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ABSTRACT

The paper is devoted to the stereological unfolding problem of bivariate size-orientation distribution of
platelike particles in metallography. Gokhale (1996) derived an integral equation which relates this bivariate
distribution in three-dimensional (3D) space to the corresponding size-orientation distribution of planar
sections of the specimen. The present paper yields a numerical algorithm which enables to transform a
bivariate histogram of observed quantities to the histogram of 3D characteristics. The use of the method is
demonstrated in examples with simulated data, where an easy analytical solution is available and can be
compared with the results of estimation. The spectrum of unfolding problems solved numerically (cf. Ohser

and Muecklich, 2000) is thus extended.
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INTRODUCTION

The stereological estimation of the joint distribution
of particle parameters from planar sections enables to
quantify the 3D geometrical properties of the materials
microstructure which is related to mechanical
properties. The bivariate distribution of the size and
shape factor of spheroidal particles was studied by
Cruz-Orive (1976) and later for particles of some
other shapes in Ohser and Muecklich (2000). The
trivariate size-shape-orientation unfolding problem for
spheroidal particles was solved in Benes and Krejcir,
(1997). Two main sampling schemes were used,
either the IUR (isotropic uniform random) or VUR
(vertical uniform random) sections. Particles or cracks
which can be modelled by circular plates have zero
shape factor. In this case the investigation of size-
orientation distribution is sufficient, which was
investigated first by Gokhale (1996). In that paper the
theoretical solution is presented for the VUR sampling
design, i.e., the integral equation connecting the
probability densities is derived as well as its inversion.
This inversion theoretically enables to evaluate the
bivariate distribution of the spatial characteristics (the
size and orientation in 3D) from the planar bivariate
distribution. However, the formula is based on two-fold
integration followed by a two-fold differentiation and
an analytical form of planar bivariate joint probability
density is required. Given the bivariate histogram of
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section data measured by means of an image analyser
this would need first a parametrical bivariate density
model to be fit. Altogether it is not recommendable to
proceed using inversion formula directly, therefore a
numerical histogram-based method has to be developed
which is known, e.g., for size-shape problems (Ohser
and Muecklich, 2000).

To do this the first step is to transform the
integral equation in terms of probability densities to
an equivalent integral equation in terms of distribution
functions. This corresponds to the discrete data of the
transformation of relative frequencies to cummulative
frequencies. The integral equation for distribution
function is then discretized which leads to a system of
linear equations. Since a direct solution of this system
may lead to negative frequencies, special numerical
approaches have been adapted. Among them the EM-
algorithm (Ohser and Muecklich, 2000) is the most
popular one recently, since it always leads to a non-
negative solution.

First attempt to the solution of the formulated
problem was published by Benes et al. (1996). The
integral Eq. 1 was split in two subsequent univariate
unfolding problems which were discretized in its
original form. Thus the use of elliptic integrals was
unavoidable. In the present paper an improvement
consists in a direct discretization of bivariate equation
which decreases estimation errors of EM-algorithm.
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Further an ingenious transformation (Eq. 4) of data
leads to a simpler evaluation of kernel coefficients in
a closed form.

In the next Section the derivation of the integral
equation between distribution functions is presented
which arises to be difficult for the size-orientation
problem. A special solution which needs a transfor-
mation of functions was derived, so that finally one
does not deal with a distribution function exactly, but
with an alternative form which is convenient for the
numerical solution. A simple transformation of data
then enables a standard numerical solution using EM-
algorithm (Ohser and Muecklich, 2000) in Section 3.

In Section 4 a synthetic example is present which
demonstrates the use of the developed algorithm.
Model bivariate densities in Gokhale (1996) are tested
such that the inverse solution is known theoretically.
Then a sample is simulated from the planar bivariate
distribution and transformed to the desired bivariate
histogram estimating the spatial size-orientation
distribution. True and estimated marginal distributions
of spatial characteristics are plotted to demonstrate
the results of the method.

ESTIMATION OF BIVARIATE SIZE-
ORIENTATION DISTRIBUTION BY EM
ALGORITHM

Fix an arbitrary direction in the space which is
called a vertical axis. Consider a coordinate system in
the 3D space, such that the vertical axis coincides
with z-axis, and a system of circular plates dispersed
in a reference volume. Each plate is described by its
radius R and a normal orientation (0,p) in spherical
coordinates, see Fig. 1.

