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0  INTRODUCTION

Micro- and nanoelectromechanical systems have 
gained appreciable attention for their significant 
role in many engineering and modern technology 
fields such as aerospace, nuclear, composites, 
and electronics due to their excellent mechanical, 
electrical, and thermal properties in comparison to 
other structures at the normal (macro) length scale. 
During manufacturing, producing, assembling, and 
packaging, some micro- and nanostructures may have 
geometrical non-uniformities, as variations in the 
height and the width that may affect the dynamical 
behaviour of these structures. 

For more efficient vibration control, and to 
provide weight reduction for greater structural 
efficiency, tapered structures can be used in different 
engineering applications. Therefore, it is worthwhile 
to model these non-uniform micro- and nanostructures 
to predict their dynamical behaviour. Besides, to 
increase the strength to weight ratio, orthotropic, 
anisotropic, composite, and functionally graded 
structures are commonly used in several industrial 
applications such as civil and aerospace structures. 
Moreover, the micro- and nanomaterials such as 
carbon nanotubes and graphene sheets cannot be 
considered as homogeneous due to the influence 

of lattice distance or grain size on their mechanical 
properties. 

To ensure that these properties vary smoothly 
and continuously within the structure, functionally 
graded (FG) materials, which are made from a 
mixture of ceramics and metal, can be used, and the 
properties of these FG materials can be tailored for 
specific purposes. In contrast, composite materials 
suffer from premature failure due to the abrupt change 
in material properties from the matrix to fibre and 
between the layers [1]. Additionally, these materials 
may experience the decay in the elastic characteristics 
as a result of delaminations and chemically unstable 
medium and lamina adhesives [1]. However, to 
date, no report has been found in the literature on 
the buckling behaviour of non-uniform functionally 
graded nonlocal beams resting on the linear elastic 
foundation. Motivated by these considerations and to 
improve the design of MEMS/NEMS, this article aims 
to study the buckling of nonlocal, double-tapered thin 
beams resting on elastic foundations. 

It is known that the experimental and atomistic 
simulations and models are capable of showing 
the influence of the small-scale on the behaviour of 
micro- or nanostructures; however, these methods are 
expensive and restricted by computational capacity. 
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Since the local continuum theories for different 
structures are scale-free, they are not able to capture 
the small scale effect on the different properties for 
structures at the micro- or nanoscale. This makes them 
inadequate in predicting the dynamical behaviour 
for these structures [2]. To apply the continuum 
mechanics approach to the analysis of the micro- and 
nanostructures, logical and reasonable modifications 
that take into consideration the scale effect, should 
be introduced. For this purpose, several theoretical 
models have been proposed. Among these are the 
strain gradient theory, the modified coupled stress 
theory, and the nonlocal elasticity theory [3] and [4] 
that will be used in this article to carry out the buckling 
behaviour of nonlocal axially functionally graded 
Euler-Bernoulli beams resting on elastic foundations.

Calculating natural frequencies and understanding 
the buckling behaviour are the main issues from a 
design point of view, since the natural frequencies 
and the critical buckling loads can be considered to 
be dynamic properties of a structure. Thus, many 
researchers have been interested in investigating the 
free vibration and stability analyses of structures at 
the nanoscale. For example, Thang et al. [5] illustrated 
an analytical approach to analyse the nonlinear static 
buckling of imperfect functionally graded carbon 
nano-reinforced composite plates subjected to axial 
compression, for which several linear distributions 
of the volume fraction of carbon nanotubes were 
assumed to be graded through the thickness direction 
according to formulations that are based on Kirchhoff 
plate theory with Von Karman-type of nonlinearity. 

Buckling characteristics of heated FG annular 
nanoplates resting on an elastic foundation and 
subjected to various types of thermal loadings were 
investigated by Ashoori et al. [6]. In their work, an 
exact analytical solution was introduced for three 
different types of thermal loadings, and the thermo-
mechanical properties for the FG nanoplate were 
assumed to follow the power law model. The adjacent 
equilibrium criterion was analyzed by solving the 
nonlocal stability equations of FG annular. Moreover, 
a parametric study was conducted to examine the 
effects of different parameters on the critical buckling 
temperatures of the size-dependent FG nanoplates. It 
was concluded that the small-scale effects and thermal 
loading have a significant effect on thermal stability 
characteristics of FG annular nanoplates

