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974 01 Banská Bystrica, Slovakia
and

Institute of Mathematics, Slovak Academy of Sciences,
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Abstract

Regular embeddings of cycles with multiple edges have been reappearing in the litera-
ture for quite some time, both in and outside topological graph theory. The present paper
aims to draw a complete picture of these maps by providing a detailed description, clas-
sification, and enumeration of regular embeddings of cycles with multiple edges on both
orientable and non-orientable surfaces. Most of the results have been known in one form or
another, but here they are presented from a unique viewpoint based on finite group theory.
Our approach brings additional information about both the maps and their automorphism
groups, and also gives extra insight into their relationships.

Keywords: Regular embedding, multiple edge, Hölder’s Theorem, Möbius map.
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1 Introduction
Classification of all regular embeddings of a given graph on orientable or non-orientable
surfaces has been addressed by many researchers in topological graph theory. On the ab-
stract level, the classification problem was solved by Gardiner et al. where graphs which
underlie a regular map were characterised by means of a condition requiring the existence
of certain subgroups in the graph automorphism group [7]. This condition allows one
to identify all existing map automorphism groups within the graph automorphism group
and subsequently to determine all regular embeddings of the graph that have a specified
subgroup as its automorphism group. Nevertheless, practical application of the condition
depends on understanding the structure of the automorphism group of the graph and there-
fore has serious limitations. At present, a complete classification is known for only a few
infinite classes of graphs, most notably, for complete graphs [8, 9, 27], complete bipartite
graphs [11, 22], hypercubes [4, 14, 21], and for several others basic classes of graphs (see
for example [6, 29]).

In this paper we focus on regular maps whose underlying graph is a cycle with mul-
tiple edges; for brevity we call such maps multicyclic. Multicyclic maps can be regarded
as combinations of two well understood families of maps: spherical embeddings of cycles
and dipole maps. The study of these maps has a fairly long history which exceeds the
context of the proper topological graph theory [1, 3, 5, 17]. In early papers, these maps
typically occur in the dual form as maps where each face meets precisely two others; in
[26] such maps are called bicontactual. An important special case, regular maps with two
faces, was extensively discussed by Coxeter and Moser in their celebrated book [5], men-
tioning much older works of Brahana [2] and Threlfall [24]. In full generality, bicontactual
regular maps were first considered in 1985 by Wilson [26]. Using a geometric approach
depending on tracing map diagrams Wilson derived a classification of bicontactual maps
on both orientable and non-orientable surfaces. Unfortunately, his result does not imme-
diately translate via surface duality to regular embeddings of cycles with multiple edges,
and even the basic information such as the orientability character or the number of regular
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embeddings for a given length and multiplicity of a cycle is hard to extract.
In 1989, Wilson [27, Theorem 3] proved that a regular embedding of any graph with

multiple edges is either a totally branched covering over a regular embedding of the cor-
responding simple graph, or a cantankerous map, a regular map with edge-multiplicity 2
where every 2-cycle is orientation-reversing. He went on to show that (among other things)
an even cycle has a regular embedding with every multiplicity while an odd cycle has a
regular embedding with every odd multiplicity but with no even multiplicity.

Cantankerous maps, under a more appropriate term Möbius regular maps, were again
studied by Li and Širáň in [15, 16] within the context of maps with an unfaithful action of
the automorphism group on the vertex set. With the help of general results about unfaith-
ful maps they produced a classification of all multicyclic regular maps on both orientable
and non-orientable surfaces [15, Propositions 7 and 8]. In particular, they proved that the
doubled n-cycle admits a Möbius regular embedding if and only if n is divisible by 3.
Nevertheless, neither the enumeration of isomorphism classes of the maps nor orientable
regularity were treated in their papers.

To complete the history of classification of multicyclic regular maps we should men-
tion an unpublished work of Škoviera and Zlatoš [23] where a general framework for the
study of regular embeddings of graphs with multiplicity m based on Zm-valuations was
developed. In a subsequent work [22], this theory was applied to deriving a classification
of orientably regular embeddings of multicycles. Although the latter classification enables
enumeration, no information about the automorphism groups of the maps was given.

The present paper intends to complete the picture of multicyclic regular maps by pro-
viding a detailed description, classification, and enumeration of multicyclic maps on both
orientable and non-orientable surfaces along with additional information about the auto-
morphism groups of maps and relationships between them. In contrast to the majority of
previous papers on this topic we deal with both orientably regular maps (where map au-
tomorphisms are necessarily orientation-preserving) and with regular maps (where map
automorphisms include reflections and the maps may also lie on non-orientable surfaces).
Our interest in these maps is substantiated by the fact that large classes of regular maps
have multicyclic quotients and that multicyclic maps can often serve as important extremal
examples [1, 3, 17].

The following two theorems, stated in a simplified enumerative form, are our main
results. More detailed statements can be found in the subsequent sections. Throughout the
paper C(m)

n denotes the graph resulting from the cycle Cn of length n by replacing each
edge with m parallel edges.

Theorem 1.1. Let p be the number of orientably regular embeddings of the graph C(m)
n

where n ≥ 3 and m ≥ 2, and let µ(m) denote the number of solutions of the congruence
e2 ≡ 1 (mod m). Then

(i) p = 0 if n is odd and m is even,

(ii) p = 1 if both n and m are odd,

(iii) p = µ(m) if n is even and m is odd,

(iv) p = 2µ(m) if n ≡ 0 (mod 4) and m is even,

(v) p = 2µ(2m) if n ≡ 2 (mod 4) and m is even.

Furthermore, all these embeddings are reflexible.
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Theorem 1.2. Let q be the number of non-orientable regular embeddings of the graph
C

(m)
n where n ≥ 3 and m ≥ 2. Then

(i) q = 1 if both n and m are odd, in which case the antipodal double cover of the map
is an orientably regular embedding of C(m)

2n corresponding to the solution e = −1
of the congruence e2 ≡ 1 (mod m) listed in item (iii) of Theorem 1.1,

(ii) q = 1 if n ≡ 0 (mod 3) and m = 2, in which case the map is a Möbius map, and

(iii) q = 0 in all other cases.

