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Multilevel Multitrait Multimethod Model. 
Application to the Measurement of Egocentered 

Social Networks 

Lluís Coromina1, Germà Coenders2, and Tina Kogovšek3 

Abstract 

Our goal in this paper is to assess reliability and validity of egocentered 
network data using multilevel analysis (Muthén, 1989, Hox, 1993) under the 
multitrait-multimethod approach. The confirmatory factor analysis model 
for multitrait-multimethod data (Werts & Linn, 1970; Andrews, 1984) is 
used for our analyses. 

In this study we reanalyse a part of data of another study (Kogovšek et 
al., 2002) done on a representative sample of the inhabitants of Ljubljana. 
The traits used in our article are the name interpreters. We consider 
egocentered network data as hierarchical; therefore a multilevel analysis is 
required. We use Muthén’s partial maximum likelihood approach, called 
pseudobalanced solution (Muthén, 1989, 1990, 1994) which produces 
estimations close to maximum likelihood for large ego sample sizes (Hox & 
Mass, 2001). 

Several analyses will be done in order to compare this multilevel 
analysis to classic methods of analysis such as the ones made in Kogovšek 
et al. (2002), who analysed the data only at group (ego) level considering 
averages of all alters within the ego.  

We show that some of the results obtained by classic methods are biased 
and that multilevel analysis provides more detailed information that much 
enriches the interpretation of reliability and validity of hierarchical data. 
Within and between-ego reliabilities and validities and other related quality 
measures are defined, computed and interpreted. 
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1 Introduction 

Our aim in this article is to assess the quality of measurement in social network 
analysis. More precisely, we are going to use multilevel factor analysis (Muthén, 
1989; Hox, 1993) to assess reliability and validity in egocentered networks. 
Egocentered networks (also called personal networks) consist of a single 
individual (usually called ego) with one or more relations defined between him/her 
and a number of other individuals —the members of his/her personal network— 
called alters (e.g., Kogovšek et al., 2002). Another common type of network is the 
complete network, which consists of a group of individuals with one or more 
relations defined among them. 

Usually, several characteristics (variables) are measured which describe the 
ego’s relationships (frequently called ties) with his/her alters and the 
characteristics of alters themselves. Tie characteristics may involve for instance, 
the type of relation between the ego and the alter (e.g., partner, boss, co-worker), 
feelings of closeness or importance, duration of the tie and so on. These kinds of 
questions are frequently called name interpreters (e.g., Kogovšek et al. 2002). 

In this paper we want to estimate the reliability and validity of some frequently 
used name interpreters. Since the data about the characteristics of ties are used as 
important explanatory variables in social support research and are, moreover, 
usually reported only by the ego, it is very important to know to what extent these 
data are reliable and valid. 

With this purpose we will use the Multitrait-Multimethod (MTMM) approach. 
Several other approaches exist to estimate the quality of a measurement instrument 
(Saris, 1990a) like the quasi-simplex approach (Heise, 1969) and the repeated 
multimethod approach (Saris, 1995) but will not be dealt with in this paper.  

Many different MTMM models have been suggested in the literature. Among 
them are the correlated uniqueness model (Marsh, 1989; Marsh & Bailey, 1991); 
the confirmatory factor analysis (CFA) model for MTMM data (Althauser et al., 
1971; Alwin, 1974; Werts & Linn, 1970; Andrews, 1984); the direct product 
model (Browne, 1984, 1985); and the true score (TS) model for MTMM data 
(Saris & Andrews, 1991). The MTMM model has rarely been used for 
measurement quality assessment in social network analysis. Hlebec (1999), 
Ferligoj and Hlebec (1999) and Kogovšek et al. (2002) used the TS model on 
network data, in the context of complete networks the first two and of egocentered 
networks the last. The CFA specification is used in this study, not the TS. 
However, both models are equivalent (e.g., Coenders & Saris, 2000). 

In this study we reanalyse a part of data of another study (Kogovšek et al., 
2002) done on a representative sample of the inhabitants of Ljubljana. The traits 
used in our article are the name interpreters frequency of contact, feeling of 
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closeness, feeling of importance and frequency of the alter upsetting the ego. The 
methods used are face to face and telephone interviewing. 

We consider egocentered network data as hierarchical, therefore a multilevel 
analysis is required. Multilevel analysis decomposes the total observed scores at 
the individual level into a between group (ego) component and a within group 
component. The sample covariance matrix is also decomposed. With this purpose 
we use Muthén’s approach (Muthén, 1989, 1990, 1994). In the balanced case (each 
ego has the same number of alters), Muthén’s approach provides maximum 
likelihood (ML) estimates of population parameters (Hox, 1993). In the more 
common unbalanced case, two estimators exist, the Full Information Maximum 
Likelihood (FIML), and the Partial Maximum Likelihood approach (MUML), 
called pseudobalanced solution, too. MUML produces estimations close to ML for 
large ego sample sizes (Hox and Mass, 2001), which is our case, and so it is the 
method we use. 

The structure of this article is as follows. First we will present the standard 
CFA MTMM model and interpret the reliability and validity estimates provided. 
Then we will present the data used and argue for their hierarchical nature. Then 
the CFA MTMM model will be reformulated as a multilevel model and estimation, 
testing and interpretation issues will be discussed. Finally, several analyses will be 
performed in order to compare this multilevel analysis to the classic approaches 
suggested by Härnqvist (1978) and done in Kogovšek et al. (2002), who analysed 
the data only at group (ego) level considering averages of all alters within the ego. 
It will be shown that some of the results obtained by classic methods are biased. 
Besides, the multilevel approach provides much more detailed information and 
thus a much richer view on measurement quality. 

