconstructed temperature profile for different spectral acquisition bands, and an analytical approach
for determination of the optimal effective absorption coefficient. Chapter 7 analyzes the influence of
the sampling rate.

Second part of the dissertation presents experimental evaluation of the PPTR system performance. We
begin with construction of tissue phantoms, which serve as test samples in our experiments
(Chapter 8). The experiments and numerical simulations on agar (Chapter 9) and collagen gel tissue
phantoms (Chapter 10) demonstrate the effect of spectral filtering on reconstructed temperature
profiles. In Chapter 11 we analyze the accuracy of reconstructed temperature profiles, specifically the
depth and width of reconstructed temperature profiles. In Chapter 12 we summarize the main ideas
and conclusions.



Chapter 2

Theoretical background

The mechanism of PPTR signal generation was given in early work by Leung and Tam.'” Basic
relations for PPTR temperature depth profiling were first derived in one dimension and
monochromatic approximation,’” and later on extended to account for spectral variation of the sample
IR absorption coefficient (4) in the mid-IR detection range.'® The one-dimensional theory was also
extended to three-dimensions."’

We derive an expression for PPTR signal amplitude AS(f) in terms of the initial temperature depth
profile AT(z, 0) in a tissue immediately following pulsed laser irradiation. For the purpose of our
analysis, we assume that the tissue occupies a semi-infinite half-space. We use the one-dimensional
heat equation for the temperature increase ATz, £)*

O’AT  OAT

D +———-QAT =0 2.1
PR @D

with a mixed boundary condition at the air-tissue interface

OAT

0z z=0

—hAT

=0 2.2)

z=0

where D denotes the thermal diffusivity of tissue, which we assume is homogenous, / represents the
reduced heat transfer coefficient at the air-tissue interface. In addition to heat diffusion, heat can be
removed from the irradiated tissue also by the blood flow. The effect of blood flow is included in (2.2)
as the blood perfusion rate 0. We do not include heat loss due to radiation in (2.1), because it is
significantly smaller than heat conduction for typical experimental conditions. The Green’s function
solution to (2.1)~(2.2)*' represents temperature increase in the tissue at depth z and time ¢ in response
to instantaneous release of a planar impulse heat source at depth z* and time =0

e

J4rnDt

GT(Z'azst) =

{e—(z—z')2/4Dt 4o 2V /aD |:1 —hlarxDt erfCX(u)]} (2.3)

where

z+z'
=—+hD
u Y + t

and erfex(u) = exp(u’) erfc(u), where erfc(u) is the complementary error function. Because the
relaxation time due to blood perfusion (1/Q) in the microvasculature is much longer than the time of
measurement, the exponent function involving QO can be neglected from (2.3). Using the Green's
function solution, the temperature depth profile A7{(z, ¢) at an arbitrary depth z and time # is written as

AT(z, 1) = j iOAT(z,O) G, (z',2,0) dz (2.4)

The regular expression for radiometric signal of blackbody involving constant temperature 7}, can be
generalized to correspond to objects with non-homogenous temperature distribution by including
z-integral with factor u(4) exp(—u(4) z). Thus, the measured radiometric signal S(¢) is then given by

15



16 Chapter 2 Theoretical background

integrating Planck's expression for radiative emission B;(T;, + AT(z, ¢)) over all depths
Ay )
S@t) = C j R(A) u(A) j B,[T, +AT(z,t)] e P dz dA (2.5)
! =0

z=l

where 4, and 4, are the lower and upper limit of the detection spectral range, respectively, while R(1)
describes spectral sensitivity of the radiation detector. The constant C accounts for sample emissivity
and other experimental specifics (e.g., losses of collection optics, radiation detector field of view, etc.).
However, we obtain the regular expression for radiometric signal of blackbody by setting AT{(z, t) =0
and integrating the z-integral.

When the induced temperature rise AT{(z, t) is significantly smaller than T}, we can expand B;(T}) in
Taylor series, which leads to the linearized expression for the transient part of the spectrally composite
radiometric signal

Ay )
AS(t) = C j R(2) B, (T,) u(A) j AT(z,t) e *P* dz dA (2.6)
A

" z=0

where B,'(T) represents the temperature derivative of B;(7;). From (2.4) the PPTR signal is related to
the laser-induced temperature profile A7(z,0) by a simple convolution

AS(t) = ]O K(z,6) AT(z,0)dz 2.7)
z=0

with the kernel function K(z,¢) defined by (2.3)—(2.6):

A @
K(z,t) = C j R(A) B, (T,) u(2) j Gy(z',z,t) e P¥ dz' dA (2.8)
A 0

When using a spectrally invariant value u is justified (or assumed), K(z,7) can be simplified through
factorization of the double integral in (2.8):

Ay )
K(z,0) = C j R(A) B, (T,)dA ,uJ.GT(z’,Z,t) e dz! (2.9)
A 0

where, for given experimental conditions, the first integral yields a constant. This relation allows us to
establish a direct correspondence with earlier reports on PPTR depth profiling, disregarding the
spectral variation x(1). By inserting Gr(z’, z, ), the second integral results in°

Kk(z,t) = %exp[—z2 /(4D t)] {erfcx(u_) +erfex(u, )+ Zhh [erfcx(u+)—erfcx(u1 )] } (2.10)

with erfex(u) = [1 — erf(u)] exp(u?), u. = u/Dt + z/(2\[Dt), u,= h\[Dt + z/(2\/D1).

In experimental practice, PPTR signals are represented by vectors, and relation (2.7) becomes
multiplication of the initial temperature profile vector T (I; = AT(z;0)) with kernel matrix K (K;,;=
K(Z]‘, t,) AZ )

S=KT (2.11)



Chapter 3

Experimental setup

Figure 3.1 shows a schematic of an experimental PPTR system. The test object is irradiated with a
single pulse from a pulsed laser. The irradiation spot size must be large (typical diameter ~ 5 mm) as
compared to the surface of the studied volume of the sample (typical diameter ~ 1 mm), because one-
dimensional analysis is used. IR emission is monitored at normal incidence to the sample surface by a
radiation detector. IR radiation is collected on the detector by an IR collection lens. The electrical
response of the detector, after preamplification, is monitored by a fast analog-to-digital converter. A
silicon photodiode is used to detect the laser pulse onset. Digitized signals are stored and processed in
a personal computer.
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- 1 7 T e
mm I/ __—p— iR detecior
L I n T
. | / I ]
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Computer }»

Signal acquisition
and processing

Figure 3.1: Experimental setup for PPTR temperature profiling in biological tissues.

3.1 Pulsed laser source

Any pulsed light source, which is selectively absorbed in the sample, can be used to induce the initial
temperature profile. For PPTR temperature profiling in human skin, we most often apply the same
light sources as used for laser therapy: pulsed green (KTP/YAG, A = 532 nm) or yellow/orange lasers
(flashlamp-pumped dye, 577 nm and 585-600 nm). Since the above wavelengths are preferentially
absorbed in melanin and hemoglobin, which are located in epidermis and blood vessels, we obtain
information about epidermal thickness and blood vessel distribution. Furthermore, temperature
profiles similar to those induced during laser therapy are obtained when the above therapeutic lasers
are used.

The required pulse energies depend on the irradiation spot size, detector sensitivity and cromophore
absorption. Clearly, it is desirable to avoid any thermal damage. Pulse length 7 should ideally be about
1 ms or less to prevent excessive heat diffusion from induced temperature profiles. Table 3.1 lists
some combinations of excitation wavelength 4, radiant exposure H and pulse length 7 used for PPTR
temperature profiling in human skin. In our experiments we used a pulsed-dye laser (PDL) at
wavelength 585 nm with pulse length 1.5 ms (ScleroPlus, Candela, Wayland, MA, USA) and a KTP
laser generating 1 ms long 532 nm laser pulses (Dualis'", Fotona, Ljubljana).

17



18 Chapter 3 Experimental setup

Table 3.1: Some combinations of excitation wavelength 4, radiant exposure H and pulse length 7 used for PPTR
temperature profiling in human skin. PDL — pulsed dye laser, KTP — second harmonic Nd:YAG laser.

Laser type A (nm) H(J/em?®)  1(ms) References
PDL 585 7.0 0.45 6
PDL 577 0.5 0.001 9
KTP 532 3.4 2-10 19
PDL 585-600 5.0-6.0 1.5 18
3.2 IR radiation detector

Commercially available IR radiation detectors are divided into two groups: thermal and quantum
detectors. The former are not applicable to PPTR temperature profiling, because they have a low
signal-to-noise (SNR) ratios and they are not convenient for measurement of transient phenomena.
Common IR detectors involved in PPTR temperature profiling are liquid nitrogen cooled photovoltaic
InSb and photoconductive HgCdTe (MCT) quantum detectors. The main disadvantage of the
photoconductive detector is that it requires a mechanical chopper to modulate IR radiation. The
chopper limits the sampling rate to a few 1000 s, introduces additional measurement noise to the
radiometric signal, requires a lock-in amplifier and generates air current, which increases the heat loss
at the sample surface (/). Furthermore, InSb detector offers a more predictable responsivity,”> which is
especially favorable for numerical simulations. In contrast, MCT detector yields larger PPTR signals,
since wider spectral acquisition bands can be used, and the temperature derivative of Planck’s formula
B, (Ty) is larger for these spectral bands (see Fig. 3.3, dashed line). Considering the advantages and
weaknesses of both detectors, we have decided to use the InSb detector in our experimental setup.

R

%

A

Figure 3.2: Current mode preamplifier circuit for InSb detector. A represents IR radiation, is signal current, R¢
feedback resistor, and ¥ signal voltage.

Photovoltaic detectors are diodes made from semiconductor materials. InSb material typically has a
band gap of 0.22 eV at temperature 7 = 77 K, thus only photons with 4 < 5.5 um are detected. This
maximal detectable wavelength is called the cut-off wavelength (4.). When the diode is exposed to IR
radiation, it generates a current proportional to the photon arrival rate. Photovoltaic detectors are
commonly used in a current preamplifier circuit (Fig. 3.2), where voltage drop across the detector is
practically zero.

When monochromatic radiation of wavelength 4 and power P irradiates the photovoltaic detector, the
signal current i equals22

i =12 p

=T 3.1)



32 IR radiation detector 19

where # denotes quantum efficiency (about 0.64 for InSb), ¢, is the electron charge, / represents the
Planck’s constant and ¢ the speed of light. The spectral responsivity of a radiation detector R(4) is
defined as the signal output i; divided by the radiant input P, thus the theoretical spectral responsivity
of InSb detector is easily deduced from (3.1)

A
R(2) = ney (32)

Figure 3.3 shows relative spectral responsivity R(A)/R, for a specific InSb detector (P5968-100,
Hamamatsu) with the peak responsivity R, = 2.5 A/W at 4, = 5.3 um and a specific HgCdTe detector
(P3257, Hamamatsu) with the peak responsivity at 4, =10 um.

0.0 Asemst — ; ; ; 00

A, (um)

Figure 3.3: Relative spectral responsivity R(4) of InSb and HgCdTe (MCT) detectors (solid lines) with peak
responsivities at A, = 5.3 um and 10.0 um, respectively. Temperature derivative of Planck’s radiation formula
B;’(Ty) at T, = 303 K (dashed line) has the maximum at 8 pm.

3.2.1 Measurement noise

. . . . . 2223
Noise present in an IR detection system originates from a number of sources.™

Shot noise originates from the discrete nature of photodetection process. Its amplitude is
ny, =+2eyi, Af 3.3)

where Af represents frequency bandwidth. Frequency bandwidth is calculated as 1/(2ty), where #y is
the integration time.

Johnson noise originates from random motion of free charges. Its amplitude is

n = |Halad) (3.4)
R,
J

where kg is the Boltzmann’s constant, Ty represents temperature of the detector, and Ry is the feedback
resistance (see Fig. 3.2).

Other contributions to measurement noise include amplifier noise, digitalization noise and external
noises. Inasmuch as multiple noise sources are present, we can use the central-limit theorem to
estimate square of the total noise amplitude n, as the sum of squares of amplitudes of all noise
contributions.

While most noise contributions are spectrally invariant (“white”), so-called //f noise is often present in
radiometric signals. In general, the presence of 1/f noise is characterized by the corner frequency f;. and

exponent a. The total noise spectral density 7, is given by?
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i :ﬁgvhite (%} +1 (3.5

where 7. denotes the spectral density of white noise and f represents frequency. For discrete

radiometric signals, the total noise amplitude », and the noise spectral density 7, are correlated using
the discrete Parseval’s theorem™

N
> )
ng == e (3.6)

where f; represent the discrete frequencies and N denotes the number of radiometric signal and
spectral density data points.

33 Infrared optics

Figure 3.4 presents the transmittance 7(1) of three materials commonly utilized for mid-IR optics
(4 =3-5 um).
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Figure 3.4: Transmittance of broadband antireflex coated silicon (Tydex, St. Petersburg, Russia), sapphire
(MellesGriot), and CaF, (ThorLabs).

In our setup we use the broadband antireflex silicon IR optics because of large transmittance in the 4 =
3—6 pm spectral band and good mechanical characteristics. The collection optics consists of two
planoconvex silicon antireflex coated lenses (Galvoptics, Essex, UK) with transmittance 7' > 98% at

the 3—5 pm spectral band. The lenses are positioned in such a manner that magnification is M = 1 (Fig.
3.5).

Figure 3.5: Schematics of the 2-lens collection optics with magnification M = 1. The source area 4, equals the
detector active area 4, and the collection angle at the source §; matches the collection angle 6 at the IR detector.
Arrows indicate direction of IR radiation.
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3.4 Radiometric signal

Figure 3.5 presents a schematic of radiometric signal collection using the 2-lens collection optics with
M = 1. The source area A equals the IR detector active area 4 and the collection angle at the source 6;
matches the collection angle 6 of the IR detector. Expression for 8 follows from Fig. 3.5

tan@ = ? (3.7)

where r is the lens radius (i.e., aperture) and f represents its focal length.

The amount of radiant power emitted from the source area 4, at temperature 7, at wavelength A and
which falls within the solid angle d©2 around the direction specified by 6 is

dP, = £ B,(T,)cos0, 4, A (3.8)
T
where ¢ denotes the sample emissivity. The radiation power varies as the cosine of 65 (Lambert’s law).
The total radiation power P, emitted into the solid angle 6; is found by integrating (3.8)
P, =¢&sin’0, A, B,(T,) (3.9)
In absences of transmission lenses, the emitted power equals the collected power on the detector.

However, the power must be reduced for the collection optic losses. Hence, the analogous expression
to (3.8) for the collected radiation power is obtained

P,=¢T(1)sin*0 4 B,(T;) (3.10)

Accordingly, the radiometric signal i is detected in a broad spectral band between 4, and 4,

z
i = esin®0 4 [ T(2) R(2) By(Ty) dA (3.11)
A
3.5 Experimental characterization of our PPTR system

In our system, IR radiation is detected by a single-element InSb detector (P5968-100, Hamamatsu).
The detector properties, as specified by the manufacturer, are active area A = 0.79 mm’ (4 = 1 mm),
half-angle of the field of view 8 = 22.5°, and spectral responsivity R(1) with peak value R, = 2.5 A/W
at 4, = 5.3 pm (Fig. 3.3), while the cut-off wavelength is A, = 5.6 pm.

In addition, the manufacturer has specified measurement noise under specific conditions, where small
radiometric signal from a 500 K blackbody is detected in a background-limited regime (BLIP) at
modulation frequency of 1200 Hz, and with a small frequency bandwidth Af (1 Hz). The peak
detectivity D, , as a standard figure of merit*> can be calculated from the reported noise standard
deviation and the above detector parameters, resulting in Dp* =2.8 x 10" cm Hz"%/W. This value does
not include 1/f noise, which may dominate at lower frequencies, and other noise sources (i.e.,
amplifier noise, external noise sources), which may be present in an actual PPTR system. Therefore,
we have determined experimentally the noise parameters for our PPTR system.

We measured the response of the IR detector using a blackbody (BB701, Omega Engineering,
Stamford, CT, USA) set to different temperatures, Tsp = 288-232 K. The entire detector's field of
view was filled with radiation from the blackbody. The detector response at each 7gg was acquired
using the entire spectral band of the IR detector (4 = 3.0-5.6 um). The radiometric values were
acquired at a sampling rate of 50,000 s'. We have numerically reduced the sampling rate by
calculating the average value of 50 consecutive values (¢, = 1 ms). This yielded radiometric signals
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s(Tgp) with the sampling rate f= 1000 s and frequency bandwidth Af=500s".

We determined theoretical values of s(7gg) by inserting the blackbody temperature 7gg and the system
parameters into (3.11) and completing the 4 integral. The blackbody emissivity was ¢ = 0.94 and
transmittance 7 = 0.98 (both specified by the manufacturers). Figure 3.6 presents the average of
experimental radiometric signals (circles), which matches perfectly the theoretically predicted signal
values (/ine); thus (3.11) adequately predicts the PPTR system response when the above R(4) is used.
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4.0x10°
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3.0x10°1
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2.0x10 Theoretical

290 300 310 320
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Figure 3.6: Experimental (circles) and theoretical (/ine) radiometric signal values iy(7gp) determined for Tpp =
288-323 K and for the entire spectral band.

To obtain the noise spectrum each determined signal s(7gg) was Fourier transformed using the fft
function implemented in Matlab 14 (Mathworks, Natick, MA, USA). We fit (3.5) to the noise
spectrum to determine the noise parameters f. and a. The total noise amplitude n, was determined as
the standard deviation of s(7sg), albeit it could be found also from the noise spectrum using the
discrete Parseval’s theorem (Eq. 3.6). An example of a noise spectrum and the corresponding fit of
(3.7) is presented in Fig. 3.7. The 1/f noise evidently dominates at frequencies below ~20 s,

Fourier transform of s(7T,)

Figure 3.7: An example of a noise spectrum measured at 7gg = 303 K using the entire spectral band (black line)
and the best fit of function fztz (Eq. 3.5) (gray line). The determined noise parameters are total noise amplitude #,
=3.2x10" A, corner frequency f; = 15 s, and exponent o = 1.5.

In order to accurately discern between detector-specific noise ny and shot noise ng,, the detector
response at each 7 was acquired also using a long-pass IR filter (Barr Associates, Westford, MA; see
Fig. 3.8) placed between the blackbody and the detector.
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Figure 3.8: Transmittance of a long-pass IR filter with cut-on wavelength of 2 = 5 pm (Barr Associates,
Westford, MA).

Then, we calculated shot noise amplitudes ng, for each temperature 7gg and both spectral acquisition
bands by substituting the measured radiometric signals s(7gg) into (3.3). Figure 3.9 presents the
experimental noise amplitudes n; and shot noise amplitudes 7y, as a function of Tgg. For the entire
spectral band (Fig. 3.9a), values n, are scattered around the average value 3.1 x 10'° A with a standard
deviation of ~10"" A. Shot noise amplitudes ng, increase monotonically with increasing 7gg, but are
approximately 10 times smaller than n. For the reduced spectral band (Fig. 3.9b), n is
(2.9 +0.1) x 10" A. Since detector-specific noise obviously dominates in our PPTR system and the
average n, is almost identical for both spectral bands, a constant value n, = 3 x 107" A suitably
characterizes the total noise in our PPTR signals at Af=500s".
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Figure 3.9: Determined total noise amplitude n, (circles) and shot noise amplitude ng, (triangles) as functions of
Tgg for (a) the entire spectral band and (b) the reduced spectral band.

Radiometric signals measured by our PPTR system are dominated by the 1/f-noise at low frequencies
(Fig. 3.7). The average corner frequency is f; = 15 + 10 s™ and 10 = 8 s™' for the entire and reduced

spectral acquisition band, respectively. The average exponent is o = 1.3 £ 0.4 for both spectral
acquisition bands.






Chapter 4

Reconstruction algorithms

[ll-posed inverse problems arise quite often when one is interested in determining the internal structure
of a physical system from the system's measured behavior. It is well known that a small perturbation
of signal (i.e. noise) can substantially change the solution. Ordinary methods for solving algebraic
equations (i.e., inversion) do not succeed in solving ill-posed problems therefore special methods must
be used. A good survey of numerical methods applicable to general classes of algebraic equations is
provided b};éBjérck,25 while reconstruction algorithms suitable for the ill-posed problems are described
by Hansen.

In this chapter, we analyze the PPTR inverse problem using the singular value decomposition (SVD).
Then, we describe the development original reconstruction codes dedicated to solving the PPTR
inverse problem. Finally, we show that our reconstruction codes perform significantly better than the
general purpose algorithms available on the market and earlier dedicated codes for PPTR profilometry.

4.1 Discrete ill-posed problems

Basic relations of PPTR temperature profiling were derived in Chapter 2. The expression for PPTR
signal (2.7) represents a Fredholm integral equation of the first kind, which results in a discrete
forward problem (2.11). The calculation of kernel matrix components X;; (see Eq. 2.10) is a delicate
task, since it involves mathematical operations on very large (i.e., exponential function) and very small
numbers (i.e., error function). Hence, one must consider the order of mathematical operations and
include adequate approximations to avoid unwanted numerical errors (see the Appendix B). Equation
(2.11) represents the PPTR inverse problem for 7, which is commonly solved by iterative
minimization of the residual norm || § — K T |, yielding the best approximate solution T. A statistical
approach to the minimization problem can be found in Calvetti.”® The process of finding the
approximate solution 7 is also referred to as reconstruction.

4.1.1 Singular Value Decomposition

Singular value decomposition (SVD) is a useful tool for analysis of discrete ill-posed problems.”*

The SVD of the matrix K is a unique decomposition of the form

K=UZXV =) uov (4.1)

i=1

where U [ IR™™ and V[ IR™™ are matrices with orthonormal columns, U'U = V'V = I. The diagonal
matrix 2 has nonnegative diagonal elements o; sorted in nonincreasing order. The numbers o; are
called singular values of K, while the vectors u; and v; are left and right singular vectors of K,
respectively.

Using the orthonormal basis vectors #; and v;, we can write

T= Zn:(v,.TT) v, (4.22)

25
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n

§=%(u'S)u, (4.2b)

i=1

When (4.1) and (4.2) are inserted into (2.11), we obtain

n

Z(u,.TS)ul. = Zn:ai(va)u,. 4.3)

i=1 i=1
which leads to an expression for solution 7

T=YWsio)y, (4.4)

i=1

We now illustrate the characteristics of the PPTR inverse problem (2.11). The kernel matrix K is
calculated by evaluating (2.9), where the size of K is 1000 x 100, corresponding to time intervals Az =
Ims over 1s and to spatial resolution Az = 10 um extending to a depth of 1 mm. The heat diffusion
constant is D = 0.11 mm® s, the reduced heat transfer coefficient is # = 0.02 mm™, and the IR
absorption coefficient is = 50 mm™.

Singular values o; of the kernel matrix K are presented in Fig. 4.1. The singular values decay according
to the exponential law (g; ~ exp(- a i)), thus the PPTR inverse problem is classified as severely ill-
posed.”’ The more ill-posed is the problem, the slower is the convergence of regularization
algorithms.” Evidently, the accuracy of computed singular values is limited by the computational
platform (e.g., a personal computer with 32-bit precision has & = 2.22x10™°). As a result, o; settle at a
level which is approximately equal to the machine precision.
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Figure 4.1: Singular values g; of the kernel matrix K. Arrow indicates where the computer platform accuracy
(32-bit personal computer) prevents accurate calculation of further singular values.

Left singular vectors u; (white background) and right singular vectors v; (gray background)
corresponding to the largest eight singular values of K are shown in Fig. 4.2. Vectors with larger
indices i clearly present more sign changes. SVD gives an important insight the smoothing effect in
forward direction. While o; decrease the singular vectors u; and v; become more and more oscillatory.
The high-frequency components of T are more damped in § than the low-frequency components due
to multiplication with small ; (see Eq. 4.3). In contrast, division by o; in (4.4) amplifies the high-
frequency oscillations in S, thus amplifying high frequency components including the noise in S, and
deteriorating accuracy of the solution 7.
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Figure 4.2: Eight left singular vectors u; (white background) and right singular vectors v; (gray background) of
K. Horizontal dashed lines represent zero value.

4.2 Reconstruction algorithms

From a general perspective, we can choose between two classes of reconstruction algorithms: direct
algorithms that are based on decomposition, such as singular value decomposition (SVD), and
iterative algorithms.

A number of direct algorithms exist,”>*® but we focus on the truncated SVD (TSVD). An advantage of
the direct regularization methods is that the computational effort can be estimated a priori, because
they are based on standard operations and decompositions in numerical algebra.

Iterative algorithms are based on iteration schemes that access the kernel matrix K only via matrix-
vector multiplications, and they produce a sequence of iteration vectors 79, that converge toward the
desired solution. When iterative algorithms are applied to discrete ill-posed problems, the iteration
vector initially approaches the correct solution, but in later stages of the iterations, some other
undesired vector is obtained.*® This is referred to as semiconvergence. Iterative methods are preferred
when K is large, because explicit decomposition of K requires a large amount of computer memory.
We discuss below two iterative methods: the v-method and the conjugate gradient (CG) method.

4.2.1 Truncated SVD

In the ideal setting, without perturbations and rounding errors, the treatment of the PPTR inverse
problems (2.11) is simple. The optimal solution is computed by means of (4.4). In practice, there are
various types of errors in S, such as discretization and measurement errors, including noise. Also, K
may not describe accurately all the involved physical processes. Finally, accumulation of the rounding
errors cannot be avoided in computation of the inverse solution.

Yet, the effect of perturbations and rounding errors can be minimized by a choice of such integer p<n
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that a solution 7, close to the correct solution to the PPTR inverse problem is obtained by truncating
(4.4) after adding p SVD components to the solution. The solution 7, is referred to as the truncated
SVD solution and the method is referred to as truncated SVD (TSVD).*®

4.2.2 v-method

The v-method®' is an iterative method derived from the classical Landweber iterative method.”®
Landweber method has very slow convergence compared to the CG methods, but the v-method is
significantly accelerated by involving a weighted average of the last two iterates and allowing that
weight factors u; and w; (Algorithm 4.1) depend on iteration number i. The v-method is presented
Algorithm 4.1. Here, v is a prescribed real constant satisfying v | (0,1). Since convergence of the
method depends on value v, we performed some tests using different values of v, and find optimal
value v = 0.99 for our problem. The v—method does not converge if ||K], > 1, and the convergence is
fastest if || K]|, is slightly smaller than 1. Therefore we assured the convergence by substituting K and §
with a modified kernel matrix and signal vector, i.e. 4 and b (see 1*' and 2™ line of Algorithm 4.1). ),
where ¢ is a small real constant (e.g., ¢ = 10™°). The v—method features the semiconvergence, where the
regularization parameter is number of iterations .

Algorithm 4.1: The v-method. Vector T,., minimizes the expression ||S — K TP Vector S is provided as input.

