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Multilevel Multitrait Multimethod Model.
Application to the Measurement of Egocentered
Social Networks

Lluis Coromind, Germa Coendefsand Tina Kogovsek

Abstract

Our goal in this paper is to assess reliability aatdity of egocentered
network data using multilevel analysis (Muthén, @9Blox, 1993) under the
multitrait-multimethod approach. The confirmatorgcfor analysis model
for multitrait-multimethod data (Werts & Linn, 197@&ndrews, 1984) is
used for our analyses.

In this study we reanalyse a part of data of anottedy (Kogovsek et
al., 2002) done on a representative sample of nhabitants of Ljubljana.
The traits used in our article are the name intetgns. We consider
egocentered network data as hierarchical; therefoneultilevel analysis is
required. We use Muthén’s partial maximum likeliloapproach, called
pseudobalanced solution (Muthén, 1989, 1990, 19@4jch produces
estimations close to maximum likelihood for larggoesample sizes (Hox &
Mass, 2001).

Several analyses will be done in order to compdris tmultilevel
analysis to classic methods of analysis such astles made in Kogovsek
et al. (2002), who analysed the data only at grfego) level considering
averages of all alters within the ego.

We show that some of the results obtained by ctas&thods are biased
and that multilevel analysis provides more detailefbrmation that much
enriches the interpretation of reliability and ity of hierarchical data.
Within and between-ego reliabilities and validitisd other related quality
measures are defined, computed and interpreted.

1 Department of Economics, University of Girona. FEGECampus Montilivi, 17071 Girona,
Spain; lluis.coromina@udg.es

2 Department of Economics, University of Girona. FEGECampus Montilivi, 17071 Girona,
Spain; germa.coenders@udg.es

3 Faculty of Social Sciences, University of LjublgnKardeljeva pl. 5, 1000 Ljubljana,
Slovnia; tina.kogovsek@guest.arnes.si



324 Lluis Coromina, Germa Coenders, Tina Kogovsek

1 Introduction

Our aim in this article is to assess the qualitymafasurement in social network
analysis. More precisely, we are going to use muwiéldactor analysis (Muthén,

1989; Hox, 1993) to assess reliability and validity égocentered networks.
Egocentered networks (also called personal netWorksnsist of a single

individual (usually called ego) with one or moreatébns defined between him/her
and a number of other individuals —the members isfher personal network—
called alters (e.g., Kogovsek et al., 2002). Anotb@mmon type of network is the
complete network, which consists of a group of diuals with one or more

relations defined among them.

Usually, several characteristics (variables) are suesd which describe the
ego’s relationships (frequently called ties) with s/hier alters and the
characteristics of alters themselves. Tie char&ties may involve for instance,
the type of relation between the ego and the akgg.( partner, boss, co-worker),
feelings of closeness or importance, duration ef tie and so on. These kinds of
guestions are frequently called name interpreters,(&ogovsek et al. 2002).

In this paper we want to estimate the reliabilitylaralidity of some frequently
used name interpreters. Since the data about theacteristics of ties are used as
important explanatory variables in social supporseach and are, moreover,
usually reported only by the ego, it is very importemknow to what extent these
data are reliable and valid.

With this purpose we will use the Multitrait-Multethod (MTMM) approach.
Several other approaches exist to estimate thatgudla measurement instrument
(Saris, 1990a) like the quasi-simplex approach ¢$Egil969) and the repeated
multimethod approach (Saris, 1995) but will notdsalt with in this paper.

Many different MTMM models have been suggested i@ literature. Among
them are the correlated uniqueness model (Mars@9;1Marsh & Bailey, 1991);
the confirmatory factor analysis (CFA) model for MTMtata (Althauser et al.,
1971; Alwin, 1974; Werts & Linn, 1970; Andrews, 198 the direct product
model (Browne, 1984, 1985); and the true score (f@®del for MTMM data
(Saris & Andrews, 1991). The MTMM model has rarelyeenh used for
measurement quality assessment in social networKysiea Hlebec (1999),
Ferligoj and Hlebec (1999) and Kogovsek et al. @00sed the TS model on
network data, in the context of complete netwolte first two and of egocentered
networks the last. The CFA specification is usedtlms study, not the TS.
However, both models are equivalent (e.g., Coené&e®aris, 2000).