In the study conducted by Challamel et al. [7], 
the small length scale effect of microstructured 
plates was investigated utilizing three different kinds 
of nonlocal plate theories, namely, the classical 
stress gradient Eringen’s theory, continualization 

of the discrete lattice model, and the combination 
of Eringen’s model with some additional gradient 
curvature terms.  Analytical solutions for the vibration 
and buckling of these equivalent continuous systems 
were obtained, and it was shown that the small length 
scale coefficient is dependent on the buckling mode 
and the geometry of the plate. Liu et al. [8] formulated 
the general equation for transverse vibration of a 
double-viscoelastic-FGM-nanoplate system with a 
visco-elastic Pasternak medium in between and each 
nanoplate subjected to in-plane edge loads based on 
the Eringen’s nonlocal elastic theory and the Kelvin 
model. Many different factors, such as the structural 
damping, medium damping, small size effect, loading 
ratio, and Winkler modulus and shear modulus of 
the medium are included in the general equation. It 
was illustrated that the vibrational frequency of the 
system for the out-of-phase vibration is dependent on 
different factors, such as structural damping, small 
size effect and viscoelastic Pasternak medium, and 
it was found that the buckling load of the system 
for the in-phase buckling case is independent of the 
viscoelastic Pasternak medium. It was concluded 
that the buckling load for the out-of-phase case is a 
function of the small size effect, loading ratio, and 
Pasternak medium.

Golmakani and Rezatalab [9] analysed the non-
uniform biaxial buckling analysis of an orthotropic 
single-layered graphene sheet embedded in a 
Pasternak elastic medium using the nonlocal Mindlin 
plate theory. All edges of the sheet were subjected 
to linearly varying normal stresses. The governing 
equations were derived based on first-order shear 
deformation theory, and the differential quadrature 
method was used to solve the governing equations 
for various boundary conditions. Effects of scale, 
aspect ratio, polymer matrix properties, type of planar 
loading, mode numbers, and boundary conditions 
were discussed in details. Taati [10] utilized the 
differential operator method to investigate the 
buckling and post-buckling behaviour of uniform 
functionally graded microbeams subjected to axial 
compressive force and thermal loading. It was 
assumed that the beams were resting on an elastic 
foundation. The modified couple stress theory and 
the principle of minimum potential energy were 
used to derive the governing equations. Moreover, 
Ebrahimi and Barati [12] applied the nonlocal strain 
gradient theory to examine the buckling behaviour 
of axially functionally graded nanobeams resting 
on a variable elastic medium. Hamilton’s principle 
was used to obtain the governing equations, and a 
Galerkin-based solution was implemented to obtain 
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the buckling loads. Ebrahimi et al. [12] carried out 
the vibrational and buckling behaviour of nanotubes 
utilizing Eringen’s nonlocal elasticity theory and 
considering the surface effects. The governing 
equation was derived using Hamilton’s principle, and 
the natural frequencies, as well as the buckling loads, 
were obtained by applying the differential transform 
method. Latifi et al. [13] investigated the buckling 
problem of thin rectangular functionally graded plates 
subjected to proportional biaxial compressive loadings 
with arbitrary edge supports. The classical plate theory 
based on the physical neutral plane was applied, and 
the displacement function was considered to be in 
the form of a double Fourier series. The effects of the 
plate aspect ratio, the loading proportionality factor on 
the buckling load of the plate with different common 
boundary conditions were studied.

Pradhan and Murmu [14] implemented the 
nonlocal elasticity theory to study the buckling 
behaviour of single-layered graphene sheets 
embedded in an elastic medium modelled by Winkler-
type and Pasternak-type foundations. The governing 
differential equations based on the principle of virtual 
work were derived. It was shown that the buckling 
loads are strongly dependent on the small-scale 
coefficients and the stiffness of the surrounding elastic 
medium. Shahidi et al. [15] developed a nonlocal 
continuum model based on Eringen’s theory for 
vibration analysis of orthotropic nanoplates (modelled 
as Kirchhoff plates) with arbitrary variation in 
thickness. The variational principle and Ritz functions 
were employed, and the effect of thickness variation 
on natural frequencies was investigated for different 
nonlocal parameters, mode numbers, geometries and 
boundary conditions. 

