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Abstract: The analytical and numerical results of a study on the problem of bistable cavity optimization (on transmission and on reflection) for
plane-wave excitation and equal end-face reflectivities, are presented. Three different optimization conditions have been considered (fixed finesse,
fixed end-face reflectivity and fixed absorption per pass). Special attention has been given to the case of high finesse cavity.

Optimizacija votline bistabilnega
fotorefraktivhega etalona

Kljuéne besede: naprave optiéne, votline resonatorske, Fabry-Perot interferometri, bistabilnost fotorefraktivna, etaloni fotorefraktivni bistabilni,
naprave bistabilne notranje, votline bistabilne, optimizacija votlin, optimizacija votlin za prenos, optimizacija votiin za refleksijo, optimizacija votlin

za dano absorpcijo opti¢no, votline z visoko finostjo povrsine

Povzetek: V prispevku so predstavijeni analitiéni in numeriéni rezultati Studije problema optimizacije votline fotorefraktivnega bistabilnega etalona
{za transmisijo in refleksijo) za primer vzbujanja z ravnim valom pri enaki odbojnosti konénih zrcal.
Prispevek obravnava tri razli¢ne optimizacijske pogoje: fiksno finost votline, fiksno reflektivnost zrcal in fiksno absorpcijo na prehod. Posebna

pozornost je posvecena votlini z visoko finostjo.

1. INTRODUCTION

Optical bistability has attracted a continuous interest
over the pasttwo decades /1-18/. This is especially true
for the intrinsic photorefractive bistability (the nonlinear-
ity of the medium of the photorefractive Fabry-Perot
etalon is of the Kerr-type, i.e. the refractive index is given
by:

n,n 2
n=n0+n2/:no+—22;170|E] ,

where ng and n2 are the linear and nonlinear refractive
indexes of the medium, / is the optical intensity, E is the
optical electric field vector and 1o is the wave imped-
ance in the vacuum), owing to its potential application
to all optical signal processing /10, 11, 18/.

The critical intensity /o /6/ is certainly a parameter of
central importance concerning the potential applica-
tions of the intrinsic photorefractive bistable etalons.
Since lower critical intensity means switching at lower
powers, it is desirable, of course, for this parameter to
be as small as possible. Therefore, cavity optimization
of the photorefractive bistable etalon implies such a
choice of the final parameters used for fabrication (i.e.,
the end-face reflectivities and the absorption per pass),
which leads to the smallest possible critical intensity for
given conditions. Other important parameters are the
transmission difference Tp (for the case when the
transmitted wave is used as an output) and the reflec-
tion difference Rp (for the case when the reflected wave
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is used as an output) /9/. It is necessary for these
parameters to be as large as possible, because larger
Tp (or Ap) means in, principle, larger output signal,

In/6/, which is the first paper to treat this question, Miller
reduces the problem of cavity optimization to minimiza-
tion of /¢ for fixed finesse. He concentrates on transmis-
sion, but does not include explicitly the transmission
difference in his analysis. One could hardly say, how-
ever, that the cavity is optimally designed if /o was
minimized at the expense of Tp (for the case of trans-
mission) or at the expense of Rp (for the case of reflec-
tion). Wherrett /9/ gives emphasis on reflectivity and is
concerned with the dependence of the critical intensity
and the reflection difference on the values of end-face
reflectivities for specific absorption per pass conditions.
No attempt is made, however, to obtain explicit expres-
sions for the optimal values of the end-face reflectivities
and of the absorption per pass for given conditions.

Normally, one expects from a cavity to have small /g,
but, at the same time, large Tp (or Rp). Thus, it seems
more meaningful if by cavity optimization is understood
minimization of Ic/Tp (or I¢/Rp), rather than minimization
of lc. As can be easily seen, the former insures, effec-
tively, maximization of the efficacy by which the input
power is used. Therefore, in this paper we pay special
attention to the minimizations of /o/Tp and /c/Rp. This is
done for three different conditions, i.e. for given finesse
®, for given end-face reflectivity R (we assume equal
end-face reflectivities), and for given absorption per
pass A.
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2. THEORETICAL OUTLINE

The following parameters characterize the analyzed
bistable cavity:

R Intensity reflectivity of the faces

o Linear absorption coefficient

d Cavity length

A 1 - ¢4 (absorption per pass)

B e%=1-A (absorption per pass complement)
Ra Re®d = RB (effective intensity reflectivity)

F 4Ra/ (1-Ra)? = 4RB / (1-RB)?