2 Reliability and validity assessment 

2.1 Reliability and validity defined 
 
Reliability can be defined as the extent to which any questionnaire, test or measure 
produces the same results on repeated experiments. However, a random error will 
always exist. The repeated measures, will not be exactly the same, but will be 
consistent to a certain degree. The more consistent the results given by repeated 
measurements, the higher reliability of the measurement procedure.  

In order to have a good quality of measurement, reliability is not enough, but 
we need validity too. Validity is defined as the extent to which any measure 
measures what is intended to measure (Carmines & Zeller, 1979:12). Validity is 
affected by the error called systematic error, which is not random but has a 
systematic biasing effect on the measurement instruments. 



326 Lluís Coromina, Germà Coenders, Tina Kogovšek 

Within construct validity we consider nomological, convergent and 
discriminant validity. Nomological validity implies that the relationships between 
measures of different concepts must be consistent with theoretically derived 
hypotheses concerning the concepts that are being measured (Carmines & Zeller, 
1979). Convergent validity refers to common trait variance and is inferred from 
large and statistically significant correlations between different measures of the 
same trait. Discriminant validity refers to the distinctiveness of the different traits; 
it is inferred when correlations among different traits are less than one.  

The amount of both random and systematic error present in a measurement can 
depend on any characteristic of the design of the study, such as data collection 
mode, questionnaire wording, response scale, type of training of the interviewer, 
all of which can be broadly considered as methods (Groves, 1989). 

2.2 MTMM Model 

In this study the main concerns are convergent and discriminant validity and 
reliability. Convergent and discriminant validity of different methods was first 
assessed in a systematic way by the design that we are going to use, the MTMM 
design (Campbell and Fiske, 1959). In this design three or more traits (variables of 
interest) are each measured with three or more methods.  

Reliability assessment is based on the classical test theory (Lord & Novick, 
1968) whose main equation is: 

 
Yij  = Sij  + eij (2.1) 
 

where: 
• S is the part of the response that would be stable across identical 

independent repetitions of the measurement process and is called true score 
(Saris & Andrews, 1991). 

• Y ij  is the response or measured variable i measured by method j. 
• eij  is the random error, which is related to lack of reliability. 

 
In coherence with the MTMM approach, the stable part is assumed to be the 

combined result of trait and method: 
 

Sij  = mij  Mj + t ij Ti (2.2) 
 
where: 

• Ti is the unobserved variable of interest (trait). Related to validity. 
• M j is the variation in scores due to the method. Related to invalidity. 
• mij  and tij  are factor loadings on the method and trait factors respectively 
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Equations 2.1 and 2.22 constitute the specification of the true score (TS) 
MTMM model of Saris and Andrews (1991).  By substitution we obtain Equation 
2.3 which corresponds to the Confirmatory Factor Analysis (CFA) specification of 
the MTMM model (Andrews, 1984): 
 

Yij  = mij Mj + t ij Ti + eij  (2.3) 
 

It can be shown that both models are equivalent (Coenders & Saris, 2000). 
Equation 2.3 is depicted in Figure 1. 
 
 
 
 
 
 
 
 

 

Figure 1: Path diagram for the MTMM model for trait (Ti) and method (Mj). 

 
In this model it is necessary to make some assumptions (Andrews, 1984): 
cov(Ti,eij )=0 ij∀  

cov(Mj,eij )=0 ij∀  

cov(Mj,Ti)=0  ij∀  (2.4) 

E(eij )=0  ij∀  

cov(Mj,Mj’ )=0 'jj ≠∀  

mij = 1 ij∀   

 
which imply: 

• There is no correlation between the errors and the latent  variables, both 
traits and methods.  

• There is no correlation between the traits and the methods. These first two 
assumptions make it possible to decompose the variance of Yij  into trait 
variance tij

2
 var(Ti), method variance mij

2
 var(Mj) and random error 

variance var(eij ) to assess measurement quality (Schmitt & Stults, 1986). 
• The expectation of the random error is zero. 
• There is no correlation between methods.  
• Method effects are equal within methods. The last two assumptions are not 

always made. They were suggested by Andrews (1984) and Sherpenzeel 
(1995) as a means to improve the stability of the model, that is increase the 

mij  

Y ij  

Ti 

M
 

tij  

eij  
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rate of convergence of the estimation procedures, reduce the rate of 
appearance of inadmissible solutions (e.g., negative variances) and reduce 
standard errors (Rindskopf, 1984). Problems in these respects had been often 
reported in much previous research using the CFA model (Bagozzi & Yi, 
1991; Brannick & Spector, 1990; Kenny & Kashy, 1992; Marsh & Bailey, 1991; 
Saris, 1990b). 

 
Usually at least three methods are required. In this article only two will be 

used. If only two methods are used, the model with all constraints in Equation 2.4 
is still identified but rather unstable and standard errors can get very large. In 
order to increase the stability of the model, the additional constraint that tij  are 
constant within method is considered: 

 
tij=t i’j 'ii ≠∀  (2.5) 

 
 This constraint is reasonable if the relationship between the units of 

measurement of Method 1 and the units of measurement of Method 2 are constant 
across traits. This assumption is reasonable if the response scales do not vary 
across methods (this will be the case in our article) or they vary in the same way 
for all traits. If we impose this assumption standard errors get much lower; with 
our data they got 29,7% lower on average. 

The definitions of reliability and validity from classical test theory used in 
Saris and Andrews (1991) for the TS model can also be implemented in the CFA 
formulation of the model as follows. Reliability is the proportion of variance in Yij  
that is stable across repeated identical measures: 
 

Reliability = 
)(

)(

ij

ij

YVar

SVar
 = 

)(

)()( 22

ij

iijjij

YVar

TVartMVarm +
 (2.6) 

 
and the reliability coefficient is the square root of reliability. Thus, reliability 
increases not only with true or trait variance, but also with method variance, which 
also belongs to the stable or repeatable part of the measurements. 