In this study we reanalyse a part of data of anottady (Kogovsek et al.,
2002) done on a representative sample of the inhiats of Ljubljana. The traits
used in our article are the name interpreters feagy of contact, feeling of



Multilevel Multitrait Multimethod Model... 325

closeness, feeling of importance and frequency efalier upsetting the ego. The
methods used are face to face and telephone ieteing.

We consider egocentered network data as hierarghitarefore a multilevel
analysis is required. Multilevel analysis decompo#es total observed scores at
the individual level into a between group (ego) mment and a within group
componentThe sample covariance matrix is also decomposedh Wis purpose
we use Muthén’s approach (Muthén, 1989, 1990, 1994dhe balanced case (each
ego has the same number of alters), Muthén’'s approarovides maximum
likelihood (ML) estimates of population parametgitdox, 1993). In the more
common unbalanced case, two estimators exist, thie IRformation Maximum
Likelihood (FIML), and the Partial Maximum Likeliloal approach (MUML),
called pseudobalanced solution, too. MUML produessmations close to ML for
large ego sample sizes (Hox and Mass, 2001), wisiabur case, and so it is the
method we use.

The structure of this article is as follows. Fimgé will present the standard
CFA MTMM model and interpret the reliability and ity estimates provided.
Then we will present the data used and argue feir thierarchical nature. Then
the CFA MTMM model will be reformulated as a mudtviel model and estimation,
testing and interpretation issues will be discus$edally, several analyses will be
performed in order to compare this multilevel anay® the classic approaches
suggested by Harnqvist (1978) and done in Kogovied.g2002), who analysed
the data only at group (ego) level considering agesaof all alters within the ego.
It will be shown that some of the results obtairngdclassic methods are biased.
Besides, the multilevel approach provides much maeeailed information and
thus a much richer view on measurement quality.

2 Reliability and validity assessment

2.1 Reliability and validity defined

Reliability can be defined as the extent to whicly gnestionnaire, test or measure
produces the same results on repeated experimidotgever, a random error will
always exist. The repeated measures, will not bectexahe same, but will be
consistent to a certain degree. The more considtentresults given by repeated
measurements, the higher reliability of the measergnprocedure.

In order to have a good quality of measurementabglity is not enough, but
we need validity too. Validity is defined as the extdo which any measure
measures what is intended to measure (Carmines [&rZd979:12). Validity is
affected by the error called systematic error, whishnot random but has a
systematic biasing effect on the measurement insgnim
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Within construct validity we consider nomological,onvergent and
discriminant validity. Nomological validity implieshat the relationships between
measures of different concepts must be consisteith wheoretically derived
hypotheses concerning the concepts that are beirgguned (Carmines & Zeller,
1979). Convergent validity refers to common trairigsace and is inferred from
large and statistically significant correlations weén different measures of the
same trait. Discriminant validity refers to the distiveness of the different traits;
it is inferred when correlations among differerdtits are less than one.

The amount of both random and systematic error pteisea measurement can
depend on any characteristic of the design of thelystsuch as data collection
mode, questionnaire wording, response scale, typgaafing of the interviewer,
all of which can be broadly considered as methodey€s, 1989).

22 MTMM M odel

In this study the main concerns are convergent aisdrichinant validity and
reliability. Convergent and discriminant validity dfifferent methods was first
assessed in a systematic way by the design that wgoamg to use, the MTMM
design (Campbell and Fiske, 1959). In this deshged or more traits (variables of
interest) are each measured with three or more oalsth

Reliability assessment is based on the classicalttesory (Lord & Novick,
1968) whose main equation is:

Yij = Sj + € (2.1)

where:
e S is the part of the response that would be stadaeoss identical
independent repetitions of the measurement proaedds called true score
(Saris & Andrews, 1991).
* Yj is the response or measured variable i measureuletlyod j.
* ¢; is the random error, which is related to lack @fability.

In coherence with the MTMM approach, the stablet parassumed to be the
combined result of trait and method:

Sj = m; Mj + tij T; (2.2)

where:
* T;is the unobserved variable of interest (trait)la®ed to validity.
* M is the variation in scores due to the method. ®el&o invalidity.
* m; and f; are factor loadings on the method and trait factespectively
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Equations 2.1 and 2.22 constitute the specificatoddnthe true score (TS)
MTMM model of Saris and Andrews (1991). By subdiiin we obtain Equation
2.3 which corresponds to the Confirmatory Factor Igsia (CFA) specification of
the MTMM model (Andrews, 1984):

Yij = mi M + t; Ti + € (2.3)

It can be shown that both models are equivalente(@ers & Saris, 2000).
Equation 2.3 is depicted in Figure 1.

e —» Yij

o

Figure 1: Path diagram for the MTMM model for trait;jTand method (V).

