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0  INTRODUCTION

There have been a huge number of studies on rotating 
machine fault detection, especially for bearings, 
which are main components of the inner ring, outer 
ring, bearings (rolling elements) and cage. There are a 
number of mechanisms leading to bearing failures such 
as fatigue damage, wear damage, plastic deformation, 
corrosion, mechanical damage, and lubrication 
deficiency [1] to [3]. The most common faults on 
bearing components are fatigue damage including 
wear, pitting, and spalling.  Such damage is a fatigue 
phenomenon that occurs when a fatigue crack initiates 
at the surface of bearing’s components or at a small 
depth below the surface. The crack usually propagates 
for a short distance in a direction roughly parallel to 
the surface before turning or branching to the surface. 
As cracks progress further into the surface, the rate of 
propagation increases. When the cracks have grown 
to the extent that they separate a piece of the surface 
material, a pit is formed. The material is torn away 

from the damaged area by the relative motion of the 
contacting part. A loss of material that reaches some 
level is frequently termed spalling [4]. 

When fatigue damage occurs on a bearing’s 
component and this defective component is in contact 
with another component at the damage point, an 
impulsive force is incurred that causes the bearing 
to vibrate. The vibration signal obtained from the 
bearing consists of an impulse whenever a rolling 
element passes over the damage point, which can be 
in the outer race, inner race, or the surfaces of rolling 
elements or cage. The pulse appearance frequencies 
are dependent on the damage point locations and 
are called nominal bearing defect frequencies (or, 
more briefly nominal frequency) (or characteristic 
defect frequency (CDF) as called in [5]). The nominal 
frequencies corresponding to bearing components 
are calculated by Eqs. (1) to (4). The vibration signal 
from each pulse presents the ringing of the bearing 
at its resonance frequency, also called ringing pulse 
frequency. The pulse occurs with high amplitude 
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Highlights
• Bearing faults in the low-speed bearing system are hard to detect with the original EMD algorithm as well as the envelope 

analysis.
• By considering the energy of the IMF, the proposed adaptive EMD algorithm works well in bearing fault detection and 

performs better than the original EMD algorithm.
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and then the amplitude attenuates rapidly. This will 
cause the appearance of ringing pulse frequency and 
its sidebands in the vibration data.  The sidebands are 
results of the modulation between the ringing pulse 
frequency and nominal frequency. 
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where RPM is the shaft rotation speed, Nb is the 
number of the balls or rollers, Bd is the ball or roller 
diameter, Pd is the bearing pitch diameter and θ is the 
contact angle.

The bearing fault detection problems are 
generally concerned with algorithms and models 
in order to detect increased vibration amplitudes 
at the nominal frequencies. The envelope analysis 
is a well-known and easy method for bearing fault 
detection and reported in various research, such as 
in [1].  This paragraph concentrates on the state-
of-the-art techniques that use the EMD method for 
fault detection of rotating machines, especially for 
bearings. In [5] and [6], the authors suggested using an 
empirical mode decomposition (EMD) method [7] for 
bearing fault detection. The EMD algorithm was used 
to decompose the vibration signal into intrinsic mode 
functions (IMFs). The authors used a fast Fourier 
transform (FFT) amplitude spectrum for each IMF and 
found that the defect frequency (nominal frequency) 
appeared in the FFT spectrum of the first IMF.  In 
general, when the vibration data are weakly disturbed, 
the method will work well. However, if the data are 
influenced by noise or other frequency components, 
the method can fail to perform adequately. For 
example, the fault signal part can be influenced by 
other rotating frequencies, sensor noise, and sensor 
resonant frequencies,  which will be demonstrated in 
the later sections of this paper. 

