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0  INTRODUCTION

Piezoelectric material is attractive for the development 
of a wide range of micro-electromechanical systems 
(MEMS). With the ability to transform strain into 
an electric current through the direct piezoelectric 
effect and, by way of the converse piezoelectric 
effect, convert an applied electric field into stress, 
piezoelectric material is used to provide both sensing 
and actuation capabilities. Some examples of MEMS 
devices which utilize piezoelectric material that have 
recently been developed include contour-mode micro-
resonators [1], shunt-type ohmic RF MEMS switches 
[2], MEMS generators [3], nano-robotics [4], and 
three-dimensional valveless micro-pumps [5].

In the design of piezoelectric MEMS devices, it is 
important to know the properties of the piezoelectric 
material in order to accurately predict actuation and 
sensing performance. One of the most important 
properties in many MEMS devices is the transverse 
piezoelectric coefficient d31. Due to the different 
methods employed in the fabrication of these devices, 
the effective properties of these materials may vary 
significantly. In order to address this issue, it is 
important to have methods to successfully characterize 
these materials. This need has led to the development 
of various methods for characterizing piezoelectric 
materials.

These studies have utilized micro-scale 
cantilevered structures as well as different styles 
of micro-scale diaphragms and membranes in the 
characterization of thin film piezoelectric materials. 
Working with these structures, the properties of the 
piezoelectric materials were determined by analyzing 

static deformations [6] to [8] and resonance frequency 
shifts [7] and [9]. Dynamic responses were also used 
to characterize piezoelectric materials, often at very 
low frequencies to avoid large amplitude oscillations 
associated with resonance and the potential nonlinear 
behavior which may result [9] to [12].

While these methods are effective for low 
amplitude oscillations, the use of linear modeling 
techniques, such as those employed by many finite 
element models, significantly limit the effective 
operation range of these methods. Due to the influence 
of scaling on these structures, their behavior has 
been found to become significantly nonlinear more 
readily than equivalent macro-scale structures [13] 
to [15]. When characterizing the effective properties 
of piezoelectric materials from the oscillations of 
a MEMS device, the linear range can be limiting 
and monitoring these “small” amplitude oscillations 
may require the use of high precision measurement 
equipment. When nonlinear properties are introduced, 
system dynamics can become complicated and 
specific nonlinear analysis techniques are required 
(e.g. [16]).

Fig. 1.  Diagram of the side view of a clamped-clamped beam 
resonator
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For excitation magnitudes above the levels 
which produce linear behavior, micro-scale structures 
can exhibit nonlinear frequency-response behavior. 
Nonlinear Düffing-like hard-ening behavior has been 
observed in frequency-response data collected from 
clamped-clamped style beam resonators for harmonic 
excitation with constant amplitude and a range of bias 
voltage levels. A diagram of the device config-uration 
is presented in Fig. 1. The drive and sense electrodes 
are each one-quarter of the device length to provide 
the best electro-mechanical coupling [17]. The 
frequency-response data collected from these devices 
can be analyzed by using a parametric identification 
scheme devel-oped by the author [18]. Parametric 
identification techniques rely on an accurate model 
of the system under investigation in order to calculate 
specific system parameters (e.g. [19]).

This parametric identification scheme is used 
to calculate the parameter values associated with a 
discretized system model from nonlinear frequency-
response data. For the clamped-clamped beam-like 
multi-segment and multi-layered micro-structure 
considered, a nonlinear partial integro-differential 
beam equation is used. This equation, presented as 
Eq. (1), includes the standard terms of an Euler-
Bernoulli beam model as well as a term for an applied 
axial force and an integral term to account for axial 
stretching which results from large displacements.