Moreover, Asbaghian Namin and Pilafkan [16] 
investigated the free vibration of defective graphene 
sheets via nonlocal elasticity theory, and the first-order 
shear deformation was used to derive the governing 
equations, which were solved using a generalized 
differential quadrature method. It was shown that 
the shapes and distributions of the structural defects, 
the number of missing atoms, and the vacancy defect 
reconstruction have a noticeable effect on the natural 
frequencies of the graphene sheets. Zhang et al. [17] 
applied the nonlocal elasticity theory to carry out the 
vibration behaviour of quadrilateral single-layered 
graphene sheets (modelled as Kirchhoff plates) in a 
magnetic field. The governing equations were solved 
by employing the element-free kp-Ritz method. 
The effects of the skew angles, nonlocal parameter, 
the magnetic field, and the boundary conditions on 

the fundamental frequencies of the single-layered 
graphene sheets were discussed. 

Furthermore, Li and Hu [18] studied the free 
torsional vibration behaviour of tubes made of 
a bi-directional functionally graded material. It 
was assumed that the material properties of the 
nanotube vary in the length direction according to 
an exponential distribute function and in the radius 
direction according to a power-law function. It was 
concluded that the torsional frequencies are increased 
by decreasing nonlocal parameters, and it was 
observed that this parameter does not affect the mode 
shapes of the nanotubes. The vibration formulation 
for a nanoscaled beam embedded in an elastic 
matrix under the effect of thermal environments was 
presented by Demir and Civalek [19]. The governing 
equations were obtained using Hamilton’s principle, 
the variational approach, and the nonlocal elasticity 
theory. A new Finite element method was utilized to 
solve for the vibrational frequencies that were affected 
by the Pasternak foundation parameter, the small-
scale parameter, and the thermal effect.

Additionally, Murmu and Adhikari [20] 
considered the nonlocal vibration of a double-
nanoplate-system bonded by an elastic medium. 
Closed form solutions were obtained for the natural 
frequencies of a nonlocal double-nanoplate-system. It 
was concluded that the increase of the stiffness of the 
coupling springs in the system reduces the small-scale 
effects during the asynchronous modes of vibration. 

In the present article, Eringen’s nonlocal elasticity 
theory is utilized to study the small-scale effect on the 
buckling behaviour of axially functionally graded 
(AFG) tapered Euler-Bernoulli beams resting on 
an elastic foundation. The governing equation is 
derived using Eringen’s nonlocal constitutive relations 
along with Hamilton’s principle. The Chebyshev 
spectral collocation method is applied to transform 
the governing differential equation into a system of 
algebraic equations, and then the resulted eigenvalue 
problem is solved to obtain the natural frequencies 
and the critical buckling loads. In this study, the 
variable height, breadth, cross-sectional area, second 
moment of area, mass density, and Young’s modulus 
will be presented as the variable coefficients of the 
governing differential equation. It is believed that 
the results of this study can be used for the design 
and optimization of double-tapered nanodevices 
made of axially functionally graded materials and 
are embedded in elastic medium, and may help in 
studying the buckling response of double-tapered 
nanodevices (that can be modeled as thin beams) when 
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used as mechanical resonators, sensors, actuators, and 
vibrating components.

1  THEORY

1.1  Chebyshev Spectral Collocation

The Chebyshev points are the points that represent the 
projections on the interval [–1, 1] of equally spaced 
points of a unit circle. These points are given as [21]:

	 x j N j Nj = ( ) =cos / , , ,..., .π 0 1 	 (1)

Fig. 1.  Nonlocal AFG tapered Euler-Bernoulli beam resting  
on Elastic foundation and subjected to a constant axial 

compressive load

The Chebyshev differentiation Matrix DN of size 
(N + 1) × (N + 1) can be obtained by interpolating a 
Lagrange polynomial of degree N at each Chebyshev 
point, differentiating the polynomial, and then finding 
its derivative at each Chebyshev point. The entries 
of the DN matrix are found in [21]. The Chebyshev 
collocation method can be used to solve ordinary or 
partial differential equations by representing the nth 
derivative of a function by Dn = (DN)n.

2.2  Nonlocal Theory

At the macro scale, the stress at a point in a body 
depends on the strain at the same point. However, in 
the nonlocal elasticity theory pioneered by Eringen 
[3], the stress at a point in an elastic domain is 
related to the stress field at all points in the domain. 
Eringen’s theory is based on the atomic theory of 
lattice dynamics and experimental results on phonon 
scattering and dispersion [3]. 