Since [5] and [6] were reported, several proposed 
methods utilizing the EMD algorithm have been 
for bearings and other rotating machines. In [8], 
the authors proposed a diagnosis method based on 
artificial neural networks (ANN). The entropy of 
each IMF was estimated to determine which IMF 
signal should be selected for the training process of 
the ANN network. The classification method using 
ANN was established to classify different bearing 
conditions: normal, outer race and inner race faults. In 
[9], the authors showed that instead of using entropy 
energy, which was not useful for non-stationary 
vibration signals, they introduced a new feature 
called IMF energy moment. They used the wavelet 
package decomposition (WPD) to de-noise the 
vibration data and then calculated each IMF energy 
component. The IMF containing the highest IMF 
energy component will be selected to extract faulty 
features mostly related to defect frequencies such as 
1X, 2X, and its harmonics. The features were then 
served as inputs to a back propagation network. The 
network was employed as a classification model for 
machine fault diagnosis. In [10], the authors utilized 
the EMD algorithm to decompose vibration data from 
defect roller bearings into IMFs. The autogressive 
models (AR) were established for each IMF to extract 
AR parameters and residual variations, which were 
then aggregated into one feature vector. A proposed 
diagnosis model with the Mahalanobis distance of 
feature vectors was used to recognize bearing faults 
in three conditions: normal, outer race and inner race 
damage. The authors in [11] explained that using 
the IMFs alone for rotating machine fault detection 
could not work well with noisy vibration data. They 
combined some of the consecutive IMFs into one 
and called it a combined mode functions (CMD) 
and utilized it for the fault detection of generators. 
If there was a sudden change in the waveform of the 
next IMF, then the CMDs was suggested be used 
more than the original IMFs. Recently, an approach 
called ensemble EMD (EEMD) [12] was proposed to 
solve the mode mixing problem that happens in the 
original EMD method by adding white noise to the 
IMFs during the decomposition process of the original 
EMD. The authors in [13] showed that it was not 
necessary to add white noise to all the decomposition 
modes since the low-frequency part will be affected 
by noise, worsening the EMD process. It also brings 
a higher computational complexity to the algorithm. 
Therefore, they simply suggested using band-limited 
noise instead of white noise into the signal to be 
decomposed. Other than proposed research with EMD 
for bearing fault detection, there are also several 
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approaches, such as in [14] to [16]. In [14] the authors 
converted one dimension of the vibration signal into a 
two-dimension domain, and then a recognition model 
is applied for fault classification including bearing 
faults. In [15], a Meyer-Wavelet-Packets algorithm 
was used to detect the bearing faults and the author 
stated that the proposed approach provided better 
results than that of using coif4 wavelet. In [16], the 
discrete wavelet transforms and an adaptive resonance 
theory neural network were used to detect the gear 
crack. This method can be applied for bearing faults 
as well. 

Some adaptive techniques using Morelet wavelets 
were successfully proposed for rotating machine 
component fault detection, such as [17] and [18]. In 
this paper; an adaptive EMD is proposed; however, 
two major topics are addressed: (i) improving of 
the original EMD algorithm in order to enhance 
the appearance of the nominal frequencies, and (ii) 
proposing a model for both simulation and experiment 
data for bearing fault detection.  The EMD algorithm 
will be modified so that the output IMFs will only be 
adapted for the purpose of bearing fault detection. The 
method is called adaptive EMD (AEMD). The AEMD 
is used especially for addressing the weaknesses of the 

original EMD method proposed in [5] and [6] when 
data are strongly disturbed by other components and 
noise. The AEMD method is intended to be better than 
original EMD in term of showing the nominal defect 
frequency for bearing fault detection only. Please note 
that if the data is so clean in term of no influences to 
the ringing pulse frequency band, then the original 
and adaptive EMD will work equally well.

The rest of the paper is organized as follows. 
The EMD and ensemble EMD algorithms will be 
presented in Section 2. Section 3 is about the proposed 
adaptive EMD algorithm. The bearing analysis 
comparison with simulation data will be presented in 
Section 4, while a bearing fault detection application 
study with adaptive EMD is discussed in Section 5. 
The conclusion is follows in Section 6.

1  EMD AND ENSEMBLE EMD ALGORITHMS

1.1  Empirical Mode Decomposition

The empirical mode decomposition method is a signal 
processing technique proposed for extracting all the 
oscillatory modes embedded in a signal without any 
requirement of stationarity or linearity of the data. The 

Fig. 1.  Flow chart of the original EMD algorithm
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goal of this procedure is to decompose a time series 
into components with well-defined instantaneous 
frequencies by empirically identifying the physical 
time scales intrinsic to the data, which is the time 
lapse between successive extrema. Each characteristic 
oscillatory mode extracted, named IMF, has only 
one extreme (minima or maxima) between zero 
crossings and the mean value between the upper and 
lower envelope, which are established based on the 
extreme, is equal to zero. Therefore, in the algorithm, 
conditions for a signal to be an IMF are as follows:
• Differences in the number of maxima and zero-

crossings must not be more than 1.
• The mean of the average of upper and lower 

envelopes should be smaller than a defined 
threshold, which is close to zero.
The detailed algorithm can be found in [7].  

