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With the rapid development of the tourism industry, the visual value of ancient buildings gradually 

increases. The prediction and protection of ancient building foundation settlement based on neural 

networks have been developed. When traditional methods are used to monitor and predict the 

settlement and deformation of ancient building foundations, complex factors such as water 

environment and geological conditions can bring noise to the experimental results. Deep belief was 

introduced into grey artificial neural networks to effectively denoise the corresponding model and 

enhance its ability to process data. Meanwhile, stress analysis was conducted on the ancient building 

foundation in the experiment to generate a composite model. Experiments were conducted on the 

Abfound dataset. Three models were compared to verify the predictive ability for ancient buildings, 

including random forest, to verify the superiority of the model. The dimensionality reduction 

capabilities of four models for building data were 4.6, 3.6, 3.2, and 3.9, respectively, indicating that 

the optimized model could effectively handle a large amount of data. The composite model had the 

highest accuracy in predicting the settlement of ancient building foundations, with an experimental 

data of 99.2%. These experiments confirmed that the proposed composite algorithm performed best in 

terms of noise reduction and prediction ability. This algorithm is suitable for predicting the settlement 

deformation of ancient building foundations. 

Povzetek: Raziskava uvaja inovativni model za napovedovanje posedanja in deformacij temeljev starih 

zgradb, ki temelji na nevronskem omrežju z uporabo globokega prepričanja (deep beliefs) za 

zmanjševanje šuma. Eksperimenti na Abfound podatkovnem naboru so pokazali, da ima sestavljeni 

model najvišjo točnost pri napovedovanju posedanja temeljev.

1 Introduction 

As the improvement of the national economy, residents' 

entertainment gradually focuses on urban buildings, and 

their protection requirements gradually increase [1-2]. 

Ancient buildings are an important component of cultural 

heritage, carrying memories of history and culture and 

possessing significant scientific value. The settlement and 

deformation of the foundation are the main problems they 

face [3]. The foundation often experiences settlement and 

deformation, due to the long history of urban construction 

and environmental changes, posing a serious threat to the 

safety and integrity of urban construction [4]. Many 

experts have proposed using neural networks to 

accurately predict them. However, these methods are only 

applicable to arbitrary building in limited terrain and 

humidity environments. The data accuracy of traditional 

neural networks is insufficient due to the complex natural 

factors. Recently, Grey Artistic Neural Network (GANN) 

has received attention due to its extensive search domain. 

However, the ordinary GANN has weak resolution ability 

and is prone to falling into local optima during operation. 

To address these issues, this study concatenated GANN 

to generate Series Grey Artistic Neural Network 

(SGANN) and introduced Deep Belief (DB) to generate a 

fusion model (DB-SGANN). A composite model 

(SPDB-SGANN) was generated by considering the 

Stability of Pile (SP) of arbitrary building. 

SPDB-SGANN improved the traditional grey prediction 

model and improved this model’s stability by introducing 

nonlinear fitting ability. In this study, the improved 

GANN was applied to the monitoring and prediction of 

foundation settlement of ancient buildings to avoid 

problems such as building inclination and cracks. The 

main content of this study includes four parts. Firstly, the 

current applications of GANN are summarized. Secondly, 

the usage of SP is introduced and introduced into 

DB-SGANN. The third part conducts simulation 

experiments. Finally, the model performance is analyzed 

and compared, and the shortcomings in this research are 

pointed out. The research on the prediction of settlement 

and deformation of ancient building foundation based on 

neural networks is very popular. However, there are few 
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studies linking the depth belief method with it. In this 

study, the depth belief method is creatively introduced 

into the conventional GANN. A composite system is 

established based on the stress analysis of ancient 

building foundation. The practical significance of this 

study lies in monitoring and predicting the Settlement and 

Deformation of Accident Building Foundations (SDABF) 

and implementing protective measures for buildings. The 

article aims to inherit history and culture, thereby 

enriching the entertainment life of residents. 

2 Related works 

International research is widely distributed in the SDABF 

prediction. Huan et al. conducted research on various 

factors that affected the safety status of accident building 

to improve the accuracy of accident building safety 

assessment. They proposed a safety assessment model 

based on the structural entropy weighted matter element 

extension model. Meanwhile, the weights of each 

indicator were calculated by taking into account the 

influence of subjective and objective weights. The 

museum was used as a research case. The evaluation 

results were consistent with the actual damage 

investigation results and the actual situation of the 

building [5]. An and Sun comprehensively investigated 

the type of foundations of the adjacent buildings and 

explored the foundation pit support scheme to ensure the 

normal use of buildings. The finite difference method was 

used to analyze building foundation settlement. 