A=K/ (K] + e);

b=S/(IK|>+e);

i=0;

T =0;

I‘(O)Zb;

repeat:
wi=1+@G-1)2i-3)2i+20-1)/[(F+20-1) (2i +4v-1) (2i + 20 -3)];
w;=4QRi-2v-1)(GE-v-1)/[( —20-1)2i+4v-1)];
TO=u TP+ (1 =) T2+ @, AT,
r9=b-A T(i);
i=i+1;

until (stopping criterion)

Te=T";

reg

4.2.3 Conjugate Gradients (CG)

The basic CG iteration scheme for non-selfadjoint matrices K is well known,** but several
implementation variants exist. A comprehensive survey of different CG variants was provided by
Hanke,” while a simple and understandable text about CG method was published by Shewchuk.”
Based on preliminary testing, we have selected the CG least-square (CGLS) algorithm presented in
Algorithm 4.2.%

An essential property of the CG iterates T  with residual vectors r ? = § — K T @ is that the
corresponding vectors K r ) are orthogonal. An important consequence is that if the starting vector T
© is zero, then the solution norm ||T ||, increases monotonically with i and the residual norm ||r”||,
decreases monotonically with i.*> The CG method produces iteration vectors in which the spectral
components associated with the large singular values converge faster than the remaining components,
hence the CG features an inherent semiconvergence.
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Algorithm 4.2: The CG least-square (CGLS) algorithm. Vector 7., minimizes expression [|S — K T|P. Vector S
is provided as input.

i=0;

TO =0:

F(O)ZS—KT(O)'

dO =K O

repeat:

i~ 1)) 2 i~ 1)) 2

= K" V) AV
TO=T6 Dy g KTpl D,
FO=p-D_ o g oD,
Bi= K" 0" /K I
d(i)ZKTr(i)'i‘ﬂid(FI) .
i=i+1;

until (stopping criterion) ;

Treg =T (i);

4.3 Regularization

An ill-posed problem can be regularized by adding a regularization term to the problem (e.g. Tikhonov
regularization),”* which penalizes large solution estimates. This regularization approach suffers from
low computational efficiency, because the reconstruction is repeated several times for different values
of regularization parameter. But the early termination approach significantly reduces computational
costs since each successive reconstruction algorithm step represents a new regularized solution.
Regarding the accuracy of reconstruction results of PPTR inverse problem, both approaches are
equal,’ thus we use early termination. The regularization parameter in TSVD is the number p of right
singular vectors v; included in the regularized solution T %), while the iteration number i serves as the
regularization parameter in CG and the v-method.

Since the experiments can often not be repeated, we would like to extract as much information as
possible from the given data. If we choose a regularization parameter smaller than the optimal
parameter, we leave out too much information and the regularization error dominates. In this case the
solution is over-regularized. On the other hand, if we choose a regularization parameter larger than
optimal, then the perturbation error dominates and the solution is under-regularized.

So far we have presented three different reconstruction algorithms, but no method for selection of the
regularization parameter. Although many parameter-selection methods exist,”® we discuss below the
discrepancy principle, the generalized cross validation and the L-curve method, which can be
successfully applied to our inverse problem.

4.3.1 Discrepancy Principle

In practice various types of errors are present in .§ and K. Common sources of error are measurement
noise, approximations, errors due to the discretization process, and also the rounding errors. We
denote the vector including all errors as e. If knowledge or an estimate of the norm of signal
perturbation |le|, is available, the discrepancy principle suggests stopping the iteration when the
corresponding residual norm is approximately equal to |||,
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‘b—KT%L:d (4.5)

&

where J. > ||e]|,. In general, the discrepancy principle tends to produce over-regularized solutions.

4.3.2 Generalized Cross-Validation

Generalized cross-validation (GCV) was first presented by Craven®® and Golub.*® GCV is an ||e]|,-free
method for choosing the regularization parameter based on statistical considerations. The optimal
regularization parameter oy is found at the minimum of the following GCV function G(7)

“S—KT(")2
2

[n-p(i)]

where p(i) is the sum of all filter factors in the regularized solution 7 (see Appendix A).
Unfortunately, the minimum can be very flat, which leads to numerical difficulties in computing the
minimum of G(7).

For TSVD, p(i) = i and thus the GCV function is simplified to

G(i) =

(4.6)

ls-x7f

: 4.7
(i) (4.7)

A different approach to computing the denominator in the GCV function, which is particularly
attractive for iterative methods, is to approximate the denominator by a statistical estimate. This
approach is called Monte Carlo GCV.” The idea is to simultaneously run the iterative method on the
given left-hand side .§ and on a random left-hand side § whose elements have a zero mean and
standard deviation g,. If T denotes the additional iteration vector corresponding to S, then

o [n-p(i)]=S"(S-KT") 38)

G(i)

This estimate can be used in the GCV function. However, the Monte Carlo CGV doubles the amount
of work in an iterative regularization method.
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Figure 4.3: G(i) as a function of added singular vectors i, when the unconstrained TSVD is applied to a
simulated PPTR signal with SNR = 100 (Fig. 4.6). Arrow indicates the minimum.

Figure 4.3 shows the GCV function G(7) (4.7) when the unconstrained TSVD is applied to a simulated
PPTR signal with SNR = 100 (see Fig. 4.6). The minimum of the curve is indicated by the arrow (i =
8).
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4.3.3 L-Curve

The L-curve criterion was first introduced by Lawson.™ It is based on a parametric plot of logarithm
of the norm ||7||, versus logarithm of the corresponding residual norm ||S — K 7|}, with the iteration
count i as the parameter. The L-curve theoretically consists of an almost horizontal and a steeply
ascending part. The horizontal part corresponds to over-regularized solutions and the ascending part
corresponds to under-regularized solutions. The L-shaped corner of the L-curve appears for
regularization parameter close to the optimal value, which balances the regularization and perturbation
errors in the regularized solution 7'(see Hansen,”® chapters 4 and 7).

Figure 4.4 shows the L-curve for the same example as in Fig. 4.3. It features a characteristic L-shape
with a distinct corner at i = 8.
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Figure 4.4: L-curve for the unconstrained TSVD applied to a PPTR signal with SNR = 100 (Fig. 4.6). Arrow
indicates the corner of L-curve (i = 8).

4.3.3 Regularization and reconstruction algorithms: summary

To find which combinations of regularization selection method and reconstruction algorithm are
optimal, we performed an extensive numerical simulation. We have combined the unconstrained
TSVD, v-method and CGLS with the above regularization parameter selection methods, and applied
these combined algorithms to PPTR signals for different test objects presented in the last section of
this chapter. Since the study was extensive, and the study details are not essential for this thesis, we
only summarize the results.

Optimal results were obtained when the v-method was combined with the Monte Carlo GCV, and
CGLS was combined with the L-curve method, while TSVD yielded comparable results when
combined with either GCV or L-curve. In contrast, the discrepancy principle was only useful if
accurate noise information was available.

We have found that GCV and L-curve occasionally yield under-regularized solutions, which was also
reported by Hansen.”® Hence, we have included in our reconstruction codes also the discrepancy
principle to improve their robustness.

4.4 Non-negativity constraint

One of the shortcomings of the discussed reconstruction algorithms is presence of unrealistic negative
temperatures in the solutions. Because we know that the temperature changes in PPTR profilometry
are strictly non-negative, it is very desirable that the reconstructed temperature profile 7 has only non-
negative values. Thus we search for solution of a constrained minimization problem

min|S - KT, subjec to 7, >0, foralli 4.9)
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Milner et al® reported a successful implementation of the non-negativity constraint into the CG
method. They observed significantly improved accuracy and increased robustness of reconstruction
results, when the non-negatively constrained reconstruction algorithm was applied to the PPTR
inverse problem. Unfortunately, the authors did not reveal the implementation details.

Different techniques for computing regularized non-negative solutions (images) to linear discrete ill-
posed problems have been recently proposed in the literature. The projected Landweber method was
discussed by Bertero and Boccacci.” Hanke et al suggested the use of a nonlinear transformation of
the unknown variable, which eliminates the need to explicitly impose the constraint.*” Nagy et al
suggested a modified steepest descent method, referred to as MRNSD.*' Calvetti et al proposed two
iterative schemes, based on the generalized minimum residual method (GMRES) or the CGLS
method.* Verkruysse er al demonstrated implementation of the non-negativity constraint into
TSVD.* The efficiency of various iterative reconstruction algorithms was studied by Favati ef al.*’

In the following we present two approaches for implementation of the non-negativity constraint into
the presented reconstruction algorithms.

In addition to these, we have also tested three algorithms that do not require any special non-negativity
strategy. The expectation-maximization algorithm (EM)**' and the image space reconstruction
algorithm (ISRA)*, both popular in astronomy and medical imaging, have yielded poor reconstruction
results. The MRNSD*' algorithm resulted in somewhat better solutions, but still significantly less
accurate as compared to the reconstruction codes discussed below.

4.4.1 Projection

When projection is implemented into the reconstruction algorithm, all the negative components of
iterative solutions 7 are set to zero in each step of the algorithm (i.e., 7 is cropped). This strategy
can be successfully implemented into the v-method, where semiconvergence is preserved.”® The non-
negatively constrained reconstruction algorithm based on the v-method equals Algorithm 4.1, except
that T is cropped before the new residual vector » ? is calculated (line 10). In contrast, a direct
implementation of non-negativity constraint in CGLS conflicts with underlying assumptions of the
method and severely degrades its convergence and stability.

4.4.2 Projected-Restarted approach

In the projected-restarted (PR) approach, the unconstrained reconstruction algorithm runs in the inner
loop, while the non-negativity constraint is applied in the outer iteration loop.* We now describe two
new algorithms, where the PR approach is applied to the regularized CGLS and TSVD.

We begin with an unbiased starting approximation (i.e., T © = 0), which makes the initial residual
vector (r ) equal to the signal vector S. One full run of the inner loop (one of the unconstrained
regularization methods) is then performed, yielding a temporary unconstrained solution ¢. This vector
is truncated to become the first non-negative approximate solution of the outer loop (7 ). Only the
new residual vector (r" = § — KT ") is then passed to the inner loop for another run. In this way, each
successive run of the inner loop result ¢ provides an unconstrained correction to the current outer
solution. After the sum of the two is cropped (i.e., (T " + #) > 0), we obtain an improved non-negative
solution (7). This sequence is repeated until a predefined convergence criterion is reached, or until
the number of outer iteration steps exceeds a preset maximal number (/). The last T represents the
regularized solution of the minimization problem (2.11).

Algorithm 4.3 presents a practical realization of the PR approach for the regularized CGLS and TSVD
reconstruction algorithms.
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Algorithm 4.3: Projected-restarted (PR) approach combined with the CGLS or TSVD reconstruction algorithm.
The non-negativity constraint is implemented in the outer loop, while the inner loop performs the unconstrained
regularization using either unconstrained regularization algorithm. (...)" indicates the cropping operator.

T =0,
,.(0) =S:
i=0;
repeat:
t=CGLS(r™) or TSVD(r?);
T = (19 + 8
r(i+1):S_KT(i+l);
i=i+1;
until (TP =TOY T <& or i<im);

Treg = T(i);

4.5 Performance of constrained reconstruction algorithms

In this section we present reconstruction results of different test objects obtained by our non-
negatively constrained reconstruction algorithms with automatic regularization and results of other
reported PPTR studies.

4.5.1 Hyper-Gaussian test profile

The performance of the dedicated CGLS reconstruction code is demonstrated here by re-evaluation of
a test example from an earlier PPTR study,'® where a general-purpose commercial optimization
software was used (Solver, part of Microsoft Excel™). In order to provide an objective evaluation of
the algorithm performance, we present the basic outline and simulation parameters from the earlier
study.

The initial temperature profiles have a hyper-Gaussian form: AT(z, 0) = AT, exp[—2(z—zo)*/w'] with
ATy = 10 K, w = 0.1 mm and z, = 0.3 mm. PPTR signal is computed according to (2.11) and is
represented as vector § with 250 equidistant components (At = 2 ms), augmented by normally
distributed white noise (SNR = 300). Mismatch between the image and test object is evaluated by
calculating normalized quadratic norm of the difference between the image and object vectors

_ ”T_TO”2

= (4.10)
175,

Figure 4.5 presents a comparison between the commercial (Fig.4.5a) and our dedicated (Fig.4.5b)
reconstruction algorithm. Evidently, we have obtained a significantly improved reconstruction result
(Fig.4.5b) for exact same test example and conditions. In particular, the broadening is substantially
reduced and the pronounced deep artifact is completely eliminated from the image. The relative image
error is 0 = 0.46 for the earlier result, and is reduced almost 6 times (6 = 0.08) when the CGLS
algorithm is used. Similar improvement is observed also for other test objects. ’ We also applied
optimization algorithms implemented in Matlab 7 software (The MathWorks, Inc.) to different PPTR
signals, and corresponding reconstruction results were significantly less accurate and less stable than
those obtained by our dedicated algorithms.
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Figure 4.5: Temperature profiles as obtained (a) by the commercial software (Solver, part of Microsoft Excel™)
in an earlier PPTR study,'® and (b) by our dedicated non-negatively constrained reconstruction algorithm
(PR-CGLS)."" The results obtained after i steps of the iterative algorithm are presented.

Because the same computational platform was used in both studies (i.e., a personal computer with a
32-bit Microsoft Windows operating system), this improvement can be attributed to our dedicated
reconstruction code. In addition, the use of Chebyshev approximation and consideration of numerical
errors (see the Appendix B) enables computation of the kernel matrix elements with higher accuracy
than the approach used in the earlier study."®

4.5.2 Two absorbing layers

Milner et al® used their non-negatively constrained reconstruction algorithm based on dedicated CG
method and obtained prominently more accurate results as compared to other reported PPTR studies.
We now compare the performance of our reconstruction algorithms by re-evaluating one of their
examples.

The initial temperature profile features two temperature peaks due to radiative absorption

Ty, Zp <2< Zg,
AT (2,0) =4 AT, exp| —u,(z—2,) ], zp <z <z, (4.11)
0, elsewhere

where ATg = 40 K, zg; = 10 um, zg; = 50 pum, ATp = 20 K, zp; = 350 pm, zp; = 1000 pm, and
=5 mm".

The size of the kernel matrix K is 256 x 128 corresponding to time interval of Az =8 ms over 2.048 s
and spatial resolution of Az = 8 pm extending to a depth of 1.02 mm. The diffusion constant is
D=0.11 mm*s™, the IR absorption coefficient is x = 50 mm™, and the reduced heat loss coefficient is
h = 0.02 mm"'. The exact PPTR signal S, corresponding to test problems is obtained using (2.9).
Figure 4.6a presents temperature profile vector Ty, and Figure 4.6b shows the calculated theoretical
PPTR signal vector . Because the reconstruction results depend on specific realization of noise, we
augment each theoretical signal S, with 20 different realizations of zero-mean white noise at SNR =
100, 500, and 1000, with SNR is determined as
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SNR = (AS(1)) / ()" (4.12)

where <> represents a time average of either PPTR signal AS(f) or noise e.

From each signal vector S, the temperature profile T is reconstructed using the kernel matrix K and
three reconstruction algorithms. We applied the PR-TSVD algorithm with the GCV regularization
parameter selection method, the PR-CGLS algorithm with L-curve, and the v-method with the Monte
Carlo GCV, since numerical simulation results show that these combinations are optimal (section 4.3).
The maximum number of iterations is iy, = 20,000 and the convergence criterion is set to € = 107
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Figure 4.6: (a) Temperature profiles 7, and (b) corresponding theoretical PPTR signals S for the test object
featuring two absorbing layers

Figure 4.7 presents a statistical analysis of 20 regularized solutions. Solid black lines connect the
average solution values, while the gray bars indicate the standard deviation. At a given SNR, all three
reconstruction algorithms result in comparable solutions. Standard deviation of the solution T
decreases with increasing SNR for the PR-TSVD and PR-CGLS, but increases for the projected v-
method — likely due to more right singular vectors v; included in the solution 7.
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Figure 4.7: Statistical analysis of 20 regularized solutions T for the second test object obtained using the PR
TSVD (top row), PR CGLS (middle row), and projected v-method (bottom row). SNR levels are 100 (left), 500
(center), and 1000 (right). The actual object is presented for comparison (dark-gray line). Gray bars represent
standard deviations.

The corresponding relative image errors are presented in Fig. 4.8. The v-method results in the smallest
image error (dark-gray bars; 6 = 0.27, 0.26, and 0.24 at SNR = 100, 500, and 1000, respectively).
With this method, we also obtain minimal standard deviations of ¢ and minimal J,,,, Which is the
maximal obtained image error value for the same example and SNR. However, the differences
between ¢ obtained by different methods are insignificant at SNR = 500 and 1000.
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Figure 4.8: Relative image errors d (Eq. 4.10) of images of the second test object obtained using the PR TSVD
(light-gray bar), PR CGLS (gray bars), and v-method (dark-gray bars). Corresponding maximal obtained image
error J is represented by dashed-line bar.

The temperature profiles reconstructed by our algorithms resemble the actual test object better than
temperature profiles presented by Milner er al,® especially the superficial temperature peak.
Furthermore, the average image error error for the v-method and SNR = 100 (0 = 0.27) is markedly
smaller than the relative image error (d = 0.35) reported in the previous study, albeit the previous study
was performed on the more accurate computer platform (64-bit workstation). Therefore we conclude
that our dedicated algorithms perform better than the algorithm used in their study.

4.5.2 Simulated port-wine stain lesion

The third test object is the temperature profile obtained from a Monte Carlo simulation of optical
transport in digitalized histology of port wine stain lesion.'? This should provide a more realistic
estimation of the reconstruction algorithm performance for real port-wine stain PPTR signals.

The temperature profile is represented as a vector T, with 750 equidistant components (Az = 2 pum)
over a maximum depth of 1.5 mm (Fig. 4.9a). There are 2000 equidistant components (A = 1 ms) in
PPTR signal vector S (Fig. 4.9b) over a 2 s time interval. The assumed tissue constants are D = (.11
mm?’s’, uw =26 mm™, and 2 = 0.02 mm™".
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Figure 4.9: (a) Temperature profile T, and (b) corresponding theoretical PPTR signal S, for test object MCPWS.

Figure 4.10 shows a statistical analysis of 20 reconstruction results for the MCPWS test object and
SNR = 100, 500 and 1000. Similarly to the above example, the reconstruction robustness increases
with SNR, most markedly for the v-method (Fig. 4.10, bottom row). At SNR = 100, PRCGLS and
PRTSVD produce solutions with more detail than the average solution obtained by the v-method —
likely because of stronger regularization. At SNR = 500 and SNR = 1000, all reconstruction
algorithms yield very similar results.

As seen in Figure 4.11, the PR CGLS algorithm results in minimal image errors (6 = 0.27 + 0.03 and
0.19 £ 0.02) at SNR = 100 and 1000, while the v-method is optimal at SNR = 500 (6 = 0.22 + 0.01).
CGLS and the v-method also present acceptably small d,., (dashed line). In contrast, the PR TSVD
produces reconstruction results with largest standard deviation of J (o5= 0.06), and largest yx.
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Figure 4.10: Statistical analysis of 20 regularized solutions 7' for MCPWS test object obtained using the PR
TSVD (top row), PR CGLS (middle row), and projected v-method (bottom row). SNR levels are 100 (rigf), 500
(center), and 1000 (leff). The exact solution is presented for comparison (dark-gray line). Light-gray bars
represent standard deviations.
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Figure 4.11: Relative image errors d (Eq. 4.12) of images of MCPWS test object obtained using the PR TSVD
(light-gray bar), PR CGLS (gray bars), and v-method (dark-gray bars). Corresponding maximal obtained image
error ¢ is represented by dashed-line bar.

4.6 Conclusions

Our dedicated reconstruction algorithms with implemented non-negativity constraint and
regularization parameter selection method produce markedly more accurate solutions of the PPTR
inverse problem than the general-purpose optimization software. Furthermore, our algorithms result in
temperature profiles with smaller image errors than temperature profiles presented in an earlier PPTR
study and obtained also by a dedicated non-negatively constrained reconstruction algorithm. All three
presented algorithms generate similar reconstruction results, but the PR CGLS and projected v-method
yield somewhat smaller image errors and more stable reconstructions as compared to PR TSVD.






Chapter 5

Calibration of radiometric signal

In Chapter 2 we derived the expression for radiometric signal s(f) corresponding to the sample
temperature 7, + AT(z, t) (Eq. 2.5). The absolute temperature rise AT(z, f) can not be determined from
s(?), unless the exact value of constant C is known. Moreover, (2.5) must be linearized (Eq. 2.6) to
obtain the PPTR inverse problem (2.11) which can be solved using the reconstruction algorithms
described in Chapter 4. Yet, radiometric signal s(f) does not depend linearly on A7(z, ).

In order to overcome these limitations, it is customary to transform radiometric signals s(f) into
radiometric temperature using a calibration process. The calibration eliminates the constant C and
reduces the nonlinear dependence of AT(z, f) on s(f), but some error due to linearization of (2.6) may
still exist. Therefore, in all reported PPTR studies authors justied utilization of (2.11) only for
relatively small temperature rises.*”'® Because moderate temperature changes as compared to 7}, can
also be observed in temperature profiles reconstructed from PPTR signals measured on PWS
birthmarks, we analyze the effect of linearization on the accuracy of reconstructed temperature
profiles.

5.1 Linearization error in monochromatic approximation

The calibration process consists of fitting measured PPTR signals to a PPTR setup response to IR
radiation emitted by a blackbody set to different temperatures 7gg. Here we assume that an IR detector
detects emitted IR radiation in a narrow spectral band, thus constant values for wavelength A,
responsivity R(4), IR absorption coefficient x, and constant C can be used. Such monochromatic
approximation is used in almost all reported PPTR studies.

From (2.5), the expression for radiometric signal sgg(7sg) due to blackbody radiation at Tpp is

spp(Tpp) = C R(A) B, (Typ) AL+ D (5.1)

where D accounts for dark current.
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Figure 5.1: Radiometric signal sgp(7gp) as a function of blackbody temperature 7gp for three acquisition
wavelengths 4 (see labels). The detector responsivity is modeled as R(1) = R, A/4, with 4, = 5.0 pm and D = 0.

Figure 5.1 presents blackbody radiometric signals sgp(7sg) as a function of Tp for three wavelengths 4
= 3.0, 4.0, and 5.0 um. The detector responsivity R(4) is modeled as R(1) = R, /A, with 4, = 5.0 pm.

39
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Linearization of (5.1) at a fixed Tgp results in an error, which increases with increasing temperature
difference AT. So, when temperature is increased by AT = 20 K, the expression linearized at Tgg = 300
K yields 13% smaller values for A = 5.0 um, and even 24% smaller values for 2 = 3.0 um (see Fig. 5.1)
as compared to the actual value of Sgg.

The expression (5.1) is fitted to the measured PPTR setup response to the IR radiation emited by the
blackbody, and the constants C and D are determined, thus yielding a calibration curve sgp(7). When
calibrating radiometric signal s(¢), the corresponding radiometric temperature S(¢) is then found by
matching each s(t;) to the calibration curve sgp(7)

spp(S(t)) = s(t;) (52)

Thus the calibration procedure eliminates the constants C and D, and establishes a relation between
s(¢) and radiometric temperature S().

An expression for Planck’s law of radiation is

27hc?
B,(T)= 5.3a
o 2% (exp(he/ AkyT) —1) (>-32)
which can be approximated with
27rh02 _AZCT
B,(T) = e "' (5.3b)

15

since the exponential in B,;(7) is much larger than 1. Using (5.3b) we find an expression for a
monochromatic PPTR signal
I S
s(f) = Z”CMZSR(’W’C [ e tahmaren gz p (5.4a)

z=0

and an expression for the calibration curve

22CALR(A)he? ey,’ZZT

/15

5pp(T) = +D (5.4a)

We substitute (5.4a) and (5.4b) into (5.2) to get the expression for calibrated PPTR signal s(¢) in
radiometric temperature units
he

AS() =~ - -1, (5.5)

Ak, lnj ue A kg (T, +AT(z,1)) e "7 dz

z=0

The calibration process eliminates the constant factor 2rCALhc*R(%) and constant D. We expand the
expression for AS(f) into Taylor series and neglect terms of the order AT(z, #)* and higher, which
results in a linearized expression for the PPTR signal

AS (1)= [ AT(z1) e dz (5.6)

z=0

All factors involving 4 and T, are canceled in (5.6), so that the linearized calibrated signal ASi(?)
depends on acquisition wavelength A only indirectly, through the value x.

We can estimate the linearization error by considering the quadratic term in Taylor series
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1 hc
N,(AT(z, 1)) 7 {Z/UcBTb —1}

. . 2 5.7)
X U j AT(Z,Z)2 et dz —{,u J- AT (z,t) e dz J
0

z=0

z=

Assuming that Ny(AT(z, £)) (5.7) is the largest contribution to the linearization error, we find an
expression for the relative linearization error. First, we write the temperature rise as AT{(z, t) = Ty fl(z,
f), where T,, is average temperature rise and f{z, f) is a normalized form function in the sense

U J. f(z.t) e** dz =1. Second, we divide (5.7) by (5.6) to obtain
0

N, (AT(z,t)) T [ hc IJ [# sz(z,t)e_’” dz —1 ] (5.8)

AS () T, \24kyT,

Evidently, the linearization error increases proportionally with T,,. Furthermore, the error increases
with decreasing T, and /.

The above expression shows that for a sample with constant temperature 7 (i.e., fiz, {) = 1) the
linearization error is zero; which indicates that the linearized expression AS(f) is exact for
homogenously heated samples. However, for non-homogenously heated samples (i.e., f(z, t) # 0) the
linearization error persist in spite of optimal calibration. For example, we evaluate (5.8) for a Gaussian
initial temperature profile AT(z) = T, exp(—(z — zo)*/2w?) with T, = 20 K, zy = 100 um, and w = 30 pm
for 2 = 3 and 5 um. Absorption coefficient ¢ = 26.5 um. Thus, we obtain the linearization error
NyJAS, = 20% and 11% for 4 = 3 and 5 um, respectively. These errors are smaller than the
corresponding errors for non-calibrated linearized radiometric signal (see Fig. 5.1). Since PPTR signal
involves transient temperature rise A7(z, t), we perform a numerical simulation to consider evolution
of the linearization error with time.

5.1.1 Numerical simulation

The initial temperature profiles have a hyper-Gaussian form: AT(z,0) = T}, exp[-2(z—z)*/w"] with T, =
1 — 100 K, w =30 pm, and central depths z, = 100, 200, and 300 pm. The temperature profile A7(z’, ?)
at depth z’ and time ¢ is calculated as a convolution of AT(z, 0) and the Green’s function Gr(z, z’, f)
(Eq. 2.3). Then, AS(f) and AS.(¢) are calculated by inserting A7(z, ¢) into (5.5) and (5.6) and
completing the z integrals. We use numerical integration routines implemented in Mathematica 4.1
(Wolfram research, Champaign, IL) to compute signal vectors with 1000 components representing
signal values acquired at a sampling rate 1000 s for a total acquisition time of 1s. PPTR signals are
simulated for A = 4.5 ym, x = 26.5 mm™, and T}, = 303 K. Thermal constants in G1(z, z’, f) are D = 0.11
mm?/s and 4 = 0.02 mm™.

Figure 5.2 presents PPTR signals calculated using the exact (solid line) and the linearized (dashed
line) expressions for test objects with zo = 100 pum and 7, = 1, 10, and 100 K (see the labels). For T, =
100 K, the exact signal features an initial spike (see the arrow), which is not present in the linearized
signal. This difference between the simulated signals appears only at small times (¢ < 20 ms); while
both signals are equal at later times. For the lower 7, (1 and 10 K), both signals are equal at al ¢.
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Figure 5.2: Theoretical calibrated PPTR signals for hyper-Gaussian test objects with zy = 100 um, and 7}, = 1,
10, and 100 K (see labels). The exact AS(t) (Eq. 5.5; solid line) and linearized PPTR signals AS;(¢) (Eq. 5.6;
dashed line) are presented.

