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Gdánsk University of Technology
ul. Narutowicza 11/12, Gdańsk 80-233, Poland
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Geometric Analogues of Holographic Reduced Representations (GAc, which is the continuous version
of the previously developed discrete GA model) employ role-filler binding based on geometric products.
Atomic objects are real-valued vectors inn-dimensional Euclidean space and complex statements belong
to a hierarchy of multivectors. The property of GAc and HRR studied here is the ability to store pieces of
information in a given order by means of trajectory association. We describe results of three experiments:
finding correct item or correct place of an item in a sequence and finding the alignment of items in a
sequence without the precise knowledge of trajectory vectors.

Povzetek:Članek preǔcuje ohranitev informacij pri obliki holografske hrambe podatkov.

1 Introduction

The work presented here is a result of experimenting with
trajectory association technique using the newly-developed
distributed representation model GAc [20].

An ideal distributed representation system needs to meet
several criteria in order to successfully perform cognitive
tasks. These include computational efficiency, noise toler-
ance, scaling and ability to represent complex structures.
The most widely used definition of a distributed represen-
tation of data is due to Hintonet al. [13]: in a distributed
representation of dataeach concept is represented over a
number of units and each unit participates in the representa-
tion of some number of concepts. The size of a distributed
representation is usually fixed and the units have either bi-
nary or continuous-space values. In most distributed repre-
sentations only the overall pattern of activated units has a
meaning.

Such patterns of activity are hard to understand and in-
terpret, therefore they are often compared to greyscale im-
ages. Distributed representations usually take the form of
one-dimensional vectors, while greyscale images are two-
dimensional matrices, but the way the pixels are aligned
(one-dimensional string or two-dimensional array) is of no
relevance. Since the information is distributed over the ele-
ments of a vector, a great percentage of units (“pixels") can
be changed without making the vector (overall “picture")

This paper is based on A. Patyk-ŁońskaPreserivng pieces of infor-
mation in a given order in HRR and GAc published in the proceedings
of the 1st International Workshop on Advances in Semantic Information
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unrecognizable.
Let us consider an example of storing the following in-

formation: “Fido bit Pat". The action in this statement
is bite and the features (i.e.roles) of this action are an
agent and an object, denotedbiteagt andbiteobj, while their
fillers areFido andPat respectively. If we consider stor-
ing the way that the action is performed, we can add a third
feature (role), e.g.biteway. If we storeFido, Pat, biteagt
andbiteobj as vectors, we are able to encode “Fido bit Pat"
as

biteagt ∗ Fido+ biteobj ∗ Pat.

The operation ofbinding, denoted by “∗", takes two
vectors and produces another vector, often called achunk
of a sentence. It would be ideal for the resulting vector not
to be similar to the original vectors but to have the same di-
mensions as the original vectors.Superposition, denoted
by “+", is an operation that takes any number of vectors
and creates another one that is similar to the original vec-
tors. Usually, the superimposed vectors are already the re-
sult of the binding operation.

For more details and examples on distributed represen-
tations of data the reader should refer to [20].

2 Preserving Pieces of Information
in a Given Order

While some solutions to the problem of preserving pieces
of information in a given order have proved ingenious, oth-
ers are obviously flawed. Let us consider the representation
of the wordeye — it has three letters, one of which occurs
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twice. The worst possible choice of binding and superposi-
tion would be to store quantities of letters, e.g.

eye = twice ∗ e+ once ∗ y,

since we would not be able to distinguisheye from eey
or yee. Another ambiguous representation would be to re-
member the neighborhood of each letter

eye = beforey ∗ e+ betweene ∗ y + aftery ∗ e.

Unfortunately, such a method of encoding causes words
eye andeyeye to have the same representation

eyeye = beforey ∗ e+ 2 · betweene ∗ y +

(beforey + aftery) ∗ e+ aftery ∗ e

= 2
(
beforey ∗ e + betweene ∗ y

+aftery ∗ e
)

= 2 eye.

Real-valued vectors are normalized in most distributed rep-
resentation models, therefore the factor of2 would be most
likely lost in translation. Suchcontextual roles (Smolen-
sky [25]) cause problems when dealing with certain types
of palindromes. Remembering positions of letters is also
not a good solution

eye = letterfirst ∗ e+ lettersecond ∗ y + letterthird ∗ e

as we need to redundantly repeat the first letter as the third
letter, otherwise we could not distinguisheye from ey or
ye. Secondly, this method of encoding will not detect sim-
ilarity betweeneye andyeye.

Pike argues in [21] that matrix-based memory is multi-
directional, i.e. it allows both forward and backward as-
sociation — having two vectorsa and b and their bind-
ing M = ab we can extract botha andb by performing
a reverse operation on the appropriate side of the matrix.
Convolution-correlation systems, on the other hand, regard
bindingsa⊛ b andb⊛ a as identical. We will use a similar
technique, asking right-hand-side and left-hand-side ques-
tions during experiments described in the following sec-
tions.