Reinforced concrete retaining piles were used to excavate 

and reinforce the foundation pit layer by layer. Their 

research provided a method for observing the foundation 

settlement of buildings, providing a good reference for 

safety assessment and evaluation of similar risk projects 

[6]. Ye et al. considered that shield tunneling construction 

would disturb the surrounding soil and affect the safety of 

nearby buildings. They analyzed the deformation 

monitoring of arbitrary building structures. A structural 

deformation monitoring method based on computer 

vision was developed to perform on-site monitoring of 

deformation under the influence of shield tunneling. 

Background correction was used to reduce the error 

caused by camera position changes. These experiments 

confirmed that their proposed computer vision method 

provided an effective method for structural safety 

assessment [7]. 

There is an increase in peripheral data during the 

construction of accidents, relying solely on neural 

networks for data extraction is insufficient. GANN 

gradually enters the vision of many scholars. Bozdağ 

believed that the steep slope of the slope was susceptible 

to rockfall events. Therefore, experimental investigations 

and numerical analysis were conducted. The danger of 

the slope was evaluated. Two-dimensional rockfall 

analysis was used to determine the jumping distance 

between detached and suspended blocks. These 

experiments confirmed that its research results provided 

preliminary data for describing risk management 

strategies and made scientific contributions to studying 

the hazards and risks caused by rockfall phenomena [8]. 

Borisov et al. described the study of urban construction 

from the 5th to 8th centuries. They used methods from 

soil science and archaeological botany. Soil profiles are 

made at different distances from the settlement. These 

experiments confirmed the potential risk of foundation 

settlement and deformation in ancient medieval sites. 

Burnt grains were used to store in the lower layer of the 

soil to solve this problem. These experiments confirmed 

the effectiveness of their method [9]. Di et al. analyzed 

the settlement of subway lines on soft soil foundations. 

The combination of different characteristic positions in 

subway lines was studied. The difference between a track 

slab and a bridge pier was analyzed. These experiments 

confirmed that about 85% of the station settlement was 

smaller than the settlement of adjacent shield tunnels. 

About 73% of the settlement at the tunnel connection 

channel was greater than the settlement on both tunnel 

sides. The stiffness conversion between different 

structures should be considered when designing subway 

structures on soft soil foundations [10]. A summary of the 

relevant works is shown in Table 1. 

 

 
Table 1: Summary of related works 

Author Time Main point 

Huan et al. [5] 2020 

A safety evaluation model of ancient wooden buildings based on the 

extension model of structural entropy weight is proposed. The influence of 

subjective and objective weights is considered comprehensively.  

An and Sun [6] 2020 

The foundation settlement and residual deformation of nearby buildings 

during subway station construction are analyzed by using finite difference 

method and deformation observation method. 

Ye et al. [7] 2021 
The three-dimensional deformation of ancient pagoda under the influence of 

shield tunnel excavation is monitored by computer vision method. 

Bozdağ [8] 2022 
The jump distance between the separated block and the suspended block is 

determined by two-dimensional rock fall analysis. 

Borisov et al. [9] 2022 Soil profiles are made at different distances from the settlement.  

Di et al. [10] 2020 
The measured differential settlement of subway lines is analyzed. The 

settlement of about 85% stations is less than that of adjacent shield tunnels. 
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The settlement of about 73% tunnel connecting channels is greater than that 

on both sides of the tunnels. 

 

To sum up, most of the previous research work 

focused on a single project example. The established 

prediction models have insufficient generalization ability. 

However, these models do not consider the timeliness of 

the bearing capacity of ancient building foundations 

under long-term load. That is, these models do not 

consider the influence of time factors. Neural networks 

have a strong nonlinear mapping ability. Big data and 

neural networks are used to analyze the regular trend of 

the bearing capacity and settlement of pile foundation 

under long-term load. This paper aims at predicting the 

bearing capacity and settlement of pile foundation under 

long-term load. The mathematical model for effectively 

predicting the bearing capacity and settlement timeliness 

of ancient building foundation will play a boosting role in 

the development of the safety evaluation of ancient 

buildings. 

 

3 The application of GANN in 

SDABF monitoring and prediction 
GANN combines grey system theory with Artificial 

Neural Network (ANN) and performs superior in 

prediction performance [11]. GANN improves the 

traditional grey prediction model and improves the 

stability of the prediction model by introducing nonlinear 

fitting ability. This study applies the improved GANN to 

SDABF monitoring and prediction to avoid problems 

such as building tilting and cracks. 