Theorem 1.2 has an interesting corollary which strengthens a result of Wilson [26]
and shows that there exist no regular maps with nilpotent automorphism group on non-
orientable surfaces of genus greater than 1. In contrast, nilpotent regular maps on orientable
surfaces of arbitrarily large genus are abundant; for further information see [18].

Theorem 1.3. There exist no non-orientable regular maps whose automorphism group is
nilpotent except the dihedral embeddings of bouquets of 2n circles into the projective plane
and their duals, embeddings of cycles of length 2n, for n ≥ 1.

2 Orientably regular embeddings of C(m)
n

It is well-known that every d-valent orientably regular mapM can be identified with a triple
(G; x, y) where G is a finite group and {x, y} is a generating set for G with xd = y2 = 1;
see, for example [10, 21]. Such a triple is called an algebraic orientably regular map.
Elements of the group represent darts of M, that is, edges endowed with an orientation.
The right translation g 7→ gx, g ∈ G, by the generator x corresponds to the rotation
of the map, the permutation that cyclically permutes darts directed away from vertices
consistently with the orientation of the surface. The translation g 7→ gy, g ∈ G, by the
generator y corresponds to the dart-reversing involution, which switches the direction of
each dart to the opposite direction. The vertices, edges, and faces ofM are in a one-to-one
correspondence with the left cosets of 〈x〉, 〈y〉, and 〈xy〉, respectively, and the incidence
between the objects corresponds to non-empty intersection of cosets.

A map homomorphism (G; x, y)→ (G′; x′, y′) between algebraic maps (G; x, y) and
(G′; x′, y′) is a group homomorphismG→ G′ that takes x to x′ and y to y′. In topological
terms, a map homomorphism corresponds to an orientation-preserving covering projection
of maps, possibly branched over vertices, face-centres, and free ends of semiedges (where
the branching index must be 2). It follows that two algebraic maps (G; x, y) and (G; x′, y′)
represent isomorphic orientably regular maps if and only if there is an automorphism of G
taking x to x′ and y to y′. Each automorphism of the mapM = (G; x, y) corresponds to
a left translation g 7→ ag, g ∈ G, where a is a fixed element of G. In particular, the group
Aut+(M) of all orientation preserving automorphisms of M is isomorphic to G. The
map automorphism corresponding to the generator x generates a cyclic vertex-stabiliser
in the automorphism group of (G; x, y), while y generates the edge-stabiliser, which is
necessarily of order two. An orientably regular map M = (G; x, y) is reflexible if it is
isomorphic to its mirror imageM−1 = (G; x−1, y); otherwise (G; x, y) is chiral.

In what follows, we often identify the group G that underlies an algebraic mapM =
(G; x, y) with its left regular representation, and it should be easy for the reader to see from
the context which notion is in use.
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Before proceeding to the classification of orientably regular embeddings of cycles with
multiple edges we present a general result about orientably regular embeddings of graphs
with multiple edges. For a non-trivial simple graph X let X(m) denote the graph arising
from X by replacing each edge with m parallel edges. To avoid trivial cases, the multi-
plicity m of every graph X(m) will always be at least 2. We show that every orientably
regular embedding of X(m) determines two orientably regular maps, an orientably regular
embedding of X and a regular embedding of the dipole graph Dm with multiplicity m,
which consists of two vertices and m parallel edges joining them. In this context it may be
useful to recall a result from [19] and [18] that every orientably regular embedding of Dm

is isomorphic to a map D(m, e) arising from the metacyclic group G(m, e) given by the
presentation

G(m, e) = 〈x, y | xm = y2 = 1, yxy = xe〉.
where e2 ≡ 1 (mod m). Moreover, two dipole maps D(m, e) and D(m, e′) are isomor-
phic if and only if e ≡ e′ (mod m).

We are now ready for the result about the structure of orientably regular maps with
multiple edges.

Theorem 2.1. LetM = (G; x, y) be a regular map of valency d with underlying graph
X(m) of order at least 2. Set A = 〈xd/m〉 and B = 〈xd/m, y〉. Then:

(i) The group A is a normal subgroup of G, the map M/A = (G/A; xA, yA) is a
regular embedding of X , and the natural projection M → M/A is a map homo-
morphism bijective on the vertices.

(ii) M′ = (B; xd/m, y) is a dipole map isomorphic to D(m, e) for some integer e such
that e2 ≡ 1 (mod m).

(iii) G = 〈x, y | xkm = y2 = 1, yxky = xek, . . . 〉, where e2 ≡ 1 (mod m) and
k = d/m is the valency of X . In particular, the multiplicity m ofM is the largest
positive divisor q of d such that 〈xd/q〉EG.

(iv) IfM is not bipartite, then e ≡ 1 (mod m).

Proof. By our assumption, M contains neither loops nor semiedges. Since any two ver-
tices ofM are joined by m parallel edges and G acts regularly on the darts ofM, the sub-
group A = 〈xk〉 fixes two vertices and acts regularly on the set of edges joining them. Ap-
plying the regularity again,A fixes all the vertices ofM pointwise. In particular,A is a nor-
mal subgroup of G. The natural projectionM = (G; x, y) → (G/A; xA, yA) = M/A
is a map homomorphism which is bijective on the vertices. It follows that the underlying
graph ofM/A is X . This proves (i).

By definition, y transposes a pair of adjacent vertices. It follows thatM′ = (B; xk, y)
is an orientably regular map with two vertices and m parallel edges. Since B contains the
cyclic group A as a subgroup of index 2, B is a metacyclic group with presentation

B = 〈xk, y | (xk)m = y2 = 1, (xk)y = xek〉

where e2 ≡ 1 (mod m) (see [19]). It follows that G has a presentation as stated in (iii).
In particular, we see that the multiplicity m ofM is the largest positive divisor q of d such
that 〈xd/q〉EG. This proves (ii) and (iii).