X

Fig. 1. Particle parameters of a model shape in 3D.

A vertical plane is any plane parallel to vertical
axis. For a given vertical plane intersecting a plate the

intersection is a segment of length 2r and orientation
o with respect to vertical direction, Fig. 2.
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Fig. 2. Geometry in the intersection of a platelike
particle and a vertical plane.

Let p(R,0,¢) be the joint probability density of
plate size and orientation, denote

2r
g(R,0) = 2L Ip(R,9,¢) d¢. That means we will
4 0

consider the distribution of size and colatitude only
which arises in many applications, e.g. if a material
specimen is under tension or compression in the
direction of the vertical axis.

Let f(r,a) be the bivariate probability density of
half chord length r and chord orientation o of plates if
the planar section is VUR. The relationship between
f(r,o0) and g(R,0) is given by a double integral
equation in Gokhale (1996)

_ ANy
7N, sin’
cos’@sinf g(R,0)d6 dR

2, .
; /r/Z—a(Rz —r2) (sm2 o —cos’ 6)

f(r,o) =
» (1)

Iy /2

1/2

where Ny is the mean number of particles per unit
volume, N, is the mean number of particle sections
per unit area of a vertical plane, r, is the largest
particle’s radius.
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From practical reasons it is better to use y = /2-o.
in f(r,a). Then we get after this change of variables

4rN,,
7N, cos’ y
cos’@ sin@ g(R,0)d6 dR

1/2

f(r,y) =

Fy 7wl2

I

vy (R =7 )1/2 (sin® - cos” 8)

2)

In order to present a numerical solution we
transform the Eq. 2 from the relationship between the
density functions to the relationship between the
distribution functions. The procedure is described as
follows. After the differentiation the right hand side
of Eq. 2 transforms to

f(r,y) = 4N, d d

relatively to the amount of data because otherwise the
method can lead to large disturbances in an output.

Assume that plate sections were observed using
the VUR sampling design and their parameters were
measured. Suppose now that a number M of size
classes and a number N of orientation classes is used
for discretization. Thus we can define class intervals
with limits as follows:

R;=1id,0=r/M,i= ;
Yi=6i=jo, o=m/(2N),j=1,....N.

Typically r, is unknown and it is estimated by
means of a half of the largest observed plate trace
length.Under this choice of the discretatization the
platelike particle’s trace with size and orientation r, v,
respectively, belongs to an (i,j)-th class if 1) <1 <rt;
and . <Y<Y,

1,...M;

AN, cos® ysiny dr dy

In the next step we will integrate the Eq. 3
according to the variables r,y. We can define

VT rwl2

F(r,y)= j jf(s,ﬁ) cos’ B sin B dfds. (4)

Integrating the right hand side of Eq. 3 as in Eq. 4
we get the desired equation
T /2

N, F(ry) = 9 s, pylap ds

dsd,B

I(s,3)
Ty 12
{ J } =N

i [[0-1¢-p)] 4B

1'c/2

)

—4N,, "/zi Fy /2
= - J. dB l:;[ J s(R,7) t(e,B) g(R,0) do dR dB

T js(R )16, B) &(R.6) d6 dR .
ry

In fact F is not a distribution function corresponding
to f, but we can weight the data correspondingly to the
weighting in Eq. 4 and solve the Eq. 5 with respect to
g numerically.

NUMERICAL SOLUTION

The unfolding problem belongs to a class of
inverse problems which are often called ill-posed.
This means that a small error in the input data may
cause a large error in the estimated output. Because of
this property it is suitable to use a fine discretization
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ryml2
I J-(RZ -r")"?(cos® y-cos’0)"* cos’ @sin @ g(R,0)dO dR |. 3)
ry s(R.r) (8,7)

H(' )

This way we can classify the input data into a
bivariate histogram with class limits for the size and
the orientation. Next we suppose the function g(R,0)
being constant within each class (i,j), Nyg(R,0) = xj;
for Ri,;<R< Rj and 0;,<6<0;. As a discrete
analogue of the stereological Eq. 5 we can obtain a
systém of linear equations

M N
o= Z Z Py,

i=k j=I

i=1...,.M;j=1,...,N. (6)
The numerical densities yy present the (weighted,
Eq. 4) mean number of the platelike particles in the

class (k,l) and they are defined as follows:

Yu =N, [F(rk—lﬂ’Y/—l) _F(rk”YI—l)_F(rk—l”Y/)+F(rkﬂ’YI)]
v g(Rmej)

The coefficients of the linear equation system (6)
are given by

and X. =

i

P =P, jk=LI=1)=p(i, j,k,l=1) 7
-p(, j,k=1LD)+ pQ,j,k,0)
where
p(i,j,k,0)=
4 5 jo (8)

d j j s(Rr,) 1(6,y,) 48 dR, i>k j>1

(D3 (j-Do
and p,, =0 otherwise.