 

3.1 Construction of ANN based on DB 
The grey prediction model is a prediction method based 

on a small amount of data, which is suitable for situations 

such as small data volume and lack of complete 

information [12]. The grey prediction model describes 

and predicts the development trend of the system by 

establishing grey differential formulas. The grey 

prediction model has certain limitations when dealing 

with nonlinear and complex systems. GANN introduces 

ANN into the grey prediction model to fully utilize its 

nonlinear fitting ability to improve the prediction 

accuracy of the model. When introduced, the variables in 

these two models have the relationship in Eq. (1). 
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In Eq. (1), the random data after ANN enters GANN 

is denoted as 1x . The minimum and maximum values are 

represented by 0 2,x x , respectively. x  represents the 

raw data in ANN, which uses the inputting data as the 

inputting layer of neural network. The predicted results 

are obtained by calculating and adjusting the hidden layer 

and outputting layer [13-14]. During the training, GANN 

continuously adjusts the weights and thresholds of the 

network through backpropagation to minimize prediction 

errors. In this process, the weight and threshold 

calculation of the network follow Eq. (2). 
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In Eq. (2), the data step size is denoted as u . ,m A  

represent the environmental errors of data features. The 

value range of data is represented by n . The number of 

network layers is denoted as R .   represents the 

current dimension of the data. iI  and iq  are the 

resistance to data at different times. The improved GANN 

has been widely applied in various fields of prediction, 

especially in the disaster prediction. It can effectively 

handle nonlinear and time-varying data, which has high 

predictive stability. However, GANN requires 

appropriate parameter selection in Eq. (3). 

 

1

min 2

* * 0.9*

*

m Rc Ri Rg

Ri Rt





− 



    (3) 

 

In Eq. (3), Rc  represents the compressive strength 

of the data in GANN. The structural rigidity of network is 

represented by Ri  and is influenced by parameter 1 . 

The experimental errors caused by gravity and ambient 

temperature are recorded as Rg  and Rt . 2  is a 

constant that takes a value within ( 1,2  and is related to 

the minimum Ri  [15]. Due to the incomplete and 

insufficient characteristics of the data processed in this 

study, SGANN is established in Fig. 1. 

 

Original sequence

Grey system

Residual sequence

 

Figure 1: Flow chart of SGANN 

 

From Fig. 1, SGANN combines the grey prediction 

model in grey system theory with ANN. The grey 

prediction model serves as the inputting layer. ANN 

serves as the outputting layer. The study concatenates the 

two to improve the accuracy and stability of prediction. A 

grey prediction model is used to preprocess the inputting 

data to obtain a prediction sequence. Then, the predicted 

sequence is used as input for further prediction and 

adjustment through ANN. This model can fully handle 



194   Informatica 48 (2024) 191–204                                                               L. Gao et al. 

incomplete and uncertain data. Eq. (4) is the variable used 

when processing data. 
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In Eq. (4), the expansion modulus in SGANN is 

denoted as Ex , and its expansion fraction is represented 

by i . Mo  represents the original modulus in the 

model, and its compression factor is denoted as  . The 

total number of layers of SGANN is recorded as s . is  

represents the i -th layer within it. In data processing, 

this study takes into account data collection, transmission, 

and storage processes to avoid data corruption and ensure 

data integrity and accuracy. DB and SGANN are 

integrated in Fig. 2. 
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Figure 2: Fusion of depth belief and SGANN 

 

Fig. 2 introduces DB-SGANN. According to Fig. 2, 

the basic idea of this model is to gradually learn the 

feature representation of the data from the bottom to the 

top through layer-by-layer training. Each layer learns 

some features of the data and passes them on as input to 

the previous layer. DB-SGANN can extract higher-level 

features by this layer and training. This model can be 

applied to data dimensionality reduction. After training, it 

will learn more abstract feature representations from the 

original data. In this process, Eq. (5) represents the data 

conversion before and after dimensionality reduction. 
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In Eq. (5), Di  and Rd  represent the data before 

and after dimensionality reduction, respectively. The data 

density is recorded as  . E  represents the elasticity 

between data. c  is an internal parameter involved in 

data collection, which is related to machine performance. 

This method can reduce the redundancy of data while 

preserving the main information of the data. Data are 

analyzed through dimensionality reduction to improve 

modeling efficiency. In dimensionality reduction, the 

information preservation of data is balanced against the 

data information loss in Eq. (6). 

( )* *Se m E f E Ei= + −      (6) 

In Eq. (6), the retained data is denoted as Se . Ei  

represents the composite modulus of the compressed data. 

The weighted environmental resistance in a stationary 

state is represented by f , which is related to data 

management methods [16]. The increasing coefficient 

method is used in Fig. 3. This method achieves data 

processing by increasing the coefficients of feature 

vectors. It is suitable for linear data and has high 

requirements for data distribution and the relationship 

between features, which meets the requirements of this 

study. 
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Figure 3: Flow chart of increasing coefficient method 
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From Fig. 3, the covariance matrix of the original 

data is first calculated. The eigenvalues are decomposed 

through the matrix to obtain the eigenvalues and 

corresponding eigenvectors. The eigenvalues represent 

the data variance in the corresponding eigenvector 

direction. The corresponding eigenvectors represent the 

data distribution in different directions. Based on the set 

dimensionality reduction goal, retained feature vectors 

are selected to describe changes in the data. Finally, the 

retained feature vectors are multiplied with the original 

data to obtain the managed data. This method can 

preserve the main information in the original data. Eq. (7) 

represents the comparison of information intensity 

between them. 
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In Eq. (7), the information intensities of the data 

before and after management are denoted as 1,iMe Me . 