A quantum-like attempt to tackle the problem of infor-
mation ordering was made in [1] — a version of semantic
analysis, reformulated in terms of a Hilbert-space problem,
is compared with structures known from quantum mechan-
ics. In particular, an LSA matrix representation ([1, 10]) is
rewritten by the means of quantum notation. Geometric al-
gebra has also been used extensively in quantum mechanics
([2, 4, 3]) and so there seems to be a natural connection be-
tween LSA and GAc, which is the ground for fututre work
on the problem of preserving pieces of information in a
given order.

As far as convolutions are concerned, the most interest-
ing approach to remembering information in a given order
has been described in [12]. Authors present a model that

builds a holographic lexicon representing both word mean-
ing and word order from unsupervised experience with nat-
ural language texts comprising altogether 90000 words.
This model uses simple convolution and superposition to
constructn-grams recording the frequency of occurrence
of every possible word sequence that is encountered, a win-
dow of about seven words around the target word is usually
taken into consideration. To predict a word in a completely
new sentence, the model looks up the frequency with which
the potential target is surrounded by words present in the
new sentence. To be useful,n-gram models need to be
trained on massive amounts of text and therefore require
extensive storage space. We will use a completely differ-
ent approach to remembering information order — trajec-
tory association described by Plate in [23]. Originally, this
technique also used convolution and correlation, but this
time items stored in a sequence are actually superimposed,
rather than being bound together.

3 Trajectory Associacion

In the HRR model vectors are normalized and therefore can
be regarded as radii of a sphere of radius 1. If we attach a
sequence of items, sayA,B,C,D,E to arrowheads of five
of those vectors, we obtain a certaintrajectory associated
with sequenceABCDE. This is a geometric analogue to
themethod of loci which instructs to remember a list of
items by associating each term with a distinctive location
along a familiar path. Letk be a randomly chosen HRR
vector and let

ki = k ⊛ ki−1 = ki−1
⊛ k, i > 1

be itsith power, with k1 = k. The sequenceSABCDE is
then stored as

SABCDE = A⊛k+B⊛k2+C⊛k3+D⊛k4+E⊛k5.

Of course, each power ofk needs to be normalized before
being bound with a sequence item. Otherwise, every sub-
sequent power ofk would be larger or smaller than its pre-
decessor. As a result, every subsequent item stored in a
sequence would have a bigger or a smaller share in vector
SABCDE . Obviously, this method cannot be applied to the
discrete GA model or to BSC, since it is impossible to ob-
tain more than two distinct powers of a vector with the use
of XOR as a means of binding.

This technique has a few obvious advantages present in
HRR but not in GAc had we wished to use ordinary vec-
tors as first powers — different powers of a vectork would
then be multivectors of different ranks. Whileki andki±1

are very similar in HRR, in GAc they would not even share
the same blades. Further, the similarity ofki andki+m in
HRR is the same as the similarity ofkj andkj+m, whereas
in GAc that similarity would depend on the parity ofi and
j. In the light of these shortcomings, we need to use an-
other structure acting as a first power in order to make tra-
jectories work in GAc. Let t be a random normalized full
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multivector overRn and let us define powers oft in the
following way

t1 = t,

ti = (ti−1)t for i > 1.

We will store vectorsa1 . . . al in a sequenceSa1...al
using

powers of the multivectort

Sa1...al
= a1t+ a2t

2 + · · ·+ alt
l.

To answer a question “What is the second item in a se-
quence?" in GAc we need to use the projected product

〈Sa1...al
(t2)+〉1 ≈ a2,

and to find out the place of itemai we need to compute

(ai)
+Sa1...al

≈ ti.

Some may argue that such encoding puts a demand on
items in the clean-up memory to hold information if they
are roles or fillers, which is dangerously close to employ-
ing fixed data slots present in localist architectures. Ac-
tually, elements of a sequence can be recognized by their
size, relatively shorter than the size of multivectort and its
powers.

We present three experiments using trajectory associa-
tion and we comment on test results for HRR and GAc

models. Firstly, we studied if an item can be retrieved given
a sequence and an appropriate power oft, and vice versa
— if a sequence and an item can lead to the power oft
associated with that item. Finally, we tested whether both
HRR and GAc models can find the alignment of items in
a sequence without the precise knowledge of vectort or
its powers. Since the normalization using the square root
of the number of chunks proved very noisy in statements
containing powers of the trajectory vector, we decided to
improve the HRR model. The HRR vectors in our tests
were normalized by dividing them with their magnitude.

4 Correct Place Detection

In this experiment we investigated if powers of a
(multi)vectort carry enough information about the original
t. During 1000 tests for (multi)vector sizes ranging from24

to 28 we asked the following question for every sequenceS
(a permutation of letters{A,B,C,D,E}): “Where isA?"