The stress tensor tij is defined for nonlocal linear 
elastic solids as [3]:

	 t x x x dV xij
V

ij= −( ) ( ) ( )∫α σ' ' ' , 	 (2)

where x is a reference point in the elastic domain, 
α(|x' – x|) is the non-local kernel attenuation function 
which introduces the nonlocal effects at the reference 
point x produced by the local stress σij at any point 
x', and |x' – x| is the Euclidean form of the distance. 
Eringen [3] introduced a linear differential operator 

ς, defined by ς = 1 – (e0l )2∇2, where e0 is a material 
constant estimated by experiments, simulations, or 
other models and theories. In Eringen’s analysis, the 
value of e0 was taken to be 0.39. Furthermore, the 
constant l represents the characteristic internal length 
which (for structures at the nanoscale) is of the same 
order of the external length. The Laplace operator ∇2  
is given as:

	 ∇ =
∂
∂

2

2

2x
. 	 (3)

According to Eringen [3], the integral constitutive 
relation of Eq. (3) could be simplified to the following 
form [4]:

	 1
0

2 2− ( ) ∇( ) =e l tij ijσ . 	 (4)

Due to its simple form, Eq. (4) has been used 
by many researchers in applying the nonlocal theory 
to study and analyze the buckling, vibration, and 
mechanics of micro- and nanostructures.  

Fig. 1. shows a Euler-Bernoulli beam resting 
on an elastic foundation and subjected to a constant 
compressive force P. The governing differential 
equation of motion for this system is given by [22] and 
[23]:

d
dx

E x I x d w
dx

P d w
dx

k w k d w
dxw G

2

2

2

2

2

2

2

2
0( ) ( )




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




+ + − =

 





,	(5)

where x is the spatial coordinate, w  is the transverse 
deflection, I(x) is the beam’s area moment of inertia 
of the cross-section, E(x) is Young’s modulus of 
Elasticity, and kw and kG are the Winkler modulus 
and the shear modulus parameters of the surrounding 
medium, respectively. 

For a Euler-Bernoulli beam, the bending moment  
is given as:

	 M x E x I x d w
dx

( ) = − ( ) ( )
2

2



. 	 (6)

In light of Eq. (5), d dx x2
2

Μ  ( ) /  is given by:

	 d M
dx

P d w
dx

k w k d w
dxw G

2

2

2

2

2

2
= + −







. 	 (7)

From Eq. (5) and utilizing Hooke’s law, the 
constitutive relation for the moment M x t ,( )  is given 
as:

	 M x e a d M
dx

E x I x d w
dx

( ) − ( ) = − ( ) ( )0

2
2

2

2

2



. 	 (8)

Inserting Eq. (8) into Eq. (7), yields:
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M x e a P d w
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Substituting Eq. (9) into Eq. (6), the equation of 
the transverse motion of the nonlocal Euler-Bernoulli 
beam resting on an elastic foundation and subjected to 
a constant compressive force is given as:
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Simplifying and collecting terms yields:
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In the present study, E(x) and I(x) are given as 
[22]:

E x E x
L

I x I c x
L

c x
Lb h( ) = +






 ( ) = −





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 −





0 0

3

1 1 1, ,	(12)

where E0 and I0 are respectively the modulus of 
elasticity, and area moment of inertia at x = 0, cb is the 
breadth taper ratio, and ch is the height taper ratio. To 
obtain the normalized equations, the dimensionless 
parameters are introduced as:

	

X x
L

W w
L
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Substituting Eq. (13) into Eq. (11) and 
rearranging, yields:
d
dX

E X I X d W
dX
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λ µ .	(14)

The critical buckling loads are determined by 
solving Eq. (14) as an eigenvalue problem.

2  SOLUTION PROCEDURE

The Chebyshev spectral collocation method is used 
to discretize the governing equation and the boundary 
conditions. It is known that for structures modelled 
as Euler-Bernoulli beams, two boundary conditions 
should be satisfied at the edges of the beam, and as 
there is only one unknown at each point Wi,j, therefore, 
the Chebyshev collocation method can be applied to 
satisfy one boundary condition only. To overcome 
this difficulty, the boundary conditions are applied 
by expressing the displacement at the boundary point 
and its adjacent point in terms of the displacement at 
other points in the domain. For example, the boundary 
conditions of a beam with clamped ends are given as:

	 W
W
X

W
W
X

0
0

1
1

0( ) = ∂ ( )
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= ( ) = ∂ ( )
∂

= . 	 (15)

Applying the Chebyshev collocation method, 
these conditions are expressed as:
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As the X-axis is normalized to be in the range 
of [0, 1], the original Chebyshev points are shifted 
to be in this interval. Accordingly, the Chebyshev 
differentiation matrices will have different entries 
than those obtained by Trefethen [21], as they depend 
on the distribution of the points.