The eigenvalues of the covariance matrix are represented 

by iDp . iH  represents the variance of the 

corresponding feature vector. Through this method, 

foundation settlement data are input. Potential features in 

the data are learned using the model. These features can 

help study the behavior of monitoring and predicting 

foundation settlement, thus taking corresponding 

measures for treatment and repair. 

In the pre-training stage: first, the state of the hidden 

node of the first layer network and the state value of the 

visible node are updated. According to the state value of 

the visible node, the state of the hidden node is updated 

again. Then, the offset of the threshold values of visible 

nodes and hidden nodes is dynamically updated. The state 

of the hidden node of the first layer network is used as the 

initial input of the second layer network until the 

pre-training of the second layer network is completed 

until the network is trained layer by layer. The matrix 

vectors of the network weight and threshold are 

established. The network weight and threshold are 

updated. The second batch data are input to complete the 

next round of training until all the data processing is 

complete. 

Prediction and analysis stage: the predicted value is 

output by softmax function. The data are de-normalized 

to evaluate the network prediction. 

 

3.2 DB-SGANN and SDABF monitoring and 

prediction models 

Due to the long history of ancient buildings, the bearing 

capacity of the foundation will be affected, leading to 

settlement. SDABF is caused by various factors, 

including the physical properties of the foundation soil 

and changes in groundwater level. These factors may lead 

to deformation, thereby affecting the structural safety of 

the accident building [17-18]. This study draws the 

arbitrary building foundation map in Fig. 4 and analyzes 

the properties of the foundation soil to conduct a detailed 

evaluation of it. 

 

(a) Exterior view of ancient buildings

 

Second step 

(breccia)
Three steps (sandstone)

Sand filling

Subgrade

One step (breccia)

(b) Simplified overall model of the ancient building

16m 16m  

Figure 4: Topology diagram of ancient building 

foundation structure 

 

Fig. 4 (a) is the actual exterior map of the ancient 

building. According to the actual size of the actual survey 

data of the ancient building, the main body of the model 

is basically built according to the real size of the temple 

structure. To facilitate the simulation and calculation, the 

central tower, four corner towers of the three-storey 

platform, four corner towers of the second-storey 

platform, and two promenade buildings of the first-storey 

platform are converted into equivalent pressure loads 

according to their volumes and applied on the surface of 

the platform. The foundation depth of the model is 16 

meters below the surface. The first step is 16 meters in 

the plane range. This calculation unit adopts the kN and 

m system. The simplified model is shown in Fig. 4 (b). In 

Fig. 4 (b), the foundation soil is silty soil sand. The upper 

layer of foundation soil is filled sand, that is, fine sand. 

The first and second floors are breccia. The three steps 

are sandstone. These structures are distributed in the soil. 

The soil properties have a significant impact on the 

settlement performance of the foundation. The study 

establishes the relationship between the various 

properties of soil and the settlement of the foundation SP 

in Eq. (8). 
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In Eq. (8), the arbitrary building foundation SP is 

represented by St . cSo  represents the compressive 

performance of the foundation soil. The strength of soil 

resistance to external forces is recorded as sSo . These 

two attributes are the inherent properties of soil, and their 

external factors include water content, saturation, and 

viscosity, represented by , ,m t pSo So So , respectively. h  

represents the depth of excavation, which can affect the 

stress of the underlying layer of the building foundation. 

Eq. (9) is the connection between them. 
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In Eq. (9), Ub  and Co  represent the stresses on 

the upper layer and reinforcement zone, respectively. The 

total friction force possessed by nearby soil is recorded as 

Ob , which directly affects the stability of the building. In 

ancient buildings, the walls supporting the building 

typically use edge stakes, which are embedded into the 

building foundation to provide additional durability. In 

these ancient buildings, edge stakes play an important 

role, enabling the building to withstand thousands of 

years without collapsing. Therefore, an architectural 

diagram of ancient building side piles is drawn based on 

the internal structure of the building in Fig. 5. 
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Figure 5: Structural diagram of ancient buildings with side piles 

 

Fig. 5 shows the hierarchical analysis diagram of the 

edge pile of the accident building. The study first 

establishes test and calibration points for edge piles in 

buildings and divides them into basic and horizontal 

boxes. Then, the starting point and edge pile point are 

maintained at the lower end of edge pile, both of which 

are closely related to the settlement of the building. A 

study is conducted to fuse DB-SGANN with it to 

generate SPDB-SGANN to analyze its SP capability, 

with Eq. (10) as the fusion method. 
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In Eq. (10), the input vector of the fusion model is 

denoted as 0Ve . The output vector at the SGANN end is 

represented by 1Ve . The vector of the center points of 

both is denoted as  . i  represents the norm of the 

vector. At this point, the method can vectorize the 

obtained data, which has a significant advantage in 

avoiding redundant data. However, there are differences 

between the foundation structure of ancient buildings and 

modern architectures, mainly reflected in the lack of 

protective structures. Therefore, the ancient buildings are 

susceptible to external factors such as the hydrological 

environment in Eq. (11). 
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In Eq. (11), sWa  is the output value of 

SPDB-SGANN considering the impact of water 

environment. The water pressure at each node of the edge 

pile is represented by iWa . n  represents the total nodes. 