In this model it is necessary to make some assumgtidndrews, 1984):
cov(Ti,e;)=00;

cov(M,e;)=00J;

cov(M,T)=0 [, (2.4)
E(e;)=0 Dij

cov(M,M;)=0 O,

m; =1 [,

which imply:

» There is no correlation between the errors andlabent variables, both
traits and methods.

» There is no correlation between the traits andnife¢hods. These first two
assumptions make it possible to decompose the negi@f Y; into trait
variance itz var(T;), method variance ﬁﬁ var(M;) and random error
variance var(g) to assess measurement quality (Schmitt & StuB86).

* The expectation of the random error is zero.

» There is no correlation between methods.

* Method effects are equal within methods. The last assumptions are not
always made. They were suggested by Andrews (1984)Siredpenzeel
(1995) as a means to improve the stability of thelehothat is increase the
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rate of convergence of the estimation proceduresiuce the rate of
appearance of inadmissible solutions (e.g., negatariances) and reduce
standard errors (Rindskopf, 1984). Problems ing¢hespects had been often
reported in much previous research using the CFAleh@Bagozzi & Yi,
1991, Brannick & Spector, 1990; Kenny & Kashy, 198&rsh & Bailey, 1991;
Saris, 1990b).

Usually at least three methods are required. In #ntgcle only two will be
used. If only two methods are used, the model wiltlt@nstraints in Equation 2.4
is still identified but rather unstable and starb@rrors can get very large. In
order to increase the stability of the model, theliadnal constraint thatjtare
constant within method is considered:

tij=tij Uiy (2.5)

This constraint is reasonable if the relationstbptween the units of
measurement of Method 1 and the units of measureofeMethod 2 are constant
across traits. This assumption is reasonable if résponse scales do not vary
across methods (this will be the case in our ajicr they vary in the same way
for all traits. If we impose this assumption starmtarrors get much lower; with
our data they got 29,7% lower on average.

The definitions of reliability and validity from clagal test theory used in
Saris and Andrews (1991) for the TS model can dsomplemented in the CFA
formulation of the model as follows. Reliability tise proportion of variance in;Y
that is stable across repeated identical measures:

Var(S;) = miVar(M)) +tVar(T,)
var(Y,) var(Y;)

Reliability = (2.6)

and the reliability coefficient is the square rodt reliability. Thus, reliability
increases not only with true or trait variance, biso with method variance, which
also belongs to the stable or repeatable partehiteasurements.

Validity, assuming that method is the only sourcéneflidity, is:

tjVar(T,) _ t;Var(T)

- (2.7)
var(§))  mjvar(M,) +tjVar(T)

Validity =

and the validity coefficient is the square root dlidity. Validity is thus the
percentage of variance of the true score explaibgdthe trait. As explained
before, the true score is the trait effect plusniethod effect. Then, we can assess
invalidity as 1 minus validity.
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Another definition of validity uses the total var@nin the denominator of
Equation 2.7, thus making reliability be the uppesubd of validity. The
advantage of the definition used in Saris and Angr€l991) and presented here is
that it makes the range of validity independent loé¢ tvalue of reliability, as
validity can be equal to 1 even for unreliable measuThe advantage of the other

definition is that validity is understood as an @lermeasurement quali

ty

indicator, as it assesses the percentage of t@aitance contained in the total

variance of each measure.

1. How frequently are you in contact with this person (personally, by mail, telepho
or Internet)?

1 Less than once a year.
2 Several times a year.

3 About once a month.

4 Several times a month.
5 Several times a week.

6 Every day.

2. How close do you feel to this person? Please describe how closeeyanm a sca
from1 to 5, where 1 means not close and 5 means very close.

1 2 3 4 5
Not Close Very Close

3. How important is this person in your life? Please describe hase glou feel on
scale from 1 to 5, where 1 means not important and 5 means very important.