Validity, assuming that method is the only source of invalidity, is: 
 

Validity = 
)()(

)(

)(

)(
22

22

iijjij

iij

ij

iij

TVartMVarm

TVart

SVar

TVart

+
=  (2.7) 

 
and the validity coefficient is the square root of validity. Validity is thus the 
percentage of variance of the true score explained by the trait. As explained 
before, the true score is the trait effect plus the method effect. Then, we can assess 
invalidity as 1 minus validity.  
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Another definition of validity uses the total variance in the denominator of 
Equation 2.7, thus making reliability be the upper bound of validity. The 
advantage of the definition used in Saris and Andrews (1991) and presented here is 
that it makes the range of validity independent of the value of reliability, as 
validity can be equal to 1 even for unreliable measures. The advantage of the other 
definition is that validity is understood as an overall measurement quality 
indicator, as it assesses the percentage of trait variance contained in the total 
variance of each measure. 
 
1. How frequently are you in contact with this person (personally, by mail, telephone  
or Internet)? 
 
1 Less than once a year. 
2 Several times a year. 
3 About once a month. 
4 Several times a month. 
5 Several times a week. 
6 Every day. 
 
2. How close do you feel to this person? Please describe how close you feel on a scale 
from1 to 5, where 1 means not close and 5 means very close. 
 
1 2 3 4 5 
Not Close    Very Close 

 
3. How important is this person in your life? Please describe how close you feel on a 
scale from 1 to 5, where 1 means not important and 5 means very important. 
 
1 2 3 4 5 
Not important    Very important 

 
4. How often does this person upset you? 
 
1 Never. 
2 Rarely. 
3 Sometimes. 
4 Often. 

Figure 2: Questionnaire. 
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Figure 3: Path  diagram of a CFA MTMM model for two methods and four traits. 

3 Data 

The kind of network that we are going to study is known as egocentered network 
or personal network. It consists of a single individual (usually called ego) with one 
or more relations defined between him/her and a number of other individuals—the 
members of his/her personal network, called alters (Kogovšek et al., 2002:2). 

First of all, it is necessary to find the ego’s network. Name generators are 
questions for eliciting the names of the ego’s network members (alters). Secondly, 
other questions are used to describe these relationships, such as frequency of 
contact with the alter, feeling of closeness to the alter, feeling of importance of the 
relationship and so on. These kinds of questions are frequently called name 
interpreters. Our aim is to estimate the reliability and validity of some of the very 
frequently used name interpreters (traits) using different methods. 

With this purpose we reanalyse a part of the data of another study (Kogovšek 
et al., 2002) done on a representative sample of the inhabitants of Ljubljana. The 
complete study of Kogovšek et al involved several subsamples with several 
missing data patterns planned by design. In this article we use only one group 
without missing data, as the aim of the current paper is a different one. The part of 
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the sample used in this paper consists of G=314 egos who evaluated N=1371 
alters. The subset of variables used by us is described below: 
 

Traits 
 

T1 Frequency of contact 
T2 Feeling of closeness 
T3 Feeling of importance 
T4 Frequency of the alter upsetting to ego 

Methods 
 

M1  Face-to-face interviewing 
M2 Telephone interviewing 

 
The wording of the name interpreters used in this study is displayed in Figure 

2. Figure 3 displays a CFA model for two methods and four traits. 

4 Multilevel analysis 

4.1 Model and estimation 
 
Egocentered network data can be considered as hierarchical. An ego chooses the 
alters according to the name generator questions and therefore the alters are a “part 
of” the egos. In the hierarchical structure there are the egos at the top of the 
hierarchy, and all their alters at the bottom. Thus, alters are nested into the egos in 
what constitutes a nested data structure. Responses to the name interpreter 
questions constitute the data. 

The technique used will be two-level factor analysis, or, more particularly, 
two-level MTMM models. The lowest level is known as individual level and the 
highest level is known as group level. Thus, in our case groups will be egos and 
individuals will be alters. 

The mean centred individual scores for group g and individual k YYY gkgkT −=  

can be decomposed into a between group component YYY ggB −= and a within 

group component ggkWgk YYY −= . Since both components are independent, the 

cross product matrices can be aggregated as:  
 

=−−ΣΣ )')(( YYYY gkgk

nG

 

)')(()')(( ggkggk

nG

gg

G

YYYYYYYYn −−ΣΣ+−−Σ  (4.1) 

 
where: 
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• Y is the total average over all alters and egos. 

• gY is average of all alters of the gth ego. 

• Ygk is the score on the name interpreter of the kth alter chosen by the gth 
ego. 

• G is the total number of egos. 
• n is the number of alters within each ego, assumed to be constant. 
• N=nG is the total number of alters. 

 
The sample covariance matrices are obtained when dividing the components in 

Equation 4.1 by their degrees of freedom: 
 

SW = 
GN

YYYY ggkggk

nG

−
−−ΣΣ )')((

 (4.2) 

 

SB = 
1

)')((

−
−−Σ

G

YYYYn gg

G

  (4.3) 

 

ST = 
1

)')((

−
−−ΣΣ

N

YYYY gkgk

nG

 (4.4) 

 
In the population, the covariance matrices within and between groups can also 

be aggregated as: 
 

ΣΣΣΣT = ΣΣΣΣB + ΣΣΣΣW (4.5) 
 

This decomposition is very interesting in order to analyse each component 
separately and can be also applied to our MTMM model (Equation 2.3). We are 
thus able to decompose the model in two parts. The subindices g and k are dropped 
for the sake of simplicity: 
 

