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Effect of Rounding on Expected Value and
Standard Deviation

Anton Cedilnik and Katarina Kémel}

Abstract

We prove that the rounded expected value of the rounded nanddable differs
from the expected value of the original random variable Isg ldhen20, whered
is the distance between two neighbouring rounded numbérs. sEime conclusion
holds for standard deviation. Hence, in practice the infteasf rounding to expected
value and standard deviation is almost negligible.

1 Introduction

Usually, rounding (Everitt, 2002; Lisman, 1985) is consétkas a procedure for reporting
numerical information to fewer digits than used during dadfiection or analysis. The
most frequent rounding procedure is to discard all decingitsdright of thed-th one
which may be corrected in a well known way; the set of all reethdalues form the
arithmetic sequence of all rational numbers of the farteger - 10~%. In this paper,
we understand rounding more generally: it is a procedureedporting real-numerical
information as a subset of an arbitrary arithmetic sequence

Suppose that rounded values form an arithmetic sequeneg?d), 7. J is theround-
ing leveland is a positive real number, and thi@ft ¢ is the first non-negative rounded
value (0 < e < §). The values + nd is the round-off of the interval

ILn=[e+(n—n)d,e+(n+1-n)d),

wheren (0 < n < 1), if different of%, presents thasymmetryf rounding. This rounding
is described by the function

x +— (x) ;= €+ int (?+n) -0,

where int(.) denotes thateger function(also known agloor function

int(t) = [t] :==max{m|meZ N m<t}.

Example ARounding taf decimal places (or tpi| integer places, iff < 0): § = 1079,

e=0,n= % It is worth noting that the standard rounding procedurtedsfslightly from
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our one if we cut off an exact. For example, forl = —2 the standard procedure rounds
7450 to 7400 (the last retained digit on the right should be even); butpeding to our
definition, (7450) = 7500.

Example BThe value of a person’s age is usually truncated to its imtege: 6 = 1,
e=0,7=0.

Example C.The number of car accidents is given in classes, e.g., 0 td09%p1
19,...The values of each class are rounded to its mid-pdime. class width determines
the rounding levely = 10 , the shift (the mid-point of the first class)ds= 4,5 , and
n=73

The problem of rounding random variable occurs most fretiuanthe following two
cases.

1. Adiscrete random variable is given entirely, but withmdad values (as in Example
B, the ages of some minor population).

2. By experimenting we obtain a huge number of rounded vadtiesrtain random
variable, so huge that the Law of large numbers already woek&ctly, and we would
wish to know the relation between the expected value andrithereetic mean of obtained
values.

Suppose thaf is a real random variable with the distribution functiéifx). Its
rounded imagé.X) is then a discrete random variable

€+ nd
Un,

(X):e—kint(%—l—n)ﬁw{::: (1.1)

vn=F(=et(nt1-n)d) = F(—=e+(n—-n)J)

(where— indicates the left limit of possibly discontinuous distrilon function).

The objective of our work is to assess the effect of roundinghe expected value
and standard deviation. The following four differencesl wé under study: the two of
theoretical significance

B((X)) - B(X), (1.2)

o((X)) — o(X), (1.3)
and the two of more practical significance

(E((X))) — E(X), (1.4)

(0({X))) — o(X). (1.5)

Let us write(X) = X + W, where the perturbatioi’ is a bounded random variable

W= (55 ) e (B )

with the obvious range

W= (X)—X € (—(1L-n)snd. (1.6)
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The existence of the expected valBé(.X)) and standard deviation({X)) has its
justification in the following lemma with a simple proof whigve omit.

LEMMA. Let X be any random variable and” a bounded random variableX + W
has ann-th moment about origin (and accordingly all other momerithe same or lower
orders) if and only ifX has it.