The segmenting of the top platinum electrode 
layer is modeled as three beams in series with the 
subscript n for n  =  1,  2, and 3. The three sections 
correspond to 0  <  x  <  x1, x1  <  x  <  x2, x2  <  x  <  L. 
This allows for the model to accurately represent 
the decrease in the stiffness of the structure caused 
by the absence of the middle segment of the top 
platinum electrode and its subsequent effect on the 
characteristic frequencies and mode shapes.
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Subscripts following commas indicate partial 
derivatives. The parameters w, ρA, c, EI, EA, L, P0, and 
M corresponds to the transverse displacement, mass 
per length, viscous damping, flexural rigidity, axial 
stiffness, length, axial force, and applied moment, 
respectively. The applied moment is produced by the 
axial force from the actuated piezoelectric layer and 
the offset between the piezoelectric layer and the 
neutral axis of composite structure. The values of ρA, 
EI, and EA are averaged across the three or four layers 
in each of the sections [20].

In order to complete the model, four boundary 
conditions and eight compatibility conditions are 
defined. The boundary conditions correspond to a 
clamped-clamped configuration. The compatibility 
conditions ensure that position, slope, moment, and 
shear force are balanced at positions x1 and x2.

By using linear mode shapes calculated with a 
linear form of Eq. (1), the boundary conditions, and 
the compatibility conditions, Eq. (1) is discretized 
with the Galerkin method to produce a single mode 
approximation, defined in Eq. (2). The use of the 
linear mode shapes is based on the assumption that the 
structure only exhibits weakly nonlinear behavior.

	 mq c q k q q F t 1 1 1 3 1
3

0+ + + = ( )α ωcos . 	 (2)

The variables q1, m , c , k, a3, F0, ω, and t 
correspond to the first mode response, modal mass, 
modal damping, stiffness, nonlinear stiffness, 
excitation magnitude, excitation frequency, and time. 
By using the first order approximate analytical solution 
to Eq. (2) calculated by using the method of multiple 
scales [21], the equations for an analytical frequency-
response curve are derived. The assumption of weakly 
nonlinear behavior is also required in order to apply 
the method of multiple scales to Eq. (2). By tuning 
the parameter values in order to match the analytical 
frequency-response curve with the experimental data, 
the values of the system parameters in Eq. (2) are 
identified.

An additional step in this process is used to 
identify the value of the axial force in order to match 
the identified effective linear natural frequency with 
the frequency from an analytical model. Through an 
iterative process, the parameter values are identified to 
the desired level of precision. A complete description 
of the parametric identification process is presented in 
reference [18].

Table 1.  Resonator dimensions

Dimension Value
Width 20 µm
Thickness, SiO2 1.06 µm
Thickness, Bottom Pt 135 nm
Thickness, PZT 530 nm
Thickness, Top Pt 200 nm

The remainder of the paper is organized in the 
following manner. The data analyzed in this study is 
discussed in section one. In section two, the method 
proposed for calculating the effective transverse 
piezoelectric coefficient is presented. Results obtained 
from the application of the proposed method are 
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presented in section three. Concluding remarks and 
comments on the direction of future work are gathered 
in the section four.

1  PIEZOELECTRIC MICRO-RESONATORS

The devices examined within this study consists of a 
silicon dioxide base layer, a bottom platinum electrode 
layer, a layer of sol-gel lead zirconate titanate (PZT), 
and a segmented top platinum electrode layer [17]. 
The dimensions of the devices studied are listed in 
Table 1. Data collected from devices with lengths of 
100, 200 and 400 µm is examined.

In order to characterize the piezoelectric material 
in these devices, multiple data sets of frequency-
response data are collected from piezoelectrically 
actuated clamped-clamped beam-style micro-scale 
devices. A sweep-sine signal with an added DC 
bias was applied to the drive electrodes and a laser 
Doppler vibrometer focused onto the center of the 
device was used to measure the device’s response at 
room temperature and pressure. Bias voltage levels 
ranged from 0 to 4 volts corresponding to electric 
field strength values of up to 7.55×106 volts per meter 
were applied. Representative data collected by using 
this method is presented in Fig. 2. The dashed lines 
indicate where the response of the resonator abruptly 
changed from high amplitude to low amplitude 
responses for increasing frequency sweeps due to the 
nonlinear stiffening property of the structure.