) nF% 2 =n1Re"? / (1-Ra) (cavity finesse)

In terms of these parameters, the critical intensity (lc),
the transmission difference (Tp) and the reflection dif-
ference (Rp) are given by /6, 9/:

_t
¢ Bu

where B = 3ng / ha is a constant which contains all the
relevant material properties, and

I , (1

L= 161 (1- R)(1 - e‘da)(1+ R.) H(F)
J2 (1—Ra)2 G*(F)

with

12

H(F) = {(F + 2)[(F +2)% + 8F2] ~(F+2)° - 2F2}

1/2

G(F) = 3(F +2) - [(F+2)’ +8F°]

is a figure of merit for the cavity design,

As can be seen, u, Tp and Rp can be considered as
functions of two variables - the mirrors’ reflectivity R and
the absorption per pass complement B=1-A=ed,
These functions are physically meaningful only within
the domain 0<R<1, 0<B<1, Fig. 1. Note that m is a
symmetrical function with respect to the line R=B, L.e.
wB=xR=y = HlB=YR=x. It increases monotonically
along the diagonal OP, from zero at point O toinfinity at
point P, being equal to zero along the lines B=0, R=0,
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B=1 and R=1, exceptat the point P at which it becomes
unlimited. On the other hand, Tp and Rp are asymmet-
rical functions with respect to R=B. They are both equal
to zero along B=0, R=0 and R=1 and equal to 4R /
(1+R)? at B =1. Along the diagonal OP, Tp increases
from zeroto 1/4, whereas Rp - from zero to 3/4. The point
P is a singular point for these functions.

R

0O 1

Fig. 1. Domain of definition of u, Tp and Rp

In the limit of high finesse (i.e., small A=1-B and small
1-R) is:

(6

and expressions (2), (3) and (4) reduce to:

L= 3J/3r (1-R)(1-B)

2 (1-R+1-B)

3 (6)

__ (-Ry
(1-R+1-BY

D

RD:(1—R)[1—R+2(1;B)] .
(1-R+1-B)

3. RESULTS AND DISCUSSION

A. Cavity optimization for given finesse

As was shown in /6/, the pairs of values of R and B which
for given finesse F minimize the critical intensity lc, are
given by:
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Table 1. Optimal values of R and B for given finesse ®. / Ra= RB = {[1+(rn/ 20)%]" -1/ 2 12/
Minimiz .
nimized Location of the minimum
parameter
. _ plin
[c Rop - Bap - Ra
1/Tp 1 . 12 R
R, = —{—(1 ~ Ra)+{(l ~R,) + 16Ra} } i By = —%
(optimization 4 ” Rgp “
on
transmission)
I/R
/Ro 2C] 172 [ ! Ra(l+Ra)
(optimization - ﬂ'p‘ co 3 arccos v |t 6 ) Jor g <0
on R, - |7
. op(r
reflection) n g ) R, (1+R)
‘l e SL ~ arccos ’3,2 c ,  forg>0
R(Z
BOP(r)
op(r)
where
2 2
e (I+R.) RI(1+R.) R nd p:_Ra(1+Ra){6+Ra(1+Ra)]
216 24 2 36
Rop = Bop = Rlz/z 1 -
0.9
In accordance with (1), (2), (3) and (4), minimizations of 0.8
le/Tp and le/Rp for given finesse @ are equivalent to 0.7
location of the maxima of the functions f (1-R)3 0.6
B(1-B) and fr = (1-R)2 (1-B)(1-RuB) along the curve RB .
=Ry = const., respectively. Table 1 presents the re- 0.5 ( | o Rop.Bop
quired solutions. For completeness, the case of minimi- rE 0.4 . Rop(t)'
zation of I¢ is also included. Graphical presentations of | 5 Bop(1)
these solutions are given in Fig. 2. Ro =Rq and Bo =1 0.3 —a— Rop(r)
are the pairs of values of R and B which for given finesse 0.2 —a— Bop(r)
maximize Tp and Rp (the maximal value of Tp and Rp ’ - X Ry
for given finesse is 4Rq / (1+Ra)?). As one can see, 0.1 - X~ Bo
cavity optimization on transmission requires consider- 0 B ‘ , , ,
ably smaller values for R, and, therefore, larger values oo e
for B (thinner etalon), than are the values that minimize 6.1 02 04 08 1.6 32 6.4 12.8 25.6 51.2
the critical intensity. The values of R for cavity optimiza- &
tion on reflection are larger then for cavity optimization ‘ ' .
on transmission, but, still smaller than the ones that Fig. 2. Pairs of optimal values of R and B, for given