1 2 3 4 5
Not important Very important

4. How often does this person upset you?

1 Never.
2 Rarely.
3 Sometimes.
4 Often.

a

Figure 2: Questionnaire.
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e —» Y11 Y21 Y31 Y1 Yi2 Y22 Y32 Yaz | 4— ey

T4\ !

STL
pate¥

Figure 3: Path diagram of a CFA MTMM model for two methaasd four traits.

3 Data

The kind of network that we are going to study ioWn as egocentered network
or personal network. It consists of a single indinal (usually called ego) with one
or more relations defined between him/her and abvemof other individuals—the
members of his/her personal network, called al{gyovsek et al., 2002:2).

First of all, it is necessary to find the ego’s netlu Name generators are
guestions for eliciting the names of the ego’s rekvmembers (alters). Secondly,
other questions are used to describe these refdtips, such as frequency of
contact with the alter, feeling of closeness to dlter, feeling of importance of the
relationship and so on. These kinds of questiorns faequently called name
interpreters. Our aim is to estimate the reliapihd validity of some of the very
frequently used name interpreters (traits) usinfedéint methods.

With this purpose we reanalyse a part of the datanmither study (Kogovsek
et al., 2002) done on a representative sample efirthabitants of Ljubljana. The
complete study of KogovsSek et al involved severabsauimples with several
missing data patterns planned by design. In thiglarwe use only one group
without missing data, as the aim of the currentgrap a different one. The part of
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the sample used in this paper consists of G=314s egloo evaluated N=1371
alters. The subset of variables used by us is desdrbelow:

Traits

Ty Frequency of contact

T, Feeling of closeness

T3 Feeling of importance

Ty Frequency of the alter upsetting to ego
Methods

M1 Face-to-face interviewing

Mo Telephone interviewing

The wording of the name interpreters used in thisly is displayed in Figure
2. Figure 3 displays a CFA model for two methods tnd traits.

4 Multilevel analysis
4.1 Model and estimation

Egocentered network data can be considered asrbiecal. An ego chooses the
alters according to the name generator questiodstarefore the alters are a “part
of” the egos. In the hierarchical structure there the egos at the top of the
hierarchy, and all their alters at the bottom. Thalggrs are nested into the egos in
what constitutes a nested data structure. Respotsethe name interpreter
guestions constitute the data.

The technique used will be two-level factor analysss, more particularly,
two-level MTMM models. The lowest level is known aslividual level and the
highest level is known as group level. Thus, in case groups will be egos and
individuals will be alters.

The mean centred individual scores for group g iaddvidual k Y; =Y, -Y
can be decomposed into a between group compoMngt:Vg -Yand a within

group componentYng:ng—\_(g. Since both components are independent, the
cross product matrices can be aggregated as:

> 3(Y, ~Y)(Y,, ~Y)'=
NE(Y s —V)(Y, ~V)+ZZ(Y,, —Y,)(Y, ~Y,) (4.1)

where:
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* Yis the total average over all alters and egos.

. \Tgis average of all alters of the gth ego.

* Yg is the score on the name interpreter of the kterathosen by the gth
ego.

» G is the total number of egos.

* nis the number of alters within each ego, assutodik constant.

* N=nG is the total number of alters.

The sample covariance matrices are obtained whadidg the components in
Equation 4.1 by their degrees of freedom:

Gn P P
_ ZZ(ng —Yg)(Ygk —Yg)'

e (4.2)
5 - nZ(Y, -Y)(Y, -Y) .3)
G-1
ST - zz(ng _Y)(ng _Y)' (44)

N-1

In the population, the covariance matrices withir detween groups can also
be aggregated as:

21=2gt 2w (45)

This decomposition is very interesting in order @onalyse each component
separately and can be also applied to our MTMM nh@Beguation 2.3). We are
thus able to decompose the model in two parts.stiendices g and k are dropped
for the sake of simplicity:

Yij = Mgij Mgj + tgij Tai + €gij + Muyij Muj + twij Twi + €wij (4.6)
- ~— A ~— _/
6ij Ywij

Harnqvist (1978) proposes to do factor analysistio® within and between
sample covariance matrices. Muthén (1989, 1990wshthat this can lead to
biased estimates and suggests a maximum likeli{ddlg approach to estimate
the population parameters of models of the CFA fafy maximum likelihood on
multilevel data structures.
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If we have G balanced groups sizes (in our case)egqual to n (in our case
number of alters evaluated by each ego, thus tted somple size is N=Gn) then
Sw is the ML estimator oEy, with sample size N-G an$s is the ML estimator of
Yw+cXg, with sample size G-1 with ¢ equal to the commeaug size n (Hox,
1993). Then, for large samples the expected vadues

ESw)= Zw (4.7)

E(SB): 2w+ Cclp (48)
where Equation 4.8 can be considered to be a nauldte equivalent to that
encountered in one-way ANOVA with a random factemg(, Jackson and Brashers,
1994).

