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Abstract. A central issue in quantum field theory and in particular QCD is to find the

physical vacuum state. Point form quantum field theory provides a useful setting in which

to model the physical vacuum state. In this note the defining equations and elementary

properties of the physical vacuum are discussed in the context of the point form. A simple

model is presented which illustrates some of the general ideas.

In point form relativistic quantum mechanics [1] all interactions are in the four-
momentum operator Pµ and Lorentz transformations are kinematic. The equa-
tions that express the relativistic content of a point form theory are

[Pµ, Pν] = 0 (1)

UΛPµU
−1
Λ = (Λ−1)ν

µPν, (2)

where UΛ is the unitary operator representing the Lorentz transformation Λ on
some model Hilbert or generalized Fock space.

Given a four-momentum operator, the goal is to solve the eigenvalue prob-
lem

Pµ|Ψp > = pµ|Ψp > (3)

and from this get the physical vacuum, bound and scattering states.

There are several ways of generating four-momentum operators Pµ that sat-
isfy the point form equations. One, called the Bakamjian-Thomas method [2], is
relevant for finite degree of freedom systems. The other, integrating free fields
over the forward hyperboloid [3], is of primary interest in this paper.

If a four-momentum operator is constructed that satisfies the above point
form equations, solving the vacuum problem means finding a vector |Ω > in a
suitable space such that

Pµ|Ω > = 0 (4)

UΛ|Ω > = |Ω > . (5)

Here it should be noted that, unlike the situation in nonrelativistic quantum me-
chanics, where eigenvalues of a Hamiltonian are only defined up to a constant,
and only energy differences are observable, it is not possible to add constants
to the four-momentum operator and still maintain Lorentz covariance; that is, if
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Pµ → P
′

µ = Pµ + cµI, where the c’s are constants and I is the identity operator,

then P
′

µ will not satisfy Eq.(2).

Just as aHamiltonian can bewritten as the sum of free and interactingHamil-
tonians, so also the four-momentum operator can be written as the sum of free
and interacting four-momentum operators. If there are no interactions and Pµ =

P
µ
fr, then the well known solution to the vacuum problem is the Fock vacuum.
If an interaction is added, so that Pµ = P

µ
fr + αP

µ
I , then the vacuum solution,

Eq.(4) must reduce to the Fock vacuum when the bare coupling constant α = 0.
Conversely, since it is not possible to add constants to the four-momentum op-
erator, the solution to the vacuum problem, Eq.(4) entails the possibility of fine
tuning the coupling constant α. A simple model of such a possibility is given in
the following paragraphs.

To investigate the vacuum structure it suffices to analyze only the zero com-
ponent of Eq.(4), for if |Ω > is Lorentz invariant, Eq.(5), it follows that

UΛP
0|Ω > = UΛP

0U−1
Λ UΛ|Ω > (6)

= ((Λ0
0)−1P0 + (Λ0

i )−1Pi)|Ω >

= (Λ0
i )−1Pi|Ω >

= 0, (7)

which implies that the momentum operator acting on the physical vacuum also
gives zero, as required. Thus, in the following we will look only at the ground
state eigenvalue problem for the energy operator P0.

The purpose of this contribution to the Bled Workshop is to look at a single
mode ”approximation” to the energy operator of a full infinite degree of freedom
system. Thus, let ai, bi, ck denote respectively bare fermion, antifermion, and
boson annihilation operators where the indices include both space-time (four-
velocity v = p

m
and spin projections) and internal variables such as charge or

isospin. Then the free four-momentum operator can be written as

Pµ(fr) : = m
∑ ∫

dvvµ(a
†
iai + b

†
ibi + κc

†
kck), (8)

where dv := d3v
v0
is the Lorentz invariant measure in four-velocity space, κ is

a dimensionless relative bare boson mass parameter and m is a constant with
the dimensions of mass; its value is determined by relating a physical mass such
as the nucleon mass to the dimensionless eigenvalue of the corresponding stable
particle. Because of the transformation properties of the creation and annihilation
operators inherited from the one particle states, the free four-momentum opera-
tor, as defined in Eq.(8), satisfies the point form equations (1) and (2).

Interactions are obtained by integrating vertices, products of free fields, over
the forward hyperboloid[3][4]. The fundamental vertex is the trilinear vertex,
which is bilinear in fermion-antifermion creation and annihilation operators, and
linear in boson creation and annihilation operators. That is, such vertices have
the general form V ∼ (a† +b)(a+b†)(c+c†) = (a†a+bb†+a†b† +ba)(c+c†) so,



Modeling the QCD Vacuum 33

as shown in reference [4] the interacting four-momentum operator for trilinear
vertices can be written as

Pµ(I) = α
∑∫

dv(A(X
µ
k )ck + A(X

µ
k)†c

†
k), (9)

where A(X
µ
k) := (a

†
i1
, bi1

)(X
µ
k)i1i2

(ai2
, b

†
i2

)T , and the X’s depend on the type of
fermionic-bosonic coupling.