In order to find how the linearization error affects temperature profiles, we simulate the exact PPTR
signals (Eq. 5.5). Then we reconstruct initial temperature profiles A7(z, 0) from these signals using the
linearized expression for PPTR signal (Eq. 2.11) and the monochromatic approximation (Eq. 2.9). The
reconstruction algorithm used is the v-method (chapter 4). We simulate PPTR signals for test objects
located at zy = 100 um with 7, = 1-100 K, and test objects with 7}, = 50 K located at zy = 100-300 um.
Figure 5.3 presents the reconstructed temperature profiles (solid line) and the actual test objects
(dashed line) for comparison.
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Figure 5.3: Reconstructed temperature profiles AT obtained from the exact PPTR signals AS(¢) for (a) test
objects located at zy = 100 pm with T}, = 1-100 K (see labels), and (b) test objects located at zy = 100-300 pum
with T, = 50 K (see labels). The actual objects (dashed line) are plotted for comparison. Arrows indicate surface
artifacts due to the linearization error.

When reconstructed test object is located at zo = 100 pm (Fig. 5.3a), the reconstruction results are not
significantly deteriorated for 7, = 1 and 10 K, but we can observe a small artifact near the object
surface (see the arrows). In contrast, reconstruction of test object with 7, = 100 K (bottom) results in a
severely deformed temperature profile, and a significant surface artifact. Moreover, the temperature
profile is shifted deeper as compared to original depth (zo = 100 um).
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The effect of linearization error is reduced as z, increases (Fig. 5.3b). The distinct surface artifact in
reconstructed temperature profile of test object with zo = 100 pm (¢op) and T}, = 50 K, diminishes as z,
is increased to 200 pm (center), and disappears for zo = 300 pm (bottom). The shift of temperature
peak (~3 um) is also present only for the temperature profile located at zo = 100 um.

Occasionally, we observe such initial spikes in measured PPTR signals. Because the temperature
profile reconstruction is performed using the linearized expression (5.6), superficial artifacts due to the
linearization error can appear in reconstructed temperature profiles, especially when large temperature
amplitudes are involved.

In addition to the above reconstruction results, we present a systematic analysis of the linearization
error. Figure 5.4 shows the normalized linearization error defined as (AS(f) — ASL(f))/<AS(¢)> for all
simulated hyper-Gaussian test objects. In general, the normalized linearization error increases with
increasing T;,. However, the error practically vanishes in 10-100 ms for all depths z, and temperatures
T,. Specifically, for T, = 100 K the linearization error is reduced below 1% in 20 ms and 46 ms for z,
=100 and 200 pum, respectively. The linearization errors for the test objects with zo = 300 um feature
peak values at # = 40—50 ms, but are significantly smaller than for zo = 100 and 200 pum.
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5.2 Broad-band signal acquisition

. . . . . 18.47
Since the monochromatic calibration is accurate only for very narrow spectral bands, ™"’ we analyze

next the calibration process involving broadband signal acquisition. From (2.5), radiometric signal due
to blackbody radiation at Tgp is

/?'h
son(Tan) = C [ R(2) B, (Tyy) dA+ D (5.9)
A

1
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where 4, and 4, are the lower and the upper limit wavelengths, respectively. Analogous to the
monochromatic calibration, the expression (5.9) is fitted to the measured broad-band PPTR setup
response to the IR radiation emited by the blackbody, and the constants C and D are determined, thus
yielding a broad-band calibration curve sgp(7). The broad-band radiometric temperature S(¢) is then
found by matching each s(#;) to the calibration curve sgp(7) according to (5.2). By using the Taylor
series expansion, the linearized expression for the calibrated spectrally composite PPTR signal is

Ay © Ay
AS, (1) = J.R(/l) B, (T,) 1(A) j AT(z,t) e *P7 dzdA I R(A) B, (T,)dA  (5.10)
A z=0 A

With broad-band signal acquisition, the factors involving specific spectral properties (i.e., R(4),
B;’(Ty), u(4)) and Ty, do not cancel out in the linearized calibrated PPTR signal ASi(¢) (5.12). Because
we can not derive the linearization in the spectrally composite PPTR signals AS(¢) analytically, we
perform a numerical simulation.
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Figure 5.5 present the obtained relative linearization errors calculated as in subsection 5.1.1. Similarly
to the monochromatic case, the linearization error practically vanishes in 20—30 ms, and increases with
the temperature amplitude 7, for all spectral bands. In addition, the linearization error progressively
decreases, when the spectral acquisition band is reduced from 4, = 3.0-5.0 um to 4; = 4.9-5.0 pm.

The initial temperature profiles A7(z, 0) have a hyper-Gaussian form, as in subsection 5.1.1. The
profile central depth is fixed at zo =100 um, where the monochromatic linearization error was found to
be largest. Detector spectral responsivity is modeled as R(1) = R, A/4,, and the IR absorption
coefficient u(X) is modeled as 75% of the values for water*® sampled with spectral interval of 0.1 pm.

The exact spectrally composite PPTR signals AS(¢) are computed in three steps. First, the radiometric
signal s(7) is found by completion of the z and 4 integrals (Eq. 2.5). Second, the blackbody radiometric
signal Asgp(7gg) is determined for 7gg = 273-373 K by completion of the 4 integral (Eq. 5.9). Finally,
AS(?) is calculated by fitting s(¢;) to the calibration curve spp(7) (Eq. 5.2) at each time # = i At.
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Meanwhile, the corresponding linearized spectrally composite PPTR signal ASi(¢) is computed by
completion of the z and 4 integrals in (5.10). All computations were performed using Mathematica 4.1.

Table 5.1 lists the maximum linearization error and the time #4,, when the linearization error drops
below 1% of the maximum value for the entire-spectral band of the InSb detector (4 = 3.0-5.0 um) and
a reduced spectral band (1 = 4.5-5.0 um)."®* Maximal linearization error for 4, = 3.0 pm is on average
50% larger than the corresponding error for 4, = 4.5 pm. #,¢, increases with 7}, and is smaller for 4, =
4.5 pm than for 4, = 3.0 pm.

Table 5.1: Maximal normalized linearization error (AS(¢)— ASL(?))/< AS(f)> and time t5,, when the linearization
error drops below 1% of the maximum. Results are presented for spectral bands with 4, = 3.0 um and 4.5 pm,
and for the monochromatic PPTR signals with 2 = 4.5 pm and z, = 100 um (Fig. 5.5).

A =3.0-5.0 pm A=4.5-5.0 pm

Ty (K) Error 110, (ms) Error t10, (ms)
1 0.04 1 0.01 0

2 0.05 2 0.03 1

5 0.06 3 0.03 2

10 0.11 8 0.07 6

20 0.15 13 0.13 9

50 0.52 16 0.35 14

100 1.10 20 0.75 16

5.3 Conclusions

All nonlinearity between the radiometric signal and the radiometric temperature is eliminated, when a
calibration in monochromatic approximation is performed. In linearized calibrated PPTR signals the
factors involving the acquisition wavelength (i.e., By(Ty) and R(1)) cancel out from the resulting
expression. The linearized expression is exact for samples with homogenous temperature distribution,
but for samples with non-homogenous temperature distribution the linearization produces a
linearization error.

In general, the linearization error is significant for absorbing structures located at shallow depths and
short after laser pulse. The error increases with increasing peak temperature, which is predicted by the
analytical expression (5.8). This expression also indicates that linearization error decreases with
increasing acquisition wavelength A and baseline temperature 75

Due to the linearization error we can observe in reconstructed temperature profiles superficial artifacts,
which can be easily mistaken for superficial absorbing structures.

Same trends are obtained for the spectrally composite calibrated PPTR signals. In addition, we observe
also that the linearization error increases with spectral acquisition band broadening.

Since temperature amplitudes are in general moderate, and most of absorbing structures (i.e., blood
vessels) are deeper in the sample, the linearization error in typical PPTR temperature profiling in
human skin is small. The error can be additionally reduced by appropriate spectral filtering.






Chapter 6

Effective infrared absorption coefficient

Reconstruction of temperature profiles from PPTR signals involves tissue absorption coefficient at the
detected IR wavelength, u(4). In general, soft biological tissues feature a pronounced spectral variation
#(1) in mid-IR. Yet, all reported PPTR studies utilized a fixed effective value (i) to reduce
computational complexity of the reconstruction process, albeit broad-band signal acquisition was used
almost invariably to increase signal-to-noise ratio (SNR). In earlier PPTR studies two approaches of
analytical estimation of s were presented,*” but no study has been done to find which approach is
better. However, implications of monochromatic approximation for PPTR temperature profiling were
analyzed numerically for specific case of two spectral bands of an InSb detector."®

In this chapter, we focus on determination of the optimal effective value u.¢ for samples that exhibit a
significant spectral variation w(/1) within the IR detection band. Taking into account spectral
characteristics of three common IR radiation detectors, we simulate realistic PPTR signals for four
hyper-Gaussian temperature profiles centered at different depths below the sample surface. From each
PPTR signal, the initial temperature profile is then reconstructed using the approximation with a
constant /g Analysis of the mismatch between the actual and reconstructed temperature profiles at
different values u.q enables determination of the optimal effective value, fiop.

Because determination of u, from numerical simulations is very tedious, we propose a novel
analytical approach to the same task. Based on an implicit equation derived earlier'"'®, this approach
enables a direct estimation of u,, from spectral properties of the sample and radiation detector. In a
systematic analysis, involving multiple acquisition spectral bands for each IR radiation detector, our
analytically assessed values o, match the numerical results very well, unlike the previously used
analytical estimates.*’

6.1 InSb detector

6.1.1 Numerical simulation

All initial temperature profiles (“objects”) in our simulation examples have a hyper-Gaussian form:
AT(z,0) = AT, exp[-2 (z—zo)*/w'] with ATy= 10 K and w = 0.1 mm. With z, varied from 0.1 to 0.4 mm,
these profiles represent laser-induced temperature rise in subsurface vascular plexus (such as PWS) at
different depths in skin. The corresponding vectors 7j represent temperature values at 100 equidistant
positions over a depth of 1 mm.

Each vector S, has 1000 components, representing signal values acquired at a sampling rate of 1000 s
(for a total acquisition time of 1 s). It is obtained by multiplying 7, with a spectrally composite matrix
K. Based on (2.7) and (5.10), each matrix element of the latter is computed as a sum of N = 100
monochromatic kernel functions x(z, #) (Eq. 2.10) evaluated at equidistant wavelengths 4, within the
spectral acquisition band A4—4;

D R(A) BT pA) k| 2.ty 1(4) | Az
K(z;,t)) = A=l

N (6.1)
D R(%)B,(T,)
k=1

47



48 Chapter 6 Effective infrared absorption coefficient

where Az denotes depth discretization. The absorption spectrum of human skin is modeled by adding
75% of u(A) for water® and 25% of u(2) for collagen’' (Fig. 6.1a). The thermal constants in x(z,f) are
setto> D=1.1 x 107" m’s™ and 4 =0.02 mm™.

InSb quantum radiation detector has peak sensitivity wavelength of 4,= 5.3 pm and cut-off at 1.= 5.6
um. The corresponding spectral responsivity R(A) is modeled as increasing linearly with A up to 4,,
then linearly decreasing to 10% of the maximal value at A, (Fig. 6.1b). The lower spectral limit (4;) is
varied between 3.0 um and 4, while 4, is fixed at the respective A.. This simulates application of
different cut-on filters to narrow the detection spectral band'®*’. No noise is added to the simulated
signals, because it would induce inconsistencies in the analysis.

From each signal vector, the initial temperature profile is reconstructed using a range of simplified
kernel matrices based on (2.9) and employing different effective values u.;r. We apply the PR-CG
method (chapter 4) to solve the inverse problem (2.11). The minimum in dependence of relative image
error 0 (4.10) on u. indicates the optimal effective value (uon) for a given combination of object,
detector and acquisition spectral band.

1000 [

B}»’(Th)a R(2) [arb. un.]

Wavelength [pum]

Figure 6.1: (a) Model absorption coefficient of skin in mid-IR spectral region, u (solid line), computed as 75%
of u for water®™ (short dash) increased by 25% of u for collagen'. (b) Temperature derivative of Planck’s
radiation formula at 7,= 300 K (solid line) and spectral sensitivity R(1) of a typical InSb detector (dashed line),
and two HgCdTe detectors with peak sensitivity at 10 pum and 12 um (dash-dot and short-dash line,
respectively).

Figure 6.2 presents three results, obtained from a simulated PPTR signal for the hyper-Gaussian object
centered at zo = 0.3 mm (dashed line) and employing the entire acquisition spectral band of the InSb
detector (3.0-5.6 um). Reconstructions were performed using the simplified, quasi-monochromatic
kernel matrices based on (2.9) with varying s At a sub-optimal value (e = 20.0 mm™, top graph),
the tails of the profile are squeezed and peak temperature is markedly overshot. The best match is
obtained with .= 22.3 mm’' (center), while an overestimated value (uer= 25.0 mm’™, bottom) results
in a narrowed peak with blurred tails.

Figure 6.3 presents the dependence of relative image error J (Eq. 4.10) on g, as obtained for four
hyper-Gaussian profiles centered at different depths z, (see labels in the graphs). The optimal s for
each object is indicated by the minimum of the respective dependence (arrows). The results in Fig.
6.3a represent the case where the entire spectral band of the InSb detector is used. With a narrowed
acquisition spectral band (4= 4.5 pm; Fig. 6.3b), the four optimal values (zo) lie closer together
and the respective image errors are significantly smaller.
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Figure 6.2: Temperature depth profiles (solid lines) reconstructed from simulated PPTR signal employing the
entire spectral band of the InSb detector (3.0-5.6 pum). The values of u.y used in reconstruction were,
respectively, too low (fop), near-optimal (center), and too high (bottom,; values indicated in the graphs). The
initial temperature profile is plotted for comparison (dashed line).
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Figure 6.3: Relative image error (J) as a function of u. used for reconstructions of spectrally composite PPTR
signals with acquisition band of: (a) 3.0-5.6 pum, and (b) 4.5-5.6 um. Different symbols represent the results
obtained for objects centered at different depths z, (indicated in the graphs); arrows indicate the optimal values
for each object, top(zo).
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Figure 6.4: (a) Optimal effective absorption coefficient s,(zo) for objects centered at different depths z, (see the
legend) as a function of lower spectral limit A4,. The upper limit is fixed at 2,= 5.6 um. (b) Relative image errors
() for the reconstruction results from figure 6.4a.
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The results from such analyses with the lower limit wavelength 1; varied from 3.0 to 5.3 um are
collected in Fig. 6.4. The optimal effective values pon(zo) vary with 4;, as dictated by spectral
dependences u(A), R(1), and B,;’(Ty) in the respective acquisition bands (Fig. 6.4a). At the same time,
the spread of values p(20) obtained for the four test objects diminishes with increasing 4. Relative
image errors (0) for the same reconstruction results show a general trend of decreasing with increasing
A, for all four test objects (Fig. 6.4b).

6.1.2 Analytical approach

Our approach to determine the optimal effective value per directly from sample IR absorption
spectrum u(4), detector spectral sensitivity R(1), and acquisition spectral band (4, 4,), is based on
relation'®

2 Ay
tr €7 = [R(A) B, (T,) p(2) e a2 | [R(2)B,(T;)dA (6.2)
p %

1

This implicit equation is obtained by substituting x(4) in (2.6) with a spectrally constant value g and
requiring that the obtained expression equals the r.h.s. of (2.6) for abritrary AT(z,?).

We begin by evaluating the first integral on the r.h.s. of (6.2) at 500 equidistant depths z; (from 0.001
to 0.500 mm) using Simpson’s rule®. For each z;, equation (6.2) is then solved for s using the Jacobi
iterative method. The solution p.r(z) is in general double-valued and varies with depth z (see Fig. 6.5).
This demonstrates that a single value u.g, which could replace spectrally variable u(1) to yield the
correct kernel function, does not exist. The optimal effective value, providing the closest
approximation to the augmented kernel function is therefore determined from t(z) in the following
manner.

After selecting a reasonable starting approximation, ,uopl(o), we calculate a weighted average

Zﬂcff(zi) e_#eff(z,-)zi

Hoy = — (6.3)

Z e*#en‘(zx )z

i

In computing both sums, only the value u(z;) from the solution branch that is closer to ,uopl(o) is
considered at each depth z,. Using the obtained value, zp'", as improved approximation, the procedure
is then repeated in the same manner. The successive approximations uo," converge toward the
optimal effective absorption coefficient, sqp.

The exponential weight function, exp[— uem(z) z], was selected because the contribution of emitters
from various depths z to the radiometric signal (Eq. 2.6) at any time ¢ is governed by Beer’s law. After
figuring out how to deal with the obtained relation (Eq. 6.2) involving the two-valued function g.u(z),
everything fell into place.

Figure 6.5 presents solutions p.g(z) of the implicit Eq. (6.2) for four acquisition spectral bands of the
InSb detector (see the caption). The variation of u. with depth (z) is most prominent for the widest
acquisition band (Fig. 6.5a), and almost absent in the nearly monochromatic case (Fig. 6.5d). The
dashed lines indicate the corresponding optimal values u,,; assessed using our analytical approach (Eq.
6.2). For the four presented examples they amount to 23.0 mm™, 23.2 mm™, 24.5 mm™', and 20.7 mm"
!, respectively. It may seem odd that the optimal u.q depends also on the object depth, z,. But this is
just a reminder that no constant value . used in Eq. (2.9) can entirely replicate the effect of the
spectrally composite K(z,7) (2.8).



6.1 InSb detector 51

-1
Hgr [mm']

1
Hogr [mm]

0 T 7 T 0 T T T
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
Depth [mm] Depth [mm]
40 . . .
(d)
30 A
g - . ]
S¥ S¥ 104 |
0 T T T 0 T 7 T
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
Depth [mm)] Depth [mm]

Figure 6.5: Effective absorption coefficient u.(z) (Eq. 6.2) computed for InSb detector and detection band of:
(a) 3.0-5.6 um, (b) 3.9-5.6 pm, (c) 4.5-5.6 um, and (d) 5.1-5.6 um. Dashed lines indicate the corresponding
values po, determined using Eq. (6.3).

Figure 6.6 presents the analytically assessed optimal values, uo, (Eq. 6.3), as a function of the lower
limit wavelength, 4, (solid line). For all included values A,, the analytical estimate falls within the range
of values uop(zo) obtained for the four test objects in numerical simulations (grey vertical stripes).
Difference between the arithmetic mean of the latter (open circles) and s (Eq. 6.3) does not exceed
0.6 mm™ for any spectral band under test. For the most important case, employing the entire spectral
band of the InSb detector (4; = 3.0 um), the difference is only 0.25 mm™ or 1.1% of the target value.

For objective PPTR profiling of arbitrary samples, one would namely wish to obtain equally good
performance at all subsurface depths. In reality, however, images of deeper objects are increasingly
blurred due to higher susceptibility to experimental noise (chapters 7 and 11). To account for this, we
consider also a weighted average which favors shallower test objects (black squares). The weight z,"
was selected because it approximates scaling of the PPTR signal amplitude from a thin subsurface
layer.° By considering a weighted average of uop(z0) at each A, pop (Eq. 6.3) falls within 0.3 mm™ off
the mark for all detection bands included in the analysis.

Two formerly applied analytical estimates perform significantly worse in such a comparison. The
weighted average of u(/) with the weight set to R(1)*** amounts to 62.3 mm™" in the most relevant case
of ;= 3.0 um, overshooting the average of numerical values pp(z0) by 174% (Fig. 6.6, short-dash
line). The more elaborate expression used by Milner ez al*’

A Ay
fiox = | RO B,(T) i(2) d2 / | R B,(1) d2 (64)
2 )

provides a better match to the numerical data (dash-dot line). Nevertheless, it exceeds the optimal
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value for unfiltered InSb detector by a significant margin of 2.4 mm™ (or 13%).
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Figure 6.6: Analytically assessed values y,, as a function of the lower limit wavelength (4)) (solid line). Grey
stripes indicate the range of u(z9) values obtained for the four test objects in numerical simulations; simple
means and weighted averages of these values are marked by open circles and black squares, respectively. Two
formerly used analytical estimates are plotted for comparison (dash-dot and short-dash lines).

6.2 HgCdTe detectors

We present similar analysis to the above for two HgCdTe detectors, also commonly used for PPTR
temperature profiling. First HgCdTe detector has peak sensitivity at 4, = 10 pm, the upper spectral
limit (43) is fixed at the cut-off wavelength of the detector, 1. = 12 um, while the lower limit is varied
between 3.0 um and 4,,.
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Figure 6.7: Analytically assessed i,y (Eq. 6.2) as a function of 4, (solid line) for the HgCdTe detector with peak
sensitivity at 10 pum. Grey stripes indicate the range of uon(z9) values obtained for the four test objects in
numerical simulations; simple means and weighted averages of these values are marked by open circles and
black squares, respectively. Two formerly used analytical estimates are plotted for comparison (dash-dot and
short-dash lines; see text for details).

Figure 6.7 presents the analytically assessed optimal absorption coefficient value, s (Eq. 6.3), as a
function of the lower limit wavelength, 4, (solid line). For all included spectral bands, the analytical
estimate falls within (or just marginally deviates from) the range of values up(2o) obtained for the four
test objects in numerical simulations (grey vertical stripes). For the maximal spectral band (4, = 3.0
um), the mismatch between s (Eq. 6.3) and simple mean of the latter (open circles) is 3.5 mm™. If
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the weighted average is taken as the target value (black squares), the mismatch is only 2.0 mm™
(3.8%). Clearly, our analytical estimate u,, (Eq. 6.3) provides a much better fit to the numerical data
than the earlier used /i (Eq. 6.4) or convolution of u(4) with R(4) (dash-dot and short-dash lines,

respectively) for all 36 spectral bands included in this part of the study.

For the HgCdTe detector with peak sensitivity at 4,= 12 um, our analytical estimate u,,; (Eq. 6.3) (Fig.
6.8, solid line) falls within the range of numerically determined values u(zo) (grey stripes) for each of
the included spectral bands. The match is particularly good if the weighted average of the four zq(z0)
is considered at each 4; (black squares). In contrast, the earlier used analytical estimates ¢ (Eq. 6.4)
and weighted average of (1) with weight R(1) (dash-dot and short-dash lines, respectively) deviate
significantly from the numerical results even for moderately wide detection bands (e.g., 4, = 10 um).
With further decrease of A, the mismatch between i (Eq. 6.4) (dash-dot line) and simple mean of
the numerical yo(zo) (open circles) stays large and amounts to 25 mm’' (or 43% of the target value) at
A =3.0 pm.

T T T T T T T T T T
200 E
L o Simple mean p l
= Weighted average VAR
Analytical prediction / i 1
. 1501 .
g
g
< L
< 100} -
50 -
T T T T T T T T T T
3 4 5 6 7 8 9 10 11 12
A [pm]

Figure 6.8: Same as Fig. 9.7, but for HgCdTe detector with peak sensitivity at 4, = 12 pm.

6.3 Discussion

Figure 6.2 illustrates how a ~10% deviation from the optimal value z.g deteriorates the reconstructed
temperature profile (top, bottom). In soft biological tissue, such as human skin with (A1) in mid-IR
varying by two orders of magnitude (Fig. 6.1), determining the optimal value g4g to such a narrow
margin is certainly a nontrivial task. In a separate numerical study,”” white noise in the simulated
signal (SNR = 300) suspended the high dependence of relative image error () on g.g only within a
very narrow interval around g4, At deviations larger than 2-3% of the optimum value, the influence
on o was clearly present, rather than buried in the effect of noise, as is believed quite often.

Being aware of the spectral variation z(1) in their gel samples, Prahl et al”* estimated the effective

value g by averaging (1) of water over the 8—12 um detection band, using spectral sensitivity R(4)
of the HgCdTe detector as a weight. The closest match to such experimental conditions is found in
Fig. 6.8 (short dash line, 4, = 8.0 um), which suggests that their estimate of u. may have been too
high. Of course, this comparison does not provide any indication of the possible implications of such
deviation for their results. In fact, at such high values of s we would expect only a minimal effect on
profiling, likely limited to the most superficial 10 um of the sample. On the other hand, Fig. 6.6 leaves
no doubt that applying the same approach to the commonly used InSb detector with 4, = 3.0 um would
be disastrous.

Milner et al®’ applied a more elaborate expression Hoe (Eq. 6.4) to HgCdTe detector used at 7—
11 um, and 10-14 pm, respectively. As indicated by Figs. 6.7 and 6.8 (dash-dot line), the
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improvement over the previous approach is only marginal. This can be attributed to the weak spectral
variation of B, (T}) in this part of the spectrum (Fig. 6.1b). On the other hand, a dramatic improvement
is obtained for InSb detector at 3—5 um (see Fig. 6.6, dash-dot vs. short-dash line) where B; (T})
exhibits a large spectral variation. Nevertheless, the remaining discrepancy between jiq (Fig. 6.6,

dash-dot line) and numerically determined uq,(z0) at A4 = 3.0 um (grey stripe) suggests that the value
used for temperature profiling in human skin by Milner et al® may have been overestimated. The
possible effect of such a discrepancy can be guessed from Fig. 6.2 and extrapolation of data in Fig.
6.3(a) - while keeping in mind the possible differences between the model functions (1) and R(1) in
the two studies.

The values zp (Eq. 6.3) obtained with our novel analytical approach in general provide a much better
fit to the numerical results than the previously used estimates (Figs. 6.6—6.8; solid, short-dash, and
dash-dot lines, respectively). (The results converge towards the right end of Figs. 6.6 and 6.8).
Moreover, uo, (Eq. 6.3) fall within the range of values pop(zo) obtained in the numerical simulations
(grey stripes) for most of the 68 detector/spectral band combinations tested in this study. The same is
rarely the case for either earlier approach.

Spectral variation of (1) in water is most pronounced in the lower part of detection band for all three
detectors in this study (Fig. 6.1). Narrowing of the acquisition band with a cut-on filter significantly
improves the validity of quasi-monochromatic approximation (Eq. 2.9). This is evidenced by the
decrease of relative image error (J) for all test objects (Figs. 6.3b, 6.4b). The four optimal values
Hopt(2o) lie closer together (Figs. 6.3b, 6.4a), which should further improve the accuracy of depth
profiling when absorbers are distributed at varying (or multiple) subsurface depths.

On the other hand, narrower spectral bands will in general result in smaller PPTR signal amplitude and
thus decrease SNR. The optimal detection band for given experimental conditions (i.e., (1), R(1)) can
thus be determined only by consideration of the related experimental noise. Such analysis is presented
in Chapters 9 and 10.

Finally, broad-band IR detection is commonly employed also in other PTR techniques, such as
measurements of thermal diffusivity, depth profiling of sample thermal conductivity, or non-
destructive evaluation using measurements in frequency domain. To our knowledge, most of these
techniques also assume an effective absorption coefficient value p.g in the involved signal analysis.
Selection of u.g and its influence on the results deserve some thought when these techniques are
applied to biological tissues or other materials with significant variation of x(4) in the detection band.
Because rather general relations describing formation of the radiometric signal were involved in our
determination of i (Eq. 6.3), the same or slightly adapted approach might provide viable values
might be applicable also to some PTR techniques beyond PPTR temperature profiling.

6.4 Conclusions

The presented approach enables analytical determination of viable effective IR absorption coefficients
to be used in reconstruction of temperature profiles from PPTR signals at any combination of sample
spectral properties, radiation detector, and acquisition spectral band. This is particularly important in
samples with large spectral variation p(4) in mid-IR, such as most biological tissues, where previously
used analytical estimates are not sufficiently accurate.



Chapter 7

Sampling rate

Signal sampling rate is one of the experimental parameters involved in PPTR temperature profiling.
Reported PPTR studies in biological tissues™”'™'** utilized a wide range of sampling rates (f = 125—
1700 s™), but the reasons for selecting the actual sampling rates were not discussed. Basic relation,
which illustrates how the axial resolution Az depends on sampling time At, is the well known

expression for the heat diffusion length Az = /4D At . Evidently, the axial resolution increases with
sampling frequency. However, this relation does not include the effects of u, # and noise.
In this chapter we study the effect of sampling rate on the accuracy of reconstructed PPTR temperature

profiles. We simulate PPTR signals with different sampling rates for different temperature profiles,
and then reconstruct initial temperature profiles.