We can better understand Equations 4.6 to 4.8 guréi 4, which is the two-
level version of the path diagram in Figure 1.

\
tgj ! j M; >. 28

()
/
Jc

Figure 4: Multilevel CFA MTMM Model.
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Note thatSg estimates both the within structur®y) and c times the between
structure Eg) and is thus a biased estimateXy. This model can be estimated
with standard structural equation modelling softevalr Sy and Sg are treated as
two groups in a multiple group model with sampleesi N-G and G-1 respectively.
The variables irbw are only affected by the within factors, and tlaiables inSg
are affected by both the within and between factaweighted by a scaling

factory/c. More recently developed software like Mplus (Mé&th& Muthén 20017)
hides this complication from the user.

Until now we assumed that groups were of the same @alanced case). In
the unbalanced case the situation is more compl8w. continues to be a ML
estimator forXy and thus Equation 4.7 still hold¥he difference is that the
estimation ofZg is more complex because we need a different espredor each
group size p(Hox, 1993):

E(SB): 2wt nQZB (49)

The Full Information Maximum Likelihood (FIML) estiator thus implies to
specify a separate between group model for eactindisgroup size. This is
computationally complex. Therefore Muthén (1989aP%roposes to utilise
another estimator known as the Partial Maximum likeod or Muthén Maximum
Likelihood (MUML) estimator, called pseudobalancsalution, too. It's necessary
to use a c* scaling parameter, which is close torttean group size.

G

. N?-3n?
c=— 9 (4.10)
N(G-1)

Whereas FIML is an exact ML estimator, MUML is ordy approximation, but
it should produce a good estimation given large @ansizes. MUML has been
reported to perform well if the group sample size(is our case the number of
egos) is at least 100. Otherwise, standard errndstast statistics can be biased
(Hox and Mass, 2001). Hox and Mass suggest thantimeber of groups G is more
important for the quality of estimation than theéalosample size N, especially for
estimates of between group parameters. N will alyytva large enough in most
practical applications. In this study, we use MUME we have a large enough
number of groups (G=314).

4.2 Goodness of fit assessment
The evaluation of the goodness of fit of the moeh complex task for which

many statistical tools are available (e.g., Bolkrong, 1993; Batista-Foguet &
Coenders, 2000). First of all, the estimates mesthecked for admissibility (e.g.,
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variances may not be negative, correlations mayhb®otarger than one, etc.). A
first goodness of fit measure is thé statistic to test the null hypothesis of no
parameter omission, with its associatedumber of degrees of freedom (d.f.) and
p-value. The statistical power of this test vanath the sample size. If we have a
large sample, the statistical test will almost asmy be significant. Thus, with
large samples, we will always reject our model. Gasely, with a very small
sample, the model will always be accepted, evenfits rather badly. Thus, other
useful fit measures that quantify the fit of thedabhave been suggested. Among
them are the Compared Fit Index (CFl) of Bentle®99Q), the Tucker and Lewis
Index (TLI), also known as Non Normed Fit Index (NIN of Tucker and Lewis
(1973), the Root Mean Square Error of Approximat{f®MSEA) of Steiger (1990)
and many others. Values of RMSEA below 0.050 (Brew&n Cudeck, 1993) and
values of TLI and CFI above 0.950 (Hu and Bentl99) are usually considered
acceptable. Recent research has shown the TLI tmdependent of sample size
and to adequately penalyze complex models (Mars&l.e1996). The RMSEA is
also often reported due to its potential for hymsils testing.

These goodness of fit indices are often only regobrtor the entire model,
which includes both the fit in the within model atite between model. Hox
(2002) suggests a specific strategy to evaluategtmness of fit of a multilevel
model in order to make it possible to identify wet the missfit comes from the
between or within parts.