The unit influence in this model is represented by ( )T x , 

which is related to the number of perception units in Eq. 

(12). 
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In Eq. (12), it  represents the computational layer of 

neural network. iff  is the original SDABF data. This 

method can be used to obtain SDABF prediction model in 

Fig. 6. 
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Figure 6: Structure diagram of SDABF prediction 

 

Fig. 6 is an introduction to the SPDB-SGANN 

prediction of SDABF. From Fig. 6, the study first inputs 

the geological data of ancient buildings. The factors of 

foundation settlement are determined according to the 

data. Then, the mechanical parameters of the soil are 

tested to calculate the foundation settlement. The 

settlement of foundation under different load conditions 

is analyzed based on the soil mechanical parameters and 

geological data. The parameters for predicting the 

settlement of ancient building foundation are output. 

Finally, the weight factors of the model are adjusted 

based on the proposed model in Eq. (13). 

( )1Fa Fa T x −= +       (13) 

In Eq. (13), the weight of the model is related to the 

influence of the model units. Random weight is 

represented by Fa . 1Fa−  represents its nearest 

neighbor. The feature attention of SPDB-SGANN is 

optimized through this step, thereby improving the 

settlement prediction performance of the model. In the 

actual excavation of foundation, the study calculates the 

error of geological data in Eq. (14). 
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In Eq. (14), Merror  represents the average error. 

Rmse  represents the root mean square error. ,Yp Yr  

represent the eigenvalues and mean values in the data, 

and the total number is represented by N . The small 
,Yp Yr  indicate that the predicted and true values have a 

small difference, indicating good model performance. 

The adjustment factor of calibration targets is introduced 

to obtain the minimum value of both in Eq. (15) to 

evaluate the performance of models between different 

datasets. 

2

2
* * jAd Merror Rmse  = +    (15) 

 

In Eq. (15), the adjustment factor of the target is 

denoted as  . The total errors before and after 

adjustment are ,j Ad  . This method has good 

interpretability and intuitiveness in predicting SDABF, 

which has low sensitivity to outliers. 

In this paper, the pre-processed data are input into 

the network model in the input layer. Feature extraction is 

carried out in the convolution layer and pooling layer. 

The extracted features are input into the mean pooling 

layer for average extraction of all information after the 

feature extraction of the last layer of pooling layer is 

completed. Finally, these features are input into the 

Softmax classifier for data target decision. The extraction 

operation of feature ( ),l i j
y  is shown in Eq. (16). 
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In Eq. (16), ( )l j

iK


 represents the l  weight of the 

i  convolution kernel in the j  layer. ( )l j j
x

+  

represents the l  target region in the j  layer. W  is 

the width of the convolution kernel. The input layer is the 

time-frequency graph of training bearings. The 

convolution kernel size of the first layer is 5*5. The step 

size is 2*2. The convolution kernel of the second and 

third layers is 3*3. The step size of the third layer is 2*2. 

The size of the pooling region of the three layers is 2*2. It 

is necessary to fill the eigenvalues to keep the size of the 

eigenvalues after each convolution and pooling 

unchanged. That is, adding zeros around the feature map 

makes the feature map complete. 

Next, the SPDB-SGANN algorithm network 

conducts self-learning to train the neural network model 

until the error between the theoretical output value and 

the actual output value reaches the minimum. The 

network training time is too long due to the excessive 

number of samples in the training set and the one-time 

training of so many data sets. Meanwhile, the network 

parameters (weights and biases) are updated slowly, 

resulting in poor results. Therefore, 128 groups are 

randomly selected from all training data each time to 

update and train network parameters. The convolutional 

layer in the network model uses Relu activation function. 

The fully connected layer uses Sigmoid activation 

function. The learning efficiency of the Adam 

optimization algorithm is 0.001. The dropout is set to 0.5 

to prevent overfitting of the training process data. 
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4 Application effect of composite 

model SPDB-SGANN in SDABF 

monitoring and prediction 
This study conducted SDABF monitoring and prediction 

experiments on the Abfound dataset to analyze the 

practical application effect of the model. In this dataset, 

there were a total of 2520 pieces of data on building 

foundations of different ages, including various terrains 

such as sand and tundra. Therefore, experiments were 

conducted on two parameters of existence time and 

geographical location, respectively, on the included 

accident building. 