To finish the proof, assume thatM is non-bipartite. Thus there exists a relation

w(x, y) = xa1yxa2y . . . xa2r+1y = 1
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where y appears an odd number of times, say 2r + 1 times. Then

xd/m = xd/mw(x, y) = w(x, y)(xd/m)e
2r+1

= xde/m,

and hence e ≡ 1 (mod m), as required.

Now we proceed to multicyclic regular maps. We start by introducing a family of
orientably regular maps C(n,m; e, f) as follows. Let C(n,m; e, f) = (G; x, y) where
G = G(n,m; e, f) is a group given by the presentation

G(n,m; e, f) = 〈x, y | x2m = y2 = 1, y−1x2y = (x2)e, (xy)n = (x2)f 〉. (2.1)

The parameters m and n are positive integers, n ≥ 3, and e, f ∈ Zm.
We now show that every orientably regular embedding of C(m)

n is isomorphic to one of
the maps C(n,m; e, f) for suitable integers e and f , and classify these maps up to isomor-
phism.

Theorem 2.2. The graph C(m)
n , with n ≥ 3 and m ≥ 2, has an orientably regular embed-

ding for each n and m, unless n is odd and m is even. Every such embedding is reflexible
and is isomorphic to one of the maps C(n,m; e, f) where e and f are as follows:

(i) If both n and m are odd, then e = 1 and f ≡ (n + m)/2 (mod m). In particular,
there is only one orientably regular embedding in this case.

(ii) If n ≡ 0 (mod 4) and m is odd, then e2 ≡ 1 (mod m) and f ≡ (e + 1)n/4
(mod m).

(iii) If n ≡ 2 (mod 4) andm is odd, then e2 ≡ 1 (mod m) and f ≡ ((e+1)n+2m)/4
(mod m) for even e, and e2 ≡ 1 (mod 2m) and f ≡ (e+ 1)n/4 (mod m) for odd
e.

(iv) If n ≡ 0 (mod 4) and m is even, then e2 ≡ 1 (mod m) and f ≡ (e + 1)n/4
(mod m) or f ≡ ((e+ 1)n+ 2m)/4 (mod m).

(v) If n ≡ 2 (mod 4) and m is even, then e2 ≡ 1 (mod 2m) and f ≡ (e + 1)n/4
(mod m) or f ≡ ((e+ 1)n+ 2m)/4 (mod m).

Two such embeddings C(n,m; e, f) and C(n,m; e′, f ′) are isomorphic if and only if e ≡ e′
(mod m) and f ≡ f ′ (mod m).

Reflexible orientably regular embeddings of C(m)
n were previously classified in [15,

Proposition 7] leaving the possibility for the existence chiral maps open. It follows from
Theorem 2.2 that no chiral embeddings of C(m)

n exist and therefore the two families coin-
cide.

Our proof of Theorem 2.2 uses a classical result of Hölder concerning the structure of
metacyclic groups (see Zassenhaus [28, p. 99]).

Theorem 2.3 (Hölder’s Theorem). Every extension of a cyclic group of order m ≥ 2
by a cyclic group of order n ≥ 2 is determined by two integers e and f satisfying the
congruences

en ≡ 1 (mod m) and f(e− 1) ≡ 0 (mod m),
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and is isomorphic to the group G(e, f) with presentation

G(e, f) = 〈a, b | am = 1, bn = af , b−1ab = ae〉.

Furthermore, the extension determined by e and f is equivalent to that determined by e′

and f ′ if and only if e ≡ e′ (mod m) and f ≡ f ′ (mod m).

Proof of Theorem 2.2. Let M = (G; x, y) be an orientably regular embedding of the
graph C

(m)
n . By Theorem 2.1(i), A = 〈x2〉 E G and M/A = (G/A; xA, yA) is an

orientably regular embedding of the simple cycle Cn, where

G/A ∼= 〈x̄, ȳ | x̄2 = ȳ2 = (x̄ȳ)n = 1〉.

By Theorem 2.1(iii), the group G has the presentation (2.1) for some e, f ∈ Zm where

e2 ≡ 1 (mod m). (2.2)

Set a = x2 and b = xy. Then K = 〈a, b〉 is a metacyclic group with presentation

〈a, b | am = 1, bn = af , ab = ae〉. (2.3)

We apply Hölder’s Theorem to conclude that e and f satisfy the congruences

f(e− 1) ≡ 0 (mod m) (2.4)

and

en ≡ 1 (mod m). (2.5)

From the presentation of G we deduce that

ay = ae and by = (xy)y = yx = yx2x−1 = x2eyx−1 = aeb−1.

For brevity, denote s =
∑n−1

i=0 e
i. Then

af
(2.4)
= aef = (af )y = (bn)y = (by)n = (aeb−1)n = asb−n = as−f ,

whence

2f ≡ s (mod m). (2.6)

In the above proof we see that G = K o 〈y〉, and hence G has an alternative presentation

G = 〈x, y |a = x2, b = xy, am = 1, bn = af , ab = ae, y2 = 1, ay = ae, by = aeb−1〉.
(2.7)

Conversely, given a group G defined by (2.1) (or equivalently by (2.7)) with the param-
eters n, m, e, and f satisfying (2.2), (2.4), (2.5) and (2.6), we see that |G| = |K o 〈y〉| =
2|K|, and from Hölder’s Theorem we get that |G| = 2mn. By Theorem 2.1, the map
(G; x, y) corresponds to an orientably regular embedding of C(m)

n .
Recall that two embeddings C(n,m; e, f) = (G(n,m; e, f); x, y) and C(n,m; e′, f ′) =

(G(n,m; e′, f ′); x′, y′) are isomorphic if and only if the assignment x 7→ x′, y 7→ y′
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extends to a group isomorphism. Routine calculations show that this occurs if and only
if e ≡ e′ (mod m) and f ≡ f ′ (mod m). For the maps (G(n,m; e, f); x, y) and
(G(n,m; e, f); x−1, y) the latter condition is clearly satisfied, which immediately implies
that each of the maps C(n,m; e, f) is reflexible.