Eq. (16) is written in matrix-vector form as:
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From Eq. (17), the displacements at the points 
adjacent to the boundaries are given as:
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where Det is the determinant of the 2 × 2 matrix in the 
left side of Eq. (18) and is given by:

	 Det D D D DN N N N= ×( ) − ×( )+ +1 2

1

1

1

1

1

1 2

1

, , , ,
. 	 (19)

From Eq. (18), the displacements W2 and WN 
are written in terms of the displacements at the other 
points as:

W
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As a result, the Chebyshev collocation matrices are 
modified as:
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The boundary conditions of a beam with simply 

supported ends are given as:
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In this case, the boundary conditions are 
expressed using the Chebyshev collocation method 
as in Eq. (16), except that each differentiation matrix 
D1 is substituted with the differentiation matrix D2. 
Eq. (14) is discretized by the Chebyshev collocation 
method as:
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where I is a (M – 4) × (M – 4) identity matrix, R1, R2, 
and R3 are diagonal (M – 4) × (M – 4) matrices with 
values of R1i, R2i and R3i on the main diagonal, 
respectively, where:
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R x c x c x c xi i b i h i h i3 1 1 1 1
2= +( ) −( ) −( ) −( ) , 	 (27)

3  RESULTS AND DISCUSSION 

There are no results for the critical buckling loads 
for micro- or nanoaxially functionally graded 
non-uniform Euler-Bernoulli beams resting on 
elastic foundations and subjected to constant axial 
compressive forces based on the nonlocal elasticity 
theory. Thus, for validation purpose, the comparison 
is made with local AFG non-uniform Euler-Bernoulli 
that are not embedded in the elastic medium, 
by setting the scale effect, the Winkler modulus 
parameter, and the shear modulus parameter to zero. 
To demonstrate the accuracy of the results obtained 
from the proposed technique, the critical buckling 
loads of local orthotropic non-uniform AFG Euler-
Bernoulli beams with simply supported and clamped 
edges are compared with those obtained by Shahba 
and Rajasekaran [22]. The notation S-S denotes a 
beam that is simply supported at both edges, whereas 
the notation C-C denotes a beam with clamped edges. 
To show the stability and the accuracy of the proposed 
technique, a convergence study is conducted for the 
non-dimensional critical loads of local AFG beams 
with simply supported and clamped edges. From 
Table 1, it can be observed that the sufficient number 
of points to attain accurate results is N = 10 for S-S 
beams, and N = 12 for C-C beams.

Table 1.  Convergence of Non-dimensional critical load for AFG S-S 
and C-C tapered beams, (ch = cb = 0.2, μ = Kw= KG = 0)

S-S C-C S-S C-C
N=7 9.5876 38.0371 N=11 9.5971 37.6022
N=8 9.5979 37.5838 N=12 9.5971 37.6023
N=9 9.5976 37.5967 N=13 9.5971 37.6023
N=10 9.5971 37.6020 Ref. [38] 9.5971 37.6023

As shown in Tables 2 and 3, it is clear that the 
results of the proposed model are in good agreement 
with those obtained by Shahba and Rajasekaran [22]. 
Additionally, the generated results for an isotropic 
and uniform S-S nonlocal beam (not embedded in an 
elastic medium) are compared to those obtained by 
Reddy [24], as shown in Table 4. Very good agreement 
is noted, and these tables reflect the validity of the 
proposed model and solution. 
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Table 2.  Non-dimensional critical load (λ = PcrL2 / E0I0) for an 
AFG C-C tapered beam

ch cb 0 0.2 0.8

0
Present Study 57.3940 51.7856 30.8922
Ref. [22] 57.3940 51.7856 30.8922

0.2
Present Study 41.9169 37.6023 21.6802

Ref. [22] 41.9169 37.6023 21.6802

0.4
Present Study 28.1794 25.0890 13.8242

Ref. [22] 28.1794 25.0890 13.8242

0.6
Present Study 16.3412 14.3958 7.4275

Ref. [22] 16.3412 14.3958 7.4275

0.8
Present Study 6.6801 5.7836 2.6649

Ref. [22] 6.6801 5.7836 2.6649

Table 3.  Non-dimensional critical load (λ = PcrL2 / E0I0) for an 
AFG S-S tapered beam