In order to evaluate the fit of the between parsasurated model (with zero
degrees of freedom and thus with a perfect fit) thes speficified for the within
part and the researchers' model (in our case a @FRKM model) for the between
part. A goodness of fit measure such as RMSEA @aodmputed for the between
part from this between pag’s mtwm Statistic, the associated degrees of freedom
(ve.mTmm) and the sample size (G-1) at the between part:

RMSE%:\//Y;,MTMM ~ Vg mrvm (4.11)
(G _1)VB,MTMM

Other goodness of fit measures like the TLI requfre comparison of thg?
statistic with that of a model specifying zero comaces among all pairs of
variables (independence model). Thus we would $pe independence model
for the between part and a saturated model fomtitkein part to obtain a(ZB,indep
statistic and its associated degrees of freed@miep Thus, the TL4 for the
between part of the model would be:

2 2
XB,indep _ XB,MTMM

Vo, Vv
TL| . - B,|ndeg B,MTMM (412)
Xeindep -1
vV

B,indep
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In a similar manner, we could obtain RMSigAnd TLly by specifying two
models with a saturated between part, taking irdooant that the within sample
size is N-G.

4.3 Interpretation

In a multilevel context, the evaluation of measueamt quality can be much
enriched. Quite trivially, we can obtain two relibtes and two validities for each
trait-method combination, that is, between and mitiThe fact that groups are
respondents and individuals are stimuli evaluatgdhlem makes these reliabilities
and validities interpretable in a somewhat différemmy from standard multilevel
analysis.

The between reliabilities and validities can be poted from the parameters
of the between part of the model and can be inetegr with respect to the quality
of the measurement of the egocentered networkabade (average values of the
traits for each ego computed over all his/her alter

The within reliabilities and validities can be couted from the parameters of
the within part of the model and can be interprated classic psychometric sense
in which each subject is a separate unit of analgsid thus variance is defined
across stimuli presented to the same subject, croisa subjects (e.g., Lord, 1980).

Hox (2002) suggests that percentages of variannaeataonly be computed in
each part of the model separately. The fact thatbtween and within scores add
to a total score as in Equation 4.6, makes it gdesio compute percentages of
variance in other attractive ways. In our casewd decompose the variance
according to Equation 4.6 we have:

var(Y;) = mi®Var(Mw) + m;%sVar (Mig) +
tijZWVar(Tiw) + tijZBVar(TiB) (4.13)
Var(ejw) + Var(ejs)

In this paper we suggest that each of the six camapts in Equation 4.13 can

have its own interpretation:

» Between method variance corresponds to differeram@sng respondents
(egos) in the use of methods. Thus it is in conglagreement with the
usual definition of method effect (e.g., Andrew880).

» Within method variance corresponds to differenaedhie use of methods
among alters evaluated by the same ego. At the mbme cannot interpret
this source of variance. We would expect it to beyMow in most cases.

» Between trait variance is the error-free variancerre&sponding to
differences in the average levels of the egos.

« Within trait variance is the error-free varianceresponding to differences
in the alter evaluations made by the same ego.
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* Between error variance is the error variance assedito measurements of
average levels of the egos. Thus, it is somehovesyatic as it is constant
for all alters within the ego (otherwise it wouldesiage to zero).

e Within error variance is not systematic in any wawnd thus truly
corresponds to the definition of pure random measent error.

Thus, from the decomposition in Equation 4.13, patages like the following

could be of interest and can easily be computed €am:

» compute overall reliabilities and validities by aggating all trait, method,
and error components, thus similar results to assit (not multilevel)
analysis ofSr would be obtained.

» compute overall percentages of within and betwesmance by aggregating
all within components and all between components.

» do the former only with respect of error free vade, that is compute the
percentage of between and within trait variancer dlie total trait variance.

 compute a percentage of pure random error varighee within error
variance) over the total variance of the observadables (grand total, i.e.
including all 6 components). The percentage ofltetaiance explained by
the other 5 components can be computed in a simidgr.

5 Results
5.1 Overview of the analyses performed

We are going to carry out four different analys€ke first three analyses will be
of the traditional sort, analysingr, Sw and Sg separately with a standard (i.e. not
multilevel) MTMM model. The last analysis will be raultilevel analysis, thus
considering the within and between levels simultarsty:

* Analysis la: traditional analysis or. ML estimation.