Yij  = mBij MBj + tBij TBi + eBij + mwij Mwj + twij Twi + ewij (4.6) 
 

          YBij                                       YWij 
 

Härnqvist (1978) proposes to do factor analysis on the within and between 
sample covariance matrices. Muthén (1989, 1990) shows that this can lead to 
biased estimates and suggests a maximum likelihood (ML) approach to estimate 
the population parameters of models of the CFA family by maximum likelihood on 
multilevel data structures.  
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If we have G balanced groups sizes (in our case egos) equal to n (in our case 
number of alters evaluated by each ego, thus the total simple size is N=Gn) then 
Sw is the ML estimator of ΣW, with sample size N-G and SB is the ML estimator of 
ΣW+cΣB, with sample size G-1 with c equal to the common group size n (Hox, 
1993). Then, for large samples the expected values are: 

 
E(SW)= ΣW (4.7) 
 
E(SB)= ΣW + cΣB  (4.8) 
 

where Equation 4.8 can be considered to be a multivariate equivalent to that 
encountered in one-way ANOVA with a random factor (e.g., Jackson and Brashers, 
1994). 

We can better understand Equations 4.6 to 4.8 in Figure 4, which is the two-
level version of the path diagram in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Multilevel CFA MTMM Model. 
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Note that SB estimates both the within structure (ΣW) and c times the between 
structure (ΣB) and is thus a biased estimate of ΣB. This model can be estimated 
with standard structural equation modelling software if SW and SB are treated as 
two groups in a multiple group model with sample sizes N-G and G-1 respectively. 
The variables in Sw are only affected by the within factors, and the variables in SB 
are affected by both the within and between factors, weighted by a scaling 

factor c . More recently developed software like Mplus (Muthén & Muthén, 2001) 
hides this complication from the user. 

Until now we assumed that groups were of the same size (balanced case). In 
the unbalanced case the situation is more complex.  Sw continues to be a ML 
estimator for ΣW and thus Equation 4.7 still holds. The difference is that the 
estimation of ΣΣΣΣB is more complex because we need a different expression for each 
group size ng (Hox, 1993):  
 

E(SB)= ΣW + ngΣB (4.9) 
 

The Full Information Maximum Likelihood (FIML) estimator thus implies to 
specify a separate between group model for each distinct group size. This is 
computationally complex. Therefore Muthén (1989,1990) proposes to utilise 
another estimator known as the Partial Maximum Likelihood or Muthén Maximum 
Likelihood (MUML) estimator, called pseudobalanced solution, too. It’s necessary 
to use a c* scaling parameter, which is close to the mean group size. 
 

c*=
)1(

22

−
Σ−

GN

nN
G

g  (4.10) 

 
Whereas FIML is an exact ML estimator, MUML is only an approximation, but 

it should produce a good estimation given large sample sizes. MUML has been 
reported to perform well if the group sample size G (in our case the number of 
egos) is at least 100. Otherwise, standard errors and test statistics can be biased 
(Hox and Mass, 2001). Hox and Mass suggest that the number of groups G is more 
important for the quality of estimation than the total sample size N, especially for 
estimates of between group parameters. N will anyway be large enough in most 
practical applications. In this study, we use MUML as we have a large enough 
number of groups (G=314). 

4.2 Goodness of fit assessment 

The evaluation of the goodness of fit of the model is a complex task for which 
many statistical tools are available (e.g., Bollen & Long, 1993; Batista-Foguet & 
Coenders, 2000). First of all, the estimates must be checked for admissibility (e.g., 
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variances may not be negative, correlations may not be larger than one, etc.). A 
first goodness of fit measure is the χ2 statistic to test the null hypothesis of no 
parameter omission, with its associated ν number of degrees of freedom (d.f.) and 
p-value. The statistical power of this test varies with the sample size. If we have a 
large sample, the statistical test will almost certainly be significant. Thus, with 
large samples, we will always reject our model. Conversely, with a very small 
sample, the model will always be accepted, even if it fits rather badly. Thus, other 
useful fit measures that quantify the fit of the model have been suggested. Among 
them are the Compared Fit Index (CFI) of Bentler (1990), the Tucker and Lewis 
Index (TLI), also known as Non Normed Fit Index (NNFI) of Tucker and Lewis 
(1973), the Root Mean Square Error of Approximation (RMSEA) of Steiger (1990) 
and many others. Values of RMSEA below 0.050 (Browne & Cudeck, 1993) and 
values of TLI and CFI above 0.950 (Hu and Bentler, 1999) are usually considered 
acceptable. Recent research has shown the TLI to be independent of sample size 
and to adequately penalyze complex models (Marsh et al. 1996). The RMSEA is 
also often reported due to its potential for hypothesis testing.  

These goodness of fit indices are often only reported for the entire model, 
which includes both the fit in the within model and the between model. Hox 
(2002) suggests a specific strategy to evaluate the goodness of fit of a multilevel 
model in order to make it possible to identify whether the missfit comes from the 
between or within parts.  

In order to evaluate the fit of the between part, a saturated model (with zero 
degrees of freedom and thus with a perfect fit) must be speficified for the within 
part and the researchers' model (in our case a CFA MTMM model) for the between 
part. A goodness of fit measure such as RMSEA can be computed for the between 
part from this between part χ2

B,MTMM  statistic, the associated degrees of freedom 
(νB,MTMM ) and the sample size (G-1) at the between part: 
 

MTMMB

MTMMBMTMMB
B G

RMSEA
,

,
2

,

)1( ν
νχ

−
−

=  (4.11) 

Other goodness of fit measures like the TLI require the comparison of the χ2 
statistic with that of a model specifying zero covariances among all pairs of 
variables (independence model). Thus we would specify an independence model 
for the between part and a saturated model for the within part to obtain a χ2

B,indep 
statistic and its associated degrees of freedom νBindep. Thus, the TLIB for the 
between part of the model would be: 

1
,

2
,

,

2
,

,

2
,

−

−
=

indepB

indepB

MTMMB

MTMMB

indepB

indepB

BTLI

ν
χ

ν
χ

ν
χ

 (4.12) 
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In a similar manner, we could obtain RMSEAW and TLIW by specifying two 
models with a saturated between part, taking into account that the within sample 
size is N-G. 