ch cb 0 0.2 0.8

0
Present Study 14.5112 13.1398 8.3957
Ref. [22] 14.5112 13.1398 8.3957

0.2
Present Study 10.6860 9.5971 5.8498

Ref. [22] 10.6860 9.5971 5.8498

0.4
Present Study 7.2831 6.4715 3.7019

Ref. [22] 7.2831 6.4715 3.7019

0.6
Present Study 4.3287 3.7892 1.9748

Ref. [22] 4.3287 3.7892 1.9748

0.8
Present Study 1.8667 1.5950 0.7075

Ref. [22] 1.8667 1.5950 0.7075

Table 4.  Comparison of the Buckling loads with Reddy [24] for an 
isotropic S-S uniform beam

μ Present Study Ref. [24]
0 9.8696 9.8696
0.5½ / 10 9.4055 9.4055
1.0½ / 10 8.9830 8.9830
1.5½ / 10 8.5969 8.5969
2.0½ / 10 8.2426 8.2426
2.5½ / 10 7.9163 7.9163
3.0½ / 10 7.6149 7.6149
3.5½ / 10 7.3356 7.3356
4.0½ / 10 7.0761 7.0761
4.5½ / 10 6.8343 6.8343
5.0½ / 10 6.6085 6.6085

Variations of the dimensionless critical buckling 
loads at different values of the scale parameter of AFG 
nano C-C and S-S beams with cb = ch = 0.2, KG = 10  
and KW = 200 are presented in Fig. 2. The scale 
parameter is taken in the range of 0 to 1. It is observed 
that as the scale parameter increases, the buckling 
loads decrease. The rate at which the buckling loads 
decrease is higher for the AFG nano C-C beams than 

that for the AFG nano S-S beams. Additionally, as 
shown in the figure, the dimensionless buckling loads 
for the AFG C-C and S-S nanobeams have the same 
value for μ > 0.2.

Fig. 2.  Variation of the critical buckling load with the nonlocal 
parameter of a C-C and S-S AFG Euler Bernoulli beam  

(cb = ch = 0.2, KG = 10, KW = 200)

Fig. 3 shows the effect of the breadth taper ratio 
(cb) on the critical dimensionless buckling loads 
of  AFG C-C and S-S beams with ch = 0.2, KG = 10 
and KW = 200. The breadth taper ratio is taken in the 
range of 0 to 0.8. It is observed that as the value of 
cbincreases, the buckling load decreases, and the 
buckling load of the AFG C-C beam is more sensitive 
to the increase in cb than the buckling load of the AFG 
S-S beam. For μ = 0, it is noticed from Fig. 3a that as 
cb increases from 0 to 0.8, the buckling load of the 
AFG C-C beam decreases from 66.98 to 46, whereas 
for the AFG S-S beam, it decreases from 40.95 to 
33.65. In Fig. 3b, the effect of the breadth ratio (cb) 
on the critical dimensionless buckling loads of  AFG 
C-C and S-S nonlocal beams with ch = 0.2, KG = 10, 
KW = 200, and μ = 0.1 is presented. As observed from 
Fig. 3, the increase in cb has a greater influence on the 
dimensionless buckling load of the AFG C-C nonlocal 
beams than that on the dimensionless buckling load 
of the AFG S-S nonlocal beams. Moreover, as cb 
increases, the difference between the dimensionless 
buckling loads for the AFG C-C and S-S nanobeams 
becomes smaller.  

The variations of the dimensionless critical 
buckling loads at different values of the height taper 
ratio (ch) of AFG C-C and S-S beams with cb = 0.2, 
KG = 10 and KW = 200 are presented in Fig. 4a. As for 
the breadth taper ratio, the height taper ratio is taken in 
the range of 0 to 0.8. The figure reveals that the critical 
buckling load decreases as the value of ch increases, 
and the buckling load of the AFG C-C beam is more 
sensitive to the increase in ch than that of the AFG S-S 
beam. The figure shows that as chincreases from 0 to 
0.8, the buckling load of the AFG C-C beam decreases 
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from 76.8 to 22.79, whereas for the AFG S-S beam, it 
decreases from 43.33 to 17.68. The effect of ch on the 
critical dimensionless buckling loads of AFG C-C and 
S-S nonlocal beams with cb = 0.2, KG = 10, KW = 200 
and μ = 0.1 is shown in Fig. 4b. It is noticed that as ch 
increases from 0 to 0.58, the difference between the 
dimensionless buckling loads for the AFG C-C and 
S-S nanobeams becomes smaller, and for ch > 0.58, 
the critical buckling loads for the AFG C-C and S-S 
nanobeams are equal. 