Fig. 2.  Representative nonlinear frequency-response data for a 
range of bias voltage levels

2  CHARACTERIZATION METHOD

By analyzing the experimental data, the effective linear 
transverse piezoelectric coefficient is calculated for 

the sol-gel PZT, specifically the PZ52T48 used within 
the devices [22]. Here the method to characterize the 
properties of PZT in MEMS devices is presented.

The method for determining the effective 
transverse piezoelectric coefficient is based upon the 
relationship between the additional DC bias voltage 
added to the harmonic input signal and resulting 
axial force produced in the structure. However, it is 
not possible to measure the axial force in the micro-
resonator directly. This information is determined 
indirectly from the effective linear natural frequency 
which is calculated from the identified values of 
the linear stiffness k and modal mass m  measured 
with the parametric identification scheme. In order 
to calculate a value for the axial force versus DC 
bias voltage, the frequency versus axial force and 
frequency versus DC bias voltage are first calculated.

When examining the effective linear natural 
frequency versus DC bias data, the influence of the 
hysteretic properties of the piezoelectric material is 
clearly observed. This property can be seen in the 
representative plot of frequency versus DC bias for a 
200 µm device in Fig. 3. The hysteretic characteristics 
of the frequency versus DC bias are addressed 
by fitting a linear approximation to the identified 
parameter values in a least-squares sense. In Fig. 3, 
the joined data points correspond to the identified 
effective linear natural frequency values for a range 
of DC bias voltage values. The linear approximation 
is represented in the figure by the dashed line. While 
the hysteretic properties of the response are not 
captured by the linear approximation, it does provide 
an effective representation of the general frequency-
voltage relationship, especially for decreasing DC 
bias voltage values.

Fig. 3.  Representative plot of linear natural frequency of a 200 
mm piezoelectric micro-resonator versus DC bias (joined data 

points) and linear approximation (dashed line)
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In order to calculate the relationship between the 
axial force and the effective linear natural frequency, 
an Euler-Bernoulli beam model with an axial force 
term is used, as defined by Eq. (3).

	 ρA w EI w F wn n tt n n xxxx n xx, , , .+ − =Λ 0 	 (3)

The tensile axial force induced by the 
piezoelectric layer is represented by FΛ. This force 
is defined by using the block force model in terms 
of the free-strain, material properties, and geometry 
of the layer of piezoelectric material by the formula 
presented in Eq. (4).

	 F E b tPZT PZT PZTΛ Λ= − 13 . 	 (4)

The simplification used by the block force model 
results in an over estimation of the predicted force. 
The negative sign indicates that a positive bias voltage 
will result in a compressive axial force under the 
drive electrode. The other two segments of the micro-
structure are subjected to equal and opposite axial 
loading which results in an increase in the device’s 
fundamental frequency. The free-strain Λ13 is defined 
in terms of the transverse piezoelectric coefficient d31, 
the applied DC voltage VDC, and the thickness of the 
piezoelectric material tPZT.

Fig. 4.  Fundamental frequency for a range of axial force values 
with linear trendlines (thick) over ranges of relevant frequency 

values

	 Λ13 31= ( )d V tDC PZT . 	 (5)

The nonlinear relationship between the 
fundamental frequency of the micro-structure 
and the applied axial load calculated by using Eq. 
(3) and clamped-clamped boundary conditions is 
illustrated in Fig. 4 for three device lengths: 100 µm 
(solid), 200 µm (dashed), and 400 µm (dot-dashed). 