The algorithm flowchart is presented in Fig. 1. The 
outcomes of the EMD algorithm will be several IMFs. 
The number of the IMFs may be different depending 
on the signal analysed. Among the IMFs extracted, 
some of them contain a fault signal part that will 
help identify the faults. The extracted features can 
be used individually or as inputs to fault diagnosis 
models.  The bearing fault diagnosis methods using 
the EMD method so far deal with three problems: 
(i) finding the relevant IMFs; (ii) extracting relevant 
features, possibly related to faults from those IMFs; 
(iii) establishing fault detection and diagnosis models 
utilizing the features.

1.2  Ensemble Empirical Mode Decomposition

The EEMD is an improvement on the EMD algorithm 
targeting to remove mixing mode problems [12]. 
Comparing to the EMD method, the improvement of 
the ensemble EMD is described as follows:
• Add a white noise series to the targeted data.
• Decompose the data noise into IMFs with added 

white.
• Repeat step 1 and step 2 multiple times, but with 

different white noise series each time.
• Obtain the (ensemble) means of corresponding 

IMFs of the decompositions as the final result.

2  ADAPTIVE EMPIRICAL MODE DECOMPOSITION

As previously discussed, the envelope analysis is 
easy to implement and a method of choice for bearing 
analysis if a suitable band pass filter is available. 
However, for implementation on an automation 
system or embedded system, the EMD method is 

preferred. The indication of the nominal frequency 
appearance fails with the EMD method when the 
data are strongly disturbed, which will be indicated 
in the analysis result section. Looking into the 
decomposition process of the original EMD algorithm, 
the EMD method extracts the IMF with the highest 
frequencies first, followed by the lower frequencies. 
In other words, the first IMF will contain the highest 
frequency components, and the last one will contain 
the lowest frequency components. To extract an 
IMF, the algorithm keeps removing low-frequency 
components until the residual (signal after removing 
low-frequency components) is an IMF. The reasons 
the EMD method failed in the previous example can 
be explained as follows: 
• The signal part caused by faults can easily share 

the energy among some IMFs if it has a high-
frequency bandwidth that will lead to detecting 
the fault features in any of those IMFs to be weak.

• When data is complicated, it is easy for the 
algorithm to extract IMFs, including the other 
components that interfere with the fault signal 
part. 
In the AEMD, we supplement the decomposition 

process of the EMD algorithm to avoid the first 
reason. On the process of removing low-frequency 
components in the EMD algorithm, the AEMD 
algorithm keeps calculating the energy of frequency 
components of the residual concentrating on the 
frequency segment that contains the nominal 
frequency and its harmonics. The energy is called 
“peak energy”, determining whether the low 
frequencies are related to faults or not. The IMF will 
be assigned as the residual at the point that the peak 
energy of the residual has the highest value. If the low-
frequency components are related to faults, then they 
will be retained in the extracted IMF. Otherwise, they 
will be removed and will appear in the next IMFs. The 
peak energy value in this paper is calculated as the 
total power spectrum density at the nominal frequency 
and its first two harmonics. Other energy indicators 
can be considered to replace power spectrum density, 
such as the amplitude of nominal frequency and its 
first harmonics, the power spectrum of the nominal 
frequency and its first two harmonics, etc. [19]. The 
details of the AEMD algorithm can be seen in Fig. 2.

The goal of a bearing fault detection model based 
on a vibration signal is to identify the fault symptom 
that is embedded into the vibration signal; here, it is 
the nominal frequency. Our proposed model using the 
proposed AEMD method is as follows:
• Use the AEMD algorithm for the vibration data to 

extract IMFs signals.
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• Choose the best IMF.
• Calculate the power spectrum of the envelope 

signal of this IMF.
• Estimate the amplitude of nominal frequency in 

the plots of the power spectrum.

3  BEARING ANALYSIS DECOMPOSITION

3.1  Simulation Data

In this section, we simulate the vibration data for a 
normal bearing and for a bearing with fatigue damage 
on its outer race. Whenever a rolling element goes 
over the damage point on the surface of the outer race, 
there will be a ringing pulse appearing in the bearing 
vibration data. The vibration data measured from 
the bearing will be covered by high-level imbalance 
and misalignment components, random vibrations 
accompanied by friction and other sources such as 
environment noise, sensor noise, and sensor resonance 

signals. The following frequency components 
are dominant in the vibration data measured by 
accelerometers on the surfaces of bearings: (i) shaft 
frequency, which is 1X frequency component, caused 
by rotor rotation; (ii) imbalance vibration (1X), its 
harmonics (2X, 3X, 4X), and its sidebands caused 
by misalignment components; (iii) other rotating 
components, such as gear-mesh frequency, sidebands, 
and gear rotating frequencies. Simulations of vibration 
data from bearings are well explained in [3] and [20].  