4.3 Interpretation 

In a multilevel context, the evaluation of measurement quality can be much 
enriched. Quite trivially, we can obtain two reliabilities and two validities for each 
trait-method combination, that is, between and within. The fact that groups are 
respondents and individuals are stimuli evaluated by them makes these reliabilities 
and validities interpretable in a somewhat different way from standard multilevel 
analysis. 

The between reliabilities and validities can be computed from the parameters 
of the between part of the model and can be interpreted with respect to the quality 
of the measurement of the egocentered network as a whole (average values of the 
traits for each ego computed over all his/her alters). 

The within reliabilities and validities can be computed from the parameters of 
the within part of the model and can be interpreted in a classic psychometric sense 
in which each subject is a separate unit of analysis and thus variance is defined 
across stimuli presented to the same subject, not across subjects (e.g., Lord, 1980).  

Hox (2002) suggests that percentages of variance cannot only be computed in 
each part of the model separately. The fact that the between and within scores add 
to a total score as in Equation 4.6, makes it possible to compute percentages of 
variance in other attractive ways. In our case, if we decompose the variance 
according to Equation 4.6 we have: 
 

Var(Yij ) = mij
2
wVar(MjW) + mij

2
BVar (MjB) +  

tij
2
wVar(TiW) + t ij

2
BVar(TiB) (4.13) 

Var(eijw) + Var(eijB)    
 

In this paper we suggest that each of the six components in Equation 4.13 can 
have its own interpretation: 

• Between method variance corresponds to differences among respondents 
(egos) in the use of methods. Thus it is in complete agreement with the 
usual definition of method effect (e.g., Andrews, 1980). 

• Within method variance corresponds to differences in the use of methods 
among alters evaluated by the same ego. At the moment we cannot interpret 
this source of variance. We would expect it to be very low in most cases. 

• Between trait variance is the error-free variance corresponding to 
differences in the average levels of the egos. 

• Within trait variance is the error-free variance corresponding to differences 
in the alter evaluations made by the same ego. 
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• Between error variance is the error variance associated to measurements of 
average levels of the egos. Thus, it is somehow systematic as it is constant 
for all alters within the ego (otherwise it would average to zero). 

• Within error variance is not systematic in any way and thus truly 
corresponds to the definition of pure random measurement error.  

 
Thus, from the decomposition in Equation 4.13, percentages like the following 

could be of interest and can easily be computed. One can: 
• compute overall reliabilities and validities by aggregating all trait, method, 

and error  components, thus similar results to a classic (not multilevel) 
analysis of ST would be obtained. 

• compute overall percentages of  within and between variance by aggregating 
all within components and all between components. 

• do the former only with respect of error free variance, that is compute the 
percentage of between and within trait variance over the total trait variance. 

• compute a percentage of pure random error variance (i.e. within error 
variance) over the total variance of the observed variables (grand total, i.e. 
including all 6 components). The percentage of total variance explained by 
the other 5 components can be computed in a similar way.  

5 Results 

5.1 Overview of the analyses performed 
 
We are going to carry out four different analyses. The first three analyses will be 
of the traditional sort, analysing ST, SW and SB separately with a standard (i.e. not 
multilevel) MTMM model. The last analysis will be a multilevel analysis, thus 
considering the within and between levels simultaneously: 

• Analysis 1a: traditional analysis on ST. ML estimation. 
• Analysis 1b: as 1a but using cluster sample formulae for the standard errors 

and goodness of fit indices (Muthén & Satorra, 1995). In fact, cluster 
samples are also an example of hierarchical data. Thus, even if we are only 
interested in the total scores, we can take the hierarchical structure of the 
data into account in this way. This procedure uses a mean-adjusted chi-
square test statistic that is robust to non normality and to dependence among 
observations. 

• Analysis 2: traditional analysis on SW, ML estimation. 
• Analysis 3: traditional analysis on SB, which is a biased estimate of ΣB. ML 

estimation. Analyses 2 and 3 together constitute the recommendation of 
Härnqvist (1978). 
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• Analysis 4: multilevel analysis, to fit ΣW and ΣB simultaneously. MUML 
estimation. 

 
All analyses will be done using the Mplus2.12 program (Muthén & Muthén 

2001). We will compare the traditional analyses (overall 1b, 2 and 3) to the 
multilevel analysis (4). Large differences are expected at least with analysis 3 
which, if confirmed, will make the use of multilevel analysis (4) more advisable. 

Some of the traditional MTMM analysis can be encountered in the social 
network literature. Hlebec (1999) and Ferligoj and Hlebec (1999) performed 
analysis 1a on complete network data and Kogovšek et al. (2002) analysis 3 on 
egocentered network data. 

5.2 Goodness of fit of the models and specifications search 

In Table 1, we can observe the goodness of fit of the different analyses (χ2 
statistic, TLI and RMSEA). The table also shows the changes in the specification 
that we have to make in order to obtain an admissible solution, as a few negative 
variances were obtained in the first specification, which had to be fixed at zero. 
Analysis 4, which includes both the within and between part, understandably 
required a larger number of respecifications. 
 

Table 1: Goodness of fit statistics. 