7.1 Methods

We consider a temperature profile resulting from radiative absorption in a layer of width w located at
depth z;

AT, exp(—k[z—zl]), zSz<z +w

AT,(2) ={ (7.1)

0, otherwise

The corresponding theoretical PPTR signal is determined analytically by substitution of (7.1) into
(2.7) and completing of the z integral®

S, () = M e—kz—zz/4Dt perfex(u,) _ perfex(u_)
2 u—k u+k

(7.2)

N 2uh | erfex(u)  erfex(u,) N 2uk(pu+ h)erfex(u,) o
h—k| h-k H—k (u+k)(pu—k)(hk) .

where k represents light absorption coefficient and u, = k+/Dt +z/+/4Dt . This temperature profile

is convenient for our simulation, because exact PPTR signal values Sy(#;) can be calculated by simple
evaluation of (7.2) at time ¢,

We select the parameter values AT, =30 K and w = 50 pm, and we vary z; from 50 um to 500 pm and
sampling rate f from 100 s to 10,000 s™. The total acquisition time is 1.0 s for all simulated signals.
The thermal parameters are D = 0.143 mm?/s and & = 0.02 mm”, while the effective absorption
coefficient is x = 27 mm™', which corresponds to the entire spectral band of the InSb detector and agar
substrate (chapter 8).

Theoretical signals S, calculated for temperature profiles with z, = 50, 100, 200 and 400 pm are
augmented with 10 different realizations of realistic noise. The noise is characterized by f. = 15 Hz, «
= 1.3 and NEAT = 6.7 mK determined at = 10,000 s (section 3.5). Based on (3.3) and (3.4), noise
amplitudes for smaller sampling rates are scaled as

55
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_ [ f
NEAT(f) = 6.7mK 00005 (7.3)

Initial temperature profiles T are reconstructed from simulated PPTR signals using the monochromatic
kernel K (2.9) with the above parameters. Reconstruction results consist of 200 temperature values
over a depth range of 1.0 mm (Az = 5 pm). A maximum of 5000 iterations of the projected v-method
are allowed per signal.

7.2 Results

7.2.1 Noiseless signals

Figure 7.1 presents temperature profiles reconstructed from noiseless PPTR signals S, at sampling rate
100 (left), 1000 (center) and 10,000 s (right). Each reconstruction result is obtained after 5000
iterations of the reconstruction algorithm.

Clearly, increasing the sampling rate improves quality of reconstruction results. All temperature
profiles reconstructed from PPTR signals with /= 100 s are markedly broader and attenuated as
compared to temperature profiles reconstructed from PPTR signals with = 1000 s™ and /= 10,000 s™.
The quality of reconstruction results additionally improves, when f is increased from 1000 to
10,000 s. Thus, temperature profile located at z; = 50 um roughly resembles sharp edges of the actual
object (gray line).

All tested sampling rates f= 100—10,000 s™' yield equivalent peak temperature depths Z, except for test
object located at z; = 50 um. For this object, in images corresponding to /= 5000 and 10,000 s we
observe some features of the lower edge of test object.

Figure 7.2 presents the determined relative image error 6 (Eq. 4.10) and width W as a function of z;.
For all test objects, the relative image error ¢ decreases as sampling frequency increases (Fig. 7.2a).
However, the increase is more notable for f= 100-1000 s™ than for flarger than 1000 s"'. Optimal o
are obtained for /= 10,000 s'. Similar trend is observed for width W (Fig. 7.2b).

The above results agree well with the dependence of Az on f following from the heat diffusion length
equation. But, the simulation involving noiseless signals do not correspond to real PPTR temperature
profiling. Therefore we must include realistic noise in simulated PPTR signals to estimate, how the
accuracy of reconstructed temperature profiles depends on f for real PPTR temperature profiling.
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Figure 7.2: (a) Relative image error J (Eq. 4.12) and (b) full-width at half-maximum of the temperature profiles

W. Results for samplig rates = 100—10 000 s™' are presented (see legend). Gray line in (b) indicates the actual
width (50 pm).

7.2.2 Signals with noise

Figure 7.3 presents simulated PPTR signals with realistic noise for f= 100 (left), 1000 (center) and
10,000 s (right). Four test objects located at z; = 50-400 um (see labels) are considered. Evidently,
PPTR signals become more noisy as fincreases (Fig. 7.4).

f=100s" f=10,000 s™

04 0.6 0.8 1.0

Figure 7.3: Simulated PPTR signals for test objects with z; = 50, 100, 200 and 400 pm (see labels) and sampling
rates of 100 (leff), 1000 (center) and 10,000 s (right) augmented by realistic noise.
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Figure 7.4: SNR of the simulated PPTR signals as a function of sampling frequency f for test objects with z; =
50 (solid squares), 100 (open squares), 200 (solid circles) and 400 um (open circles).
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Figure 7.5 presents statistical analysis of the reconstruction results for three sampling rates. While
images for /= 100 s (left column) are similar to images reconstructed from noiseless signals with
f=100s" (Fig. 7.1, left column) for all depths, the images of objects located at z = 200 and 400 um for
/=1000 and 10,000 s are evidently broadened and attenuated as compared to corresponding images
reconstructed from noiseless signals (Fig. 7.1, center and right). Both effects are more expressed for f
=10,000 s due to smaller SNR.
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Figure 7.5: Average temperature profiles (black lines) and standard deviations (light-gray spots) reconstructed
from 10 simulated PPTR signals with different noise realizations. Images of test objects with z; = 50400 pm
(see labels) are reconstructed from PPTR signals with /= 100 (/eft), 1000 s (center) and 10,000 s™' (right). The
actual test objects (dark-gray line) are plotted for comparison.

In general, the accuracy of determined peak temperature depths Z is similar for /= 1000 and
10,000 s™. However, for the deepest test object (z; = 400 pm) Z obtained for = 10,000 s is markedly
less accurate than for /= 1000 s™.

Relative image error J and temperature peak width W as function of sampling rate for PPTR signals
with noise are presented in Fig. 7.6. For test objects with z; = 50 and 200 um, we obtain the smallest
image errors (6 = 0.29 and 0.31 for z; = 50 and 200 pm, respectively) at f= 1000 s™ (Fig. 7.6a), while
the largest sampling rate = 10,000 s™ is optimal for object with z; = 100 um (6 = 0.28). On average,
with f increased above the optimal f image error J increases due to decreased SNR, and with f
decreased below the optimal fimage error J decreases due to insufficient information in PPTR signal.
Similar trends are observed for width W (Fig. 7.6b).

In contrast to results obtained from noiseless signals, low SNR significantly deteriorates images
reconstructed from PPTR signals with large sampling rates. While shallow test objects (z; = 100 um)
benefit from large f, deeper test objects (z; = 200 um) are reconstructed more accurately at moderate
sampling rates (f= 1000-2000 s). Low sampling rates (f= 100-200 s') yield robust and comparable
reconstruction results for all depths z;, but markedly less accurate as compared to these obtained at
moderate sampling rates.
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Figure 7.6: (a) Relative image error J, (b) full-width at half-maximum W, and (c) peak temperature 7}, as a
function of sampling rate f for test objects located at z; = 50-400 pum (see legend) and PPTR signals with noise.
Gray line indicates (b) the actual width (50 pm) and (c) the actual peak temperature. Arrows point to optimal
values.

7.3 Discussion

Temperature profiles reconstructed from PPTR signals augmented with noise are markedly less
accurate when large f'is used. The results in Fig. 6.5 indicate that high sampling rate (f = 10,000 s') is
preferred only for shallow object (z; = 100 um), while deeper temperature profiles are reconstructed
more accurately with moderate sampling rates (f= 1000-2000 s™). Equal trends are observed also for
parameters of temperature profiles (Fig. 6.6). The image error J as well the excessive width W are
more prominent at high sampling rates (f= 5000 and 10,000 s™) as compared to moderate sampling
rates (f= 1000 and 2000 s™). Both, ¢ and ¥, increase with increasing depth Z for these sampling rates,
while they are almost independent of Z for small sampling rates (f = 100 and 200 s™). Thus, low
sampling rates can be used to reconstruct deep objects (z; > 500 um), where signals with larger f are
significantly deteriorated by noise. In general, the optimal sampling frequency depends also on noise
amplitude and depth discretization.

Considering the results of this study, a good alternative to fixed sampling rate used in PPTR
temperature profiling would be a non-uniform spacing in time (i.e., binning) as suggested by Sathyam
and Prahl’. This would also reduce the signal vector lengths and kernel matrix size, thus reducing
computational costs.

7.4 Conclusions

When temperature profiles are reconstructed from PPTR signals with large SNR, higher sampling
rates always yield better reconstruction results. But in presence of realistic noise, high sampling rates
(f = 10,000 s™) are optimal for shallowest temperature profiles (z < 100 um) only, while moderate
sampling rates (f~ 1000 s') are optimal for other temperature profiles. However, for our PPTR system
£=1000 s offers acceptable reconstruction results for all depths. In general, optimal sampling rate
depends on specifics of experimental system and properties of the studied samples.



Chapter 8

Tissue phantoms

It is important for evaluation of PPTR temperature profilometry of human skin to develop reliable
phantoms with well defined geometry that suitably mimic optical and thermal properties as well
infrared absorption of human skin. The development of tissue phantom for PPTR involves the choice
of matrix composition and absorber. In addition, one may also add scattering particles. An excellent
review of tissue phantoms for medical optics is provided by Pouge and Patterson™, while Pifferi et al*®
suggested directions for designing and characterization of tissue phantoms for biomedical optics.

Here we show preparation of agar and collagen tissue phantoms, including gel layer and absorption
layer preparation. In addition, we present measured IR spectrum of both types of gel and write
corresponding heat diffusion constants.

8.1 Hydrogel layer

Since the main component of human skin and both gels is water, matrix composition of tissue
phantoms used for PPTR temperature profiling should have similar thermal and IR absorption
properties as human skin. Tissue phantoms composed of thin collagen films are a perfect match for
real skin.” Due to good optical and thermal properties collagen and polcrylamide gels were also used
for a PPTR temperature profiling.” In our studies we use agar and collagen gels.

8.1.1 Agar gel

Agar gel was prepared by dissolving 0.15 mg of agar powder in 6 ml of distilled water, thus obtaining
the agar solution with weight percent of agar 2.5 wt.%. When the agar powder was completely
dissolved, the polymerization was initiated by heating the mixture to the boiling point in a microwave
oven.

Individual gel layers were produced by injecting the agar solution onto a wetted microscope slide with
two identical spacers positioned near the ends of the slide (Fig. 8.1). To prevent the entrance of air
bubbles, which were present mostly on the surface of the agar mixture, into the agar layer and to
precisely control the quantity of the agar solution, a syringe was used. A second slide was placed on
top of the agar mixture and gently pressed against the spacers. When polymerization was complete,
the top slide was carefully removed, exposing the gel layer of uniform thickness (Fig. 8.2).

agar
solution spacer
p la ) 4
' Figure 8.2: Prepared agar layer with scatterrers (TiO,)
Figure 8.1: Schematic of agar layer preparation. on a microscope glass slide.

61



62 Chapter 8 Tissue phantoms

Agar layers without scatterrer are transparent to visible light, because they are mostly composed of
water. In contrast, agar gel is not transparent to infrared radiation. The sample infrared spectrum is
required for PPTR temperature profiling, therefore we measured the IR spectrum of the prepared agar
gel using an IR spectroscope. The measured agar gel absorption coefficient x as a function of
wavelength 1 is presented in Figure 8.3. The agar spectrum (black line) agrees well with the spectrum
of water (gray line) for 1 = 3—6 pm, while at larger wavelengths protein peaks are present.

Another important quantity is the thermal diffusivity constant D of agar gel. Reported values of
diffusivities are D = 0.140 + 0.007,% 0.1427,"" and 0.138 mm?/s ** for 2.5% agar gel. All reported
values are a little smaller when compared to the thermal diffusivity constant of water (D = 0.145
mm?%/s at T=25° C)*’. In our studies, we have found that D = 0.143 mm?*/s for agar gel yields optimal
reconstruction results.

agar gel
pure water

1000+

100 +
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Figure 8.3: Measured IR absorption coefficient x4 of the agar gel (black line). Absorption spectrum of water
(gray line)*® is plotted for comparison.

7.1.2 Collagen gel

To obtain the gelatin solution with 25 weight percent of gelatin, we dissolved 1.25 g of gelatin powder
(bovine skin, Sigma-Aldrich) in 3.75 ml of water with 0.2% of formaldehyde. Inclusion of
formaldehyde increases the melting temperature of the gelatin matrix by increasing the crosslinking of
the fibers while preserving the thermal and spectral properties.’* This allows the collagen phantoms to
be used at room temperature.

elatin ¢ ;\\/
e pan (T Ly

Figure 8.4: Schematic of gelatin layer preparation.

We prepared the collagen layer by dissolving the gelatin powder in water at 70° C in water bath.®
When the gelatin powder was completely dissolved under vigorous stirring for 2 min, the homogenous
viscous solution was carefully poured onto a microscope slide with two identical spacers positioned
near the ends of the slide (Fig. 8.4). The slide was covered by a thin Teflon stripe, since collagen gel
sticks on glass substrate very strongly. A second microscope slide covered by a Teflon stripe was
placed on top of the gelatin solution and gently pressed against the spacers. When the gelatin was
cooled down to room temperature, we first carefully removed the top slide and then the top Teflon
stripe to expose the gel layer. Because of the large viscosity of gelatin, we could not use a syringe.
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Figure 8.5 presents the measured IR spectrum of the gelatin gel. The gelatin spectrum (black line) is
about 75% of water spectrum (gray line) at 1 = 3—6 um, while at larger wavelengths protein absorption
peaks dominate.

The thermal diffusivity D of the gelatin gel is assumed to be that of human skin (D = 0.11 mm?*/s),
based on similar water content to that in human skin.

gelatin gel
pure water

1004

u(mm™)

104

Figure 8.5: Measured IR absorption coefficient x of the gelatin gel (black line). Absorption spectrum of water
(gray line)*® is plotted for comparison.

8.1.3 Scatterrer

Human skin is a highly turbid medium with the reduced scattering coefficient of dermis®' x,” = 4 mm’
and of epidermis x,” = 12 mm™'. To better mimic skin properties, scattering particles were added to our
tissue phantoms. Since gelatin and agar phantoms were used for a short period only and then
discarded, we used inexpensive titanium dioxide (TiO,) scattering particles. To obtain the above
scattering coefficient we mixed 4 mg and 12 mg of TiO, (Sigma-Aldrich) into 1 ml of gel solution.
These concentrations of TiO, were found experimentally by measuring spectrum of visible light
transmitted through thin gel layers with different concentrations of scatterers. Figs. 8.2, 8.7 and 8.9
presents agar layers with TiO, particles.

8.2 Absorbing layer

When we first started preparing tissue phantoms, we prepared the absorbing layers by powdering the
surface of the gel layer with small amounts of fine carbon black powder, which was then cowered by
another gel layer (Fig. 8.6). Carbon black powder was selected because it is hydrophobic and,
therefore, does not diffuse into the gel, enabling preparation of stable thin absorbing layers.*’

Figure 8.6: Fine carbon black powder absorbing layer on a agar substrate covered by a thin (~100 um) agar gel
layer with scatterrers.

Very thin absorbing layers can be prepared by placing a thin absorbing foil over the hydrogel layer.
We used polyethylene foil of thickness ~10 um. Since foil is crushed during preparation of tissue
phantom (see Fig. 8.7), the effective thickness ((~20 pum) is larger than the actual thickness.
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Thicker absorbing layers (d > 30 um) were prepared as a hydrogel layer with addition of black India
ink as the absorber. Both techniques of absorbing layer preparation resulted in absorbing layers of well
defined geometry and of homogenous absorber distribution.

Figure 8.8: Schematic of a tissue phantom with a single absorbing layer. Water bath prevents the formation of
air bubbles between adjacent layers.

We put the prepared absorbing and hydrogel layers in water bath, where we constructed the tissue
phantom (Fig. 8.8). Water bath effectively prevents formation of air bubbles between the adjacent
layers. Finally, the composed tissue phantom was carefully removed from the water bath. Figure 8.9
presents a finished tissue phantom with a single absorbing foil as the absorbing layer.

superficial layer

substrate layer

Figure 8.9: Finished tissue phantom with a single absorbing foil as the absorbing layer.

If tissue phantoms are not immediately used in an experiment, they must be kept sealed in airtight
enclosures such as plastic bags or containers to prevent drying. Keeping the phantoms in vegetable oil
has also been reported as an excellent way to preserve the water content.””
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Spectral filtering

Numerical simulations in Chapter 6 show how narrowing of the acquisition band improves the validity
of quasi-monochromatic approximation (Eq. 2.9) and therefore improves the reconstruction results.
However, this causes a reduction in signal, therefore lower SNR, which adversly affects the
reconstruction results. Hence, the optimal detection band for given experimental conditions can be
determined only by considering the related experimental noise.

9.1 Experiments in agar tissue phantoms

9.1.1 Materials and methods

Agar gel tissue phantoms

Three tissue phantoms evaluated in this study (samples A, B, and C) consisted of a 1-2 mm thick gel
substrate, thin absorbing layer, and one superficial gel layer of varying thickness. Absorbing layers
were prepared by powdering the agar gel layer surface with fine carbon black powder. Details of the
agar layer preparation were presented in Chapter 8. The subsurface depths of the absorbing layers
were approximately 130, 280, and 450 pm, respectively, which corresponded to the location of a
vascular network in shallow, medium, and deep port-wine stain birthmarks, respectively. One tissue
phantom (sample D) included two absorbing layers at approximate depths of 240 and 440 um. In this
sample, TiO, powder was homogeneously dispersed in the substrate to enhance optical scattering. The
increased light fluence in the deeper absorbing layer resulted in two temperature peaks with
compe613rable amplitudes, despite strong attenuation of the incident laser pulse by the upper absorbing
layer.

Pulsed photothermal profiling

For each PPTR measurement, the sample was irradiated with a single 1.5 ms long 585 nm pulse from a
pulsed dye laser. Radiant exposure near the center of a 10 mm diameter laser spot was ~3 J/cm®,
Radiation emitted from the center of the irradiated area was collected on the focal-plane array of a fast
IR camera (Phoenix, Indigo, Santa Barbara, CA, USA) using a macro IR objective with magnification
M = 1. By limiting the data read-out to a 128 X 64 pixel sub-window and setting the integration time to
tint = 0.5 ms, the acquisition rate was 1083 frames per second. The acquisition time was set to 1 s after
the laser pulse.

Radiometric signals were obtained from 3 different sites on each sample, separated by a few
millimeters to prevent thermal interference between successive measurements. On each test site, up to
three radiometric signals were acquired using the entire spectral band of the IR camera (A = 3.0-5.6
pm) and also with a custom long-pass IR filter (cut-on at 4.5 um, Barr Associates, Westford, MA)
fitted to the collection optics.'® The response of each array element was calibrated using a computer-
controlled black body (BB701, Omega Engineering, Stamford, CT, USA). Finally, the PPTR signals §
(in absolute radiometric temperature units) were obtained by averaging data from 40 x 40 detector
elements (active area 4 = 1.2 x 1.2 mm?) and subtracting the baseline value.

Initial temperature profiles T (images) were reconstructed using the monochromatic approximation
(Eq. 2.9) and the PR-CG reconstruction algorithm (chapter 4). Elements of the monochromatic kernel
matrix K were calculated using the thermal parameter values D = 0.134 mm?/s and 4 = 0.02 mm™". The
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effective absorption coefficient was determined as g = 28.0 mm™' for broad-band signal acquisition
(A =3.0-5.6 um) and s = 30.2 mm’' for the narrowed spectral band (4.5-5.6 um). These values were
determined from IR spectral properties of the sample (Fig. 8.3) and radiation detector (Fig. 9.1)
following the approach presented in Chapter 6. Each reconstruction result consisted of 140
temperature values over a depth range of 0.7 mm (discretization step Az =5 pum).
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Figure 9.1: Relative responsivity of an InSb detector (J10, Judson Technologies, Montgomeryville, PA) in mid-
IR spectral region.

Optical coherence tomography and histology

Several cross-sectional images per sample were acquired using an OCT system® with a central source
wavelength of 1.3 pum. The axial and lateral scanning lengths were set to 800 um and 2 mm,
respectively. The images were saved in JPEG format (400x634 pixels) for further analysis. For
purposes of presentation and analysis, the axial dimensions within the sample were corrected using an
estimated index of refraction (1.32). Distance from the sample surface to the center of the absorbing
layer was determined at six equidistant positions in each image.

Finally, thin vertical sections were cut from the sample using a pair of blades and placed onto a clean
microscope slide. The sections were inspected under a microscope at magnifications 4, 20, and 40, and
photographed using a charge-coupled device (CCD) camera (resolution 552x744). Depth of the
absorbing layer was determined from the microphotographs at ten locations per sample.

9.1.2 Experimental results

Pulsed photothermal profiling
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Figure 10.2: PPTR signals acquired from agar gel samples A and C using the entire spectral band (A = 3.0-5.6
um; dashed lines) and the reduced spectral band (4.5-5.6 um; solid lines).
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Figure 9.2 presents PPTR signals acquired from samples A and C. PPTR signals acquired using the
entire spectral band (1 = 3.0-5.6 um; dashed lines) differ in shape from those obtained using the
reduced spectral band (4 = 4.5-5.6 um; solid lines).

Noise amplitude in PPTR signals is NEAT = 6.5 and 10.9 mK for the full and reduced spectral band,
respectively. SNR values are summarized in Table 9.1 for all measured PPTR signals.

Table 9.1: Signal-to-noise ratios (SNR) for PPTR signals obtained from four agar gel samples (A-D) using the
full (left column) and reduced spectral bands (right column).

SNR
Sample A=3.0-5.6um A=4.5-5.6 um

A 496 245
B 456 285
C 295 155
D 482 277
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Figure 9.3: Reconstructed temperature profiles from three sites on samples A—D. Corresponding PPTR signals
were obtained using the full-spectrum acquisition (A = 3.0-5.6 um, dashed line) and reduced-spectrum
acquisition (1 = 4.5-5.6 pum, solid line), respectively.
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Figure 9.3 presents temperature profiles reconstructed from PPTR measurements on three different
sites on samples A—D, using the entire (dashed line) and reduced spectral band (solid line). Peak
temperature depths Z determined on the same site with the two approaches do not differ significantly.
The observed variation between different sites on the same sample is due to non-uniform thickness of
the superficial gel layer. Yet, temperature profiles obtained with the reduced-spectrum acquisition
appear narrower as compared to the full-spectrum acquisition. This effect is particularly evident in
samples A and D.
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Figure 9.4: Average widths of absorbing layers # and standard deviations (error bars) for samples A—C and

both absorbing layers in sample D (D1 and D2). Temperature profiles were reconstructed from PPTR signals
acquired using the full-spectrum (/ight gray) and the reduced-spectrum acquisition (dark gray).

Table 9.2: Average peak temperature depths (Z) and full-widths at half-maximum (/) of the absorbing layers as
determined for the full- (left column) and reduced-spectrum acquisition (right column).

A =3.0-5.6 ym A=4.5-5.6 pm

Sample
Z(um)  W(um) Z(pm) W (um)
A 123 45 126 40
146 55 143 45
135 60 138 50
B 276 95 273 70
283 115 278 90
288 85 288 85
C 448 165 458 140
453 140 458 150
453 185 468 160
D 1% 243 45 223 36
253 53 258 35
208 46 213 43
2" 443 90 431 77
443 75 453 48
388 67 396 61

Average peak temperature depths Z and full-widths at half-maximums # as determined from all test
sites using both experimental approaches are summarized in Table 9.2. Depths Z determined using
the full-spectrum reconstruction results do not differ significantly from depths determined from the
reduced-spectrum acquisition. In samples A and B, the difference between the corresponding depths is
smaller than the temperature profile discretization (Az = 5 um), and slightly larger in samples C and D
(~10 pm). But, lobe widths W are significantly larger when the full-spectrum acquisition is used
(Table 9.2, left column), as compared to reduced-spectrum acquisition (right column).
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This difference in the broadening effect is illustrated in Figure 9.4, where average widths W and
standard deviations are presented for all samples and both acquisition approaches. Clearly, widths W
for the reduced-spectrum acquisition (dark gray) are smaller as compared to widths for the full-
spectrum acquisition (light gray).

Optical coherence tomography and histology

An OCT cross-sectional image of sample A (Fig. 9.5a) shows clearly the sample surface (upper arrow)
and the absorbing layer (lower arrow) due to strong scattering of incident laser light at these two
boundaries. Blurring of both boundary lines, which amounts to ~20 pm precludes, accurate and
reliable determination of the top layer’s thickness. If the center of each line is selected to represent the
boundary location, the average depth of the absorbing layer is determined as 120 pm with a standard
deviation of 15 um. Sample B (Fig. 9.5b) displays the largest variation of the top layer thickness,
which is determined as 290 + 32 um.

Characteristic “ringing” artifacts are present around the surface line in the image of sample D (Fig.
9.5c; top arrow). Nevertheless, both absorbing layers are easily discernible (mid- and bottom arrow,
respectively), and their average depths are determined at 240 and 412 pm. Pronounced optical
scattering due to TiO, particles in the gel substrate underneath the deeper absorbing layer is clearly
visible in the image. The OCT results from all samples are presented in Table 9.3.

At S

A by e e

Figure 9.5: OCT images of tissue phantoms: (a) sample A and (b) sample B. The upper arrow indicates the
sample surface, and the lower one indicates the absorbing layer. (¢) Sample D: The middle arrow indicates the
first absorbing layer, and the bottom one indicates the deeper absorbing layer. The substrate (underneath the
latter) shows scattering due to TiO, particles.

Figure 9.6a presents histology of sample C under an optical microscope. Sample surface is indicated
by the top arrow. Carbon powder granules are confined to the boundary between the top agar layer and
the thicker substrate layer (note the 500 um scale bar). The absorbing layer depth varies with location,
resulting in an average value of 450 um with a standard deviation of 30 pm.

Histology of sample D is presented in Fig. 9.6b. The upper arrow indicates the sample surface and the
middle arrow the first absorbing layer. The optically scattering substrate layer underneath the second
absorbing layer (bottom arrow) appears darker in this transillumination microphotograph. The
absorbing layer depths as determined from histology in all samples are presented in Table 9.3.



70 Chapter 9 Spectral filtering

———— ———500 pm

Figure 9.6: Histology of (a) sample C: The upper arrow indicates the sample surface, and the lower arrow
indicates the absorbing layer. (b) Sample D: The upper arrow indicates the sample surface, the middle arrow the
upper absorbing layer, and the bottom arrow the deeper absorbing layer. The substrate layer in sample D appears
darker because of pronounced optical scattering (microscope objective, 4x).

Table 9.3: Average depths and widths of the absorbing layers as determined with three measurement techniques.

Sample PPTR,3-5 um PPTR,3-5 um OCT Histology

Z (um) W(um)  Z(um) W(um)  Z(um) W(um)  Z(um)
A 135£12 53+8 136+9  45+5 120+15 20 125+ 15
B 282+6 98+15 280+8 82+10 290+32 20 287+ 15
C 451+3  163+23 461+6 15010 472+15 30 450 + 30
D 1% 235+24 48+4 231424 38+4 240+3 40 200 + 4
2 425432 77412 427429 62+15  412+7 40 340 + 4

9.2 Numerical simulation

9.2.1 Methods

Initial temperature profiles in our numerical simulation have a hyper-Gaussian form: A7(z, 0) = AT,
exp[—2 (z—z0)*/w,']. To simulate the experimental data, we select the parameter values AT, = 30 K and
wo = 30 um and set z, to 133 pm (object A), 282 um (object B), and 468 um (object C). An additional
test profile is composed of two hyper-Gaussian lobes of width wy centered at z; = 223 um and z, = 403
pm (object D). The corresponding vectors 7T, consist of 140 values evaluated at equidistant depths
within a depth of 0.7 mm. Theoretical signals vectors Sy are calculated from T, using Eq. (2.11). These
have 1083 components which represent PPTR signal values acquired at a sampling rate of 1083 s .