Fundamental frequency values drop to zero when the 
device undergoes buckling. Post-buckling conditions 
are not considered in this study. The high accuracy 
linear approximation for the relationship between 
the fundamental frequency and the axial force  
(kHz/FΛ) and the linear approximation of the 
fundamental frequency with the bias voltage  
(kHz/VDC) are used to calculate a relationship between 
the axial force and the bias voltage (FΛ/VDC). This 
information is used with Eq. (6), which is derived 
from Eqs. (4) and (5), to calculate a value for the 
transverse piezoelectric coefficient.

	 d F
V E bDC PZT PZT

31
1

= − Λ . 	 (6)

Table 2.  Fundamental frequency ranges

Length [µm] Min. [kHz] Max. [kHz]

100 847 877
200 291 320
400 121 146

Table 3.  Linear approximation details

Length [µm] Slope [kHz/mN] Intercept [kHz] R2

100 96.98 774.01 0.99999
200 62.45 218.28 0.99989
400 32.98 78.69 0.99963

3  RESULTS

By using the frequency-voltage slope values calculated 
from seven data sets, the frequency-force slope values 
listed in Table 3, and the material properties and 
geometry, transverse piezoelectric coefficient values 
are calculated. These values are listed in Table 4 along 
with the corresponding force-voltage information. By 
assuming each device is of nominal length, transverse 
piezoelectric coefficient values range from –119.13 to 
–141.52 pm/V. This corresponds to a mean value of 
–129.67 pm/V with a standard deviation of less than 
6% of the mean. Based on the use of the block force 
model, these values represent an upper bounds for the 
transverse piezoelectric coefficient values. While the 
values presented in Table 4 do not suggest any trends 
associated with device length, the fabrication methods 
used generally results in undercutting which will 
cause the device length to deviate from the nominal 
value.

Although the device length does not directly 
affect the d31 value in Eq. (6), it does affect the value 
of the kHz/FΛ slope. In order to study this influence,  
kHz/FΛ slope values are calculated for length 
variations of ±7.5% for each of the three nominal 
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device lengths. The slope values of the linear 
approximations calculated over this range have R2 
values that deviate from unity by less than one-tenth 
of a percent. This data is plotted in Fig. 5 along with a 
second order polynomial fit to the data. The R2 values 
for the three polynomial fits are within three-tenths 
of a percent of unity and provide a highly accurate 
representation of the relationship between the kHz/FΛ 
slope and the effective device length.

Table 4.  Calculated d31 values

Nom. L [µm] FΛ/VDC [µN/V] d31 [pm/V]
100 70.76 –141.52
200 59.56 –119.12
200 63.21 –126.42
200 68.06 –136.12
400 62.08 –124.16
400 63.91 –127.82
400 66.26 –132.52

Fig. 5.  Calculated slope values (points) for a range of length 
values around the nominal values and a second order polynomial 

fit (curve) to the data

By using these relationships, it is possible to 
explore how variations in the length will affect the 
calculated values of the transverse piezoelectric 
coefficient. The d31 values for all seven of the data 
sets are equal to –127.84 pm/V when the average 
length variation of less than 2%. This reveals that 
the value of the transverse piezoelectric is sensitive 
to variations in length for the clamped-clamped style 

devices used. However, the values calculated are 
significantly greater than those of other efforts [6] 
to [9] and [11]. In these studies, a Young’s modulus 
value of about 100 GPa was used for the PZT, which is 
significantly greater than the value used in this study. 
Due to the nature of Eq. (6), an increase in the value 
of the Young’s modulus would result in a decrease in 
the value of the calculated transverse piezoelectric 
coefficient.

4  CONCLUDING REMARKS

In this study, the nonlinear oscillations of a clamped-
clamped beam piezoelectric micro-scale resonator 
have been analyzed to calculate effective transverse 
piezoelectric coefficient values. By using the shift 
in the effective natural frequency of the nonlinear 
oscillator along with the analytical relationship 
between the axial force and this frequency, the 
transverse piezoelectric coefficient values have 
been calculated. The influence of variations in the 
length has been studied and the value of d31 has been 
determined to be sensitive to length. When allowing 
for an average length variation of less than 2%, a 
value of d31 = –127.84 pm/V for the lead zirconate 
titanate material in the devices from which the seven 
data sets were collected. The large value is attributed 
to the smaller value of the Young’s modulus which 
had been identified for the devices and which has been 
used in this study.
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