Analysis 
 

1a (ST)  
ML 

1b (ST)     
ML complex 

2 (SW)  
ML 

3 (SB)  
ML 

4 (ΣT and ΣW) 
MUML 

Initial      χ2 statistic 191.074 140.579 112.210 82.068 149.313 
d.f. (ν) 15 15 15 15 30 
TLI 0.959 0.958 0.971 0.930 0.967 
RMSEA 0.093 0.078 0.078 0.119 0.054 
      
Respecifications 
 
 
 

var(M2T)=0 
 
 
 

var(M2T)=0 
 
 
 

var(M2W)=0 
 
 
 

var(M2B)=0 
 
 
 

ti2b=1 
var(M1B)=0 
var(M2W) = 0 
var(e41B) =0 χ2 statistic 192.993 141.925 112.401 82.644 185.333 

d.f. (ν) 16 16 16 16 34 
TLI 0.961 0.961 0.973 0.934 0.963 

RMSEA 0.090 0.076 0.075 0.115 0.057 
 

A part from analysis 3, which yielded the worst goodness of fit, the goodness 
of fit of the final models of each analysis laid on the border between what can be 
considered a good or a bad fit. The model was rejected by the χ2 statistic, RMSEA 
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was above (i.e. worse than) the commonly accepted threshold of 0.05 and TLI was 
above (i.e. better than) the threshold of 0.95.  

However, the χ2 statistic and hence the RMSEA may be somewhat inflated by 
the fact that data are ordinal (Babakus et al., 1987; Muthén and Kaplan, 1985) and 
by the fact that group sizes are unbalanced (Hox & Mass, 2001). Our group size 
distribution has a minimum of 1 alter per ego, a maximum of 13, a mean of 4.36, a 
standard deviation of 2.14 and a coefficient of variation of 0.49) The data 
simulated by Hox & Mass had a coefficient of variation equal to 0.50 and the χ2 
statistic was reported to have a positive bias of 8.6%. Removing the constraints in 
Equation 2.5 did not improve the fit (for instance if this is done on the final 
specification of analysis 4, the fit actually gets worse, as TLI=0.960 and 
RMSEA=0.059) and thus the constraints are maintained. 

Analyses 1a and 1b report quite different goodness of fit measures, which 
suggests that it is important to use the corrections for complex samples when 
analysing ST on hierarchical data. 

 

Table 2: decomposition into 6 variance components. Analysis 4. 

 T1 T2 T3 T4 
trait variance within     
M1 0.80 0.57 0.68 0.47 
M2 0.77 0.55 0.65 0.45 
method variance within*     
M1 0.03 0.03 0.03 0.03 
M2 0.00 0.00 0.00 0.00 
error variance within     
M1 0.16 0.16 0.17 0.22 
M2 0.14 0.13 0.13 0.17 
trait variance between     
M1 0.17 0.06 0.10 0.13 
M2 0.17 0.06 0.10 0.13 
method variance between*     
M1 0.00 0.00 0.00 0.00 
M2 0.01 0.01 0.01 0.01 
error variance between*     
M1 0.02 0.03 0.04 0.00 
M2 0.04 0.02 0.02 0.07 

* Boldfaced for variances constrained to zero. 

 
The goodness of fit of the final specification for analysis 4 can be decomposed 

into the within and the between part (χ2
B= 52.432 with νB=18 d.f., TLIB=0.777, 

RMSEAB=0.078, χ2
W= 90.635 with νW=16 d.f., TLIW=0.973, RMSEAW=0.066). 
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The fit thus seems to be worse for the between part of the model. For Analysis 4, 
all variances of traits, methods and errors were significantly different from zero 
except for the ones constrained in the specification search process (M1B, M2W, 
e41B) and e11B. This suggests that trait, method and error variances operate both at 
the within and between levels and that none of the factors must be removed from 
the model specification. 

Table 2 shows the variance decomposition according to Equation 4.13 for the 
eight variables (trait-method combinations) obtained from analysis 4. From this 
table, within, between and total reliabilities and validities and all other results 
described in Section 4.3 can be obtained. Boldfaced values are fixed to zero. 

In the following subsections we show the final results of this analysis 4 in 
greater detail while we compare them to the traditional analyses. The first group of 
results are about ΣW (thus involving analyses 2 and 4), the second group of results 
are about ΣB (analyses 3 and 4) and the third group of results are about ΣT 
(analyses 1 and 4). No distinction is made between analyses 1a and 1b as only 
goodness of fit measures change, not the point estimates. 

5.3 Within part. Comparison of analyses 2 and 4 

Table 3 presents the most commonly used estimates in an MTMM model, 
reliability and validity coefficients (square roots of Equations 2.6 and 2.7 
respectively) and trait correlations, that is correlations corrected for measurement 
error. 

According to Equation 4.7, the results of analyses 2 and 4 should be about the 
same. If we carefully study Table 3, we can confirm this equality: the results are 
virtually the same. Besides, both analyses required constraining the variance of M2 
to zero in order to be admissible (see Table 1). 

We find that closeness (T2) and importance (T3) are very highly correlated at 
the within level. This means that for a given ego, alters considered to be very close 
are also considered to be very important. Frequency of contact (T1) has moderate 
correlations with both abovementioned traits. Frequency of upsetting has lower 
correlations, but positive, thus meaning that being upset by an alter is not as 
negative as it may appear. Actually, the alters upsetting you the most are the ones 
you feel closest too, maybe because you contact them more often (actually the 
correlation between frequency of contact and frequency of upsetting is positive) or 
because you have higher expectations and thus can get upset by a lesser thing. 
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Table 3: Within part. Comparison of analyses 2 (SW) and 4 (multilevel). 