We simulated different spectral acquisition bands, with the lower wavelength limit 4, varied from 3.0
to 5.0 pm and the upper wavelength limit fixed at the InSb radiation detector cut-off wavelength (Fig.
9.1), 2, = 5.6 pm. The corresponding kernel matrices K are calculated by dividing each spectral
acquisition band into A intervals of width 0.02 pm and adding up their contributions using (6.1), where
u(2) is IR absorption spectrum of agar gel.

Each theoretical PPTR signal S, is augmented by realistic noise. To calculate noise equivalent
temperature rise NEAT for each simulated spectral band, we must first determine the total noise
amplitude 7. In the following, we apply the parameters of the experimental system: active area of the
detector A = 1.44 x 10 cm?, collection half angle 6 = 11.3°, frequency bandwidth A= 1000 Hz, and
baseline temperature 73, = 298 K. Peak responsivity of the InSb radiation detector is estimated to R, =
3.0 A/W. For simplicity, we set both £ and C to 1 (Eq. 3.11), because their influence on the simulation
results is minimal. Using the relation, which follows from (2.6) and (3.11)
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NEAT = i 9.1)
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we can determine n, from the experimentally determined NEAT values (6.5 and 10.9 mK for spectral
bands of 1 = 3.0-5.6 um and 4.5-5.6 um, respectively). The result is almost identical for both spectral
bands, n, = 3.0 x 107" A, since the shot noise amplitudes 7y, computed by using (3.4) and (3.11) are
markedly smaller than n, (ng, = 2.0 x 10" A and 1.7 x 10" A for 4, = 3.0 and 4.5 pm, respectively).
Hence, we calculate NEAT using (9.1) with n, = 3.0 x 10"° A for all simulated spectral bands. In
addition, the presence of 1/f noise is characterized by a corner frequency f. = 330 Hz and an exponent
a =1 (Eq. 3.5), so we simulate noise that contains appropriate contributions of zero-mean white noise
and 1/fnoise.

Initial temperature profiles 7 are reconstructed from simulated PPTR signals using the monochromatic
approximation. Elements of the monochromatic kernel matrix K (2.9) are calculated using the
effective absorption coefficient values s, determined separately for each spectral band as presented in
Chapter 6.1.2.

Because reconstruction results are very sensitive to specific noise realizations, each theoretical signal

8y is augmented with 10 different realizations of noise and the results are analyzed statistically.

9.2.2 Simulation results

Simulated PPTR signals for test objects A—C are presented in Fig. 10.6 for acquisition spectral bands
with 4 = 3.0-5.6 um, 4.5-5.6 um and 5.0-5.6 pm. The narrowest spectral band (right) presents a
significantly larger NEAT as compared to the entire spectral band (/ef?).

2=3.0-5.6 ym A=45-56pum 2=5.0-5.6 ym

Figure 9.6: Simulated PPTR signals for test objects A—C and spectral bands 1 = 3.0-5.6 um (leff), 4.5-5.6 um
(center) and 5.0-5.6 um (right). All signals are augmented by realistic noise.
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Figure 9.7: NEAT for the simulated spectral acquisition bands (solid circles) as a function of 4. SNR of the
simulated PPTR signals (open symbols) decreases with 4, for all test objects (A—D).
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Figure 9.7 presents the NEAT values (9.1) as a function of A, (solid circles). NEAT increases
monotonically from 6.9 mK at 4, = 3.0 um to 21.1 mK at 4, = 5.0 um. Consequently, SNR of simulated
PPTR signals decreases with A, for all test objects (open symbols).

Effective IR absorption coefficients i (6.3) for the simulated spectral acquisition bands are presented
in Fig. 9.8. The values p.¢ vary between 25.0 mm™’ and 30.2 mm™, as dictated by spectral dependences
of u(4), R(A) and B;(Ty) in the corresponding spectral bands.
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Figure 9.8: Effective IR absorption coefficient u. as a function of 4, for the simulated spectral bands.

Figure 9.9 presents statistical analysis of reconstruction results for three spectral acquisition bands: 1 =
3.0-5.6 um (left column), 4.5-5.6 um (center), and 5.0-5.6 um (right). In each panel, black lines
connect the average temperature values and light-gray bars indicate standard deviations. The actual
test objects are depicted for comparison (dark-gray lines).
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Figure 9.9: Average temperature profiles (black lines) and standard deviations (light-gray bars) reconstructed
from 10 simulated PPTR signals with different noise realizations. Images of four test objects (see the labels) are
reconstructed from PPTR signals with spectral bands: A = 3.0-5.6 pm (left), 4.0-5.6 pm (center) and 5.0-5.6 pm
(right). The actual test objects are plotted for comparison (dashed lines).

For the reduced spectral bands (center and right), reconstructed temperature profiles of object A (fop
row) are narrower and higher as compared to the full spectral band (/eff). Similar trends are observed
for objects B and C (2" and 3™ row, respectively), while object D (bottom row) is reconstructed
optimally, when the spectral band with 4 = 4.5-5.6 um is used. But spectral band reduction
compromises the stability of the reconstruction results (i.e., increased standard deviation), due to
reduced SNR.

Figure 9.10a presents relative image errors J as a function of 4. For object A (circles), the minimal
average error is obtained at 4; = 3.8 um (6 = 0.088; note the arrow). With 4, increased above 4, = 4.0
pm, § increases progressively due to decreasing SNR (J = 0.19 at 4, = 5.0 um). With 4, decreased
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below 3.8 um, J increases monotonically due to increasing deficiency of the monochromatic
approximation, reaching 6 = 0.14 at 4, = 3.0 pm. The same trend is present also for standard deviation
of J. Standard deviation presents a minimum at A; = 3.8 um (o; = 0.02) and significantly increases
when spectral band is ether broadened (o5 = 0.05 at /4, = 3.0 um) or narrowed (g5 = 0.10 at 4; = 5.0 pm).
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Figure 9.10: (a) Relative image error J as a function of /; for test objects A (circle), B (square), C (diamond)
and D (triangle). (b) Analogous results for the full-width at half maximum of reconstructed temperature peaks
(W). The widths of both peaks are analyzed for object D (D1, D2; bottom). Standard deviations are presented as
error bars. Dotted lines in (b) indicate the actual object width, W =47 um. Arrows indicate minimums of J and
w.

Similar trend is observed for object B (Fig. 9.10a, squares), where the minimum 6 = 0.36 at
A1 = 3.8 um is markedly larger as compared to test object A due to the broadening. Standard deviation
o5 tends to increase with 4; (o5= 0.04, 0.08 and 0.19 at 4, = 3.0, 3.8 and 5.0 um, respectively). Relative
image errors o0 for object C (diamonds) decrease with A,, albeit this trend is almost concealed by large
standard deviations o;.

The minimum of § for test object D (bottom) is obtained at 4, = 4.0 um (0 = 0.27; arrow), while values
within the range A; = 3.5-4.5 pm can be considered adequate due to large standard deviations (o5 ~
0.11). For 4 outside of this range, ¢ and its standard deviation both tend to increase, in particular
toward larger A, (6 = 0.52 £0.17 at 4, = 5.0 um).

The difference between J of full-spectrum acquisition and 6 of the filtered approach with 4 = 4.0-5.6
pm (Table 10.4) is most prominent for objects A (dsn = 14% and Jrequced = 9%) and D (dgu1 = 37% and
5reduced = 27%)

As demonstrated in Figure 9.10b, the reconstructed temperature profiles are in general broader than
the test objects (W = 47 um; note the dashed line). For test object A (circles) the optimal result (W =
51 um; arrow) is fairly accurate. The indicated optimal degree of spectral filtering (A; = 3.8—4.0 um) is
the same as that from analysis of image errors (Fig. 9.10a, circles), although the minimum is less
pronounced. The image widths W increase in particular for broader spectral bands (lower 4;), and
standard deviations ow increase when 4, is changed from the optimal range in either direction (but
more so toward larger 4;).

The reconstructed images of test objects B and C (Fig. 9.10b, squares and diamonds, respectively) are
much broader than for object A. The closest match (W =72 pm and 111 pum, respectively) is obtained
at 4; = 4.0 um and the general trends appear equivalent to those observed for object A, although they
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are almost concealed by large standard deviations.

For the two-lobed test object D (Fig 9.10b, bottom), the results from the first peak (up triangles)
suggest the optimal value around A4, = 3.5-4.5 pm, if both widths W and their standard deviations are
considered. For the second peak, the trends in W(4) are concealed by large standard deviations ow ,
which tend to increase toward both ends of the explored spectral range.

Average peak temperature depths Z and widths W (together with standard deviations) are presented in
Table 9.4 for all test objects and spectral bands with 4, = 3.0 (unfiltered), 4.0 (near-optimal) and 4.5
pum (as used in the experiments; section 9.1). The depths Z deviate from the actual central depths z, by
1% (object C) or less (objects A, B, and D2), and ~2% for the first peak of object D, regardless of the
spectral acquisition band. When we compare the optimal results to widths W determined for the full
spectral band (4, = 3.0 um), we find that spectral filtering reduces Wby 7 £ 1%, 10 £ 3%, 13 + 8%, 2 +
1% and 14 + 11% for test objects A, B, C, the 1* peak and the 2" peak of D, respectively.

Table 9.4: Average depths Z and widths W of reconstructed temperature profiles determined for the full (1 =
3.0-5.6 pm), near-optimal (4.0-5.6 um) and reduced spectral band as used in the experiments (4.5-5.6 pm). The
actual width W for all objects is 47 um, the central depth z, is given in the first column.

Sample 3.0-5.6 um 4.0 -5.6 um 4.5-5.6 ym
Zo (Hm) Z (um) W(pum) Z (um) W(pm) Z (um) W(pum)
A 133 133+ 0 55+4 133+0 51+2 132+1 51+4
B 283 283 +0 807 282+2 72+8 281+3 77£18
C 468 462+ 0 128 £27 465+3 111 +20 464 £2 112 +24
D 1 223 218+2 51+14 219+2 50+6 218+3 49+ 6
ond 403 403+5 81+£20 405+ 4 70+ 13 405£5 72+12

In contrast, spectral filtering has a larger effect on image width, . As illustrated in Fig. 9.11, the
reconstructed images are on average broader and more sensitive to the presence of noise when using
the full spectral band (4, = 3.0 um) as compared to either narrowed spectral band (4, = 4.0 um or 4.5
um), for all test objects. The difference between the latter spectral bands is not very large, although the
near-optimal spectral band (4, = 4.0 pm) yields smaller widths W (except for the superficial peak in
sample D, D1), and smaller standard deviations ow (except for the deep peak in sample D, D2).
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Figure 9.11: Average widths W of temperature lobes in reconstructed images of all test object for the full (4, =
3.0 um), near-optimal (4; = 4.0 pm) and reduced spectral band as used the experiments (4, = 4.5 um). Bars
indicate standard deviations, dotted line indicates the correct object width (W =47 pum).

Quality of reconstructed image is in general diminished by two independent effects, deficiency of
monochromatic approximation and the presence of noise in PPTR signals. To highlight their
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respective roles, we perform analysis for test objects A with varied peak temperature, AT, = 5-60 K.
SNR values of simulated PPTR signals for these test objects are presented in Fig. 9.12a.

As seen in Fig. 9.12b, reconstruction of the object with the lowest amplitude (A7, = 5 K) is optimal
when using the full spectral band (3.0-5.6 pum). Reconstruction of this object is compromised
primarily by the high level of noise in the PPTR signal (SNR = 70). For all other test objects, image
errors show distinct minimums (around 4, = 4.0-4.5 um) when reduced spectral acquisition bands are
used.
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Figure 9.12: (a) SNR values for test objects with peak temperature AT, from 5 K to 60 K. (b) Relative image
errors 0 (in logarithmic scale) for the spectral bands with 4, = 3.0, 3.5, 4.0, 4.5 and 5.0 ym.

Figure 9.13 presents statistical analysis of the widths W for the same range of amplitudes
(AT, = 5-60 K) and three acquisition spectral bands. Similarly to Fig. 9.11, the full-spectrum approach
(4 =3.0-5.6 um) invariably yields larger widths /¥ than the reduced-spectrum approach, thus resulting
in worse reconstructions. In contrast to relative image error J (Fig. 9.11b), widths W determined for
the experimental reduced spectral band (4 = 4.5-5.6 um) are more accurate and feature smaller
standard deviations as compared to the theoretically optimal spectral band (A = 4.0-5.6 um), although
the difference does not appear significant
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Figure 9.13: Average widths # and standard deviations for test objects with peak temperature AT, = 5-60 K and
for the full (4, = 3.0 um), optimal (4, = 4.0 um) and experimental reduced spectral bands (4, = 4.5 pm). Bars
indicate standard deviations, dotted line indicates the correct object width (W =47 pum).

9.3 Discussion

The depths of peak temperature Z in tissue phantoms reconstructed from PPTR measurements using
the full and the reduced-spectrum acquisition are very similar (Tables 9.2 and 9.3). The absorbing
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layer depths assessed from PPTR measurements matched adequately the results from OCT and
histology (see Table 9.3). These findings are supported by our numerical simulation results where
peak temperature depths Z deviate from the actual object depths z, by less than 2% (see Table 9.4).
The experimental and numerical simulation results confirm that selection of the spectral band does not
significantly influence the accuracy of peak temperature depth, Z.

Experimental results show that appropriate spectral filtering of PPTR signals improves the quality of
reconstructed temperature profiles. In sample A, temperature profiles reconstructed from experimental
PPTR signals with the reduced-spectrum acquisition are significantly narrower (W = 45 £ 5 um) as
compared to the full-spectrum acquisition (W = 53 + 8 um). Hence, spectral filtering reduces W by 15
+ 4% in sample A (see Table 9.2). The advantage of spectral filtering is less apparent, but still present,
in samples B and C (W is reduced by 16 + 7% and 8 + 3% for samples B and C, respectively). Samples
B and C feature deeper absorbing layers, so the temperature profiles are increasingly broadened
regardless of the spectral acquisition band, as presented in Chapter 11. In sample D, with two
absorbing layers (Table 9.2), both temperature peaks obtained with spectrally narrowed acquisition are
on average markedly narrower than for the full-bandwidth approach (by 21 = 5% and 20 £ 10% for the
1 and the 2™ peak, respectively).

Similar trends are found also in results of numerical simulation. For all test objects, the minimal
differences between determined widths W and the actual value /¥ =47 um are obtained for the spectral
acquisition bands with 4; = 3.8—4.0 um. Standard deviations of the widths oy are also smallest for A =
4.0-5.6 um (Table 9.4). This indicates that appropriate spectral filtering improves robustness of PPTR
temperature profiling, despite the related decrease in SNR. The accuracy of determined width W in
general decreases with increasing SNR (Fig. 9.13). However, for a given test object and temperature
rise optimal widths W and minimal standard deviations ow are obtained with appropriate filtering.
Thus, we conclude that appropriate spectral filtering (e.g., 4, = 3.8-4.0 um) reduces the profile
broadening in a large range of realistic SNR values.

For test objects with different A7), distinct minimums are present for narrowed spectral bands (i.e.,
4.0-5.6 pm, see Fig. 10.12b), except for the object with A7y = 5 K. For the latter, the high amount of
noise in simulated PPTR signals concealed the dependence of ¢ on spectral band.

The effects of noise and monochromatic approximation deteriorate reconstruction quality in PPTR
profiling. The former is most expressed for narrow spectral bands, while the latter is most expressed
for broad spectral bands (see Chapter 6). Thus in general, an optimal spectral band exists which yields
a minimal reconstruction error. Results of the numerical simulations suggest that the optimal spectral
acquisition bandwidth is 4; = 3.8—4.2 um for the simulated objects and PPTR system. In general, the
optimal spectral band depends on object structure, peak temperature and experimental system
characteristics.

94 Conclusions

In PPTR temperature profiling of agar tissue phantoms, spectral filtering reduces the reconstruction
error ¢ and broadening of temperature peaks, especially for shallower and more complex absorbing
structures. A suitable amount of spectral filtering is thus beneficial, despite the associated reduction of
SNR. However, spectral filtering is not beneficial, when PPTR signals are significantly deteriorated by
noise. For the simulated objects and PPTR system, results of numerical simulations suggest an optimal
spectral band with 4, = 3.8—4.2 um. In general, the optimal spectral band depends on specifics of
experimental system, spectral property of tissue and temperature profile.



Chapter 10

Spectral filtering in collagen samples

In the previous chapter we showed that appropriate spectral filtering improves reconstruction results,
when the monochromatic approximation is used. Albeit this approximation reduces computational
costs, it results in the deficiency, which deteriorates reconstruction results, especially for absorbing
structures close to the sample surface. But when the exact IR absorption spectrum is known, a
spectrally composite kernel matrix can be computed and applied to reconstruction of temperature
profiles.

The study presented in Chapter 9 involved agar tissue phantoms, which are different from our intended
application, temperature profiling in human skin. The differences include different IR absorption
spectrum, heat diffusion constant and complexity of the temperature profile. In this chapter we present
a follow-up study involving numerical simulation and experimental studies on collagen tissue
phantoms, which more realistically resemble human skin. Besides the monochromatic approximation
we use also spectrally composite kernel matrices and compare reconstruction results obtained by these
two approaches.

10.1 Numerical simulation

The initial temperature profiles in our numerical simulation have a hyper-Gaussian form: A7(z, 0) =
ATy exp[-2 (z—z0)*/wo']. We set the parameter values AT, = 30 K and wy = 33 um and choose z, to be
50 pm (test object A), 110 um (B), 280 um (C), 430 um (D) or 640 um (E). An additional test profile
(AC) is composed of two hyper-Gaussian lobes of width wy centered at z; = 50 um and z, = 280 um.
Theoretical signal vectors Sy are calculated from 7T, using Eq. (2.11), and have 1000 components,
which represent PPTR signal values acquired at a sampling rate of 1000 s™.

We simulate different spectral acquisition bands, with 4, = 3.0-5.0 um and 4; = 5.6 pm (InSb detector;
Fig. 3.3). The corresponding kernel matrices K are calculated by dividing each spectral acquisition
band into N intervals of width 0.02 um and adding up their contributions in accordance with (6.1). We
use the IR absorption spectrum of gelatin tissue phantoms (Fig. 8.6), and apply thermal parameter
values D =0.11 mm*/s and 4 =0.02 mm"".

For comparison of PPTR profiling performance utilizing different spectral acquisition bands, we
augment simulated PPTR signals with realistic noise. We use specifications of our PPTR system
(chapter 3), determined noise parameters (n, = 3x10"'° A, f. = 15 Hz and a = 1.3) and emissivity ¢ = 1,
which is representative of human. Noise-equivalent temperature rises (NEAT) are calculated using
Eq.(9.1). Because reconstruction results are very sensitive to specific noise realizations, we augment
each theoretical signal S, with 30 different realizations of noise, yielding PPTR signals §.

Initial temperature profiles 7 are reconstructed from simulated PPTR signals S using both the
monochromatic kernel matrix, # (2.10) and spectrally composite kernel matrix, K (6.1). Elements of
the matrix x are calculated using the effective absorption coefficient values g (6.3), determined
separately for each spectral band. We use the projected v-method (chapter 4) to reconstruct
temperature profiles 7, which consist of 200 temperature values over a depth range of 1.0 mm
(discretization step Az = 5 um).

10.1.2 Results

Simulated PPTR signals S for test objects A—E are presented in Figure 10.1 for spectral acquisition

77
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bands of A = 3.0-5.6 um (leff) and A = 5.0-5.6 pum (right).

2=3.0-5.6 um 4=15.0-5.6 pm

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0
t(s)

Figure 10.1: Simulated PPTR signals for test objects A—E and spectral bands of A = 3.0-5.6 pm (leff) and A =
5.0-5.6 um (right). All signals are augmented by realistic noise.

Figure 10.2 presents NEAT (9.1) as a function of 4, (solid circles). The values increase from 3.3 mK at
A1 =3.0 um to 7.1 mK at 4, = 5.0 um. Consequently, SNR computed from simulated PPTR signals
decrease with 4,, albeit not monotonically due to different realizations of 1/f noise (empty symbols).
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Figure 10.2: NEAT for the simulated spectral acquisition bands (solid circles) as a function of 4;, and SNR of the
simulated PPTR signals for test objects A—E (empty symbols).
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Figure 10.3: Effective IR absorption coefficient . as a function of 4.

Effective IR absorption coefficients i (6.2) used in monochromatic reconstruction of temperature
profiles are presented in Fig. 10.3. The values lie between per = 21.2 mm™ at 4, = 5.0 um and fier =
24.2 mm™ at A =4.5 pm.

Figure 10.4a presents statistical analysis of the reconstruction results for object A. When
monochromatic reconstruction is used, the best reconstruction result is obtained for A = 4.3-5.6 um
(second row), albeit corresponding standard deviations is somewhat larger than for A = 3.0-5.6 pm
(first row). Spectral reconstruction (A4 = 3.0-5.6 pum; bottom row) results in temperature profile similar
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to the optimal monochromatic result, yet with smaller standard deviation. Similar trends as for object
A are observed in reconstructed temperature profiles of test objects B-D (Figs. 10.4b—10.4d), except
that on average reconstruction results obtained with spectral reconstruction somewhat better resemble
the actual objects and feature smaller standard deviations.
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Figure 10.4: Average temperature profiles (black lines) and standard deviations (light-gray bars) reconstructed
from 30 simulated PPTR signals with different noise realizations. Images of test objects (a) A, (b) B, (C), and (d)
D are reconstructed from PPTR signals with spectral bands of A = 3.0-5.6 um (first row), 1 = 4.3-5.6 um (second
row) and A = 5.0-5.6 um (third row) using monochromatic reconstruction. Images are reconstructed also using
spectral reconstruction and spectral acquisition band A = 3.0-5.6 um (bottom row). The actual test objects are
plotted for comparison (dashed line).
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Temperature peak depths Z determined from temperature profiles reconstructed by using
monochromatic reconstruction are equal to depths Z determined for spectral reconstruction. All depths
Z are 2.5 pm smaller than the actual depth z, for all test objects. Hence, the results of numerical
simulation indicate that PPTR temperature profiling results in accurate temperature peak depths Z
when either monochromatic reconstruction with optimal s or spectral reconstruction are used.

Relative image errors 0 (Eq. 4.10) for test objects A and B are presented in Fig. 10.5. For object A
and monochromatic reconstruction (Fig. 10.5a, solid circles), we observe the minimal image error at 4,
=4.3 um (6 = 0.09 = 0.01; see arrow). With 4, increased above 4, = 4.3 um, image error ¢ and standard
deviation o3 increase due to increased SNR. However, both ¢ and o5 also increases when 4, is below 4,
= 42 pm, due to increasing deficiency of the monochromatic approximation. For spectral
reconstruction, the image error J does not vary significantly between /; = 3.0 and 4.7 pm (6 = 0.7 &
0.01) (open circles), while ¢ and o5 progressively increase with 4 above 4.7 um due to increased SNR.
In general, spectral reconstruction results in smaller J and o5, but the difference between the two
approaches is small for optimal spectral filtering, 4, = 4.0-4.5 pm.

For object B and monochromatic reconstruction (Fig. 11.5b, solid circles), the minimal image error is
obtained at 4, = 4.4 um (6 = 0.09 + 0.02). However, spectral bands of 4, = 4.1-4.5 pm yield 6 = 0.10
and o5 = 0.02, both reasonably small. When spectral reconstruction is used (open circles), average o
and o3 are almost constant for 4, = 4.0-4.3 um, and increase with /4, above 4.5 pm. Standard deviation
o5 is smaller for spectral reconstruction in most spectral band than for monochromatic reconstruction.
All trends are almost concealed by the large standard deviations for both reconstruction approaches.

For objects C-D, standard deviation o5 is even more pronounced as for object B, effectively
concealing all trends in 0. Image errors J and standard deviations o; are similar for both reconstruction
approaches: 0.15 £ 0.6, 0.45 £ 0.10, and 0.70 + 0.12 for test object C, D, and E, respectively.
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Figure 10.5: Relative image error ¢ and standard deviation a5 (error bars) as a function of 4; for monochromatic
(solid circles) and spectral reconstruction (open circles). Image error J is determined from temperature profiles
of test objects (a) A and (b) B. Arrows indicate optimal /;.

Full-widths at half maximum (W) of the reconstructed images are presented in Fig. 10.6 for test
objects A and B. For monochromatic reconstruction (Fig. 11.6a, solid circles), the reconstructed
temperature profiles are narrower than the actual object (W = 50 um; dashed line), except for 4, = 4.0—
4.4 um, where accurate widths are obtained. In contrast, accurate widths are obtained for all simulated
spectral bands when spectral reconstruction is used (open circles). For object B, spectral acquisition
bands with 4, = 4.0-4.5 pm yield near optimal width W = 51 pm and standard deviation ow = 3 um
when monochromatic reconstruction is used (Fig. 11.6b, solid circles). For test objects C—E, all trends
are concealed by large standard deviation oy (W = 54 £ 7, 76 + 13, and 200 £ 50 for test objects C, D,
and E, respectively).

The last parameter determined from the reconstructed temperature profile, peak temperature 7}, is
presented in Fig. 10.7. Spectral reconstruction yields peak temperatures 7, closer to the actual
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temperature amplitude ATy (30 K; dashed lines) as compared to monochromatic reconstruction. For
test object A (Fig. 10.7a), monochromatic reconstruction (solid circles) results in T, = 33 K and
standard deviation or = 0.7 K for 4, = 4.0-4.5 um, while spectral reconstruction (open circles) results
in 7, = 32 K and or = 0.7 K for 4, = 3.0-4.5 pm. For test object B (Fig. 10.7b), we obtain 7}, = 36 K
and o = 2 K for 4; = 4.1-4.3 um and monochromatic reconstruction (solid circles), but T, = 34 K and
or = 2 K for 4, = 3.0-4.5 um. For test objects C-E, the two reconstruction approaches are equally
efficient in determination of 7}, for all spectral bands.
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Figure 10.6: Full-widths at half maximum W and standard deviations oy (bars) as a function of 4, for
monochromatic (solid circles) and spectral reconstruction (open circles). Width W is determined from
temperature profiles of test objects (a) A and (b) B. Dotted lines indicate the actual object width (W = 50 pm).
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Figure 10.7: Peak temperature 7, and standard deviation (error bars) as a function of 4; for monochromatic
(solid circles) and spectral reconstruction (open circles). Peak temperature 7}, is determined from temperature
profiles of test objects (a) A and (b) B. Dotted lines indicate the actual object amplitude (AT, = 30 K).