Fig. 5a shows the effect of shear modulus 
parameter (KG) on the critical dimensionless buckling 
load of an axially functionally graded S-S and C-C 
beams with cb = ch = 0.2, KW = 200 and µ = 0. It is 
observed that as the value of the shear modulus 
parameter increases, the critical buckling load 
increases, and the buckling load for the C-C beam is 
higher than that for the S-S beam for the same value 

of KG. However, the rate at which the buckling load 
increases with KG is higher for the S-S beam. For 
example, as KG increases from 0 to 10, the increasing 
rate of the buckling load is 33 % for the S-S beam and 
19 % for the C-C beam. In Fig. 5b, the effect of KG 
on the buckling load with cb = ch = 0.2, KW = 200, and 
µ = 0.1 is presented. As in Fig. 5a, the figure reveals 
that the buckling load increases as KG increases, 
however, the increasing rate is smaller than that when 
µ = 0. Furthermore, it is observed that the buckling 
load of the AFG C-C nanobeams is more affected by 
the increase of the scale parameter than that for the 
AFG S-S nanobeams. For instance, at KG = 0, the 
buckling load for the AFG C-C nanobeam decreases 
from 53 to 38 as the scale parameter increases from 0 
to 0.1, whereas for the AFG S-S nanobeam it decreases 
from 30 to 28 as the scale parameter increases from 0 
to 0.1.

Fig. 3.  Variation of the critical buckling load with the breadth ratio of a C-C and S-S AFG Euler-Bernoulli beam  
(ch = 0.2, KG = 10, KW = 200; a) μ = 0, and b) μ = 0.1)

Fig. 4.  Variation of the critical buckling load with the height ratio of a C-C and S-S AFG Euler-Bernoulli beam 
(cb = 0.2, KG = 10, KW = 200; a) μ = 0, and b) μ = 0.1)
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Fig. 6a shows the effect of the Winkler modulus 
parameter (KW) on the critical dimensionless buckling 
loads of AFG C-C and S-S nonlocal beams with 
cb = ch = 0.2, KG = 10 and μ = 0. The Winkler modulus 
parameter is taken in the range of 0 to 400. Similar 
values of modulus parameter were taken by Pardhan 
and Murmu [14]. It is concluded that as the value of 
KW increases, the buckling load linearly increases 
with a constant slope, and the increasing rate for 
the dimensionless buckling load of the AFG S-S 
nonlocal beams is greater than that of the AFG C-C 
nonlocal beams. In Fig. 6b, the effect of the Winkler 
modulus parameter (KW) on the critical dimensionless 
buckling loads of AFG C-C and S-S nonlocal beams 
with cb = ch = 0.2, KG = 10 and μ = 0.2 is presented. 
The figure reveals that the increasing rate of the 
dimensionless buckling load depends on the range of 

the Winkler modulus parameter. For example, for the 
AFG S-S nonlocal beam, the increasing rate of the 
dimensionless buckling load is approximately 59 % 
as KW increases from 0 to 104, 14 % as KW increases 
from 104 to 296, and only 0.4 % as KW increases from 
296 to 400. Similar observations can be made for the 
AFG C-C nonlocal beams. A point of interest is that 
the dimensionless buckling loads for the S-S and C-C 
beams become equal to each other for KW > 296. 

For a more general view, three-dimensional plots 
are shown in Figs. 7 and 8. In Fig. 7, the dimensionless 
critical buckling loads of the AFG S-S nanobeams 
with cb = ch = 0.2, and KG = 10, are plotted versus the 
nonlocal scale parameter and the Winkler modulus 
parameter. It is shown that as the scale parameter 
increases, the rate at which the dimensionless critical 
buckling load increases with the Winkler modulus 

Fig. 5.  Variation of the critical buckling load with shear modulus parameter of a C-C and S-S AFG Euler-Bernoulli beam 
(cb = ch = 0.2, KW = 200; a) μ = 0, and b) μ = 0.1)