To calculate coefficients p(i,j,k,]) we have to
integrate the right side of Eq. 8 separately according
to the parameters R and 0. For the case r > 0 we obtain
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Z]S(R’,,) dR:%[b(bz_l’z)l/z—a(a2—r2)l/2
2 2\12

—rzlog b+(b ’ )1/2

a+(a —r2>

and for setting r = 0 we get
b

;[S(R,r) dR = %[b2

of Eq. 8 in O we can write

-a’ ] Integrating the right side

d
It(e,y) de ={ cos® (cos2 Y —cos’ 6)3/2

2

s Y

(0052 ¥ —cos’ 9)1/2

cos*y cos®
3 arctan

(cos2 Y- cos’ 6)”2

In order to solve the system of linear Eq. 6 the
iterative EM algorithm in Ohser and Muecklich
(2000) is used. Suppose that y is said to be the matrix
of incomplete data obtained by planar sampling and x
represents the matrix of parameters to be estimated.
Each iteration consists of two steps, an E-step and an
M-step, where E stands for expectation and M for
maximization. Let zjq be the number of events occuring
in the class (i,j) which contributes to the counts in the
class (k,I). The E-step yields the expected value of
zija given input data y under the current estimate x®
of the parameter matrix x as follows

_ D (4)
Ziga = Xy VuPiu Iry )

The M-step yields a maximum likelihood estimate
of the parameter x using the estimated data ngl from the

M N
E-step. Define 7, =" >" p,,, and 5} = ZZpU,dx(“ :

k=1 =1 i=l j=1

Then the M-step is given by
(M ZZZW Combining these two steps we get

tl,klll

an EM iteration given by the updating formula

(M M

(x+1) X ZZ VP
(7~) ’

ij k=1 [=1

i=1,...M,j=1,...,N

(10)

The Eq. 10 produces a sequence xy) which

converges to a solution, i.e., the matrix of parameters
X. As an initial iteration we set x;.O) =y, - This choice

of nonnegative initial values ensures that each of x is
nonnegative. There is in fact not a unique solution.
Convergence of the EM algorithm is guaranteed in
theory but the solution can depend on the choice of
the initial values used in the iteration scheme. See
Ohser and Muecklich (2000) for more experience
with the use of the EM algorithm in metallographical
practice when solving unfolding problems.

SIMULATION STUDY

The following examples are given to illustrate the
use of the EM algorithm for estimation of the true
bivariate size and orientation distribution from
simulated planar data according to given joint density
functions. The number of iterations of the EM
algorithm depends on how fine is the discretization as
well as on the accuracy of measured planar data. For
a sample size about 10000 and a total of 10 classes
the number of iterations need not exceed 32 as
recommended in Ohser and Muecklich (2000).

We have chosen 5 classes of the radii and 5
classes of the orientation. The number of the simulated
platelike particle traces was 2000 and the number of
iterations of the EM algorithm was suggested equal to
16. Suppose first that the platelike particle’s size and
orientation distribution is fi(r,00) = 12-10"%/mw-1(r, -1%)>,
the radius of the largest platelike particle is given by
rm = 0.001 cm. The size of a class is equal 0.0002 cm.
The derived true platelike particle’s size and
orientation distibution (Gokhale, 1996) has a form
21(R,0) = 1016/1t~R(Rmz-R2)3/2 where R, =1, ie.
orientations are uniform random in this example.