 

4.1 The predictive ability and internal 

performance of SPDB-SGANN in SDABF 
The settlement prediction model was established using 

MATLAB software. The relevant parameters were set as 

follows: the maximum number of iterations of the neural 

network was 10, the maximum number of trainings was 

100, the learning rate was 0.01, and the minimum error of 

the training target was 0.001. The neural network 

structure was determined as 4-9-1 (4 neurons in the input 

layer, 9 neurons in the hidden layer, and 1 neuron in the 

output layer). 36 weights from the input layer to the 

hidden layer, 9 weights from the hidden layer to the 

output layer, and 10 thresholds were obtained. The 55 

weights and thresholds of the neural network were 

optimized. The optimal initial weights and thresholds 

were assigned to the neural network for settlement 

prediction. The model was used for simulation training. 

The predicted values of the neural network before and 

after optimization were compared with the measured 

values. 

Due to the limited data in Abfound, this study 

evenly divided it into two groups. The incidence building 

types in each group were basically the same. The 

equipment selection and parameter settings in the 

experiment were first conducted before the experiment to 

carry out the experiment effectively. Then, the internal 

performance test of SPDB-SGANN was conducted. 

Meanwhile, experiments were conducted on Random 

Forest (RF), Artificial Fish Swarm Algorithm (AF), and 

Generalized Predictive Control (GPC) to validate the 

superiority of the proposed model in Fig. 7. 
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Figure 7: Comparison diagram of internal performance 

test of model in foundation deformation of ancient 

buildings 

 

Fig. 7 shows a comparative experiment on the 

internal performance of four models in soil deformation. 

According to Fig. 7(a), as the working hours increased, 

the energy losses of the four models also increased. The 

energy consumption of SPDB-SGANN was the lowest, at 

0.15 kW*h. The results of RF, AF, and GPC were 0.23, 

0.58, and 0.64 kW*h, respectively. This indicated that the 

composite model proposed had the highest utilization rate 

for the same accident building. In Fig. 7(b), the duration 

of the building's existence was inversely proportional to 

the accuracy of the model's settlement prediction. The 

accuracy rates of SPDB-SGANN, RF, AF, and GPC for 

predicting settlement of 250-year buildings were 84.8%, 

76.2%, 74.9%, and 72.7%, respectively. The settlement 

prediction accuracy of its SPDB-SGANN was the highest, 

indicating that the model had the best performance. Data 

fluctuation experiments were conducted on these four 

models to more accurately demonstrate the overall 

internal performance of the model in Fig. 8. 

 



Monitoring and Prediction of Settlement and Deformation of… Informatica 48 (2024) 191–204  199 

252015105
1

2

3

4

5

6

Data collection time/min

D
eg

re
e 

o
f 

d
at

a 
d

im
en

si
o

n
al

it
y

 r
ed

u
ct

io
n

(a) Data dimension reduction experiment

GPC

RF

AF

SPDB-SGANN

 

SPDB-SGANN GPC

RF

AF

100806040200
10

20

30

40

50

60

Foundation settlement radius/m

M
o
d
el

 c
o
n
v

er
g
en

ce
 t

im
e/

s

(b) Model convergence experiment

 

Figure 8: Comparison chart of experimental results of 

data fluctuation of four models 

 

Fig. 8 shows the comparison of the data 

dimensionality reduction and convergence experiments of 

four models. In Fig. 8(a), the data dimensionality 

reduction of the model continued to improve. For this 

parameter, if the data were above 3.5, the requirements of 

the foundation settlement prediction experiment for 

ambient building were met. The data dimensionality 

reduction performance of SPDB-SGANN was the best, at 

4.6. The experimental data for other three models at this 

time were 3.6, 3.2, and 3.9, respectively. After the same 

working time, the data obtained by SPDB-SGANN were 

the best. This conclusion was also presented in Fig. 8(b). 

The convergence time of the four models was 34s, 44s, 

53s, and 59s, respectively. This indicated that 

SPDB-SGANN had the shortest working time for ancient 

buildings with the same radius. However, the above 

experiments could only demonstrate the superior internal 

performance of the model. Experimental verification was 

also required for the practical performance of the model. 

Based on predictions and true labels, the samples are 

divided into four categories: True Positive (TP), True 

Negative (TN), False Positive (FP) and False Negative 

(FN). The performance of SPDB-SGANN model was 

verified by calculating the accuracy rate, accuracy rate, 

recall rate, and F1 value. From Table 2, the prediction 

accuracy of the research model for the foundation 

settlement of ancient buildings reached 96.15%. The 

accuracy rate was 96.17%, the recall rate was 86.15%, 

and the F1 value was 96.16%, all of which were higher 

than the comparison models. In general, the 

SPDB-SGANN model proposed in this paper had a high 

performance in the prediction of foundation settlement of 

ancient buildings. 