minimize the critical intensity. For the special case of
high finesse cavity, relations given in Table 1 reduce to
those in Table 2.
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finesse ®. Rop and Bop, Rop(t) and Bop), and
Rop(r) and Bop(r) correspond to minimization
of I¢, Ic/Tp and Ic/Rp, respectively.
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Table 2. (high finesse cavity) Optimal values of R and B for given finesse ®.

Minimized Location of the minimum
parameler
fe 2 1-R,
R » = Bop = Rc]t/ ~ 1 _ 2
/Ty S 3(1-R
R, =1+ 3R, _1z1%~( ; )
= __5“_ ~1~ 1- Ra
op(t) — Rap(r) ~ 4
I/R -
b \/(7_Jﬁ) +32(1+17)R, - (7-17) .
Ro - N 1 8 1 ) R |
" 2(1+\/ﬁ) 9+\/ﬁ( a)
R, 1417 LT gy
op() R(;p(,) 9 | \/__

To show that cavity optimization based on minimization
of I¢/Tp or on minimization of I¢/Rp could be advanta-
geous or more acceptable than cavity optimization
based on minimization of I¢, it is useful to calculate the
values of I, Tp and Rp for each of the three cases. Such
calculations have been done for a high finesse cavity,
Table 3. Comparing the presented values, we note that
a cavity optimized for a minimum I¢/Tp is characterized
by a 2.25 times larger transmission difference than a

cavity optimized for a minimum ¢, and that this is paid
by an 33% increase in the required holding power
(critical intensity). Also, the optimization for a minimum
Ic/Rp offers a 13% larger reflection difference for a 5%
increase in the holding power, as compared to cavity
optimization for minimum lc. We also note that in each
case Rp is considerably larger than Tp. This clearly
indicates that the reflection mode of operation can
prove to be better suited for device purposes.

Table 3.  Critical intensity, transmission difference and reflection difference of an optimized high finesse cavity
(optimization for given finesse)™*
Optimization | ], b Rp 1./ Tp I./Rp
criteria
minimum 4.000(1-R)C, 1/4 3/4 16.000 (1-R,)C, ~5.333(1-Ry)C,
I
minimum | ~5333(1-R,)C, 9/16 15/16  ~9.481(1-R,)C,  =5.688(1-R,)C,
1/ Tp
minf}l;um ~4.202(1-R,)C, ~0.372  ~0.848 =11296(1-R,)C, ~4.955(1-R,)C,
c D

"C, =2/3+/3nB isa constant which depends on the properties of the medium.
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B. Cavity optimization for given absorption
per pass

In accordance with (1), (2), (3) and (4), minimizations of
le, le/To and Ic/Rp for given absorption per pass A = 1-B
are equivalent to solving the equations du. / 9R = 0 and
J(uRp) / 0R = 0O, respectively. The results will be of the
form R'op = R'op(B), R'op(t) = R'op(t)(B), and R'op() =
Rop(r)(B), respectively, where R'op, R'op(t) and R'op(r) are
the required optimal values of R. Because of the very
complex dependence of 1 on R and B (note that H(F)
and G(F) are functions of R and B!), it is clear that
analytical solutions of these equations are not possible.
In Fig. 3, we present the solutions obtained by numeri-
cal methods. Rt and R'ro are the of values of R which
for given finesse maximize Tp and Rp, respectively. As
expected, cavity optimization on transmission for given
absorption per pass will lead to smaller values for R than
cavity optimization on reflection. For B=50, R'op, R'opgt)
and R'op(r) assume the values 1/2, 2/5 and 1/2, respec-

T
0.9 +
0.8 -
0.7
0.6
e 05
0.4 - “
 n axe w i e e KT
0.3 + —t— R'op(1)
02 + —— R'op(r)
= X~ R'to
0.1 + - X= R'ro
0 t t t t ~
0 0.2 0.4 0.6 0.8 1
B

Fig. 3. Optimal values of R for given B. R'op, R’op(t)
and R’ap(r) correspond to minimizations of Ic,
le/Tp and Ic/Rp, respectively.

tively, as obtained theoretically. For B=0, R'op, R'op(t)
and R’op(r) approach unity.