To obtain more details on these embeddings we need to solve the system of congruences
(2.2), (2.4), (2.5) and (2.6). First notice that if n is odd and m is even, then e is odd.
According to (2.2) we have e2 ≡ 1 (mod m), and therefore s =

∑n−1
i=0 e

i = (n− 1)(e+
1)/2+1. However, 4|(n−1)(e+1), so s is odd, violating (2.6). In other words, if n is odd
andm is even, C(m)

n does not admit any orientably regular embedding. Our discussion now
splits into five cases dealing with the remaining conditions on n andm, each corresponding
to an item of Theorem 2.2.

Case (i). Both n and m are odd.
Theorem 2.1 (iv) yields that e ≡ 1 (mod m). By substituting e = 1 into (2.6) we

get 2f ≡ n (mod m), which implies that 2f ≡ (n + m) (mod m) and consequently
2(f−(n+m)/2) ≡ 0 (mod m). Sincem is odd, we infer that f ≡ (n+m)/2 (mod m),
and Case (i) is done.

Now we deal with the cases where n is even. Using (2.2) we get s =
∑n−1

i=0 e
i =

(e+ 1)n/2. Substituting for s into (2.6) we obtain

2f ≡ (e+ 1)n/2 (mod m). (2.8)

Case (ii). n ≡ 0 (mod 4) and m is odd.
Since n ≡ 0 (mod 4), from (2.8) we get f ≡ (e + 1)n/4 (mod m). By substituting

f into (2.4) we obtain

f(e− 1) ≡ (e2 − 1)n/4 ≡ 0 (mod m). (2.9)

Therefore e and f satisfy (2.4), and Case (ii) is done.

Case (iii). n ≡ 2 (mod 4) and m is odd.
If e+ 1 is even, then f ≡ (e+ 1)n/4 (mod m). By substituting f into (2.4) we obtain

n(e2 − 1)/4 ≡ 0 (mod m). Since n ≡ 2 (mod 4), we get e2 − 1 ≡ 0 (mod 2). If we
combine this with (2.2), we get e2 ≡ 1 (mod 2m).

If e+1 is odd, then (e+1)n/2 is odd, and hence (e+1)n/2+m is even. We may rewrite
(2.8) in the form 2f ≡ (e + 1)n/2 + m (mod m), and obtain f ≡ ((e + 1)n + 2m)/4
(mod m). By substituting f into (2.4) we further get

n(e2 − 1)/2 +m(e− 1) ≡ 0 (mod 2m).

Since m is odd, by the Chinese Remainder Theorem, this is equivalent to{
n(e2 − 1)/2 ≡ 0 (mod m), (2.10a)
n(e2 − 1)/2 +m(e− 1) ≡ 0 (mod 2). (2.10b)

By applying (2.2) we may conclude that (2.10a) holds. Since n/2, m, e+ 1, and e− 1 are
all odd, we see that (2.10b) holds, too. Hence (2.4) is satisfied by e and f exactly when the
conditions in the statement are satisfied. This completes Case (iii).
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Case (iv). n ≡ 0 (mod 4) and m is even.
In this case (2.8) has two solutions f = (e+ 1)n/4 and f = (e+ 1)n/4 +m/2 in Zm.

If we insert them into (2.4), we see that (2.4) is satisfied, and Case (iv) is complete.

Case (v). n ≡ 2 (mod 4) and m is even.
(2.8) has two solutions in Zm, namely f = (e + 1)n/4 or f = (e + 1)n/4 + m/2. It

remains to show e2 ≡ 1 (mod 2m). By substitution of f into (2.4) we get

(e2 − 1)n/4 ≡ 0 (mod m). (2.11)

By the assumption, we may set m = 2rm0 where r ≥ 1 and m0 is odd. A combination of
(2.2) and (2.11) yields the system{

e2 − 1 ≡ 0 (mod 2rm0),

e2 − 1 ≡ 0 (mod 2r+1(m0/h)),

where h = gcd(m,n/2). By the assumption, n/2 is odd, so h = gcd(m0, n/2). By the
Chinese Remainder Theorem, the above system is equivalent to the system{

e2 − 1 ≡ 0 (mod 2r+1),

e2 − 1 ≡ 0 (mod m0).

We now apply the Chinese Remainder Theorem once again and get e2 ≡ 1 (mod 2m).
This completes Case (v) as well as the proof of Theorem 2.2.

The next corollary determines the basic parameters of the maps C(n,m; e, f). Recall
that the type of a regular or orientably regular mapM is the symbol {p, q} where p is the
face-size and q is the vertex-valency ofM.

Corollary 2.4. The map C(n,m; e, f) has type {nm/h, 2m} and its genus is n(m−1)/2−
(h− 1), where h = gcd(f,m).

Proof. To determine the type and the genus of C(n,m; e, f) we need to determine the order
of the element xy. Since (xy)n = (x2)f and x2 has order m, we see that the order of xy
is nm/h where h = gcd(f,m). It follows that the map has type {nm/h, 2m}. Since
|G(n,m; e, f)| = 2mn, the numbers of vertices, edges, and faces of C(n,m; e, f) are n,
mn, and 2h, respectively. Therefore, by the Euler-Poincaré Formula, the map has genus
n(m− 1)/2− (h− 1), as claimed.

Remark 2.5. Let λ(g) denote the order of a largest group of conformal automorphisms of
a compact Riemann surface of genus g. Accola [1] and MacLachlan [17] independently
proved that 8(g + 1) ≤ λ(g) ≤ 84(g − 1) for g ≥ 2 and there are infinitely many integers
g ≥ 2 for which the equality λ(g) = 8(g + 1) holds. If we take n = 4, e = −1, and
f = 0 in Corollary 2.4, we get that the genus of C(4,m;−1, 0) is g = m − 1 with the
automorphism group G of order |G| = 8(g + 1), the lower bound of λ(g).