 

 
Table 2: Comparison of prediction accuracy of settlement of ancient buildings by different models 

Model Accuracy (%) Precision (%) Recall (%) F1 value (%) 

RF 64.99 65.16 64.99 65.09 

AF 82.06 82.27 82.06 82.17 

GPC 85.77 85.87 85.76 85.82 

SPDB-SGANN 96.15 96.17 96.15 96.16 

 

4.2 Experimental verification of 

SPDB-SGANN in SDABF monitoring and 

prediction 
Stress and model performance tests on buildings were 

conducted to verify the practical application efficiency of 

SPDB-SGANN in SDABF in Fig. 9. 
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Figure 9: Comparison chart of field test results of four 

models 

 

Fig. 9 shows the experimental results of building 

stress and harmonic mean values. SPDB-SGANN 

exhibited the best architectural amplitude performance at 

28 cm, while the other three models were 43 cm, 52 cm, 

and 55 cm, respectively. This indicated that 

SPDB-SGANN had the best experimental effect on 

building performance for ancient buildings under the 

same stress. This phenomenon could also be verified in 

Fig. 9(b). The harmonic mean values of four models were 

4.7, 4.2, 4.4, and 3.9, respectively. The proposed 

composite model achieved the best experimental effect in 

the same settlement of ancient building. Node 

experiments and foundation settlement experiments were 

conducted to control the impact of hidden nodes in the 

model on the experimental results in Fig. 10. 
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Figure 10: Comparison diagram of hidden node 

experiment and foundation settlement experiment of four 

models 

 

Fig. 10 shows the comparison of the hidden nodes 

and foundation settlement of the four models. In Fig. 

10(a), the accuracy of building settlement prediction 

increased with the increase of nodes. SPB-SGANN 

achieved the highest SDABF prediction accuracy of 

99.2%. The other three models only had prediction 

accuracy of 96.3%, 94.9%, and 88.7% at this time, 

respectively. The proposed composite model had higher 

accuracy for the same hidden nodes. In Fig. 10(b), the 

settlement distance of the building was positively 

correlated with the occupied area of building. The 

SPDB-SGANN building had the highest stability with a 

settlement distance of 14 cm. The other three models had 

a settlement distance of 24 cm, 31 cm, and 40 cm, 

respectively. The proposed composite model could 

provide the best settlement protection for buildings. 

However, the results of a single experiment couldn't 

demonstrate the universality of the model, so the study 

conducted 30 experiments and drew a linear fitting graph 

in Fig. 11. 
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Figure 11: Extensive experiment of SPDB-SGANN 

model 

 

Fig. 11 shows a comprehensive experimental 

demonstration of the proposed composite model. In 30 

comparative experiments, the test values of 

SPDB-SGANN were closer to the true values, with a 

linear fit of 0.9996. The experimental results of RF were 

relatively distant, with a linear fit of only 0.9764. These 

experiments had confirmed that SPDB-SGANN could 

effectively predict and detect SDABF, making it suitable 

for security protection in ancient buildings. 

The actual verification was carried out with an 

ancient building. The location of observation points is 

shown in Fig. 12. The ancient building has a square plan 

and its main structure is composed of five square stone 

towers arranged on the base of a three-story flat-topped 

pyramid. The inner and outer walls connect the four gates 

in the east, west, south and north. The Temple Mountain 

building is surrounded by a gully. The Shinto Road is 

built on the east side. Two pools are set symmetrically on 

both sides of the Shinto Road. The foundation of the 

ancient building adopts the method of building a high 

platform. There is a platform on the large platform. There 

are large stone masonry around the platform. 

 

 

Figure 12: Schematic diagram of location arrangement of observation points 

 

Table 3 shows the comparison of the prediction 

results of the three prediction models. The error was 

positive, the predicted value was greater than the 

measured value, and vice versa was less than the 

measured value. The general predicted results were all 

too large. The reason for these errors is that the maximum 

settlement value of the near shallow foundation of these 

measured data is the maximum settlement value of the set 
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measurement point, which is mostly set only on both 

sides of the building. In actual projects, the location of 

the building and whether the construction is standardized 

may have an impact on the location of the maximum 

settlement point. SPDB-SGANN had the best prediction 

performance, with the maximum error of 46.45mm and 

the minimum error of 8.51mm. These results were better 

than the other two models, providing a preliminary 

prediction for the settlement of ancient buildings. This 

model can meet the requirements. 