 Analysis 2  Analysis 4  

 T1 T2 T3 T4 T1 T2 T3 T4 
Reliability 
coefficients         
M1 0.92 0.89 0.90 0.84 0.92 0.89 0.90 0.84 
M2 0.92 0.90 0.91 0.85 0.92 0.90 0.91 0.85 
Validity coefficients*         
M1 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.97 
M2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Trait correlations         
T1 1.00    1.00    
T2 0.57 1.00   0.57 1.00   
T3 0.58 0.99 1.00  0.58 0.99 1.00  
T4 0.41 0.26 0.31 1.00 0.41 0.25 0.31 1.00 

* Boldfaced for variances constrained to zero. 

 
As regards measurement quality at the within level, which is interpreted in a 

psychometric sense within a subject and across stimuli, Table 3 shows that 
frequency of contact (T1) is measured with the highest reliability and the frequency 
of being upset (T4) with the lowest for all methods. Telephone interviewing (M2) 
has higher reliability than personal interviewing (M1) for all traits. Validity 
coefficients referring to M2 are equal to 1 because we have constrained the 
variance of this method to zero, since it was negative. This may simply mean that 
this variance was very low in the population, so that a negative sample estimate 
occurred just by chance; the estimate was indeed very low (about 1% of total 
within variance) and non-significant. Validity coefficients for M2 are similar and 
high for all traits.  

5.4 Between part. Comparison of analyses 3 and 4 

Table 4 presents reliability and validity coefficients and trait correlations for the 
between part, which can be obtained for analyses 3 and 4. Two unsignificant 
negative method variances are constrained to zero, as shown in Table 1, and 
boldfaced. 

If we compare both analyses we find very interesting results. According to 
Equation 4.8, the results should not be the same. If we study Table 4 carefully, we 
can confirm this inequality. The reliability coefficients are different in a rather 
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non-systematic way. The validity coefficients are not comparable, because 
different constraints are applied.  The comparison of trait correlations is rather 
more interpretable. Equation 4.8 suggests that the analysis of SB is a combination 
of the within and between structures. Trait correlations obtained by analysis 3 are 
indeed half way between trait correlations within and between obtained by analysis 
4. In any case, what Table 4 shows most clearly is that differences can be large, 
which suggest that an analysis of SB does badly at estimating the between structure 
of the data. 
 

Table 4: Between part. Comparison of analyses 3 (SB) and  4 (multilevel). 

 Analysis 3 Analysis 4  

 T1 T2 T3 T4 T1 T2 T3 T4 
Reliability 
coefficients*         
M1 0.88 0.84 0.86 0.88 0.95 0.83 0.86 1.00 
M2 0.97 0.91 0.93 0.88 0.91 0.88 0.90 0.82 
Validity coefficients*         
M1 0.98 0.97 0.97 0.97 1.00 1.00 1.00 1.00 
M2 1.00 1.00 1.00 1.00 0.98 0.94 0.96 0.97 
Trait correlations         
T1 1.00    1.00  
T2 0.23 1.00   -0.25 1.00 
T3 0.35 0.98 1.00  0.10 0.99 1.00
T4 0.27 -0.03 0.07 1.00 0.16 -0.39 -0.17 1.00

* Boldfaced for variances constrained to zero. 

 
Given the large differences, for the remaining of this subsection we interpret 

the theoretically correct results of analysis 4. As regards the trait correlation 
matrix we again find that closeness (T2) and importance (T3) are very highly 
correlated. A more surprising finding is the very low correlation among all other 
pairs of traits, some of which are even negative. It must be taken into account that 
at the between level trait correlations refer to ego averages. For instance, at the 
between level it seems that egos with higher average frequency of contact (T1) do 
not feel more close (T2), on average, to their alters. On the contrary, at the within 
level, alters with whom one particular ego meets more frequently are the ones that 
particular ego feels closest to. 

In Table 4 we are also able to observe reliability and validity coefficients at the 
between level, thus reflecting measurement quality of the ego averages across all 
alters. Unlike the case was at the within level, the telephone method (M2) is not 
always more reliable than the personal method. Validity coefficients of M2 equal 1 
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for all traits, because we have constrained the variance of this method to zero. The 
validity coefficients for M1 are similar and high for all traits. In average over all 
variables, it cannot be said that measurement quality differs much from the within 
to the between level (the average reliability coefficients over all 8 variables are in 
fact equal up to the first two decimal places). 

Kogovšek et al (2002) also analysed the SB matrix for a somewhat different 
data set including a third method and two more samples of egos. Kogovšek et al 
(2002) reported M2 (telephone) to be more valid for all traits and to be more 
reliable for all traits but one. In spite of the differences in the sample used, this is 
much the same conclusion that can be drawn from analysis 3 in Table 4. Kogovšek 
(2002) argued that the telephone method may be more valid than face-to-face 
because it is more anonymous and more reliable because, being a faster means of 
communication, only the most important alters tend to be named. The finding of 
Kogovšek et al (2002) that the telephone mode produces good quality data is 
specially relevant in the social network literature because it contradicts the 
common finding in other research fields that the face-to-face mode produces data 
of better quality (e.g., Groves, 1989 and references therein). In our analyses it is 
not so clear that telephone method (M2) is better than face-to-face method (M1) at 
the between level. However, our analyses in the previous subsection did show that 
M2 produces better quality data at the within level, and an analysis of the SB such 
as the one done by Kogovšek et al (2002) is inevitably contaminated by the within 
level structure according to Equation 4.8.  
 

Table 5: Overall analysis. Comparison of analyses 1 (ST) and 4 (multilevel). 