If we set the number of platelike particles per cm”
of the vertical plane area at value N = 10%, then the
total number of platelike particles Ny is equal to
64/m-10°. Using the EM algorithm to evaluate the data
simulated from the density f we get the estimated
bivariate size and orientation distribution est(g) in
3D, Fig. 3. The estimated total number of microcraks
per a unit volume is est(Ny) = 2.04-10" which is very
close to the true value Ny. The true and estimated
marginal distribution of the radius and the orientation
is plotted in Fig. 4. In order to compare the true and
estimated marginal distributions we have to transfer a
scale of the true distribution to classes from 1 to 5 on
the horizontal axis and use a relative scale for the
vertical axis.
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Fig. 3. Platelike particle’s distribution with the
uniform distribution of the angle. (a) The bivariate
histogram given by simulated planar data from f;. (b)
Estimated bivariate distribution in 3D.
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Fig. 4. The solid lines (T) show the true marginal
distributions of the spatial size and orientation
distribution corresponding to Fig. 3. We indicate
smoothed estimated marginal distribution corres-
ponding to the size and orientation by dotted line (E).
(a) The curve E is fitted by the spline of the third
order. (b) For smoothing the curve E we use the least
squares method.
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In the next example suppose that platelike
particle’s trace r and orientation o are still uncorrelated
but the orientations are not uniform random. The
planar probability density has a form f(r,0) =
24-10"/m-r(r,,>-r")* sin’a. and true platelike particle’s
size and orientation distribution is g(R,0) =
2:10"/m-R(R,>-R*)*? cos’0. For the same setting of
Na the total number of platelike particles Ny is equal
to 256/(3m)-10°. From the simulation we receive the
estimated value est(Ny)=2.8-10". The estimated
bivariate distribution in 3D is depicted in Fig. 5,
analogously to Fig. 4 the true and estimated marginal
distribution of 3D characteristics is plotted in Fig. 6.

The last simulation example covers the situation
of correlated platelike particle’s trace r and its
orientation angle o.. The planar probability density is
given by fiy(r,0) = 4-10"/m-r(ry>-1") + 12:10"*/m-1(r, -
r’)* sin’a.. The associated distribution in 3D has a
form  g3(R,0) = 3-10°/n-R(R,,-R»)"* + 10'"/m-R(Ry’-
R?)* cos’® and the associated total number of
platelike particles is Ny = 16-107/(6m) + 128-10%(31).
The estimated total number of platelike particles is
est(Ny) = 2.1-10” which is again very close to the true
value Ny. The simulated planar and estimated spatial
bivariate distributions are showed in Fig. 7, the true
and estimated spatial marginal distribution is in Fig. 8.
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Fig. 5. Anisotropic uncorrelated platelike particle’s
distribution. (a) The bivariate histogram given by
simulated planar data from f,. (b) Estimated bivariate
distribution in 3D.
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Fig. 6. The solid lines (T) show the true marginal
distributions of the spatial size and orientation
distribution corresponding to Fig. 5. We indicate the
smoothed estimated marginal distribution corres-
ponding to the size and orientation by dotted line (E).
The both curves E in (a) and (b) are fitted by the
spline of the third order.
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Fig. 7. Anisotropic and correlated platelike particle’s
distribution. (a) The bivariate histogram given by
simulated data from f;. (b) Estimated bivariate
distribution in 3D.
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Fig. 8. The solid lines (T) show the true marginal
distributions of the spatial size and orientation
distribution corresponding to Fig. 7. We indicate
smoothed estimated marginal distribution corres-
ponding to the size and orientation by dotted line (E).
(a) The curve E is fitted by the method of least
squares. (b) For smoothing the curve E we use by the
spline of the third order.

DISCUSSION

A method for the estimation of the spatial
bivariate size-orientation distribution of circular
plates using stercological methods was developed.
The unfolding of true plate parameters is based on the
observation in a vertical uniform random section
plane. In metallographical practice the circular plates
present an approximate model for cracks or platelike
particles in particle reinforcement. The vertical axis
then coincides with the direction of tension or
compression of the material.

If a close analytical form of the true spatial
bivariate platelike particle’s distribution is available
then (sometimes after tedious mathematical
calculations) one could express the associated planar
bivariate distribution in the vertical planes and vice
versa. But for a real dataset it is difficult to fit its
planar bivariate distribution by an analytical formula.
In such a case (especially when the data are presented
in a bivariate histogram form) it is easier to proceed
in discretization and apply an efficient numerical
procedure like EM algorithm to calculate the bivariate
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distribution of 3D characteristics from the measured
data. Such a method was developed in the present
paper and its use was demonstrated in synthetic
examples where the data were simulated from a
known distribution. The results are promising for the
application of the procedure in metallographical
practice, they extend the supply of unfolding methods
discussed in Ohser and Muecklich (2000).
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