The simulated vibration signal, x(t), is generated 
as follows:

 x t a t n t r t( ) = ( ) + ( ) + ( ),  (5)

where a(t) are approximation signals, n(t) is Gaussian 
noise and r(t) are ringing pulse signals. More 
explanation can be found in [20]. In this paper, the 
vibration data for outer race defect bearings are 
simulated as explained in Eq. (5) and without ringing 
pulse part, t(t) for a normal bearing. The nominal 

Fig. 2.  Flowchart of the proposed AEMD algorithm
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frequency fouter , is 20 Hz and ringing pulse frequency 
is 1000 Hz. 

3.2  Bearing Fault Detection with Envelope Analysis and 
Original EMD Methods

This section is aimed to show that the envelope 
analysis and the EMD method work when data are 
clean, and do not work when data are not.

The envelope analysis method [1] and [20] is 
used with both normal and faulty bearing simulation 
vibration data. The plots of the power spectrum of the 
signal after the envelope analysis are intuitively used 
to estimate the appearance of the nominal frequency 
of the outer race defect bearing. For the EMD method, 
it is used to generate the IMFs. With the nominal 
frequency of 20 Hz and ringing pulse frequency is 

1000 Hz, the IMF #1 (IMF1) is selected. The Hilbert 
analytic signal of the IMF1 is generated. Then the 
plots of the power spectrum of the analytic signal are 
intuitively used. We use both methods for normal and 
faulty bearing data, which are supposed to indicate 
the appearance of the nominal frequency (20 Hz) in 
power spectrum plots for faulty bearing signal but do 
not for normal bearing data.

In Fig. 3, the differences between the normal 
and faulty bearing can be seen in Fig. 3b in Region 
I where the ringing pulse frequency components 
(around 1000 Hz) occur.  Note that the ringing pulse 
frequency components only appear when the bearing 
fault is present. With this example, the fouter (20 Hz) 
and its harmonics are clearly shown in the Figs. 3c 
and d. This proves that both envelope analysis and 
EMD methods work well for clean vibration data.

             

            
Fig. 3.  Simulation of bearing detection with envelope analysis and EMD method with clean vibration data; a) waveform of perfect and faulty 
bearing signal, b) power spectrum of perfect and faulty bearing signal, c) power spectrum of the outcomes with envelope analysis; here, the 

band-pass filtering for [500 Hz to1500 Hz] is applied in envelope analysis, and d) power spectrum of envelope signal of first IMF
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In Fig. 4, the differences between normal and 
faulty bearings are only in Region I; however, 
Region II close to region I which contains dominant 
components. As discussed before, Region II would 
cause both the envelope analysis and EMD to not 
work well. Indeed, looking at Fig. 4c and d, we are 
unable to emphasize the nominal defect bearing 
frequency, fouter (20 Hz). Region II interfered with the 
outcomes of the both methods.

3.3  Comparison of Envelope Analysis, EEMD, and AEMD 
with Simulation Data

In this section, the bearing fault detection model 
provided in section 3 using AEMD will be compared 
with those of using EEMD and envelope analysis. The 
simulated data for an outer race defect bearing above 

             

            
Fig. 4. Simulation of bearing detection with envelope analysis and EMD method with disturbed vibration data, the disturbance is Region II; 

a) waveform of perfect and faulty bearing signal, b) power spectrum of perfect and faulty bearing signal, c) power spectrum of the outcomes 
with envelope analysis; here, the band-pass filtering for [500 Hz–1500 Hz] is applied in envelope analysis, and d) power spectrum of 

envelope signal of first IMF

Fig. 5.  Comparison the power spectrum with three methods:  
a) EEMD, b) envelope analysis and c) adaptive EMD with 

simulation data
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is used. Fig. 5 shows the average power spectrum of 
10 trials. The plots show that the amplitude of the 
nominal frequency with adaptive EMD is higher than 
that of with the EEMD and envelope analysis. It is 
also the highest peak found in the plots. The amplitude 
even cannot be recognized with EEMD method 
since it is not dominant and weak in comparison to 
other peaks in the plot. With envelope analysis, the 
amplitude is relatively high but not the most dominant 
one in the plot. 

The performance of the AEMD method is 
intuitively better than ensemble EMD method and 
envelope analysis in terms of indicating the nominal 
defect frequency (20 Hz).