S ♯ A =

{
S ⊛A∗ ≈ tx in HRR ,
A+S ≈ tx in GAc.

This amounted to 120000 questions altogether. For the pur-
pose of the experiment described in Section 6 we used the
clean-up memory consisting of powers oft only.

Ideally, every position of the letterA should come up as
the correct answer the same number of times. However,
since high powers oft acquire noise, lower powers should

be recognized more often as the correct answer. Indeed,
Figure 1 shows that in HRR the frequencies of the powers
of t align with t being recognized most often andt5 being
recognized least often. In GAc the percentage diagrams
for various powers oft lay close to each other and often
intertwine, still the relationship between the powers oft is
similar to the one observed in HRR.

Since lower powers oft are recognized correctly more
often, higher powers oft come up more often as the in-
correct answer toS ♯ A. Vectort3 is the correct answer to
S••A•• ♯ A. However, ift3 is not recognized, the next most
similar answer will bet5 because it contains three “copies"
of t3, indicated here by brackets

{

t ∗
(

t ∗ [t
}

∗ t
)

∗ t].

The second most similar item will bet4 because it contains
two “copies" oft, and so on. The item least similar tot3

will be t. This relationship should be best observable in
HRR, since the powers can be multiplied from either side.
In GAc the powers oft can be increased from one side
only and the relation between them should be less visible.
Figure 2 shows that high powers oft are recognized more
often in cases when the proper answer is not recognized —
we will use this relationship in an experiment described in
Section 6.

5 Correct Item Detection

Here we tested if trajectory association allows us to ask
“What is thexth item in a sequence?"

Lx ≈ S ♯ t
x =

{
S ⊛ (tx)∗ in HRR ,
S(tx)+ in GAc,

whereLx ∈ {A,B,C,D,E} denotes thexth letter in a
sequence. During 1000 tests for (multi)vector sizes ranging
from 25 to 29 we asked that question for every permutation
sequence of the set{A,B,C,D,E}, there were 120000
questions altogether for every (multi)vectortx.

Again, we tested both HRR and GAc models using a
clean-up memory consisting only of expected answers, i.e.
letters{A,B,C,D,E}. The results for both models (Fig-
ure 3) were similar with GAc performing slightly better
than HRR. In both models the first few letters of a sequence
were more often recognized correctly than the last letters.
Among the erroneously recognized letters, the last few let-
ters of a sequence were most often offered as the most prob-
able answer, which will come in handy in the next Section.
The diagrams for GAc lie closer together, once again indi-
cating that trajectory association spreads information more
evenly in GAc than in HRR.

6 Item Alignment

The three previous tests were not very demanding for tra-
jectory associations. Finally, we tested whether the HRR
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Figure 1: Correct recognition ofS ♯ A ≈ tx in HRR and GAc using clean-up memory of{t, t2, t3, t4, t5}, 1000 trials.
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Figure 2: Incorrect recognition ofS ♯ A ≈ tx in HRR and GAc using clean-up memory of{t, t2, t3, t4, t5}, 1000 trials.

and GAc models were capable of performing the following
task:

Given onlya set of lettersA,B,C,D,E and an en-
coded sequenceS••••• comprised of those five letters
find out the position of each letter in that sequence.

We assumed that no direct access tot or its powers is given
— they do belong to the clean-up memory, but cannot be
retrieved “by name". One may think of this problem as a

“black box" that inputs randomly chosen letter vectors and
in return outputs a (multi)vector representing always the
same sequence, irrespectively of the dimension of data. In-
side, the black box generates (multi)vectorst, t2, t3, t4, t5.
Their values are known to the observer but their names are
not. Since we can distinguish letters from non-letters, the
naive approach would be to try out all 120 alignments of
lettersA,B,C,D andE using all possible combinations
of non-letters as the powers oft. Unfortunately, powers of
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Figure 3: Recognition ofSL1L2L3L4L5 ♯ t
x ≈ Lx in HRR and GAc using clean-up memory containing letters only, 1000

trials.

t are different each time the black box produces a sequence.
We will use an algorithm based on the assumption thattx,
if not recognized correctly, is more similar to highest pow-
ers oft as shown in Section 4. The second assumption is
that letters lying closer to the end of the sequence are of-
ten offered as the incorrect answer to questions concerning
letters (Section 5). The clean-up memoryC for this experi-
ment consists of all five letters and the five powers oft. We
will also use an auxiliary clean-up memoryL containing

letters only.