The case of high finesse cavity allows analytical treat-
ment. The corresponding expressions of R'op, Rlop(t)
and R'op(n), obtained by using (6), (7) and (8), are given
in Table 4.

Table 5 presents the calculated values of le, Tp and Rp
for high finesse cavities, optimized for minimum g, for
minimum I¢/Tp or for minimum I¢/Rp.

Table 4. (high finesse cavity) Optimal values of R for
given B.
minimized | 1, carion of the minimum
parameler
L : 1-B
Rop =]——
L/Tp . 3(1- B)
ROP(/) -7 2
L/Rp , V41 -3
Rop(r) = 1——-—~(1 - B)

C. Cavity optimization for given end-face
reflectivity

Minimizations of lc, Ie/Tp and I¢/Rp for given end-face
reflectivity R are equivalent to solving the equations
du/dB=0, d(uTp)/0B=0 and d(uRp)/aB=0, respectively.
The results are of the form Bop=Bop(R),
Blop(t) =B'op(y(R), and B'op(r)=B’op(r)(R), respectively,
where B'op, B'op(t) and B'op(r) are the required optimal
values of B. As in the previous case, analytical solutions

Table 5. Critical intensity, transmission difference and reflection difference of an optimized high finesse cavity
(optimization for given B=1-A)
Optimization | /. b Rp 1L/Tp I./Rp
criteria
minimum 6.750(1-B)C, ~0.111 =0.555 =~60.756 (1-B)C, ~12.151(1-B)C,
I
minimum ~10.420(1-B)C, 0.360 0.840 ~28.444(1-B)C, ~12.405 (1-B)C,
1./ Tp
minimum | ~7 452(1-B)C, ~0.211  0.740  =35318(1-B)C,  ~10.070(1-B)C,
1./ Rp
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ofthese equations are not possible. InFig. 4, we present
the results obtained by numerical methods. B'o=1 pre-
sents the values of B which, for given R, maximize Tp
and Rp. As expected, for given end-face reflectivity R,
the optimal values of B for minimum l¢/Tp are larger
(thinner cavity is required) than are the optimum values
B for minimum le or for minimum lc/Rp. One can show
analytically, that for R=0, B'op, B'op(ty @and B'op(r) ap-
proach 1/2, 3/4 and 2/3, respectively.

1]¢--><—-x--x-——x--x-—»---x--x--x--

0.9

0.8 /A/K

4.7
0.6 1 —o——B'op
—a— B'op(t)
m 0.5 9 —0— B'op(r)
0.4 + _i,ﬂ,l
0.3 +
0.2 +
0.1 +
0 1 } t } {
0 0.2 0.4 0.6 0.8 i

R

Fig. 4. Optimal values of B for given R, B'op, B'op()
and B’op(r) correspond to minimizations oflc,
Ie/Tp and Ic/Rp, respectively.

It is easy to show, by using (6), (7) and (8), that for the
case of high finesse cavity Blop=Bop(R),
B’op(t)zB,op(t)(R), and B’op(r)ZB,op(r)(R> reduce to the
simple expressions given in Table 6.

Table 7 presents the calculated values of ¢, To and Rp
for a high finesse cavity, optimized for minimum I, for
minimum l¢/Tp or for minimum l¢/Rp.

Table 6.  (high finesse cavity) Optimal values of B for
given R.
Minimized | 1, 0ation of the minimum
parameter
I , 1-R
va =]~ T
/T, , _
’ B op(ty = - l_zﬁ
1/R , -
’ By =1~ '1:/‘:@
6

4. CONCLUSIONS

We have been able within the limitations of the plane-
wave approximation to give criteria for optimizing the
design of arefractive nonlinear Fabry-Perot etaloninthe
presence of linear absorption for minimum critical inten-
sity, minimum critical intensity - transmission difference
ratio or minimum critical intensity - reflection difference
ratio. Three optimization conditions have been consid-
ered: fixed finesse, fixed absorption per pass and fixed
end-face reflectivity.
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