The zeroth component of the eigenvector equation, Eq.(3), is

P0
F(fr) +

∑ ∫
dv(κv0c

†
kck

+αA(X0
k)ck + αA(X0

k)†c
†
k))|Ψλ > = λ|Ψλ > (10)

To distinguish between the continuum energy operator in Eq.(10) and its fi-
nite approximation, the fundamental operator to be diagonalized is ( a Hamilto-
nian) denoted byH, made out of creation and annihilation operators with a finite
number of modes, whose form mimics Eq.(10):

H =
∑

ei(a
†
iai + b

†
ibi + κc

†
kck) + α

∑
A(Xk)ck + A(X

†
k)c

†
k (11)

=
∑

ei +
∑

ei(a
†
iai − bib

†
i + κc

†
ici) + α(A(Xi)ci + A(X

†
i)c

†
i) (12)

=
∑

ei + A(E) + κ
∑

eic
†
ici + α

∑
(A(Xi)ci + A(X

†
i)c

†
i), (13)

E : = diag(e1, e2, ..., eN,−e1,−e2, ...,−eN), (14)

where the discrete ”energy” ei =

√
1+ v2

i

Reference [4] shows that for a large choice of the X’s, the ground state for
the Hamiltonian in Eq.(13) goes as −|constant|α for α≫ 1. Therefore there is no
ground state solution equal to zero other than the free field solution.

One possibility is to add boson selfcoupling interactions. Consider a sim-
ple one mode Hamiltonian model, in which the selfcoupling is generated by the
quartic anharmonic oscillator:

H =
1

2
(x2 + p2) + α2x4

= c†c+ α2(c+ c†)4 (15)

References [4] and [5] show how the boson Lie algebra is given as the con-
traction limit of a compact Lie algebra (of the group U(2)) whose Hamiltonian
is

HM = J1 + α2(J̃+ + J̃−)4 (16)

=
M − Jz

2
+ α2ρ4J4x (17)

=
M + Jx

2
+
α2

M2
J4z, (18)

and in the contraction limit, in which the Lie algebra contraction parameter ρ → 0

asM → ∞, such that ρM2 = 1, the eigenvalues of HM, Eq.(18) converge to the
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eigenvalues ofH, Eq.(15). In Eq.(17) the Lie algebra basis of U(2) has been written
in a U(1)xSU(2) basis, and in Eq.(18), the contraction parameter has been elimi-
nated by writing ρ = 1

M2 . The goal is to numerically find the lowest eigenvalues
for fixed coupling as M, the U(2) irrep label, gets large. Using an SU(2) Lie alge-
bra automorphism to interchange the x and z generators generates a tridiagonal
matrix in the basis given in Eq.(18). Reference [4] shows that the true eigenvalue
is approached for M about 100.

Next consider a one mode system coupling fermions and bosons, with no
quartic boson selfcoupling. The Hamiltonians are now

H = 1+ (a†a− bb†) + c†c+ α(A(X)c + A(X†)c†) (19)

= 1+ A(E) + c†c+ α(A(X)c + A(X†)c† ; (20)

HM = 1+ A(E) + J1 + α(A(X)J− + A(X†)J+) (21)

E =

[
1 0

0 −1

]
, X =

[
1 1

1 1

]
. (22)

For one mode the fermion space is two dimensional (|0 > and a†b†|0 >)
and the boson space is M+1 dimensional. When HM is diagonalized, the lowest
eigenvalue linearly decreases with respect to the bare coupling constant α, for
α≫ 1. Reference [4] shows this behavior of the ground state holds even for many
mode systems.

Finally, if the boson selfcoupling term, the anharmonic term in Eq.(17) is
added to the Hamiltonian, Eq.(21), the result is a model of trilinear coupling with
a quartic boson selfcoupling, a simple ”QCD” one mode model:

H
QCD
M = 1+ A(E) + J1 + α(A(X)J− + A(X†)J+)

+α2(J− + J+)4; (23)

the lowest eigenvalue for small values of M, as a function of the bare coupling
parameter have been numerically calculated. The ground state eigenvalue as a
function of the bare coupling parameter starts at zero, becomes negative and then
rises, passing through zero; if such behavior presists in the large mode limit, this
raises the possibility of fine tuning the bare coupling parameter.
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