The algorithm for finding out the position of each letter
begins with asking a question described by equation (1) —
“Where in the sequenceS••••• is the letterLx?":

S••••• ♯ Lx =

{
S••••• ⊛ (Lx)

∗ in HRR
(Lx)

+S••••• in GAc

}

= (tx)′ ≈ tx (1)
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Figure 4: Finding letter alignment in a sequenceSABCDE in HRR, 10000 trials.

for each letterLx ∈ L. Next, we need to find the item in
the clean-up memoryC \L that is most similar to(tx)′. Let
us denote this item byz. With high probability,z is the
power oft associated with the position of the letterLx in
the sequenceS•••••, although, if recognized incorrectly,z
will most likely point to some otherty>x. Now let us ask a
second question (eq. (2)) — “Which letter is situated at the

z’th position in the sequenceS•••••?":

S••••• ♯ z =

{
S••••• ⊛ z∗ in HRR
〈S••••• z

+〉1 in GAc

}

= L′ ≈ Lx. (2)

We use the projected product in GAc because we are look-
ing for a letter vector placed on the position indicated by
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z. In HRR the resultingL′ should be compared with let-
ters only. In most casesL′ will point to the correct letter.
However, in a small fraction of test results,L′ will point
to letters surroundingLx, becausez has been mistakenly
decoded asty for somey 6= x. Also, letters precedingLx

should come up less often than letters proceedingLx.

Figure 4 presents test results for HRR. The data in Figure
4 should be interpreted as follows: the first row of each
table next to a graph contains the vector lengths of the data
used in 5 consecutive experiments (10000 trials each). The
second row contains the number of faulty answers within
those 10000 trials. The next 4 rows present the percentage
of occurence of a ”faulty" letter within all faulty answers
presented in the second row.

Faulty alignments (i.e. those, for which the percentages
corressponding to letters do no align increasingly within a
single column) have been marked with a “∗" in the table
headings. We usedSABCDE as the mysterious encoded
sequenceS•••••. In each case we crossed out the most
frequently occurring letter and we concentrated on the fre-
quency of the remaining letters. In HRR, for sufficiently
large vector sizes, the frequenciesfL of all lettersL ∈ L
aligned correctly

fB < fC < fD < fE asking withA,

fA < fC < fD < fE asking withB,

fA < fB < fD < fE asking withC,

fA < fB < fC < fE asking withD,

fA < fB < fC < fD asking withE.

It was straightforward that these inequalities lead tofA <
fB < fC < fD < fE and correctly identify the encoded
sequence asSABCDE . Test results are less accurate when
we asked about letters lying closer to the end of a sequence,
therefore the size of the vector should be adequately long.
Moreover, the longer the vector, the larger the difference
between the frequencies.

GAc was expected to perform worse in this experiment,
because we can construct powers of a mulivectorti−1 by
multiplying it with t from one side only. Another reason
for poor performance was that the frequencies of the pow-
ers oft recognized incorrectly tend to cluster in GAc (Fig-
ure 2). Indeed, Table 1 shows that letter frequencies do not
align correctly at all. We therefore needed to slightly mod-
ify the algorithm for finding letter alignment in GAc. Since
powers oft are more similar to each other in GAc than
in HRR (Section 5), we concentrated on two largest fre-
quencies in each series of asking questions — the largest
frequency represents the letterL that was used to ask the
question and the second largest frequency indicates letter
L̂ that most likely proceeds letterL.

Table 1 presents the frequencies of letters recognized
as the most probable answer to Equation (2), the second
largest frequency in each row is printed in bold. Partial
letter alignments have been placed next to each table and

contradictory alignments have been preceded with a “∗".
When being asked with the last letter of the sequence, HRR
provided less accurate answers and so did GAc by yielding
more contradictions than in case of previous letters. It is
impossible to avoid contradictory alignments in GAc be-
cause we do not know which letter is the last one and the
algorithm for recovering letter alignment in GAc instructs
us to write down the partial alignment with that letter be-
ing proceeded by another letter. The remaining alignments
point correctly to the sequenceSABCDE

A ≺ B
C ≺ D ≺ E

A ≺ B ≺ C ≺ D
A ≺ C

B ≺ D ≺ E
A ≺ E







⇒ A ≺ B ≺ C ≺ D ≺ E.

7 Conclusion

We have shown that multivector powers in GAc have prop-
erties similar to convolutive powers of HRR vectors

– (multi)vectorsti−r and ti are similar in much the
same way as ti and ti+r,

– items placed near the beginning of a sequence are re-
membered more prominently and thus, are recognized
correctly more often,

– items placed near the end of a sequence are remem-
bered less precisely and often come up as the most
probable answer when the correct item is not recog-
nized.

We have used the last two properties to find the align-
ment of sequence items without the explicit knowledge of
(multi)vector powers. While HRR retrieved the original
alignment without greater problems, GAc left us with an
easily soluble logical puzzle providing fragmentary align-
ments.

These properties can be used to build holographic lexi-
cons, dictionaries and other structures that require storing
order information and word meaning in the same pattern.
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