Statistical analysis of reconstructed images of test object AC, featuring two lobes are presented in Fig.
10.8 for spectral bands with 4, = 3.0, 4.3, and 5.0 pum. Monochromatic reconstruction results in
temperature profiles with a very narrow and high first peak (AC1), while the second peak (AC2) is
broadened as compared to the actual object (dashed line). In comparison, spectral reconstruction
(right-bottom) yields lower and broader first peaks, and higher and narrower second peaks as
compared to the results for monochromatic reconstruction. Because of decreased SNR, spectral
narrowing compromises the stability of the images reconstructed with either reconstruction approach.
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Figure 10.8: Average temperature profiles (black lines) and standard deviations (light-gray bars) reconstructed
from 30 simulated PPTR signals with different noise realizations. Images of test object AC are reconstructed
from PPTR signals with spectral bands of 4 = 3.0-5.6 um, 4.3-5.6 pm, and 5.0-5.6 um using monochromatic
reconstruction (see labels). Temperature profile for 4 = 3.0-5.6 um is obtained also using spectral reconstruction
(right-bottom). The actual test objects are plotted for comparison (dashed line).
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Figure 10.9: (a) Relative image error J, (b) lobe width
W, and (c) peak temperature 7, as a function of 4, for
test object AC, which features two lobes located at z, =
50 um (circles) and z, = 280 pm (squares).
Temperature profiles are reconstructed by using
monochromatic  (solid symbols) and spectral
reconstruction (open symbols). Error bars indicate
standard deviation.

Figure 10.9 presents image parameters J, W, and 7T, determined from images of object AC. When
monochromatic reconstruction is used, the minimal relative image error is obtained at 4, = 4.3 um
(0=10.33 £0.02) (Fig. 10.9a, solid circles). With 1, decreased below 4, = 4.2 um image error increases
due to the monochromatic approximation deficiency.
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For monochromatic reconstruction (Fig. 10.9b, solid symbols), the optimal widths for the first peak are
obtained at 4, = 3.0 um and 4, = 3.8-5.0 um (W = 40 pm), while the spectral bands between yield even
narrower peaks. The optimal widths for the second peak, obtained at 4; = 3.3 um and 4, = 4.9 pm, is
almost 2-times larger (W = 78 um), than the actual width. But, spectral reconstruction (Fig. 10.9b)
yields wider first peaks (W = 46 um) and narrower second peaks (W =~ 68 pum) than monochromatic
reconstruction.

Analogous results are also obtained for peak temperature 7,. Monochromatic reconstruction (Fig.
10.9¢, solid symbols) results in markedly higher than optimal 7}, of the first peak (7, =35+ 6 K at 4, =
4.3 pm), and lower than optimal 7}, of the second peak (7, = 18 = 5 K at 4, = 4.3 pm). Peak
temperature of the first peak reconstructed by using spectral reconstruction is closer to optimal,
average value is T, = 33 + 5 K, while the second peak presents peak temperature similar to results for
monochromatic reconstruction. In general, all spectral dependencies are hidden by large standard
deviation.

Considering the above results for object AC we conclude that spectral reconstruction performs
significantly better than monochromatic reconstruction for more complex temperature profiles.

Table 10.1 lists image widths /¥ for all test objects and spectral bands with 4, = 3.0, 4.3, and 5.0 pm.

Table 10.1: Temperature peak widths ¥ for test objects A—C and spectral bands with 4, = 3.0, 4.3, and 5.0 um
for monochromatic reconstruction. The last column shows widths for spectral reconstruction and 4 = 3.0-5.6 pm.
The object width is Wy =50 pm.

A=30um A4=43pum 4=5.0um Spectral

Object

(m) (pm) (nm) (nm)
A 45+5 50+0 49 +2 50+0
B 53+5 5243 59+3 5243
C 61+7 56+ 8 50+9 54+6
D 87+ 15 83+ 11 71413 75+ 14
E 177 + 94 2154130 3424120 185+116
AC— 1% 40+ 0 40 +0 40 +0 47 +3
AC -2 84+ 6 81+5 81+10 70+7

Overiteration

To find which reconstruction approach and spectral acquisition bands are less sensitive to
overiteration, we also obtained overiterated temperature profiles. Since test objects with larger zp
(objects C-D) are not markedly deteriorated by non-optimal regularization, we present overiterated
reconstruction results of test objects A and B only (Fig. 10.4).

For spectral bands with 4, = 3.0 and 5.0 pm, monochromatic reconstruction (Fig. 10.10a, upper three
rows) results in temperature profiles, which are markedly higher and narrower as compared to the
actual object (dashed line). But, for the spectral band with 4, = 4.3 pm similar results as with optimal
regularization are obtained (Fig. 10.4a). In contrast, spectral reconstruction yields results equal to
those obtained by optimal regularization (Fig. 10.4, bottom). Similar trends, but less prominent, can be
observed for object B (Fig. 10.10b).

Figure 10.11 presents relative image error ¢ for test objects A and B and both reconstruction
approaches when overiteration is present. One can recognize a prominent minimum of image error (0
=0.10+0.01) at 4, = 4.4 pm for monochromatic reconstruction of object A (Fig. 10.11a, solid circles).
However, acceptably low image errors (J < 0.13) similar to optimal regularization are obtained for
spectral bands with 4, = 4.0-4.5 pm. Image error is 0 = 0.08 and standard deviation o5 = 0.02 for
spectral bands with 4, = 3.0-4.5 pm (Fig. 10.11a, open circles), when spectral reconstruction is applied
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to PPTR signals of test object A. We find similar trends for object B. The minimum of 6 = 0.15 = 0.06
is obtained at 4, = 4.3 pum. However, image error less than 0.17 is obtained for 4, = 4.1-4.3 pm, when
monochromatic regularization is used (Fig. 10.11b, solid circles). For spectral reconstruction (Fig.
10.11b, open circles) the image error is roughly constant (6 = 0.11 and o5~ 0.05) for 4, = 3.0-4.5 pm.

In general, the standard deviation o3 progressively increases with spectral band narrowing for both
reconstruction approaches and both test objects. Image errors ¢ obtained for spectral reconstruction are
on average similar to those obtained with optimal reconstruction, while J for monochromatic

reconstruction are larger than ¢ obtained with optimal reconstruction.
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Figure 10.10: Average of overiterated reconstruction results (black lines) and standard deviations (light-gray
spots) reconstructed from 30 simulated PPTR signals with different noise realizations. Images of test objects (a)
A and (b) B are reconstructed from PPTR signals with spectral bands of A = 3.0-5.6 pm (leff), 4.3-5.6 um
(center), and 5.0-5.6 pum (right) using monochromatic reconstruction (see labels). Images are reconstructed
using also spectral reconstruction from PPTR signal with A = 3.0-5.6 pm. The actual test objects (dshed line) are
plotted for comparison.
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Figure 10.11: Relative image error 6 and standard deviation o5 (bars) as a function of 4; for monochromatic
(solid circles) and spectral reconstruction (open circles). Image error ¢ is determined from overiterated
temperature profiles of test objects (a) A and (b) B. Arrows indicate optimal 4.
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Figure 10.12 shows the effect of overiteration on widths W determined from images of test objects A
and B. For monochromatic reconstruction and object A (Fig. 10.12a, solid circles), W are exceedingly
small (W = 40 um), except for 4, =4.2 and 4.3 pm (W =49 £ 2 um). But, W equals the actual width for
A = 3.0-4.3 pm, and decreases at 4; > 4.3 um, when spectral reconstruction is used (Fig. 10.12a, open
circles). For object B (Fig. 10.12b), widths of images reconstructed by using spectral reconstruction
(W =47 £4 um at 4, = 3.0-4.5 um) are in general close to the actual width, but for monochromatic
reconstruction acceptable widths (/' =~ 44 + 4 pm) are obtained only for 2, = 4.1-4.3 pm.
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Figure 10.12: Image width W and standard deviation (error bars) as a function of 4, for monochromatic (solid
circles) and spectral reconstruction (open circles). Widths W are determined from overiterated temperature
profiles of test objects (a) A and (b) B.

Considering the above results, we conclude that temperature profiles obtained using the
monochromatic reconstruction are markedly deteriorated in case of overiteration. But, when
appropriate spectral filtering is involved (4, = 4.0-4.5 um), the error due to overiteration is smaller.
Spectral reconstruction results in temperature profiles similar to those obtained with optimal
regularization for all spectral bands.

10.2 Experiment

10.2.1 Materials and methods

Gelatin tissue phantoms

Our test samples are composed of a ~2 mm thick gelatin gel substrate, absorbing foil and one
superficial gel layer of varying thickness (chapter 8). The subsurface depths of the absorbing layers
were approximately 50, 110, 280, 430, and 640 pum, respectively, which corresponds to test objects A—
E involved in the numerical simulation.

Experimental setup

For each PPTR measurement, the sample was irradiated with a single 1 ms 532 nm pulse from a KTP
Nd:YAG laser. The radiant exposures (H) near the center of a 7 mm diameter laser spot were ~ 3.0,
5.0 and 7.8 J/cm®. Radiation emitted from the center of the irradiated area was collected on our InSb
detector (chapter 3). The acquisition rate was 50,000 s, and the acquisition time was set to 1 s after
the laser pulse.

Radiometric signals were obtained from 3 different sites on each sample, separated by a few
millimeters to prevent thermal interference between successive measurements. On each test site, one
of three radiant exposures and the entire spectral band of the IR detector (4 = 3.0-5.6 um) was used.
Finally, the PPTR signals .§ were obtained by averaging data from 50 subsequent calibrated signals,
thus numerically reducing the acquisition rate 1000 s™', and subtracting the baseline value.
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Reconstruction of temperature profiles

Similar to the numerical simulation, initial temperature profiles 7 were reconstructed using the
monochromatic kernel matrix #« and the spectrally composite kernel matrix K, both computed for the
entire spectral acquisition band (4 = 3.0-5.6 um). The initial temperature profiles were reconstructed
using the projected v-method, and the result consisted of 200 temperature values over a depth range of
1.0 mm.

10.2.2 Experimental results

t(s)

Figure 10.13: PPTR signals acquired from collagen gel samples A—E using the entire spectral band (4 = 3.0-5.6
um) and A = 3.0 J/cm®.

Figure 10.13 presents PPTR signals acquired from samples A—E using the full-spectrum acquisition.
SNR of measured PPTR signals are summarized in Table 10.2. SNR decreases with depth of
absorbing layer Z, and increases with radiant exposure H.

Table 10.2: Signal-to-noise ratios (SNR) for PPTR signals obtained from five collagen gel samples (A—E) using
the full-spectrum acquisition (4 = 3.0-5.6 pm) and three radiant exposures.

Sample H=3.0J/cm® H=5.0J/cn’ H=178J/em®

A 695 1127 1852
655 1008 1260
C 354 597 873
D 249 469 665
E 119 189 287

Figure 10.14 shows images of samples A—E reconstructed by using monochromatic (solid lines) and
spectral reconstruction (dashed lines) for A = 3.0-5.6 um. On average, spectral reconstruction does not
perform markedly better than monochromatic reconstruction. The reconstruction results for the same
sample but different radiant exposures (H) are qualitatively similar.

Since W does not significantly depend on radiant exposure for the same test object and reconstruction
approach (Fig. 10.14), we can combine three values into average width / and corresponding standard
deviation (Fig. 10.15). For monochromatic reconstruction, the average widths for objects A—E are W =
27+3,40+£ 0,47+ 3,70+ 5, and 112 + 6 pm, respectively. For spectral reconstruction, the average
widths for objects A—E are W =28 £ 6,38 £ 4,45+ 5, 67 + 10, and 107 £ 6 um, respectively. Thus,
spectral reconstruction yields better results for all samples, except sample A.
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monochromatic (gray bars) and spectral reconstruction (light-gray bars). Error bars indicate standard deviation.
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10.3 Discussion

The numerical simulation for test objects A, B and C result in the image errors J, which have distinct
minimums at 4; = 4.3-4.4 um, when optimal regularization is applied. But, reasonably low & are
obtained also at 4, = 4.0-4.5 um for objects A, B and AC. In contrast, the effect of spectral filtering is
less apparent for test objects C—E, featuring deep temperature peaks, since all trends are concealed by
the large standard deviations 5. When images of test objects A and B are overiterated, the benefit of
spectral filtering is even more obvious (Figs. 10.10 and 10.11). The spectral bands in-between (4, =
4.0-4.5 um) provide reconstruction results with reasonably small image errors for both test objects in
case of overiteration. Thus, for monochromatic approximation applied to PPTR signals of shallow and
more complex structures in collagen samples appropriate spectral filtering reduces image error.

The widths ¥ of temperature profiles reconstructed using monochromatic approximation are optimal
at 4; = 4.0-4.4 um and at 4, = 4.0-4.5 pm for test objects A and B, respectively. The widths are equal
or almost equal to the actual width. In contrast, for deeper objects (C—E) determined widths increase
with increasing depth of temperature peak z,. This broadening effect due to increasing z, is well
known (chapter 11). But, we also observe broadening of W with broadening of acquisition spectral
band for objects B-E (Table 10.1), but the trend is less obvious than for agar gel (chapter 9), since it is
almost completely concealed by the large standard deviations ow.

In general, spectral reconstruction results in images with smaller image errors than monochromatic
reconstruction. However, for spectral bands with 4, = 4.0-4.5 pum and objects A—E both approaches
yield similar results. Yet, spectral reconstruction performs significantly better than monochromatic
reconstruction for test objects AC. We obtain 1.5-times smaller ¢ using spectral approach. And when
overiteration is present, images obtained by spectral approach are significantly more stable and
accurate.

The findings of the numerical simulation are supported by our experimental results, where the
reconstruction results obtained by the optimally regularized monochromatic approximation and
spectral reconstruction are similar, which agrees with the results of the numerical simulation for test
objects A—E.

10.4 Conclusions

In PPTR temperature profiling of collagen tissue phantoms, spectral filtering reduces the
reconstruction error 0 and improves accuracy of temperature peak width W, when the monochromatic
reconstruction is used. For the simulated objects and PPTR system, results of numerical simulations
suggest an optimal spectral band with 4; = 4.0-4.5 um. Spectral reconstruction results in more accurate
and stable reconstructions than monochromatic reconstruction, especially for more complex and
shallower absorbing structures. Therefore, use of spectrally composite matrix is preferred when the IR
spectrum of the sample and responsivity of IR detector are known.
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Accuracy of temperature profiling

Since PPTR temperature profiling is used for determination of temperature profiles in biological
tissues, the question about accuracy of determined temperature profiles arises. The accuracy is limited
by measurement noise, efficiency of reconstruction algorithms, and also by the involved physical
processes (i.e., ill-posed problem). It is known that depths of absorbing structures are determined fairly
well,® but PPTR temperature profiling fails to predict accurate temperatures due to the broadening and
attenuation effects, especially at greater depths,”'°

In this chapter we study the accuracy of temperature profiles obtained using our PPTR system. First,
we perform experiments on agar tissue phantoms involving one very thin absorbing layer located at
different depths. Second, we perform a numerical simulation to support our experimental results.
Finally, we compare the obtained limitations of our PPTR system to those reported in earlier PPTR

. 7 76,9,10
studies.””

11.1 Experiments on agar tissue phantoms

11.1.1 Materials and methods

Agar tissue phantoms

We prepared agar tissue phantoms composed of one superficial agar gel layer of varying thickness,
one thin absorbing layer and a ~2 mm thick gel substrate. Absorbing layers were made of absorbing
foil. Seven tissue phantoms (A—G) evaluated here had the subsurface depths of the absorbing layers
approximately 40, 130, 270, 420, 600, 750 and 900 pm. Three tissue phantoms (B1-D1) were
prepared for PPTR and NMR measurement. The depths of their absorbing layers were ~180, 300 and
480 um. Details about agar gel tissue phantom preparation are presented in Chapter 8.

Pulsed photothermal profiling

For each PPTR measurement, the sample was irradiated with a single 1 ms long 532 nm pulse from a
KTP/Nd:YAG laser. Three different radiant exposures were used with samples A—G. The radiant
exposures (H) near the center of a 7 mm diameter laser spot were H ~ 3.0, 5.0 and 7.8 J/cm’. However,
only H = 3.0 J/em® was used with samples B1-D1 to avoid damage due to laser irradiation. IR
radiation emitted from the center of the irradiated area was collected on the InSb detector. Radiometric
signals were obtained from 3 different sites on each sample, separated by a few millimeters to prevent
thermal interference between successive measurements. On each site one of three radiant exposures
and the entire spectral band of the IR detector (A = 3.0-5.6 um) was used. The acquisition rate was
50,000 s and the acquisition time was set to 1.5 s after the laser pulse. The PPTR signals § were
obtained by averaging 50 subsequent calibrated data points, thus computationally reducing the
acquisition rate from 50,000 s to 1000 s, and subtracting the baseline value.

The initial temperature profiles T were reconstructed using the spectrally composite kernel matrix K
(6.1). We used the measured IR absorption spectrum u(4) of agar tissue phantom (Fig. 8.3), spectral
responsivity of the InSb detector (Fig. 3.3) and thermal parameters D = 0.143 mm®s and
h =0.02 mm™. The projected v-method was used to reconstruct temperature profiles 7' consisting of
300 temperature values over a depth range of 1.5 mm.

&9
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Optical microscopy and micro magnetic resonance imaging (micro-MRI)

The depth of the absorbing layer in samples A—G was determined after each PPTR measurement by
means of optical microscopy. We used magnification 40x. We focused the microscope on the surface
of the sample and then on the boundary between the surface gel layer and the foil. At the same time
we measured optical path between the surface and the boundary using calibrated fine focus. We
corrected measured optical path using the index of refraction of water (1.33), thus obtaining the
absorbing layer depth Z. The accuracy of Z determined by microscope focusing was approximately
+30 um, which was found as the minimal shift of microscope focus yielding blurred image of the
boundary. Z was determined at 4 locations per sample.

After PPTR measurement, cross-sectional images of samples B1-D1 were acquired using a micro-
MRI system (TecMag, Bruker, Oxford, B = 2.35 T). 3D spin echo imaging technique was used with
echo time/repetition time (TE/TR) = 7/1000 resulting in T1-weighted image. Field of view was
16x2x8 mm with 31 pum isotropic resolution. The image was stored in JPEG format (512 x 128
pixels). Distance from the sample surface to the absorbing layer Z was determined from the image at
10 positions for each sample.

11.1.2 Experimental results
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Figure 11.1: PPTR signals acquired from samples A—-G (see labels) with radiant exposure H = 3.0 J/cm’.

PPTR signals acquired from samples A—G at H = 3.0 J/cm® are presented in Figure 11.1. Noise-
equivalent temperature rise, determined as standard deviation of radiometric signals before the laser
exposure, equals NEAT = 2.2 mK. Average SNR as a function of the absorbing layer depth Z are
presented in Figure 11.2 for all measured signals and radiant exposures. SNR decreases roughly
exponentially with increasing Z.
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Figure 11.2: SNR as a function of the absorbing layer depth Z for H = 3.0 J/em? (black circles), 5.0 Jem® (gray
circles) and 7.8 J/em? (open circles). Error bars indicate standard deviation of Z and SNR.

Figure 11.3 presents statistical analysis of the reconstruction results for the three radiant exposures and
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samples A—G (see labels). Solid lines connect the average temperatures and light-gray bars indicate
standard deviations. As expected, temperature profiles broaden with increasing depth of the peak
temperature Z for all H. The reconstructed images of all samples are evidently broadened for
H=3.0J/em® as compared to H = 5.0 and 7.8 J/cm®. Moreover, images of samples A—D feature largest
standard deviations for H = 3.0 J/cm?, and smallest for H = 7.8 J/cm”. Thus, the broadening effect is
smaller and the reconstruction is more robust when larger radiant exposures are used. We observe
surface artifacts in images of sample A for H = 5.0 J/cm® and of samples A—C for H = 7.8 J/cm®.
Because the artifacts are present only in images of shallow samples (Z = 50-300 um) and for large
radiant exposures, we believe that the artifacts are consequence of the linearization error (chapter 5).
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Figure 11.3: Average temperature profiles (solid lines) and standard deviations (light-gray bars) reconstructed
from 10 PPTR signals acquired from samples A—G using radiant exposures H = 3.0 J/em?® (left), 5.0 J/em®
(center) and 7.8 J/cm?® (left).

Peak temperature depth

Figure 11.4 presents peak temperature depths Z determined from PPTR reconstruction results for the
three radiant exposures and absorbing layer depths determined by optical microscopy. Absorbing layer
depths determined by PPTR temperature profiling, on average, match the results obtained by the
microscope within respective uncertainties. Possible origin of the observed discrepancy is shrinking of
the surface agar layer upon evaporation of water during microscopy, which can explain the
discrepancy present for samples E-G. Apparently, the match between Z determined by PPTR and
microscopy does not improve with increasing H.

We also compared absorbing layer depths obtained by PPTR profiling with those found by micro-MRI
for samples B1-D1. Figure 11.5 presents reconstructed temperature profiles and micro-MRI images of
samples B1-D1. Micro-MRI image of samples B1-D1 clearly show samples surfaces (upper arrow)
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and the absorbing layers (lower arrow). Peak temperatures in Fig. 11.5a are higher as compared to
peak temperatures in Fig. 8.3, because a thicker absorbing foil (~30 um) was used in preparation of
samples B1-D1 to improve contrast in micro-MRI images, and consequentially more light was
absorbed in absorbing layers.

Peak temperature depths Z determined from reconstruction results (Fig.11.5a) and absorbing layer
depths determined from micro-MRI images (Fig. 11.5b) agree very well (Fig. 11.6). The largest
discrepancy (10 um) is found in sample D1, and is 3 times smaller than the micro-MRI resolution
(Az = 30 um), which limits the accuracy of the determined absorbing layer depth. The above results
indicate that the accuracy of absorbing layer depths found by PPTR temperature profiling is good, and
is not significantly deteriorated by SNR or the absorbing structure depth.
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Figure 11.4: The absorbing layer depth Z from the PPTR reconstruction results and the microscope focusing for
samples A—G and radiant exposures H = 3.0 J/em® (black squares), 5.0 J/em® (gray circles) and 7.8 J/em® (open
circles). The dashed line represents the case of Z-microscope = Z-PPTR.
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Figure 11.5: (a) Average temperature profiles (solid lines) and standard deviations (error bars) reconstructed
from 10 PPTR signals acquired from samples B1-D1 using radiant exposures H = 3.0 J/cm®. (b) A micro-MRI
image of samples B1 (lefi), C1 (center) and D1 (right). The upper arrow indicates the sample surface and the
lower one indicates the absorbing layer.
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Figure 11.6: The absorbing layer depth Z from the PPTR reconstruction results and the micro-MRI for samples
B1-D1 (open circles). The dashed line represents the case of Z-micro-MRI = Z-PPTR.

Temperature peak width

Temperature peak widths W as a function of peak temperature depth Z are presented in Figure 11.7 for
samples A—G and radiant exposures H = 3.0 J/cm® (left), 5.0 J/em® (center) and 7.8 J/em?® (right).
Widths of reconstructed temperature profiles increase almost linearly with Z, except at depths
Z <300 um. For these depths the actual absorbing layer width wy prevails over the broadening effect.
Determined widths ' for H = 3.0 J/cm® are on average 19% larger as compared to H = 5.0 J/cm®,
while the differences between widths for H = 5.0 J/cm” and H = 7.8 J/cm” are not significant. Hence,
we conclude that SNR influences significantly the temperature profile widths when SNR is low, while
the effect of SNR on W is insignificant when SNR is large (e.g., SNR = 1000).
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Figure 11.7: The temperature peak width ¥ as a function of the peak temperature depth Z for samples A—G and

radiant exposures H = 3.0 J/cm? (leff), 5.0 J/em? (center) and 7.8 J/em? (right). Bars are standard deviations of
and Z.

11.2 Numerical simulation

Delta functions are frequently used in science and engineering as an input into an unknown system,
because the corresponding output specific information about the system. As the input we use a delta
function located at depth zy, the unknown system is a simulated PPTR system and the output is the
reconstructed temperature profile. The extracted specific information is the accuracy of determined
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impulse depth, and broadening and attenuation of reconstructed temperature peaks.

Our initial temperature profile is a delta function (i.e., a planar impulse)

Ty (2,0)=TywS(z—z,) (11.1)

where Tyw represents the impulse amplitude. When we substitute delta function (11.1) into expression
for the PPTR signal amplitude (2.7), we obtain an expression for PPTR signal of planar impulse

AS(t)=Tyw K (z,t) (11.2)

We simulate theoretical signal vectors S using (11.2) and the spectrally composite kernel matrix K
(6.1) equal to the kernel matrix in previous section. To correlate the numerical simulation with the
experimental results we use similar depths of temperature profiles zo = 42.5 (object A), 132.5 (object
B), 272.5 (object C), 422.5 (object D), 602.5 (object E), 742.5 (object F) and 902.6 pm (object G). The
impulse amplitudes are Tow = 0.15, 0.75, 1.25, 1.95 and 5.00 mmK. Each S, has 1500 components,
representing signal values acquired at a sampling rate of = 1000 s™ (for a total acquisition time was
1.55).

Each theoretical signal is augmented by 30 different realizations of zero mean noise with the noise
amplitude NEAT = 2.2 mK, thus resulting in realistic PPTR signals S. The parameters of 1/f-noise
characteristic for our PPTR system are f; = 15 s and a = 1.3 (section 3.5). Each realization of noise is
calculated using the noise spectrum 7( f) (3.5)

n(t,) = iﬁ(i/AtN) cos(2rt, i/ At N+6,) (11.3)
=

1

where At is the sampling interval (1 ms), N number of signal components and ¢, = k Az, where k is an
integer between 0 and N—1. J;is a random number between —n and 7, obtained by function randn in
Matlab 14. n(#) is then normalized so that it has a standard deviation of 1. Finally, the obtained noise
vector is multiplied by NEAT and added to theoretical signal Sy, yielding a simulated PPTR signal S.

1.5

Figure 11.8: Simulated PPTR signals for planar impulses with Tow = 0.15 mmK for test objects A-G (see
labels).

Figure 11.8 presents simulated PPTR signals for Tow = 0.75 (fop), 1.25 (center) and 1.95 mmK
(bottom). Signal-to-noise ratio (SNR) as a function of z, is presented in Figure 11.9 for all simulated
PPTR signals. SNR values decrease with increasing zy and decreasing Tyw.
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Figure 11.10: Average temperature profiles (solid lines) and standard deviations (error bars) reconstructed from
30 simulated PPTR signals with different noise realizations. Images of test objects (see labels) were
reconstructed from PPTR signals with impulse amplitudes Tow = 0.15 mmK (leff), 1.25 mmK (center) and 5.00
mmK (lef?).

Temperature profiles 7 of simulated planar impulses are reconstructed from corresponding PPTR
signals § using the projected v-method with automatic regularization. The temperature profile vectors
T consisted of 300 temperature values over a depth range of 1.5 mm (discretization step Az =5 um).

Figure 11.10 presents statistical analysis of the reconstruction results for three impulse amplitudes:
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Tow = 0.15 mmK (leff), 1.25 mmK (center) and 5.00 mmK (/eff). Obviously, width of reconstructed
temperature profile W decreases with depth z,. In addition, ¥ increases with decreasing SNR (i.e.,
T()W).

Depth Z

Figure 11.11 presents peak temperature depth Z as a function of impulse location z, for all impulse
energies Tow. We calculate relative depth error as d, = (zy - Z)/z. For objects A—C (zo = 40-300 pm), Z
absolutely matches z, for all Tyw_For objects D—F, we find ~1% error for Tow = 0.15 mmK, while 9,
for other Tow is negligible. Only for the deepest object G, error J, = 1-3% occurs for all 7ow. Hence,
neither zy nor Tyw significantly deteriorate the accuracy of temperature peak location Z.
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Figure 11.11: Determined peak temperature depth Z (open circle) as a function of the actual impulse depth z, for
three impulse amplitudes (see legends). Dashed line illustrates the ideal agreement (i.e., Z = z).

Broadening and attenuation

Since planar impulses are infinitesimally thin, width ¥ of ideally reconstructed planar impulse would
be equal to depth discretization Az and the corresponding peak temperature equal to Tow/Az. Yet,
Figure 11.10 shows, that widths of reconstructed planar impulses are larger than Az (5 pm).