4  APPLICATION STUDY FOR BEARING FAULT DETECTION 
WITH THE AEMD METHOD

The test rig consisted of a genuine railway wagon 
bearing structure, where both the supporting bearings 
and test bearings were two-row roller bearings (SKF 
229750). The shaft rotation speed could be adjusted 
between 0 rpm to 100 rpm. Furthermore, the loading 
of the test bearing was adjustable. For the test 
measurements, the rig was supplied with a bearing 
with a minor outer race defect as shown in Figs. 6a 
and b. In Fig. 6c, on the left are the two adjacent 
supporting bearings, the damaged bearing to be tested 
is in the middle, and on the right there are another two 
adjacent supporting bearings. The bearing parameters 
are provided in Table 1.

The experiment was carried out at a sampling rate 
of 4000 Hz, rotating of the input shaft of 79 rpm, and 
a load of 78 kN. Vibration data collected from vertical 
and horizontal accelerometers have a duration of 60 
seconds and from both normal and outer race defect 
bearings.

Table 1.  Bearing parameters

Number of rolling elements 22
Rolling element diameter 20 mm
Bearing pitch diameter 180 mm
Contact angle 18 degrees

With bearing parameters provided in Table 1, the 
nominal frequencies fouter are 13 Hz calculated by Eq. 
(1).  

In this experiment, the bearing parameters 
are known. To identify the fault happening on the 
outer race of the bearing, the bearing fault detection 
model must be able to indicate the appearance of the 
nominal frequency in the vibration data. This section 
is intended to use the proposed model mentioned 

a) 

b) 

c) 

d) 
Fig. 6.  a) Location of the outer race damage; b) closer look at 

the damage; c) test rig; 1 supporting bearings, 2 test bearing, 3 
load adjusting nut; d) sensor locations; 1 vertical acceleration, 2 
horizontal acceleration, 3 axial acceleration 4  Acoustic emission 

sensor (magnetic fastening) and, 5 Acoustic emission sensor 
(screw fastening)
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in Section 3 for vibration data to detect the bearing 
fault. The bearing experimental data is analysed 
with the adaptive EMD. Following the bearing fault 
detection model mentioned in Section 3, both normal 
and faulty bearing data were applied with an adaptive 
EMD algorithm to extract 10 IMFs for each data. 
In our analysis, 10 IMFs are extracted and among 
them, via plots of the power spectrum of each IMF, 
the first IMF (IMF#1) is selected. The next step is 
to examine the amplitudes of the power spectrum of 
the first IMFs.  Fig. 7 shows the plots of the power 
spectrum of the first IMFs of both normal and faulty 
bearing data. Since the power spectrum, amplitudes 
of high-frequency components are much smaller 
than those of low-frequency components, Fig. 7 is 
only for frequency components from 0 Hz to 40 Hz. 
It is clearly shown that the nominal frequency (13 
Hz) has a very high amplitude in the bottom plot for 
faulty signals in comparison to the other frequency 
components. By contrast, the amplitude of 13-Hz-
frequency component is negligible in the plot for 
the normal bearing. This confirms that the proposed 
model using the adaptive EMD algorithm can detect 
the bearing fault on the outer race.

Fig. 7.  Power spectrum with adaptive EMD of envelope signal of 
IMF #1 of a) normal and b) faulty bearing data using proposed 

bearing fault detection method

Moreover, Fig. 8 shows the advantages of 
the proposed method over the original EMD and 
envelope analysis methods in terms of identifying the 
appearance of the faults. With the envelope analysis, 
the fault, which appeared in 13 Hz, seems budding 
with a small peak. It is easily submerged by other 
peak components. The original EMD produced a 
better result with a higher peak, but it is not as high 
as the peak by the proposed method. In Fig. 8, it is 

clearly said that the adaptive EMD produced a better 
identification of the fault.

Fig. 8.  Comparison of power spectrum with faulty bearing of three 
methods; a) envelope analysis, b) original EMD and c) AEMD

5  CONCLUSIONS

This paper introduces an AEMD algorithm. The 
advantage of the AEMD algorithm over the envelope 
analysis and the ensemble EMD algorithm in bearing 
fault detection is avoiding the fault signal energy 
shared among IMFs. The AEMD extracts IMFs so that 
the bearing fault signal will be mostly concentrated on 
one IMF. A performance comparison among bearing 
fault detection methods using envelope analysis, 
ensemble EMD and adaptive EMD with simulation 
data was carried out. It showed that the fault detection 
model using AEMD performs better than others. 
Moreover, we also validated the performance of 
the model with AEMD by the experimental data 
from practical bearing experiments. The result 
also indicated that the fault signature, presented by 
nominal frequencies, was clearly shown in the power 
spectrum plots. 
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