 Analysis 1 Analysis 4  

 T1 T2 T3 T4 T1 T2 T3 T4 
Reliability 
coefficients         
M1 0.91 0.88 0.89 0.86 0.92 0.88 0.90 0.86 
M2 0.93 0.90 0.92 0.85 0.92 0.90 0.91 0.85 
Validity coefficients*         
M1 0.98 0.97 0.98 0.97 0.98 0.98 0.98 0.97 
M2 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 
Trait correlations         
T1 1.00    1.00    
T2 0.46 1.00   0.46 1.00   
T3 0.50 0.99 1.00  0.50 0.99 1.00  
T4 0.36 0.15 0.22 1.00 0.36 0.16 0.23 1.00 

* Boldfaced for variances constrained to zero. 
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5.5 Overall analysis. Comparison of analyses 1 and 4 

Table 5 presents overall reliability and validity coefficients, which can directly be 
obtained for analysis 1 and, by aggregating trait, method and error variances, also 
for analysis 4. One unsignificant negative method variance is constrained to zero, 
as shown in Table 1, and boldfaced. Overall trait correlations for analysis 4 are 
computed by taking overall trait variances and covariances as the sum of between 
and within trait covariances, as in Equation 4.5. 

If we compare both analyses we find very interesting results. According the 
theory explained before, the results should not be the same, but should be similar 
and comparable. If we study the tables carefully, we can confirm it. The trait 
correlations and reliability coefficients are very similar and even the validity 
coefficients are, in spite of the constraint of some variances to zero. The analysis 
of ST may then be appropriate if one is only interested in overall parameter 
estimates, provided that correct test statistics are employed (i.e. analysis 1b). 

If we consider the results of analysis 4, we are able to observe that the 
reliability and validity coefficients of both methods are quite similar, although M2 
(telephone) is slightly better, except for the reliability when measuring T4 
(frequency of being upset). Reliability coefficients are very high and validity 
coefficients are even more so, which is partly due to the fact that  var(M1B) and 
var(M2W) have been constrained to zero, so that for M1 only the within level is 
counted and for M2 only the between level. 

As suggested in section 4.3, when considering the overall model, the results of 
analysis 4 can be used to decompose variance in many interesting ways by 
combining interesting sets of the 6 variance components in Equation 4.13 and 
Table 2. Some of these results are shown in Table 6. 
 

Table 6: Some interesting percentages of variance based on analysis 4. 

 T1 T2 T3 T4 
tij

2
wVar(TiW)/ [ tij

2
wVar(TiW) + 

tij
2
BVar(TiB)]      

M1 0.82 0.90 0.87 0.79 
M2 0.82 0.90 0.87 0.78 

Var(eijw)/ Var(Yij )     
M1 0.13 0.19 0.16 0.26 
M2 0.12 0.17 0.14 0.20 

 
The first part of Table 6 shows the percentage of within trait variance over all 

trait variance. The results show that most of the error free variance corresponds to 
the within level. This means egos really discriminate among different alters, which 
may also be an indicator of measurement quality. The second part of Table 6 
shows the percentage of true random error variance (i. e. within error variance, as 
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argued in Section 4.3) over the total variance. One minus this percentage (or its 
square root) could be an alternative measure of reliability and would show 
measures with M2 (telephone) to be the most reliable and measures of T4 
(frequency of upsetting the ego) the least. 

6 Discussion 

In this article we have used CFA for MTMM model, whose results are equivalent 
to TS model (Coenders & Saris, 2000) to study the quality of egocentered network 
data. We have used an additional constraint in the model that makes the tij  trait 
loadings to be constant within method in order to increase the stability of the 
model.  If we impose this assumption standard errors get much lower, which was 
quite valuable on a data set with only two methods. 

As egocentered network data are hierarchical, we performed a multilevel 
MTMM analysis. Muthén’s approach (1989, 1990, 1994) is used as we have a 
large enough number of groups. We compared the results of this multilevel 
analysis to those obtained using traditional analyses of the global, within and 
between covariance matrices. The traditional analysis of the between covariance 
matrix proved to yield misleading results, which leads to the recommendation to 
use the multilevel analysis, which provides much more detailed information and 
thus a much richer view on measurement quality from one single program run. 
However, if only the within data are of interest, a traditional analysis of the within 
covariance matrix could also be performed. In the same way, if only the overall 
data are of interest, an analysis of the overall covariance matrix is also possible, 
provided that appropriate corrections are made on standard errors and test 
statistics. 

In our multilevel analysis, we can immediately obtain two reliabilities and 
validities for each trait-method combination, that is between and within egos. Each 
of them has a different interpretation. It is also possible compute overall 
reliabilities and validities by aggregating all trait, method  and error components in 
order to obtain similar results to a classic (not multilevel) analysis of the overall 
covariances. As is usually done, we can also asses which percentage of variance is 
due to within and between differences. However, even more useful variance 
percentages can be obtained by combining different within and between 
components in a meaningful way (Hox, 2002) depending on the results one is 
interested in for a particular research problem.  

We can also evaluate the goodness of fit of the multilevel model in such a way 
as to identify whether the missfit comes from the between or within parts of the 
model (Hox, 2002). In this paper we could thus find that the between part of the 
model fits worse.  

According Kogovšek, (2002), telephone interviewing was more reliable and 
valid than the face-to-face method. According to de Leeuw (1992), the advantages 
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of telephone interviewing are larger for sensitive questions, category into which 
social support measures can be considered to fall. After our reanalysis of the same 
data, we conclude that is not so clear that telephone is more reliable than face to 
face. It depends on whether the within or the between level is considered. 
Telephone is better than face to face at the within level, and about equal to face to 
face at the between level. Differences in measurement quality can also be 
encountered for different traits as well.  Frequency of contact is the most reliable 
trait in almost all cases, which could be so because mere frequency is easier for the 
respondent to interpret than traits involving feelings such as closeness, importance 
and upset.  
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