Fig. 6.  Variation of the critical buckling load with Winkler modulus parameter of a C-C and S-S AFG Euler-Bernoulli beam 
(cb = ch = 0.2, KG = 10; a) μ = 0, and b) μ = 0.2)



Strojniški vestnik - Journal of Mechanical Engineering 64(2018)12, 772-782

781Buckling Analysis of Axially Functionally Graded Tapered Nanobeams Resting on Elastic Foundations, Based on Nonlocal Elasticity Theory   

parameter becomes smaller. For example, at μ = 0, 
the dimensionless critical buckling load of the S-S 
nanobeams increases from 19.6 to 57.78 as KW 
increases from 0 to 400. On the other hand, at μ = 1, the 
dimensionless critical buckling load increases from 
10.82 to 10.86 as KW increases from 0 to 400. This 
leads us to conclude that the scale parameter is more 
dominant than the Winkler modulus parameter, and at 
relatively high values of the nonlocal scale parameter, 
the value of the Winkler modulus parameter has a 
negligible influence on the dimensionless critical 
buckling loads. 

In Fig. 8, the dimensionless critical buckling loads 
of the AFG S-S nanobeam with ch = 0.2, KW = 300 and 
KG = 5, are plotted versus the nonlocal scale parameter 
and the breadth taper ratio (cb). The figure reveals that 
the dimensionless critical buckling loads decrease 
with the increase in the nonlocal scale parameter and 
the breadth taper ratio. 

Fig. 7.  Variation of the critical buckling load of a nonlocal AFG S-S 
Euler-Bernoulli beam with the nonlocal parameter and Winkler 

modulus parameter (cb = ch = 0.2, KG = 10)

Fig. 8.  Variation of the critical buckling load of a nonlocal AFG S-S 
Euler-Bernoulli beam with the nonlocal parameter and the breadth 

taper ratio (ch = 0.2, KG = 5, KW = 300)

4  CONCLUSIONS

The buckling behaviour of nonlocal axially 
functionally graded tapered Euler-Bernoulli beams 
embedded in the elastic medium was performed. 

Eringen’s nonlocal elasticity theory was used to derive 
the governing equation of motion. The Chebyshev 
spectral collocation method was utilized, and the 
boundary conditions were applied by expressing the 
displacements at the boundaries and their adjacent 
points in terms of the displacements at all other points 
in the domain, and then the resulting eigenvalue 
problem was solved to obtain the critical buckling 
loads. The effects of the nonlocal scale coefficient, 
the Winkler modulus parameter, the shear modulus 
parameter, breadth taper ratio, height taper ratio, 
and the boundary conditions on the critical buckling 
loads were studied. It was observed that the nonlocal 
scale parameter has a significant effect on the critical 
buckling loads, and the results reveal that beams 
with clamped ends are more affected by the scale 
parameter. In general, the critical buckling loads for 
the C-C beams are higher than those for the S-S beams; 
however, at relatively high values of the nonlocal scale 
parameter, the values of the critical buckling loads 
are very close to each other. It is concluded that the 
critical buckling load diminishes due to the rise of the 
nonlocal parameter, and the breadth and height taper 
ratios. In contrast, the critical buckling load increases 
as the shear modulus and Winkler modulus parameters 
become larger.

The authors hope that the obtained results may 
be useful for scientists in designing and working on 
the micro- or nanoaxially functionally graded thin 
structures. 

5  NOMENCLATURE

cb	 breadth taper ratio,
ch	 hight taper ratio,
DN	 Chebyshev differentiation matrix, 
E(x)	modulus of elasticity, [N/ m2]
eol	 nonlocal parameter, [m]
I(x)	moment of inertia of the beam, [m4]
kG	 shear modulus parameter, [N]
KG	 non-dimensional Shear modulus parameter,
kw	 winkler modulus parameter, [N/ m2]
KW	 non-dimensional Winkler modulus parameter,
L	 length of the beam, [m]
N+1	number of Chebyshev points,
P	 compressive constant axial load, [N]
tij	 stress tensor, [N/ m2]
w 	 transverse displacement, [m]
W	 non-dimensional transverse displacement,
x	 Cartesian coordinate, [m]
X	 non-dimensional Cartesian coordinate,
Greek Symbols
λ	 non-dimensional critical load,
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μ	 non-dimensional nonlocal parameter,
ζ	 differential operator,
σij	 local stress, [N/ m2]
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