186 Ars Math. Contemp. 8 (2015) 177–194

3 Non-orientable regular embeddings of C(m)
n

As in the orientable case, regular maps on non-orientable surfaces can be represented in a
purely algebraic manner [12]. Every regular mapM on a closed surface, and hence every
regular map on a non-orientable surface, may be identified with a quadruple (G; l, r, t)
where G is a finite group and {l, r, t} is a generating set for G with l2 = r2 = t2 =
(lt)2 = 1, where the elements l, r, t and lt are all nontrivial. Such a quadruple is called
an algebraic regular map. Elements of G represent flags ofM, pairwise incident triples
of the form (v, e, f) where v is a vertex, e is an edge and f is a face of M. The right
translations of G by l, r, and t correspond to the longitudinal, rotary, and the transver-
sal involution of M, respectively. The longitudinal involution fixes e and f of each flag
(v, e, f) while interchanging the end-vertices of e. The rotary involution fixes v and f of
(v, e, f) while interchanging the two edges sharing the same corner of f at v. The transver-
sal involution fixes v and e of (v, e, f) while interchanging the two faces incident with e.
The vertices, edges, and faces ofM are in a one-to-one correspondence with the letf cosets
of the subgroups 〈r, t〉, 〈l, t〉, and 〈l, r〉, and the incidence between the objects corresponds
to non-empty intersection of cosets.

Two algebraic maps (G; l, r, t) and (G; l′, r′, t′) represent isomorphic regular maps
if and only if there is an automorphism of G taking l to l′, r to r′, and t to t′. Each
automorphism of the mapM = (G; l, r, t) corresponds to a left translation g 7→ ag, g ∈ G,
where a is a fixed element of G. In particular, the group Aut(M) of all automorphisms of
M is isomorphic to G.

The underlying surface of a regular map (G; l, r, t) need not be non-orientable, never-
theless, the criterion of orientability is easy: a regular map (G; l, r, t) is orientable if and
only if the even-word subgroup G+ = 〈rt, tl〉 has index 2 in G. Thus, ifM = (G; l, r, t)
is non-orientable, thenG+ = G, and the triple M̃ = (G; x, y) with x = rt and y = tl rep-
resents an orientably regular map such that Aut+(M̃) ∼= G ∼= Aut(M). The orientably
regular map M̃ is known as the antipodal double cover overM; conversely,M is said to
be a halved non-orientable quotient of M̃. An orientably regular map is called antipodal
if it admits a halved non-orientable quotient.

Observe that the involution t ∈ G plays the role of a reflection of M̃, since xt = x−1

and yt = y−1 = y. In general, an inner reflection of an orientably regular map N =
(G; x, y) is any element g ∈ G satisfying the following conditions:

g2 = 1, (3.1a)
g−1xg = x−1, (3.1b)
g−1yg = y. (3.1c)

Orientably regular maps admitting inner reflections are called algebraically antipodal. It
is proved in [20, Theorem 7.5] that an algebraically antipodal orientably regular map is
antipodal with the exception of spherical dipole maps D(m,−1) where m is odd, their
duals, and regular maps with a single vertex and valency at most 2. More precisely, if
N = (G; x, y) is an orientably regular map and g is an inner reflection of N , then with
the exception of the maps just mentioned, the mapM = Ng = (G; xg, yg, g) is a halved
quotient of N .

Although the antipodal double cover over a non-orientable regular map is uniquely de-
termined, the same is not true for halved quotients: an antipodal regular map may have
different halved quotients corresponding to different inner reflections [25]. However, con-



K. Hu et al.: Regular embeddings of cycles with multiple edges revisited 187

ditions (3.1a)–(3.1c) imply that if g1 and g2 are two inner reflections, then there exists a
central involution z such that g2 = zg1. In particular, the number of inner reflections of an
antipodal map equals the number of central involutions (including the identity).

Before moving on to the classification of non-orientable multicyclic regular maps it
will be useful to recall that non-orientable regular maps with multiple edges occur in two
varieties: either every pair of parallel edges forms an orientation-preserving cycle or there
exists a pair of parallel edges forming an orientation-reversing cycle. By regularity, in
the latter case every edge must be involved in such a cycle. Following [16], we call such
maps Möbius regular maps. Möbius maps were earlier investigated by Wilson [27] un-
der the name cantankerous maps. By using geometric arguments Wilson showed that the
multiplicity of such a map must be 2 (see [27, p. 265] and also [16, Lemma 6]). For the
sake of completeness we include a proof of this fact based on the determination of all
non-orientable regular embeddings of dipoles.

Observe that the dipole D2 has exactly one non-orientable embedding, which is regular
and its supporting surface is the projective plane. This embedding is isomorphic to the map
(H; l, r, t) where H is the dihedral group of order 8 with presentation

H = 〈l, r, t | l2 = r2 = t2 = (lt)2 = 1, (rt)2 = 1, (lrt)2 = t〉. (3.2)

The next lemma shows that there is no other non-orientable regular embedding of any
dipole.

Lemma 3.1. There are no non-orientable regular embeddings of the dipole Dm except
the unique embedding of D2 in the projective plane isomorphic to the map defined by the
presentation (3.2).

Proof. It is clear that the dipoleD2 has a unique embedding in the projective plane and that
the embedding is regular. Now letM = (H; l, r, t) be a non-orientable regular embedding
ofDm withm ≥ 2. SinceDm has just two vertices, the subgroupD = 〈r, t〉 has index two
in H . Clearly, D is dihedral of order 2m. If we set a = rt, then 〈a〉 E D and D = 〈a, t〉.
Since D E H and D is dihedral, we get

lal = aitj , where i ∈ Zm and j ∈ Z2. (3.3)

Suppose that j = 0. From (3.3) we then deduce that a = l2al2 = ai
2

, proving that
i2 ≡ 1 (mod m). It follows that H has presentation

〈a, t, l | am = l2 = t2 = (lt)2 = 1, tat = a−1, lal = ai〉.