Figure 11.12a presents widths W of temperature profiles as a function of z, for all 7ow. On average, W
increases linearly with zy, while it decreases with Tow. Figure 11.12b presents W as a function of SNR
for test objects A—G. For constant z,, W tends to decrease with increasing SNR.
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Figure 11.12: (a) Width of reconstructed planar impulse W increases almost linearly with depth z, (see gray
line). (b) W as a function of SNR for all impulse amplitudes Tyw (see labels). Standard deviations are represented
by error bars.

Considering the above observations, we propose the following approximation for the broadening w as
a function of z, and SNR



11.2 Numerical simulation 97

P>
w(z,,SNR) = p, z, + 114
(2o )= D12 SNR ( )

We fit (11.4) on data in Fig. 11.12b and determine parameters p,z, and p, for all z, (Figs. 11.13a-b).
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Figure 11.13: Parameters (a) p;zo and (b) p; as a function of z, obtained by fitting (11.4) on data in Fig. 11.12b.
Gray lines present (a) the linear fit and (b) the simple mean of data points.

By fitting data in Fig.8.14a with linear function we obtain p; = 0.133 + 0.004. Furthermore, we
determined simple mean and standard deviation from values presented in Fig. 11.13b to obtain the

second parameter in (11.4) p, = 2000 + 200 um. Finally, the approximation for the impulse broadening
is

2000 um

w(z,, SNR) = 0.133z, +
(2o ) 0 VR

(11.5)

We estimated the broadening of our experimental temperature profiles w(zo, SNR) (Fig. 11.14, dashed
line) using the above approximation (11.5) and experimental depths Z (Fig. 11.4) and SNR values
(Fig. 11.2). Experimental widths  of samples A—G, already presented in Fig. 11.7, are included also
in Fig. 11.14 (open circles).
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Figure 11.14: Broadening w(zo, SNR) of a planar impulse (dashed line) calculated using (11.5) with

experimental depths Z (Fig. 11.4) and SNR values (Fig. 11.2) for radiant exposures H = 3.0 J/em? (leff), 5.0

J/em? (center) and 7.8 J/em? (right). Estimated total width W of temperature profiles (black circles) including the

broadening w(z,, SNR) and the estimated thickness of absorbing layer (wy = 30, 27, 27 um for H = 3.0, 5.0 and
7.8 J/em?, respectively). The actual widths ¥ of samples A—G (open circles) are plotted for comparison.

Widths W determined from the experimental temperature profiles for samples A—G deviate from the
corresponding broadening w(zy, SNR), especially for shallow absorbing layers (samples A and B). The
absorbing layers are of finite width w,, which must also be considered in an estimation of
reconstructed temperature profile width. We estimate the total width W as W = (w(zo, SNR)* + wy)".
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We fit this expression with the broadening (11.5) to the experimental widths ¥ to obtain estimations
for the absorbing layer width, wo = 30 £ 9, 27 + 2 and 27 + 6 um for H = 3.0, 5.0 and 7.8 J/em?,
respectively. Next, we calculate the estimated total width W (Fig. 11.14, black circles) using the
determined w(zy, SNR) and wy. Since the deviation between the estimated W and the experimental W is
within the experimental uncertainty, we conclude that (11.5) can be used to estimate the broadening
effect in reconstructed temperature profiles.

11.3 Discussion

Milner et al,’ who performed PPTR temperature profiling on layered collagen tissue phantoms with
absorption layers located at zo = 70-440 um, reported the standard deviation of the difference between
Z deduced by PPTR temperature profiling and optical low-coherence reflectometry was 2 pm.
Sathyam and Prahl,” who presented results of numerical simulation involving planar impulses and
experiment, also showed that PPTR temperature profiling is fairly efficient at determining Z. But, the
uncertainty in the depth markedly increase with the depth, hence limiting the technique to a depth of
500 pm. In contrast, the results of our study show that we can successfully determine the temperature
peak depths Z at least up to 900 pum, while the accuracy of determined Z is not significantly
deteriorated by low SNR.

The broadening effect involved in PPTR temperature profiling is well known.®” It is a reconstruction
artifact, which increases with object depth, thereby significantly limiting resolution of PPTR
temperature profiling. Sathyam and Prahl’ reported that a resolution about equal to the depth could be
expected with PPTR temperature profiling. Smithies et al'’ presented simulation results, where the
broadening of temperature peaks was approximately 25% of peak temperature depths Z, although
monochromatic PPTR signals without noise were used. But results of our experiment combined with
the numerical results, show that the broadening effect equals to ~15% of Z, although our experimental
results are deteriorated by the linearization error (chapter 5) and measurement noise. At lower SNR the
additional broadening due to noise in PPTR signals becomes significant (11.5).

The attenuation of peak temperature 7, accompanies the broadening. As illustrated in Figs. 11.3 and
11.10, 7, decreases with depth Z. Therefore PPTR temperature profiling fails to accurately determine
temperatures, especially at larger depths. Because the broadening effect and the temperature
attenuation are less prominent for larger SNR values, one should reduce noise in PPTR signals to
adequately small level.

114 Conclusions

PPTR temperature profiling accurately predicts locations of absorbing layers at least up to a depth of
900 pm. Since reconstructed temperature profiles are progressively broadened and attenuated with
depth, PPTR temperature profiling fails to accurately determine widths and temperatures of deeper
absorbing structures. For agar tissue phantoms, our PPTR system and large SNR the broadening
equals to ~13% of peak temperature depth, which is significantly better than the smallest broadening
(i.e., ~25% of peak temperature depth) reported in any earlier PPTR study.
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Summary and conclusions

In this concluding chapter, we summarize the main achievements and findings presented in the
dissertation, and discuss possible directions for further research.

To solve the ill-posed PPTR inverse problem, we have developed three novel reconstruction
algorithms based on the truncated singular value decomposition (TSVD) method, conjugated gradient
method (CG), and v-method, respectively. All algorithms include the non-negativity constraint and
automatic regularization, which substantially facilitates the reconstruction process. The optimal
regularization approach is also determined for each algorithm. We demonstrate that these algorithms
produce substantially more accurate solutions than commercially available general-purpose software.
Furthermore, our algorithms result in more accurate temperature profiles than presented in an earlier
PPTR study utilizing a dedicated non-negatively constrained reconstruction algorithm. All three
presented algorithms generate similar reconstruction results.

An expression for a linearized monochromatic calibrated PPTR signal is used in all reported PPTR
studies. However, the linearization error was not systematically evaluated in earlier PPTR studies. We
demonstrate that the linearization error can markedly deteriorate the reconstructed temperature profiles
when temperature amplitudes larger than ~20 K are involved. Due to the linearization error we can
observe in reconstructed temperature profiles superficial artifacts. In general, the linearization error
decreases as temperature profile depth and acquisition time increase. We derived an analytical
expression for the linearization error, which indicates that linearization error decreases with increasing
acquisition wavelength 4 and baseline temperature 7j. For the spectrally composite calibrated PPTR
signals, we observe also that the linearization error decreases with spectral acquisition band
narrowing. Because temperature amplitudes are typically less than ~20 K, the linearization error is
small for typical PPTR temperature profiling in human skin, especially for deeper absorbing
structures.

In PPTR temperature profiling, broad-band signal acquisition is used almost invariably to increase the
signal-to-noise ratio (SNR). But all reported PPTR studies utilized a fixed effective infrared (IR)
absorption coefficient value (uer) to reduce computational complexity of the reconstruction process.
When a non-optimal . is utilized in reconstruction, the resulting temperature profiles are
deteriorated. A mere 5% deviation of z from the optimum can increase the relative image error by
33%. We present a novel analytical approach for analytical determination of viable effective IR
absorption coefficients to be used in reconstruction of temperature profiles from PPTR signals at any
combination of sample spectral properties, radiation detector, and acquisition spectral band. This is
particularly important in samples with large spectral variation (1) in mid-IR, such as most biological
tissues, where previously used analytical estimates are not sufficiently accurate. The analytical
approach is supported by numerical simulation. The numerical results show also that the reduction of
spectral acquisition band significantly improves the validity of quasi-monochromatic approximation.

We analyzed the effect of sampling frequency on the accuracy of reconstruction results. Clearly,
broadened and attenuated temperature profiles are obtained by undersampling due to insufficient
information in PPTR signals. On the other hand, SNR of PPTR signals is severely reduced when large
sampling frequencies are used, and again deteriorated temperature profiles are obtained. Our
numerical results show that higher sampling rates always yield better reconstruction results when
measurement noise is small. In presence of realistic noise, high sampling rates (f ~ 10,000 s™) are
preferred only for shallowest temperature profiles (z < 100 pm), while moderate sampling rates (f =

99
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1000 s) are optimal for other temperature profiles. In general, optimal sampling rate depends on
specifics of experimental system and studied samples.

Since the reduction of spectral acquisition band leads to smaller SNR, one must balance the deficiency
of the monochromatic approximation and the effect of noise. To find the optimal spectral acquisition
band, we performed an experiment on agar tissue phantoms, supported by numerical simulation. The
results show that spectral filtering can reduce the image error J and broadening of temperature peaks,
especially for shallower and more complex absorbing structures. A suitable amount of spectral
filtering is thus beneficial, despite the associated reduction of SNR. For the agar tissue phantoms and
our PPTR system, numerical simulation results suggest an optimal long-pass filter with a cut-on
wavelength of \; = 3.8-4.2 pm.

We also present a study involving experiments and numerical simulation of PPTR temperature
profiling in collagen tissue phantoms, which more realistically resemble IR optical and thermal
properties of human skin. Similar to the study involving agar tissue phantoms, the results indicate that
appropriate spectral filtering significantly improves reconstruction results. Optimal results for gelatin
tissue phantoms are obtained for spectral acquisition bands with 4, = 4.0-4.5 um. Furthermore, the
reconstruction results are less affected by overiteration, when these spectral bands are used.

The monochromatic approximation can result in a significant image error, especially when non-
optimal g is utilized. Therefore, we analyze also the reconstruction where the correct, spectrally
composite kernel matrix is used. In general, this approach performs significantly better than the
conventional monochromatic reconstruction regarding both accuracy and stability issues. However,
the weaknesses of this approach are that the IR absorption spectrum of the sample must be known, and
increased computational complexity of the kernel matrix.

Earlier PPTR studies suggested that PPTR temperature profiling is fairly efficient at determining
temperature profile depths. But it was found using numerical simulations that the broadening of
temperature profile is at least ~25% of the absorber depth, which limits the technique to the depth of
500 um. To find limitations of our PPTR temperature profiling system, we performed an experiment
on agar tissue phantoms and a numerical simulation involving planar impulses. Our experimental
results indicate that PPTR temperature profiling accurately predicts locations of absorbing structures at
least up to 900 pum. Still more, the average width of our experimental temperature profiles equals 15%
of the absorbing layer depth in spite of noise and the linear error in measured PPTR signals. In
addition, from numerical results we estimate the broadening to 13% of temperature profile central
depth. Thus, our PPTR system performs significantly better than the earlier PPTR systems.

The evaluation of PPTR temperature profiling presented in the dissertation suggests that this technique
can provide valuable information about internal structure of samples (i.e., temperature distribution).
Therefore the technique can be used as a link between the actual structure of the lesion, parameters
used in laser therapy of a vascular lesion, and the therapy outcome. We designed our PPTR system to
be portable and as such can be clinically used, but a small and handy PPTR temperature profiling
device would better suit clinical needs. The next step in the PPTR temperature profilometry could be
the miniaturization of the setup, so that in future PPTR temperature profiling could be used in clinical
practice for diagnostic characterization of vascular lesions and, possibly individual guidance of laser
therapy.



Appendix A

Filter factors

Purpose of regularization of a discrete ill-posed problem is finding out which SVD components to
filter out and how to filter them out. We introduce filter factors f;, since they illustrate the effect of
regularization and because they are necessary for implementation of generalized cross validation
(GCV) method (chapter 4). Regularized solution 7}, produced by our reconstruction algorithm can be
obtained by inserting filter factors f; into (4.4)

n
T
T =2/, W'S/o)v, (A1)
i=1
Thus expression for the corresponding residual vector is

reg

S-KT =i(l—fi)(uiTS)ui (A2)
i=l1

The filter factors f; for the particular reconstruction algorithm characterize the damping or filtering of
the SVD components. For some methods, there exist expilicit formulas for the filter factors (e.g.,
Tikhonov regularization, TSVD); for other methods, there are no known expressions for filter factors
(e.g., CQ). The filter factors are typically close to 1 for large ¢; and much smaller than 1 for small ;.
Therefore the contributions to the regularized solution corresponding to the smaller o; are effectively
filtered out. Evidently, T\, contains only SVD components, which are not dominated by errors in S,
and the residual vector contains only components due to errors, when optimal filter factors are chosen.
As an example, the filter factors for TSVD algorithm are

L, i<p

/i :{0, i>p (A-3)

The sum of the filter factors p(p) appears in the definition of the GCV function (4.6)

p(p) =3 fi(p) (A4)
i=1

where p represents the regularization parameter. When we insert (A.3) and (A.4) into (4.6), we obtain
the expression for the GCV function for TSVD (Eq. 4.7).
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Appendix B

Chebyshev approximation for erfcx(x)

The monochromatic kernel matrix is derived in Chapter 2 as

Kk(z,t) = %exp[—z2 /(4D t)] {erfcx(u_) +erfex(u, )+ 2hh [erfcx(u+)—erfcx(ul)] } (A.1)

with erfcx(u) = erfc(u) exp(uz), u,= u\Dt £z/(2\Dt), uy=h./Dt + z/(2\Dt).

Since erfc(x) quickly decreases to zero and exp(x’) increases to infinity as x becomes large (e.g.,
erfc(10) = 2.1x10™* and exp(10%) = 2.7x10™*), one must very carefully consider evaluation of
functions erfcx(x) in (A.1) to avoid unacceptable overflow/underflow and numerical errors.

A Chebyshev approximation of erfcx(x) function® used in our code is presented in Algorithm A.1.
Values obtained by this approximation match values obtained by Mathematica™ 4.0 with precision set
to the machine precision (32-bit PC) for all x relevant for PPTR temperature profiling .

If an argument of exponential function exceeds ~ +709.782 on a 32-bit platform, exponential function
can not be evaluated due to overflow or underflow. Yet, u, = —z*/4D¢ can be smaller than -709.782 for
small time ¢ or large depth z, therefore we must assure that underflow does not happen. Algorithm A.2
shows our implementation of x(z, ) calculation, where we used the Chebyshev approximation of erf(x)
function. Values of x(z, 7) obtained in such a manner match values found by Mathematica™ 4.0.

Algorithm A.1: A Chebyshev approximation for function erfcx(x)

.97886080735226 / (fabs(x) + 3.97886080735226)

6
5;
((((0.00127109764952614092 * u + 1.19314022838340944e-4)
.003963850973605135) * u - 8.70779635317295828e-4) * u +
.00773672528313526668) * u + 0.00383335126264887303) * u -
.0127223813782122755) * u - 0.0133823644533460069) * u +
.0161315329733252248) * u + 0.0390976845588484035) * u +
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0
0
0
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y = ((CCC(((((y *u - 0.0838864557023001992) * u -

.119463959964325415) * u + 0.0166207924969367356) * u +
.357524274449531043) * u + 0.805276408752910567) *
.18902982909273333) * u + 1.37040217682338167) *
.31314653831023098) * u + 1.07925515155856677) *
.774368199119538609) * u + 0.490165080585318424)

.275374741597376782) * t;

c + + c

* o C
+

if(x < 0
return (2*exp (x*x) -y) ;
else
return (y) ;
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Algorithm A.2: Calculation of x(z, f) (Eq. A.1)

if(u, < -708 and u, + u? > -708)
Kz, f)=exp (u, + u?)erf(u);
if(u, < -708 and u, + u? < -708)
Kz, 1)=0;
else
K(z, t)=exp (u,) (erfc(u,)+ erfc(u )+ 2h (erfc(u,)- erfc(uy))/(u - h));




Appendix C

Extended abstract in Slovenian language

Povzetek disertacije v slovens¢ini

Sunkovna fototermalna radiometrija (SFTR) je brezdoti¢na tehnika, ki temelji na infrardecem (IR)
sevanju kot posledici laserskega obsevanja snovi. Svetloba se selektivno absorbira v absorberjih, kar
ima za posledico lokalni dvig temperature, ki ga zaznamo kot prehodno povecanje IR sevanja vzorca.
Izmerjena sprememba IR sevanja omogoca dolocitev globinskega temperaturnega profila, ¢e so
poznane termicne lastnosti vzorca. S temperaturno profilometrijo SFTR je mogoce uspesno dolociti
porazdelitev absorberjev v mocno sipajocCih bioloskih tkivih. Prednost temperaturne profilometrije
SFTR pred komplementarnimi tehnikami je njena neinvazivnost.

V disertaciji bomo predstavili razvoj in evalvacijo sistema SFTR za temperaturno profilometrijo v
bioloskih tkivih. Delo je potekalo na Odseku za kompleksno snov Instituta Jozef Stefan, Ljubljana,
Slovenija in je obsegalo razvoj rekonstrukcijskega algoritma, numeri¢no analizo, postavitev in
optimizacijo laboratorijskega sistema SFTR ter eksperimente s tkivnimi fantomi.

Povod za to delo je nepopolna uspesnost laserske terapije ognjenih znamenj. Ognjena znamenja so
prirojene kozno-Zilne tvorbe, ki jih sestavljajo patoloSko pomnoZene in razsirjene krvne zile v
zgornjem milimetru koze. Zdravi se jih s selektivno fotokoagulacijo patoloskih zil, pri cemer se
uporabljata sunkovni zeleni laser (KTP; 532 nm) in rumeni/zeleni laser (sunkovni barvilni; 577 nm,
585-600 nm). Ker se globina in velikost Zzil, koli¢ina krvi ter globina epidermisa spreminjajo od
pacienta do pacienta, je potrebna individualna dolocitev parametrov (dolzina sunka, intenziteta in
valovna dolzina svetlobe), kar omogoca temperaturna profilometrija SFTR.

C.1 Teoreticno ozadje

Signal SFTR je konvolucija zacetnega temperaturnega profila A7(z, ¢)

o0

AS(t) = j K(z,¢) AT(z,0)dz (C.1)
z=0
z jedrno funkcijo K(z,¢)
ﬂh ! < ’
K0 = C [RA)B/(T) u(2) [Gi(z,z0 D7 dz' dA, (C2)
A 0

kjer sta 4, in 4, spodnja in zgornja meja spektralnega pasu, v katerem se zajema signal, R(1) predstavlja
obcutljivost detektorja IR, 7, je osnovna temperatura, B,'(T,) je odvod Planckovega zakona po
temperaturi, x(2) je IR absorpcijski koeficient vzorca in G1(z', z, f) je enodimenzionalna Greenova
funkcija za toplotno difuzijo. Konstanta C vsebuje emisivnost vzorca in ostale znacilnosti sistema
(izgube na lecju, vidni kot IR detektorja, itd.).

Kadar smemo namesto u(4) uporabiti spektralno neodvisen koeficient u, dvojni integral v (C.2)
razpade na dva samostojna integrala
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Ay )
K(zp) = C j R(A) B, (T,)dA ,uJ.GT(z’,z,t) e dz! (C.3)
A 0

kjer je za dane eksperimentalne razmere prvi integral konstanten. Ko izraCcunamo drugi integral,
dobimo analiti¢en izraz

K(z,t) = %exp[—z2 /(4D t)] {erfcx(u_) +erfex(u, )+ 2hh [erfcx(u+)—erfcx(u1 )] } (C.4)

kjer  je erfex(u) = [1 — erf(u)] exp(u?), u,= uyDt £ z/(2\/Dt), w=hDt + z/(2,/Dt). Pri
eksperimentalnem delu sta tako signal kakor temperaturni profil diskretna, zato (C.1) postane
algebraicna enacba, kjer je signalni vektor § enak produktu jedrne matrike K s temperaturnim
vektorjem T

S=KT (C.5)

C.2 Postavitev eksperimenta

Slika C.1 prikazuje shemo sistema SFTR. Na vzorec posvetimo s sunkom laserske svetlobe, pri cemer
mora biti osvetljena povrSina precej vecja kot povrsina, s katere zajemamo radiometri¢ni signal, da se
zagotovi veljavnost enodimenzionalnega priblizka predstavljenega zgoraj. Radiometri¢ni signal se
preko le¢ja IR zbere na detektorju IR. Signal z detektorja se ojaca na predojacevalniku in se prenese
preko analogno-digitalnega pretvornika v racunalnik. S fotodiodo doloCimo cas, ko je bil izsevan
laserski sunek.

Pulzni laserski izvor

Vzorec

IR detektor

Racunalnik }»

Zajemanje signala
in obdelava

Slika C.1: Shema eksperimentalne postavitve sistema za temperaturno profilometrijo SFTR. A/D — analogno-
digitalni pretvornik.

Kot izvir svetlobnega sunka pri tehniki SFTR se lahko uporabi katerikoli sunkovni izvor svetlobe,
vendar v nasem primeru uporabimo laser KTP (4 = 532 nm), saj tako zagotovimo enake razmere kot v
primeru laserske terapije. Radiometri¢ni signal zberemo na detektorju IR (InSb, 4 = 3-5 um,
P5968-100, Hamamatsu) s silicijevimi leCami prevlecenimi z antirefleksno plastjo, ki zagotavlja ~98%
prepustnost za svetlobo v srednjem obmocju IR (4 = 3—5 um). Nas detektor IR ima vrh obcutljivost pri
2, = 5,3 um, najve&jo ob&utljivost R, = 2,5 A/W, povrsino 0,78 mm’ in vidni kot 45°. Slika C.2
prikazuje spektralni obcutljivosti uporabljenega detektorja, alternativnega HgCdTe detektorja ter
temperaturni odvod Planckovega zakona B;'(T5).
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Slika C.2: Relativna spektralna obcutljivost R(4) detektorjev InSb in HgCdTe (polni ¢rti) in temperaturni odvod
Planckovega zakona B;’(Ty) pri T, = 303 K z najvecjo vrednostjo pri A = 8 pm.

V izmerjenemu radiometricnemu signalu se pojavi Sum, ki ima ve¢ prispevkov. Prispevek, ki je
odvisen od vpadne moci sevanja, je Sum Stetja, katerega amplituda je enaka

ng, =~2€ i Af (C.6)

Pri tem so i, signalni tok, Af frekvenc¢na Sirina in ey osnovni naboj. Drugi prispevki so $e termicni Sum,
Sum ojacevalnika, Sum diskretizacije, itd. V radiometri¢nih signalih se pojavlja tudi 1/f Sum, katerega
spektralno gostoto opisemo kot

il = figy (?j +1 (C.7)

pri cemer so f frekvenca zajemanja, f. kolenska frekvenca, a znacilni eksponent in ny spektralna
gostota belega Suma.

Eksperimentalno smo dolo¢ili Sum naSega sistema in dobili slede¢e vrednosti: amplituda celotnega
Suma pri Af'= 500 s™ je priblizno n, = 3 x 10" A, kolenska frekvenca je f; = 15 + 10 s in eksponent
a=13+04.

C3 Rekonstrukcijski algoritmi

Inverzni problem SFTR (C.5) spada med slabo pogojene probleme, za katere je znacilno, da so njihove
resitve zelo obcutljive na motnje (npr., merski Sum v signalu). Zato je reSevanje tovrstnih problemov
kompleksno in zahteva posebej prilagojene rekonstrukcijske algoritme. V ta namen smo razvili tri
rekonstrukcijske algoritme. Prvi algoritem temelji na dekompoziciji po singularnih vrednostih (SVD),
drugi na metodi konjugiranih gradientov (CG) in tretji na v-metodi.

Resitev inverznega problema SFTR je potrebno primerno regularizirati, t.j. omejiti mnozico resitev z
vnaprej dolo¢enim kriterijem in tako pridobiti uporabno resitev. Najprej izpostavimo regularizacijske
parametre za nase tri algoritme. Parameter je v primeru SVD S$tevilo singularnih vektorjev vklju¢enih
v reSitev p (metoda postane skrajSana SVD oz. TSVD) ter v primeru CG in v-metode Stevilo iteracij i.
Nato smo poiskali metodo dolocanja optimalnih vrednosti regularizacijskih parametrov iz mnoZice
razpolozljivih metod za vsak rekonstrukcijski algoritem posebej. V obsezni numeri¢ni simulaciji smo
preizkusili kombinacije gornjih treh rekonstrukcijskih algoritmov s tremi metodami izbire
regularizacijskih parametrov: princip razlike (DP), L-krivulja in metoda GCV. Rezultati simulacije so
pokazali, da so optimalne sledeCe kombinacije: CG in L-krivulja, TSVD in GCV ter v-metoda in
Monte Carlo GCV. Monte Carlo GCV je posebna razli¢ica GCV metode, ki je posebej prilagojena za
iterativne algoritme.
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Gornji rekonstrukcijski algoritmi lahko dajo resSitve, ki vsebujejo nefizikalne nenegativne vrednosti
rekonstruiranih temperaturnih profilov. Zato je potrebno v algoritme vgraditi nenegativni pogoj, ki to
pomanjkljivost odpravi. Tako smo v primeru v-metode uporabili princip projekcije (P), ki poreze vse
negativne vrednosti reSitve pri vsaki iteraciji algoritma. V primeru metod TSVD in CG smo bili
primorani uporabiti princip projekcije-ponovitve (PR), saj P znatno zmanjSa ucinkovitost teh dveh
algoritmov. Princip PR je razdeljen na notranjo in zunanjo zanko. V notranji zanki se izvaja
nespremenjen regulariziran rekonstrukcijski algoritem, v zunanji zanki pa se po izteku notranje zanke
njena reSitev priSteje resitvi v zunanji zanki, ki se ji nato odrezejo negativne vrednosti. Zaporedje
notranje in zunanje zanke se ponavlja, dokler ni zado$¢eno vnaprej dolo¢enim kriterijem. Algoritme,
ki vkljucujejo nenegativnost in avtomatsko regularizacijo, smo poimenovali P v-metoda, PR-TSVD in
PR-CGLS.

Razvite algoritme smo nato primerjali z drugimi razpolozljivimi algoritmi in nato $e med seboj.
Najprej smo rezultate rekonstrukcije, objavljene v predhodni $tudiji SFTR, kjer je bil uporabljen
komercialni algoritem Solver vkljuen v Microsoft Excel, primerjali z rezultati nasega algoritma PR
CGLS (Slika C.3).

10 a 10 o5
S5t 5t ]
0 op . .
10F 10}F ]
i=10
L st ] st ]
~
< 4 . 0p—L
101 n=2001 1O i=100 1
5t ] 5t ]
0 : . 0 : :
0,0 0,2 0,4 0,6 0.8 1,0 0,0 0,2 0,4 0,6 0,8 1,0
Globina [mm] Globina [mm]

Slika C.3: Temperaturni profili rekonstruirani (a) s komercialnim algoritmom (Solver v Microsoft Excel-u) in
(b) nasim namenskim algoritmom PR-CGLS. Prikazani rezultati so dobljeni v # oz. i korakih algoritmov.

Ocitno na$ namenski rekonstrukcijski algoritem (Slika C.3b) omogoca natanénejSo rekonstrukcijo
zacetnega temperaturnega profila kot komercialni algoritem (Slika C.3a). Opravili smo tudi
primerjavo med rekonstrukcijskimi rezultati, ki so jih dobili v eni izmed predhodnih §tudij SFTR z
namenskim rekonstrukcijskim algoritmom, ki je temeljil na metodi CG in naSimi tremi
rekonstrukcijskimi algoritmi. Ugotovili smo, da imajo temperaturni profili, dobljeni z nasimi
algoritmi, priblizno 20% manjSo napako rekonstrukcije kot predhodni rezultati. Na koncu smo
primerjali ucinkovitost nasih algoritmov med seboj in ugotovili, da so v povprecju rezultati vseh treh
algoritmov primerljivi, vendar z algoritmom PR-TSVD obcasno dobimo premalo regularizirano
resitev.