2 Expected value

Taking into account (1.6), we immediately obtain the foliogvresult on the difference
(1.2):
EW) = E(X)) - E(X) € (= (1 =n)d,n9], (2.1)

which is an interval of the length

Now, we consider the difference (1.4). Denate- (E(X)+ E(W) —¢)/d+n. Then
(E((X)))—E(X)=¢e+int(a)-d — E(X) =e+int(a)- 6 — ((a—n)d + e — E(W)) =
E(W) 4+ nd — (a — int(a))d. Sincend — (a — int(a))d € (—(1 — 7)o, nd], then

(E((X))) — E(X) € (=2(1 = n)d, 2n0], (2.2)

which is an interval of the lengtky.

The intervals in (2.1) and (2.2) are as narrow as possiblaroitrary values of the
parameter9), ¢, andn of the rounding function (1.1). The example where the upper
bound in (2.1) and (2.2) is atteined is

e—nd e—né+46 ]
U L—n |’
and the example for both lower bounds is

€e—nd—wd €—nd+0—wd
n+w l—-n—w ’

X1N|:

Xo~ |

wherew should be extremely small positive.

3 Standard deviation

Let S be arandom variable witR(oe < S < ) = 1. Theno(S) < 252, ando(S) = &2
if and only if

Hence, ifP(a < S < () = 1 theno(S) < 552, We shall use this fact to estimate the
standard deviation dfi’.

Suppose thak has a variance as well. Firstly, we estimaiél’) < §/2, since the
length of the interval—(1 — X\)d, \d] from (1.6) is preciselyp. Then, also using the
Cauchy - Schwarz inequality (Jamnik, 1971),

0(X)=6/2<0(X)—o(W)<o(X+W)<o(X)+o(W)<o(X)+7/2.

S ~

—
o)

o= D
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Shortly,
o((X)) —o(X) € (=6/2,6/2) (3.1)
which is the result about the difference (1.3).
The following two random variables are examples which cantinat the interval in
(2.2) is as narrow as possibl¥; for the upper bound, andl, for the lower bound.

e—nd—w €—mnd
XBN[ " ! ]
2 2
—n0 €e—nd+9—
X4N{eln € ?71 w}’
2 2

wherew is extremely small positive.
Now, let us deal with the last difference (1.5). Denete (o((X)) —€)/d +n. Then

(c({X))) —o(X) =€e+int (% + n) d—o(X) =
=nd+ [c((X)) — o(X)] — [a — int(a)]d.
Hence,
(0((X))) —o(X) € (=(1.5=n)4,(0.5 4 1)9) (3.2)
We do not know if the bounds of this interval are the best fdsdor any selection of,

e andn. However, for special selections of these numbers thisds#se. For example:
Xz fore=0andn=1/2,andX,fore=0andn=1—w.

The following theorem summarizes previous results.
THEOREM. LetX be arandom variable. i(X) exists, then
—(1=n)d < E(X)) - E(X) <nd,
—2(1=n)d < {E(X))) - E(X) < 219,
and ifo(X) also exists, then
—0/2 <o((X))—0o(X) <d/2,
—(1.5=1n)0 < (c((X))) — o(X) < (0.5 4+ n)d.

The first three inequalities are the best possible for argcieh of the parameters of the
rounding function.

The conclusion is that, in case of rounding random variabieghing very uncon-
trolled can happen with the expected values and standarataas. The effect of round-
ing can be assessed in terms of the parameters of the rouidictgpn. The most impor-
tant is the rounding level.

In concrete cases, when the distribution of observed randotable is in hand, we
expect that the intervals in Theorem are in fact much namower simmetric rounding
and in the case of normal distribution with standard desragqual to the rounding level
0 we calculated (numerically, since the exact calculatiam@eads to evaluate an intricate
series that cannot be found in standard handbooks like Gt@gdsand Ryzhik (1994)):
|F({(X)) — E(X)| < 10~°-times standard deviation . So, even in this case of standard
deviation unusually small and/or the rounding extremeiygig the influence of rounding
is negligible.
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