However, it is straightforward to verify that the even-word subgroup H+ = 〈rt, tl〉 =
〈a, lt〉 has index two in H , contradicting the assumption thatM is non-orientable. There-
fore j = 1. It follows that the element aitj = ait is an involution, and hence a is an
involution as well. In particular, m = 2.

Now suppose that i = 0. Then (3.3) reduces to

lrlt
lt=tl
= lrtl

a=rt
= lal

(3.3)
= t,

implying that r = 1, which is impossible. Therefore i = 1 and (3.3) reduces to the relation
lal = at. Thus M is isomorphic to the previously defined embedding of D2 into the
projective plane, and the proof is complete.
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The following result appears in [16] and [27]. We provide a purely algebraic proof.

Theorem 3.2. LetX be a simple graph of order at least 2 and of valency d. Then a regular
embedding M = (G; l, r, t) of the graph X(m) with multiplicity m is a Möbius regular
map if and only if m = 2 and the generators l, r and t satisfy the identity

(l(rt)d)2 = t. (3.4)

Proof. Note that the action of the automorphism group G on the flags of M induces an
action on the vertices and an action on the edges ofM. We may therefore assume that the
subgroup 〈r, t〉 ofG fixes a vertex u, and the subgroup 〈l, t〉 fixes an edge joining the vertex
u and an adjacent vertex v. Let H be the subgroup of G fixing the set {u, v}. Then H may
be regarded as the automorphism group of a regular embeddingH of the dipole Dm whose
vertices are u and v and whose edges are the edges between u and v. The underlying graph
structure implies that d is the smallest positive integer k such that the element (rt)k fixes
both u and v. Therefore,H = (H; (rt)d, l, t).

IfM is a Möbius regular map, then the regularity ofM implies thatH is also a Möbius
regular map. By Lemma 3.1, m = 2 and the identity (3.4) holds. Conversely, if m = 2 and
M satisfies the identity (3.4), thenH is a non-orientable embedding of the 2-cycle C2. The
definition of H implies that M contains an orientation reversing cycle, so M is Möbius
regular map.

To formulate our classification theorem for non-orientable multicyclic regular maps
we define two families of maps. First, let C(m,n) denote the non-orientable regular map
(H(m,n); l, r, t) with H(m,n) being the group with presentation

〈l, r, t | l2 = r2 = t2 = (tl)2 = (rt)2m = (rl)2n = (rtrl)2 = 1, (rt)m(rl)n = r〉, (3.5)

where n ≥ 3 and m ≥ 1 are odd integers. It is not difficult to see that the antipodal double
cover of C(m,n) is the multicyclic orientably regular map C(2n,m,−1, 0).

Second, let M(n) denote the non-orientable regular map (H(n); l, r, t) with H(n)
being the group with presentation

〈l, r, t | l2 = r2 = t2 = (tl)2 = (rt)4 = (rl)n = 1, (l(tr)2)2 = t〉, (3.6)

where n ≡ 0 (mod 3). By Theorem 3.2, the relation (l(tr)2)2 = t in the above definition
forcesM(n) to be a Möbius map.

The following theorem is, except for the enumeration part, due to Li and Širáň [15,
Proposition 8]. Our proof is based on the classification of orientably regular embeddings
of C(m)

n presented in the previous section and on Theorem 3.2 about Möbius maps proved
above. The original proof of Li and Širáň employed the analysis of regular maps with an
unfaithful action of the map automorphism group on vertices.

Theorem 3.3. LetM be a non-orientable regular embedding of an m-fold n-cycle C(m)
n .

Then either

(i) m and n are both odd, andM is isomorphic to the map C(m,n), or

(ii) m = 2, n ≡ 0 (mod 3), andM is isomorphic to the Möbius mapM(n).
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Moreover, for each pair (n,m) of admissible integers there is a unique non-orientable
regular embedding of C(m)

n .

Proof. LetM = (G; l, r, t) be a non-orientable regular embedding of C(m)
n , and let M̃ =

(G; x, y) be the antipodal double cover ofM, where x = rt and y = tl. We distinguish
two cases.

Case (i). Every 2-cycle ofM is orientation-preserving.
Since the antipodal cover is a smooth cover, the valency ofM is preserved, and each

set of m parallel edges inM lifts to a set of m parallel edges in M̃. So M̃ is an orientably
regular embedding of C(m)

2n . By Theorem 2.2, M̃ = (G; x, y), where

G = G(2n,m, e, f) = 〈x, y | x2m = y2 = 1, (x2)y = (x2)e, (xy)2n = (x2)f 〉, (3.7)

where the parameters 2n, m, e, and f satisfy the numerical conditions stated in Theo-
rem 2.2. Let K = 〈x2〉. Then K E G and M̃/K ∼= C2n, where C2n denotes the dihedral
map of type {2n, 2} on the sphere. The inner reflection t of M̃ projects onto the inner
reflection t̄ = (x̄ȳ)n of C2n. It follows that t = x2k(xy)n for some k ∈ Zm. Using the
commuting rule

(x2)y = x2e (3.8)

we get

x−1
(3.1b)
= (x2k(xy)n)−1x(x2k(xy)n)

(3.8)
= (xy)−nx(xy)n, (3.9)

which implies

x−2
(3.9)
= (xy)−nx2(xy)n

(3.8)
=

{
x2 if n is even (3.10a)
x2e if n is odd. (3.10b)

Suppose that n is even. From (3.10a) we deduce that x4 = 1, so m = 2. Theorem 2.2
now implies that e = 1 and therefore

x−1
(3.9)
= (xy)−nx(xy)n = (yxx−2)nx(xy)n

(3.8)
= x−2n+2(yx)2nx−1. (3.11)

Since (xy)2n = x2f , we have (yx)2n = y−1((xy)2n)y = (x2f )y = x2ef
(2.4)
= x2f . If

we combine this with (3.11), we get x−2n+2f+1 = 1. Consequently, −2n + 2f + 1 ≡ 0
(mod 4), which cannot hold. It follows that n must be odd. By (3.10b), e = m − 1. We
have