 

 
Table 3: Comparison of the prediction results of the test group of the three prediction models 

Serial 

number 

Measured 

settlement value 

(mm) 

SPDB-SGANN AF RF 

Predicted 

value (mm) 

Error 

(mm) 

Predicted 

value (mm) 

Error 

(mm) 

Predicted 

value (mm) 

Error 

(mm) 

1 3.70 38.56 34.86 65.38 61.68 68.08 64.38 

2 0.80 13.59 12.79 9.73 8.93 -20.22 -21.02 

3 5.60 -.297 -8.51 14.73 9.13 17.76 12.16 

4 15.60 62.05 46.45 15.14 -0.46 200.93 185.33 

5 15.48 26.94 11.54 -36.13 -51.53 77.33 61.93 

 

The prediction accuracy of 30 experiments was 

calculated. Fig. 13 shows the T-test statistical results of 

the proposed composite model (different letters indicate 

significant differences, P<0.05). In 30 experiments, the 

average accuracy of SPDB-SGANN model reached 

98.06%, which was the highest among all models. The 

difference was significant compared with AF, RF, and 

GPC (P>0). 
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Figure 13: Accuracy significance test results 

 

5 Results and discussion 

Du et al. selected the base modulus, Young's modulus, 

field soil properties and applied load as the input of the 

model to establish a GP-ANN model to estimate the 

maximum settlement of the ERP system. The prediction 

results of the GP-ANN model were compared with those 

of other neural network models. The prediction effect of 

the GP-ANN model was superior [19]. The construction 

form, algorithm flow, performance and defects of the 

GM-BPNN model were summarized. SPB-SGANN had 

the best data dimension reduction performance (4.6). At 

this time, the experimental data of the other three models 

were 3.6, 3.2, and 3.9, respectively. After the same 

working hours, SPB-SGANN obtained the best data. 

Through model comparison and analysis, the 

GA-GM-BPNN model had good prediction accuracy and 

prediction precision in short-term deformation prediction, 

high reliability of deformation extraction, and superior 

prediction performance. 

Wu et al. selected effective pile length, flexural 

stiffness of piles, applied load, friction angle of sand piles 

and ratio of pile length to width as the input of ANN 

based on the static load test data of steel piles with 

expanded bottom. Then, the ANN prediction model of 

pile foundation settlement was established. The predicted 

value of the model was very close to the measured value. 

The mean square error was relatively not obvious [20]. 

Zhang et al. combined ANN and heuristic algorithm 

(equilibrium optimizer EO) to provide an efficient and 

reliable prediction model for pile foundation settlement 

calculation [21]. The SPB-SGANN settlement prediction 

model of ancient buildings was constructed. This model 

improved the ability of deformation extraction and 

nonlinear problem processing, accelerated the speed of 

model convergence, and solved the oscillation prediction 

of the original model. SPB-SGANN had the highest 

prediction accuracy of 99.2%. AF\RF\GPC had the 

prediction accuracy of 96.3%, 94.9%, and 88.7%, 

respectively. The proposed composite model can provide 

the best settlement protection for buildings. However, the 

results of a single experiment do not prove the 

universality of the model. Therefore, through 30 

comparative experiments, the test value of SPB-SGANN 

was closer to the true value, with a linear fit of 0.9996. 

The accumulation of errors in the model training process 

was small, which was suitable for the extraction and 

mining of long-sequence super-tall deformation 

sequences. 
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6 Conclusion 

With the modernization of the information industry, 

ancient buildings' protective measures are gradually 

developing. DB was introduced into SGANN. A 

composite model (SPDB-SGANN) was generated to cope 

with the increasing amount of data. Experiments were 

conducted on and compared with the experimental results 

of RF, AF, and GPC to verify the effectiveness and 

universality of the model. Under the same working hours, 

the energy losses of four models were 0.15, 0.23, 0.58, 

and 0.64 kW*h, respectively, indicating that 

SPDB-SGANN had the highest economic benefits. For 

the 250-year SDABF prediction, the proposed composite 

model had an accuracy of 84.8% and performed best 

among the four models, indicating that the model had the 

best performance. In the data dimensionality reduction 

experiment, the results of SPDB-SGANN, RF, AF, and 

GPC were 4.6, 3.6, 3.2, and 3.9, respectively, indicating 

that the model could effectively sort out complex data. In 

ancient buildings with the same radius, the convergence 

time of SPDB-SGANN was 34 seconds, which was the 

fastest among four models, indicating that this model had 

the lowest time cost. For buildings with the same 

settlement, the harmonic average values of four models 

were 4.7, 4.2, 4.4, and 3.9, respectively. This indicated 

that SPDB-SGANN could provide the strongest control 

over buildings. In experiments with the same hidden 

nodes, SPDB-SGANN had the highest SDABF prediction 

accuracy of 99.2%. The other three models had prediction 

accuracy of 96.3%, 94.9%, and 88.7%, respectively. This 

indicated that the model could effectively utilize hidden 

nodes. In 30 extensive experiments, the linear fit of 

SPDB-SGANN and RF was 0.9996 and 0.9764, 

respectively. These experiments confirmed that the 

proposed SPDB-SGANN could accurately detect and 

predict foundation settlement of ancient buildings. 

However, this study only focuses on ancient buildings 

and has no reference significance for modern architecture. 

This is because the completion year of modern 

architecture is too short, and the experimental results are 

not convincing. With the improvement of the 

experimental setup, studies will gradually be conducted 

on modern architecture in the future. 
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