C4 Kalibracija

Pri kalibraciji izmerjen signal SFTR prilagajamo na izmerjen odziv sistema SFTR na sevanje ¢rnega
telesa pri razliénih temperaturah Tgg. S kalibracijo odpravimo eksperimentalne znacilnosti, kot so
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prepustnost le¢ja, kot zajemanja in podobno ter odpravimo nelinearnost med radiometricnim signalom
ter temperaturo telesa.

Kalibracija se obi¢ajno opravlja v monokromatskem priblizku, kjer predpostavimo eno valovno
dolzino 4, konstantno obcutljivost detektorja R in IR absorpcijskega koeficienta u. Izraz za kalibriran
monokromatski signal AS(?) je enak

AS(f) = - helkg T, (C.8)

he

an‘ e A kg (T, +AT(z,1)) e—yzlu dz
=0

z

kjer sta / in ¢ Planckova konstanta in svetlobna hitrost in kg je Boltzmannova konstanta. Kalibriran
izraz se dodatno poenostavi, ¢e ga lineariziramo

AS, (1) = u T AT (z,t) e dz (C.9)

z=0

V lineariziranem monokromatskem signalu AS(¢). ni vec¢ prisotnih faktorjev, ki bi bili odvisni od 4.
Vendar pa linearizacija, ki je sicer potrebna za reSevanje inverznega problema SFTR (C.5), privede do
linearizacijske napake. Z razvojem (C.8) v Taylorjevo vrsto in ohranitvijo ¢lenov reda velikosti
AT(z, 1)* dobimo oceno za velikost linearizacijske napake kalibriranega signala SFTR

1 he
M(aT (= ) =g (ukBTb _1}

2
X\ H _[ AT (z,t)" e#r® dz —{uj AT (z,t) e *r* dz ]

z=0 z=0

(C.10)

Ocena (C.11) nam pokaze, da napaka pada s padanjem amplitude temperaturnega dviga AT{(z, f) ter z
naras¢anjem valovne dolzine A ter osnovne temperature 7;,. V podporo analiticni oceni smo izvedli
numeri¢no simulacijo, kjer smo izracunali napako zaradi linearizacije. V ta namen smo simulirali
signale SFTR temperaturnih objektov s hiper-gaussovo obliko: AT(z,0) = T, exp[-2(z—zo)/w'] with T b
=1-100 K, w =30 pum in centralnimi globinami z, = 100, 200 in 300 pm. To¢ne in linearizirane
signale smo izracunali z integraloma (C.8) in (C.9), in sicer v 1000 tockah v ¢asovnem intervalu 1 s.
Uporabljeni eksperimentalni parametri so: 1 = 4,5 um, x4 = 26,5 mm, 7, =303 K, D =0,11 mm%s in
h=0,02mm’.

Iz to¢nih signalov (enacba C.8) smo rekonstruirali temperaturne profile (Slika C.4), da bi ugotovili,
kako napaka vpliva na kvaliteto rekonstrukcij. Za rekonstrukcijo smo uporabili P-v-metodo.

1z slike C.8 je razvidno, da se vpliv linearizacijske napake zmanjSuje z manjSanjem amplitude 7}, in
vecanjem globine objekta z,. Poleg povrsinskih artefaktov (glej puscice) se v primeru amplitud 7, = 50
in 100 K ter globine z, = 100 um pojavi tud premik objekta proti vecjim globinam.

Poleg rekonstrukcij smo izracunali relativno napako linearizacije (slika C.9) za vse simulirane objekte.
Relativna napaka skoraj izgine v 10—-100 ms.

Simulirali smo tudi tocne ter linearizirane signale SFTR za spektralne pasove s spodnjo mejo 4, = 3,0—
4,9 pm in izracunali relativno napako na enak nacin kot v primeru monokromatskih signalov. Poleg
enakih trendov kot v monokromatskem primeru, smo opazili, da linearizacijska napaka pada tudi z
zozitvijo spektralnih pasov.
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Slika C.8: Rekonstruirani temperaturni profili AT iz to¢nih monokromatskih kalibriranih signalov SFTR AS(?)
(enacba C.8) za (a) testne objekte na globini zo = 100 pm s 7, = 1-100 K (glej oznacbe) in (b) testne objekte na
globinah z, = 100-300 pm s 7,, = 50 K (glej oznacbe). Pravi testni objekt je dodan za primerjavo (crtkane crte).
Puscice oznacujejo povrsinske artefakte zaradi linearizacijske napake.
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CS Efektivni IR absorpcijski koeficient

V temperaturni profilometriji SFTR se obi¢ajno uporablja Sirok spektralni pas, saj se s tem izboljsa
razmerje med signalom in Sumom (SNR). Hkrati se za rekonstrukcijo uporablja konstanten efektivni
IR absorbcijski koeficient s, zato da se zmanjSa racunsko zahtevnost. Uporaba tovrstnega priblizka
pri profilometriji v bioloskih vzorcih SFTR, kjer je prisotna velika variabilnost x(4), lahko povzroci
napake v rekonstrukciji temperaturnih profilov.

Da bi ugotovili, kaksen je vpliv monokromatskega priblizka na kvaliteto rekonstrukcij in da bi poiskali
optimalne vrednosti g za razliéne spektralne pasove, smo izvedli numeri¢no simulacijo. Nasi testni
objekti so imeli hiper-gaussovo obliko (glej zgoraj) s parametri AT, = 10 K, w = 100 pm in
zg = 100-400 um. Uporabili smo spektralne (75% u(4) vode in 25% u(d) kolagena) in termiCne
lastnosti (D = 0,11 mm*/s in 4 = 0,02 mm™") znailne za ¢lovesko koZo. Spektralne signale SFTR smo
simulirali za razli¢ne spektralne pasove detektorjev InSb (4 = 3,0-5,6 um) ter dveh HgCdTe (1 = 3,0—
12,0 pm in 4 = 3,0-14,0 um). Temperaturne profile smo rekonstruirali iz simuliranih signalov z
uporabo razli¢nih vrednosti u.s. Kvantitativno smo ocenili napako rekonstrukcije kot

7 toly (B.11)

kjer sta T vektor rekonstruiranega profila in 7, vektor testnega objekta. Slika C.10 prikazuje
rekonstrukcije testnega objekta na globini zy = 300 pum, kjer so bile uporabljene premajhna (zgoraj),
pravsnja (sredina) in prevelika (spodaj) vrednost u.s. Tako premajhna kot prevelika vrednost s
ocitno zmanjsata kvaliteto rekonstrukcije.

LOF P = 20,0 mmi'
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Slika B.10: Temperaturni globinski profil (sklenjene crte) rekonstruirane iz simuliranega signala SFTR za

celoten pas detektorja InSb (A = 3,0-5,6 um). Uporabljena vrednost u.g je bila premajhna (zgoraj), skoraj

optimalna (sredina) in prevelika (spodaj). Testni objekt je prikazan za primerjavo (crtkana crta).

Za vsak simuliran spektralni pas in testni objekt smo dolocili optimalno vrednost g tam, kjer je bila
napaka rekonstrukcije 0 najmanjsa. Slika C.11a prikazuje optimalne efektivne IR absorpcijske
koeficiente ugy. OCitno vrednost uo, pada z globino objekta. Iz slike C.11b, ki prikazuje ustrezne
vrednosti 0, je razvidno, da se napaka rekonstrukcije 6 zmanjSuje z zozenjem spektralnega pasu, zaradi
izboljSane veljavnosti monokromatskega priblizka. 1z slike je tudi razvidno, da napaka ¢ narasca z
globino objekta. 11(z9) smo uravnotezili z 1/z, faktorjem ter tako dobili uteZeno povprecje iop (Slika
C.12), ki da zadovoljive rezultate za vse globine.

Ker je dolocanje u,y iz rezultatov numeri¢ne simulacije zelo zamudno, smo izpeljali nov analitiCen
Hop
pristop za doloCanje zy, ki sloni na reSitvah enacbe
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Iz resitev (C.12) pesr za dane spektralne pasove se nato izracuna ., kot uteZeno povprecje
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Slika C.11: (a) Optimalni efektivni IR absorpcijski koeficient z(z9) za objekte na globinah zy = 100400 pm
kot funkcija spodnje meje spektralnega pasu 4, detektorja InSb. Zgornja meja spektralnega pasu je bila ves ¢as 4,
= 5,6 um. (b) Pripadajoce relativne napake rekonstrukcije.

Optimalni absorpcijski koeficienti p,, dolofeni iz rezultatov numeri¢ne simulacije in z naSim
analiticnim pristopom (C.12 in C.13) za detektor InSb, se zelo dobro ujemajo (Slika C.12). Za
primerjavo so prikazane tudi u, izracunane, kot je bilo predlagano v predhodnih Studijah SFTR.
Ocitno je ujemanje slednjih z rezultati numericne simulacije precej slabSe, kot v primeru novega
analiticnega pristopa.

Podobne rezultate smo dobili tudi za oba detektorja HgCdTe, kar nakazuje, da je predstavljen pristop
uporaben za doloCitev u,y, za poljuben detektor IR, spektralni pas in vzorec, ¢e poznamo njihove
spektralne odvisnosti.
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Slika C.12: Analiti¢ne vrednosti oy (C.13) kot funkcija 4 (polna crta). Sivi trakovi oznacujejo interval, na
katerem se nahajajo vrednosti u.(z) za objekte na globinah zy = 100400 pm; beli krogi in ¢rni kvadrati
oznacujejo navadno in uteZeno povpreje. Rezultati dveh predhodnih analiticnih pristopov k dolo€itvi pop SO
prikazani s ¢rtkanima ¢rtama.
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C.6 Frekvenca zajemanja

Parameter sistema SFTR je tudi frekvenca zajemanja podatkov f. V c¢lankih na temo SFTR se
pojavljajo frekvence med 200 in 2000 s, vendar brez navedbe dejstev, zakaj so bile take vrednosti
izbrane. Odvisnost natancnosti rekonstruiranih temperaturnih profilov od f smo preverili z numericno
simulacijo. Simulirali smo signale SFTR v pasu 4 = 3,0-5,0 um za testne objekte, kot posledico
absorpcije  svetlobe v plasti absorberja debeline 50 pm =z zaCetkom na globinah
z; = 50-500 pm. Prednost taksnih testnih objektov je, da je mogoce analiticno izracunati integral (C.1)
in tako dobiti analiticni izraz za AS(f). Signale smo izraunali za frekvence zajemanja
f=100-10.000s" v Gasur=1s.

Iz simuliranih signalov smo rekonstruirali pripadajoce temperaturne profile 7T in ugotovili, da v
primeru, ko v signalu SFTR ni prisotnega Suma, signali z visjo frekvenco f omogocijo natan¢nejSo
rekonstrukcijo temperaturnih profilov.

V nadaljevanju smo simuliranim signalom dodali realisti¢en Sum z amplitudo ustrezno pasovni Sirini
zajemanja Af. Iz signalov s Sumom smo rekonstruirali profile testnih objektov, dolocili napako
rekonstrukcije 0 (Slika B.13a) in Sirino W (Slika C.13Db).

0,8 a b A
o 3
- 200
0,61
150 A
o 04 g
B
0,24
00l 50 um -+ @- 100 um 0~ 200 pm - 8- 400 pm
' 160 10'00 10600 100 1000 10000
- -1
s fls’]

Slika C.13: (a) Relativna napaka rekonstrukcije 0 in (b) Sirina profila W kot funkciji frekvence zajemanja f za
testne objekte na globinah z; = 50-400 pum (glej oznake) in zaSumljene signale SFTR. Siva ¢rta v (b) oznacuje
pravo §irino objekta. PusCice kaZzejo optimalne vrednosti.

Iz Slike C.13 je razvidno, da je v primeru za$umljenih signalov visoka frekvenca 10.000 s optimalna
samo za objekt na globini 100 pm, medtem ko je za globlje objekte optimalna frekvenca f'= 1000—
2000 s'. Prenizke frekvence (~100 s™') vedno povzroéijo neoptimalno rekonstrukcijo, kar je posledica
pomanjkanja informacij v zajetem signalu. Zaradi nizkih vrednosti SNR signali zajeti z visoko
frekvenco ne omogocajo kvalitetne rekonstrukcije globljih objektov.

C.7 Tkivni fantomi

Razvoj nove diagnosti¢ne tehnike zahteva izdelavo vzorcev z dobro definirano zgradbo in poznanimi
snovnimi lastnostmi. Zato smo v namen evalvacije nasega sistema SFTR izdelali tkivne fantome, ki
temeljijo na vodnih gelih, katerih dobra lastnost je, da imajo podobne IR opti¢ne in termicne lastnosti
kot ¢loveska koza.

Prvi izmed uporabljenih gelov je agar, katerega prednost je preprosta izdelava tankih plasti. MeSanico
agarja in vode smo pripravili tako, da smo v 6 ml destilirane vode vmesali 0,15 mg agarja v prahu.
Polimerizacijo smo sprozili v mikrovalovki, nakar smo tekoco zmes vlili v pripravljen kalup. Ko je
agar polimeriziral, smo dobili homogene plasti agarja, katerih debelina je bila od nekaj 10 pum
navzgor.

Drugi uporabljen vodni gel je Zelatin. MeSanico zelatina smo pripravili tako, da smo v 75 masnih %
vode vmesali 25 masnih % zelatina v prahu. MeSanico smo segreli v vodni kopeli pri temperaturi
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75 °C ter tako sprozili polimerizacijo. TekoCo zmes Zelatina in vode smo vlili v kalup, ga postavili v
hladilnik in pocakali na konec polimerizacije. Na tak nac¢in smo dobili plasti Zelatina poljubnih debelin
(najmanjsa debelina je bila ~30 pm).

Za obe vrsti gelov smo izmerili IR spekter u(2) ter poiskali vrednosti difuzijskih konstant. V gele smo
vmesali tudi ustrezno koli¢ino sipalca, da bi lastnosti tkivnih fantomov Se dodatno priblizali pravi
kozi.

Naslednja stopnja je bila priprava absorpcijske plasti. MoZen nacin priprave je tanek nanos finega
ogljikovega prahu na povrsino gela, nakar se to plast prekrije z drugo plastjo gela. Drug nacin priprave
je uporaba tanke absorbirajoce folije, ki se jo vlozi med dve plasti gela. Tretji nacin je vmeSanje
absorberja v plast gela (npr. ¢rnilo). Vec plasti gela in absorberjev se sestavi v tkivni fantom, ki ga
shematsko prikazuje Slika C.14.

vrhnia plast gela
o

plast ahsorheria 2

Slika C.14: Shema tkivnega fantoma z eno plastjo absorberja. Vodna kopel prepreci nastanek zracnih
mehurckov na stiku med plastmi.

C.8 Spektralno filtriranje
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Slika C.15: Rekonstruirani temperaturni profili s treh mest na vzorcih A in D. Signali SFTR so bili zajeti s
polnim (crtkana ¢rta; 2 = 3,0-5,6 um) in zozenim spektralnim pasom (polna crta; . = 4,5-5,6 pm).

Kot se je izkazalo v primeru iskanja optimalne vrednosti u.r, zozevanje spektralnega pasu izboljSa
veljavnost monokromatskega priblizka. Vendar pa zozevanje povzroCi zmanjSevanje SNR zajetih
signalov SFTR, kar pa tudi poslabsa kvaliteto rekonstrukcije. Torej obstajajo spektralni pasovi, kjer je
skupen efekt obeh motenj minimalen in s tem omogocajo optimalno rekonstrukcijo. Zato smo izvedli
eksperiment na tkivnih fantomih iz agarja, ki so vsebovali eno plast absorberja na globini 130, 280 in
450 pum (vzorci A, B in C) ter dve plasti absorberja na globinah 240 in 440 um (vzorec D). Signale
SFTR smo zajeli v spektralnem pasu 4 = 3,0-5,6 um in v zozenem spektralnem pasu 4 = 4,5-5,6 um.
Za oba pasova smo dolocili s ter iz signalov rekonstruirali temperaturne profile v vzorcih. Globine
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absorpcijskih plasti smo hkrati dolocili tudi z opticno koheren¢no tomografijo (OCT) in histolosko
rezino pod opti¢nim mikroskopom.

Slika B.15 prikazuje rekonstruirane profile vzorcev A in D v primeru celotnega (crtkana c¢rta) in
zozenega spektralnega pasu (cela ¢rta) na treh razliCnih mestih na vzorcu. V obeh primerih je
izboljSanje rekonstrukcij zaradi zozenja spektralnega pasu o€itno. V primeru globljih vzorcev B in C
izboljSanje rekonstrukeij ni tako o€itno.

Slika C.16 prikazuje slike OCT vzorcev A in D. Globine absorpcijskih plasti dolocenih iz
rekonstruiranih profilov in iz slik OCT se ujemajo v okviru merske napake. Razlike med globinami
dolocenimi z OCT ali SFTR ter tistimi, dolocenimi iz histoloske slike, so nekoliko vecje, kar je
posledica priprave histoloske rezine. Pomembna ugotovitev je tudi, da se globine dolocene za poln oz.
zozen spektralni pas ne razlikujejo bistveno, kar pomeni, da spektralno filtriranje ne vpliva bistveno na
natanc¢nost dolocenih globin.
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Slika B.16: Sliki OCT vzorcev (a) A in (c) D. Zgornji puscici kazeta povrsino vzorca, spodnji puscici globoko
absorpcijsko plast in sredinska puscica v primeru vzorca D kaze prvo plast absorberja.
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Slika C.17: (a) Relativna napaka rekonstrukcije d kot funkcija A, za testne objekte A-D (glej oznake). (b) Sirina
rekonstruiranih temperaturnih profilov . D1 in D2 predstavljata prvi in drugi vrh objekta D. Standardne
deviacije so prikazane kot palice. Crtkana &rta v (b) prikazuje tono §irino testnih objektov (W = 47 pm). Pui¢ice
kazejo optimalne vrednosti.
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Eksperimentalne rezultate smo podprli z rezultati numeri¢ne simulacije, kjer smo simulirali signale
SFTR za testne objekte, ki so ponazarjali eksperimentalne temperaturne profile. Signale SFTR smo
simulirali za razli¢ne spektralne pasove s spodnjo mejno valovno dolzino 4; = 3,0-5,0 um in zgornjo
mejno valovno dolzino 4, = 5,6 um. Rezultati simulacij so pokazali, da primerno spektralno filtriranje
(4 = 3,8-4,0 um) zmanjsa napako rekonstrukcij J (Slika C.17a) in razsiritev profilov W (Slika C.17b).

C.9 Spektralno filtriranje v kolagenskih vzorcih

Ucinek spektralnega filtriranja na kakovost rekonstrukcij smo preverili tudi v kolagenskih vzorcih, ker
so ti po lastnostih bolj podobni ¢loveski kozi kakor vzorci iz agarja. Najprej smo izvedli numeri¢no
simulacijo, kjer smo simulirali signale SFTR temperaturnih profilov s hiper-gaussovo obliko na
globinah zy = 50-640 pm in Sirino w = 33 pm in signale temperaturnega profila z dvema hiper-
gaussovima vrhovoma na globinah 50 in 280 pm. Signale SFTR smo simulirali za spektralne pasove
detektorja InSb z 4, = 3,0-5,0 um ter jim dodali ustrezno koli¢ino realisticnega Suma, ki je vkljuceval
tudi 1/f Sum. Ker so rezultati rekonstrukcije zelo obcutljivi na prakti¢no izvedbo Suma, smo vsakemu
brezSumnemu signalu SFTR dodali po 30 razli¢nih realizacij Suma. Iz signalov smo rekonstruirali
temperaturne profile z uporabo v-metode. Pri rekonstrukciji smo uporabili dva pristopa: rekonstrukcija
z monokromatsko jedrno matriko (monokromatska rekonstrukcija), kjer smo p dolocili, kot je
opisano zgoraj, ter s tocno jedrno matriko (spektralna rekonstrukcija). Rezultate smo statisticno
obdelali in dolo¢ili relativno napako rekonstrukcije ¢ in Sirino W.
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Slika C.18: Relativna napaka rekonstrukcije J in standardna deviacija o5 (palice) kot funkciji A, za primer
monokromatske rekonstrukcije (¢rni krogci) in spektralne rekonstrukcije (prazmi krogci). Napake so bile
dolocene za testne objekte na globinah (a) zy = 50 um in (b) zo = 100 um. Puscice kazejo optimalno 4,.

Izkaze se, da monokromatska rekonstrukcija v primeru spektralnih pasov A; = 4,0-4,5 pm da najbolj
kvalitetne rekonstrukcije, kar je razvidno iz Slike C.18, kjer je prikazana relativna napaka
rekonstrukcije ¢ v odvisnosti od 4; za objekta na globinah zy = 50 in 100 um. Podobne rezultate za ¢
smo dobili tudi za temperaturni objekt z dvema vrhoma. Pri globljih objektih je efekt spektralnega
filtriranja zakrit v standardni deviaciji relativne napake J, ki je posledica nizjih vrednosti SNR.
Podobne trende kot za ¢ smo dobili tudi za W in T,,. Slika C.18 prikazuje tudi napako rekonstrukcije 6
za primer spektralne rekonstrukcije in za temperaturna objekta na globinah z, = 50 in 100 pm. Za
razliko od monokromatske rekonstrukcije, vsi spektralni pasovi z A, = 3,0-4,5 pm dajo rekonstrukcije
primerljive kvalitete. S spektralno rekonstrukcijo dobljeni temperaturni profili imajo manj$o napako o
kakor tisti dobljeni z monokromatsko rekonstrukcijo pri istem spektralnem pasu. Podobne rezultate
kot za objekta z zo = 50 in 100 pm smo dobili tudi za objekt z dvema temperaturnima vrhoma, medtem
ko je za globlje objekte odvisnost od spektralnega pasu skrita v standardni deviaciji d. Podobne trende
kot za d smo opazili tudi pri W.

Numeri¢ne rezultate smo podprli tudi z eksperimentom na kolagenskih vzorcih. Signale SFTR smo
zajeli v celotnem spektralnem pasu detektorja InSb. Tako z monokromatsko kot spektralno
rekonstrukcijo smo dobili primerljive rezultate.




C.10 Natanc¢nost temperaturne profilometrije SFTR 117

Ce povzamemo, spektralno filtriranje izbolj$a natan¢nost rekonstruiranih profilov, kadar se uporabi
monokromatska rekonstrukcija. V primeru spektralne rekonstrukcije taka izboljSava ni opazna.
Upostevati pa je potrebno, da nasa simulacija ni vkljuevala napake linearizacije, za katero smo
ugotovili, da se zmanjSuje s spektralnim filtriranjem.

C.10 Natan¢nost temperaturne profilometrije SFTR

Pri temperaturni profilometriji SFTR je znan pojav razsiritve in atenuacije temperaturnih profilov z
globino, medtem ko je dolocanje lege absorbirajocih struktur precej dobro. Da bi ocenili omejitve
nasega sistema SFTR, smo izvedli eksperiment na tkivnih fantomih iz agarja.

Pripravili smo 7 tkivnih fantomov z eno plastjo absorberja na globinah 40, 130, 270, 420, 600, 750 in
900 pum ter tri fantome (B1-D1) z absorpcijsko plastjo na globinah 180, 300 in 470 um. Za absorber je
sluzila tanka folija debeline ~20 pm. Vsak vzorec smo osvetlili z 1 ms dolgimi laserskimi sunki
svetlobe iz laserja KTP/Nd:YAG (4 = 532 nm; Dualis'", Fotona, Ljubljana, Slovenija). Uporabili smo
tri razliéne energije sunkov (H = 3,0, 5,0 in 7,8 J/cm?). Signale s frekvenco 50.000 s™' smo zajemali z
uporabo celotnega pasu InSb detektorja (4 = 3,0-5,6 um). S povprecenjem smo znizali frekvenco
signalov na 1000 s in frekvenéno §irino zajemanja na 500 s™'. Na ta nadin smo zmanjiali amplitudo
Suma v signalih. Profile smo rekonstruirali z uporabo spektralne jedrne matrike, kjer je u(4) ustrezal
izmerjenem spektru za agar. Poleg profilometrije SFTR smo izmerili globino vseh vzorcev Se z
opticnim mikroskopom in na treh lo¢enih vzorcih (B1-D1) z mikro magnetno resonan¢nim slikanjem
(MRI).
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Slika C.19: (a) Povprecni temperaturni profili (polne crte) in standardne deviacije (sive palice) rekonstruirani iz
10 signalov SFTR zajetih z vzorcev B1-D1 pri H = 3,0 J/cm?. (b) Mikro-MRI vzorcev Bl (levo), C1 (center) in
D1 (desno). Zgornje puscice kazejo povrsino fantoma in spodnje puscice kazejo absorpcijsko plast.

Slika C.19a prikazuje rekonstruirane profile vzorcev B1-D1 in Slika C.19b mikro-MRI istih vzorcev.
Ugotovili smo, da se globine absorpcijskih plasti dolo¢ene s SFTR popolnoma ujemajo z globinami
dolo¢enimi z mikro-MRI. Podobno ujemanje smo dobili za preostale vzorce med SFTR in opticno
mikroskopijo. 1z slike C.19a je razvidno tudi, da se temperaturni profil z globino razsirja in niza.
Izkaze se, da na razsiritev poleg globine vpliva tudi SNR. Da bi dobili oceno razsiritve, smo izvedli
numeri¢no simulacijo, kjer smo za testne objekte uporabili delta plasti, ki se nahajajo na istih globinah
kot eksperimentalne absorpcijske plasti. Signale SFRT smo simulirali pri enakih pogojih, kot je
potekal eksperiment, kar pomeni, da smo jim dodali tudi ustrezen Sum z eksperimentalno dolo¢eno
amplitudo. Na podlagi numeri¢nih rezultatov smo predpostavili sledeco zvezo za oceno razsiritve
temperaturnih profilov

2000 ym

w(z,. SNR) = 0,133z, +
(20, SNR) 7T ONR

(C.14)
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1z (C.14) je razvidno, da je v primeru visokega SNR razsiritev profilov enaka ~13% globine profila.
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Slika C.20: Razsiritev w(zy, SNR) delta plasti (crtkane crte) izraGunane z (C.14) za globine in SNR vrednosti,
dobljene pri eksperimentu za energije H = 3,0 (levo), 5,0 (center) in 7,8 J/cm® (desno). Ocenjena §irina, ki
vkljuCuje efekt razSiritve w(zy, SNR) in dejanske debeline plasti (¢rni krogci) ter izmerjena Sirina
eksperimentalnih temperaturnih profilov (prazni krogci).

Slika C.20 prikazuje Sirine absorpcijskih plasti izmerjene iz rekonstruiranih temperaturnih profilov v
vzorcih A—G (prazni krogci), razsiritev ocenjeno z (C.14) (¢rtkana crta) in oceno, ki uposteva tako
razsiritev kakor dejansko Sirino absorpcijske plasti (polni krogci). Ujemanje med dejansko Sirino in
ocenjeno Sirino je zadovoljivo, kar kaze, da je (C.14) dobra ocena razsiritve za na§ SFTR sistem in
dane eksperimentalne pogoje. Pomembno je navesti, da so v prej$njih SFTR Studijah objavili oceno za
spodnjo mejo razsiritve 25% globine profila, ki je bila dobljena z numeri¢no simulacijo brezSumnih
signalov in brez napake linearizacije. Nasa ocena razsiritve je skoraj 2-krat manjsa.
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