1
(3.1a)
= t2 = x2k(xy)nx2k(xy)n

(3.8)
= (xy)2n

(3.7)
= x2f ,

so f = 0. Moreover,

1
(3.1c)
= (x2k(xy)n)−1y(x2k(xy)n)y = (yx−1)nx−2ky(x2k(xy)n)y

=(yxx−2)nx−4ky(xy)ny
(3.8)
= x4k(yxx−2)n(yx)n

(3.8)
= x4k+2(yx)2n

(3.7)
= x4k+2x2f = x4k+2.
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Since the order of x2 is m, we get 2k + 1 ≡ 0 (mod m), and hence k = (m − 1)/2. It
can easily be verified that if both m and n are odd, then xm−1(xy)n is the unique inner
reflection of the map C(2n,m;m− 1, 0) that gives rise to a non-orientable regular embed-
ding of C(m)

n . Let t = xm−1(xy)n, r = xt and l = yt. Then, upon substitution, the group
G(2n,m;m− 1, 0) receives the presentation (3.5), and henceM∼= C(m,n).

Case (ii). There exists an orientation-reversing 2-cycle inM.
By Theorem 3.2,m = 2, every 2-cycle is orientation-reversing, andM = (G; l, r, t) is

a Möbius regular map. It follows that the antipodal double cover M̃ = (G; rt, tl) ofM is
an orientably regular embedding of the lexicographic product Cn[K̄2], where each vertex
u ofM lifts to two vertices u0 and u1 which are antipodal points of M̃. Without loss of
generality we may assume that the generator x = rt fixes a certain vertex u0 and that the
generator y fixes an edge u0v0 incident with v0. Set a = x2, b = ay , and K = 〈a, b〉. Then
K acts regularly on the darts (ui, vj) where i, j ∈ Z2. By regularity, K ∼= Z2 ⊕ Z2.

We first show that K EG. It is evident that

ax = a, ay = b and by = a. (3.12)

Notice that since u0 and u1 are antipodal points, x fixes both u0 and u1. Similarly, yxy
fixes both v0 and v1. Using regularity again we see that yx2y interchanges u0 and u1.
Therefore, for any dart of the form (ui, vj) we get

bx(ui, vj) = x−1yx2yx(ui, vj) = x−1yx2y(ui, wk) = x−1(ui+1, wh) = (ui+1, vs),

where k, h, s ∈ Z2 and w0 and w1 are vertices adjacent to u0 but distinct from v0 and v1.
Thus bx ∈ K and hence K EG.

Next we show that bx = ab. SinceM is a halved quotient of M̃ in which every pair of
antipodal vertices u0 and u1 is identified to a single vertex u, there exists an inner reflection
g which identifies the antipodal pairs. Notice that M̃/K ∼= Cn, where Cn is the dihedral
map of type {n, 2}. By regularity, g ∈ K. From (3.1b) we see that g 6= 1 and g 6= a. If we
had g = b, then from (3.1c) we would derive that by = b, which is a contradiction with the
assumption by = a. Therefore g = ab = x2yx2y and consequently

xg = x2(yx2y)x(x2)(yx2y)
(3.1b)
= x−1.

Since [x2, yx2y] = 1, we get

bx = x−1(yx2y)x = x−2yx2y = x2yx2y = ab. (3.13)

For convenience, set z = xy. Then zn ∈ K, which implies that zn = aibj for some
i, j ∈ Z2. From (3.12) and (3.13) we derive that

az = b, bz = ab, and (ab)z = a, (3.14)

so aibj = zn = (zn)z = (aibj)z
(3.14)
= bi(ab)j = ajbi+j , and hence ai−j = bi. Since

〈a〉 ∩ 〈b〉 = 1, we see that i = 0 and j = 0. Therefore, zn = 1. Observe that the action of
z on K defined by (3.14) induces the permutation (1)(a, b, ab), which implies that n ≡ 0
(mod 3). Moreover, since

zy = (xy)y = yx = yx−1x2 = (xy)−1x2 = z−1a, (3.15)
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we get G = 〈a, b, z, y〉 = (K o 〈z〉) o 〈y〉. Therefore G is defined by the presentation

〈x, y | a = x2, b = ay, x4 = y2 = [a, b] = (xy)n = 1, bx = ab〉. (3.16)

Conversely, It is straightforward to verify the group given by (3.16) with n ≡ 0
(mod 3) gives rise to an orientably regular embedding of the graph Cn[K̄2].

To complete the proof it remains to show that t = ab is a unique inner reflection
giving rise to a halved quotient with a multicyclic underlying graph. Let Ic(G) denote the
subgroup of G generated by all its central involutions. From the previous part of the proof
we know that G/K is isomorphic to the dihedral group of order 2n. If g ∈ Ic(G), then
gK ∈ Z(G/K). Since

Z(G/K) =

{
1, n is odd,
〈z̄n/2〉, n is even,

there exist elements i, j, k ∈ Z2 such that g = aibj if n is odd, and g = aibj(zn/2)k if n is
even.

If n is odd, then aibj = g = gy = (aibj)y = ajbi. Since 〈a〉 ∩ 〈b〉 = 1, we have i = j.
Moreover, we have aibi = g = gz = (aibi)z = aib2i = ai, so i = 0 and hence Ic(G) = 1.

Now we assume n is even. Recall that n ≡ 0 (mod 3). We deduce from (3.14) that
[a, zn/2] = [b, zn/2] = 1, and from (3.15) that [y, zn/2] = 1. So zn/2 ∈ Ic(G). Applying
similar techniques we may deduce that if an element h = aibj belongs to Ic(G), then
h = 1. Therefore, Ic(G) = 〈zn/2〉.

Summing up, we have proved that if n is odd, there is a unique inner reflection ab, and if
n is even, there are two inner reflections ab and abzn/2. However, the latter inner reflection
does not produce an embedding of C(m)

n . If we set t = ab, r = xt, and l = yt, then the
presentation (3.16) transforms to the presentation (3.5). In either case, the antipodal regular
covering that projects onto a non-orientable regular embedding of C(m)

n is unique, so for
each pair (n,m) of admissible integers there is a unique non-orientable regular embedding
of C(m)

n , as claimed.

As a corollary to the main theorem of this section we present a strengthening of a result
due to Wilson [26] about non-orientable regular maps whose number of edges is a power
of 2. Our result features two infinite classes of projective-planar regular maps arising as
halved quotients of dihedral spherical maps: a unique embedding of the cycle Cn of length
n ≥ 1 in the projective plane which is a halved quotient of the map C2n, and its dual, the
balanced embedding of the bouquet of n loops in the projective plane which is the halved
quotient of the dipole map D(2n,−1).

Theorem 3.4. IfM is a regular map with nilpotent automorphism group, then Aut(M) is
a 2-group. Furthermore, ifM is non-orientable, thenM is either the balanced embedding
of the bouquet of 2n loops into the projective plane for some n ≥ 0 or its dual, a projective-
planar embedding of the cycle C2n .

Proof. Let M = (G; l, r, t) be a regular map where G is nilpotent. Then G can be ex-
pressed as a direct product H × K where H is a 2-group and K has odd order. The
elements l, r, and t belong to H , because they are involutions. It follows that H ∼= G and
K = 1. In other words, G is a 2-group.
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Now assume thatM = (G; l, r, t) is non-orientable. Since G is a 2-group,M has 2n

edges for some n ≥ 0 and hence |G| = 2n+2. We proceed by induction on n to show that
M is either the balanced embedding of the bouquet of 2n loops into the projective plane
with n ≥ 0 or its dual.

An easy check of non-orientable regular maps with at most four edges shows that the
claim is true for n ≤ 2. For the induction step assume that the statement holds for some
n ≥ 2 and letM = (G; l, r, t) be a non-orientable regular map with 2n+1 edges, so that
|G| = 2n+3. SinceG is a 2-group, it has a non-trivial centre, and hence it contains a central
involution z 6= 1. Clearly, 〈z〉EG, so we may construct the quotient map M̄ = (Ḡ; l̄, r̄, t̄)
where Ḡ = G/〈z〉 and l̄, r̄, and t̄ are the images of r, l, and t, respectively. By the induction
hypothesis, M̄ is either an embedding of the cycle C2n into the projective plane or its dual.
We may clearly assume that M̄ is an embedded cycle. Then Ḡ has a presentation

Ḡ = 〈l̄, r̄, t̄ | l̄2 = r̄2 = t̄2 = (l̄t̄)2 = 1, (r̄t̄)2 = (r̄l̄)2
n

= 1〉.

Since G is a cyclic central extension of Ḡ by 〈z〉, we get

G = 〈l, r, t | l2 = r2 = t2 = (lt)2 = 1, (rt)2 = zi, (rl)2
n

= zj〉,

for some i, j ∈ Z2. If i = 0, then j = 1, and M is an embedding of C2n+1 into the
projective plane. If i = 1, then since lt(rt)2lt = z = (rt)2, the underlying graph ofM
is a cycle with multiplicity 2, which violates Theorem 3.3. This establishes the induction
step, and the proof is complete.

Remark 3.5. Breda d’Azevedo, Nedela, and Širáň [3] showed that for any integer p ≡ 7
(mod 12) with p > 7 the groups

Gj,l = 〈r, s | x2j = s2l = (rs)2 = (rs−1)2 = 1〉,

where j > l ≥ 3 and (j − 1)(l − 1) = p + 1 give rise to infinitely many non-orientable
regular maps of Euler characteristic −p. If p is a prime, this family forms a complete set of
regular maps on the non-orientable surface of Euler characteristic −p. After setting l = m

and j = n it becomes clear that these maps are identical with regular embeddings of C(m)
n

defined by (3.5).

Remark 3.6. Malnič, Nedela, and Škoviera [18] proved that if the automorphism group of
an orientably regular mapM is nilpotent, thenM can be decomposed into a direct product
of two orientably regular maps, an orientably regular map whose automorphism group
is a 2-group and a semistar of odd valency [18, Theorem 3.2]. Since the automorphism
group of every non-orientable regular map is also the automorphism group of its antipodal
double cover, it follows from Theorem 3.4 that no orientably regular maps with nilpotent
automorphism groups are antipodal, except the dihedral maps {2n, 2} on the sphere and
their duals.
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[7] A. Gardiner, R. Nedela, J. Širáň and M. Škoviera, Characterisation of graphs which underlie
regular maps on closed surfaces, J. London Math. Soc. 59 (1999), 100–108.

[8] L.D. James, Imbeddings of the complete graph, Ars Combin. 16-B (1983), 57–72.

[9] L.D. James and G.A. Jones, Regular orientable imbeddings of complete graphs, J. Combin.
Theory Ser. B 39 (1985), 353–367.

[10] G.A. Jones and D. Singerman, Theory of maps on orientable surfaces, Proc. London Math. Soc.
37 (1978), 273–307.

[11] G.A. Jones, Regular embeddings of complete bipartite graphs: classification and enumeration,
Proc. London Math. Soc. 101 (2010), 427–453.

[12] G.A. Jones and J.S. Thornton, Operations on maps, and outer automorphisms, J. Combin. The-
ory Ser. B 35 (1983), 93–103 .

[13] Y.S. Kwon, New regular embeddings of n-cubes Qn, J. Graph Theory 46 (2004), 297–312.

[14] Y.S. Kwon and R. Nedela, Non-existence of nonorientable regular embeddings of n-dimen-
sional cubes, Discrete Math. 307 (3-5) (2007), 511–516.
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[21] R. Nedela and M. Škoviera, Exponents of orientable maps, Proc. London Math. Soc. 75 (1997),
1–31.



194 Ars Math. Contemp. 8 (2015) 177–194
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