* Analysis 1b: as 1la but using cluster sample formulae for thedard errors
and goodness of fit indices (Muthén & Satorra, 199% fact, cluster
samples are also an example of hierarchical datas,Teven if we are only
interested in the total scores, we can take theahskical structure of the
data into account in this way. This procedure ugaesiean-adjusted chi-
square test statistic that is robust to non nonyalnd to dependence among
observations.

* Analysis 2: traditional analysis oy, ML estimation.

* Analysis 3: traditional analysis og, which is a biased estimate B§. ML
estimation. Analyses 2 and 3 together constitut® tcommendation of
Harnqvist (1978).
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* Analysis 4: multilevel analysis, to fity and Xg simultaneously. MUML
estimation.

All analyses will be done using the Mplus2.12 progr (Muthén & Muthén
2001). We will compare the traditional analyses gl 1b, 2 and 3) to the
multilevel analysis (4). Large differences are ectpd at least with analysis 3
which, if confirmed, will make the use of multildvanalysis (4) more advisable.

Some of the traditional MTMM analysis can be endewed in the social
network literature. Hlebec (1999) and Ferligoj akidlebec (1999) performed
analysis 1la on complete network data and Kogovie&l.e(2002) analysis 3 on
egocentered network data.

5.2 Goodness of fit of the models and specifications sear ch

In Table 1, we can observe the goodness of fit b tifferent analysesxt
statistic, TLI and RMSEA). The table also shows tienges in the specification
that we have to make in order to obtain an admisssblution, as a few negative
variances were obtained in the first specificatiaich had to be fixed at zero.
Analysis 4, which includes both the within and beém part, understandably
required a larger number of respecifications.

Table 1: Goodness of fit statistics.

Analysis la Sy) 1b (Sy) 2 (Sw) 3 (Sp) 4 (X1 andXZy)
ML ML complex ML ML MUML

Initial

XZ statistic 191.074 140.579 112.210 82.068 149.313

d.f. (v) 15 15 15 15 30

TLI 0.959 0.958 0.971 0.930 0.967

RMSEA 0.093 0.078 0.078 0.119 0.054

Respecifications var(M,7)=0 var(M,1)=0 var(M,w)=0 var(Mg)=0 tp,=1
Var(M15)=0
var(Mpw) =0
Var(euB) =0

XZ statistic 192.993 141.925 112.401 82.644 185.333

d.f. (v) 16 16 16 16 34

TLI 0.961 0.961 0.973 0.934 0.963

RMSEA 0.090 0.076 0.075 0.115 0.057

A part from analysis 3, which yielded the worst doess of fit, the goodness
of fit of the final models of each analysis laid titre border between what can be
considered a good or a bad fit. The model was tefeby thex? statistic, RMSEA
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was above (i.e. worse than) the commonly accegtesshold of 0.05 and TLI was
above (i.e. better than) the threshold of 0.95.

However, thex? statistic and hence the RMSEA may be somewhaated by
the fact that data are ordinal (Babakus et al.,7198uthén and Kaplan, 1985) and
by the fact that group sizes are unbalanced (HoMa&ss, 2001). Our group size
distribution has a minimum of 1 alter per ego, aximaum of 13, a mean of 4.36, a
standard deviation of 2.14 and a coefficient of iagon of 0.49) The data
simulated by Hox & Mass had a coefficient of vaieatequal to 0.50 and the’
statistic was reported to have a positive bias.6#@8 Removing the constraints in
Equation 2.5 did not improve the fit (for instantethis is done on the final
specification of analysis 4, the fit actually getgsorse, as TLI=0.960 and
RMSEA=0.059) and thus the constraints are mainthine

Analyses la and 1b report quite different goodnefsgit measures, which
suggests that it is important to use the correstibor complex samples when
analysingSr on hierarchical data.

Table 2: decomposition into 6 variance components. Analysis

T, T) T3 Ty

trait variance within

M, 0.80 0.57 0.68 0.47
M, 0.77 0.55 0.65 0.45
method variance within*

M, 0.03 0.03 0.03 0.03
M, 0.00 0.00 0.00 o0.00
error variance within

M, 0.16 0.16 0.17 0.22
M, 0.14 0.13 0.13 0.17
trait variance between

M, 0.17 0.06 0.10 0.13
M, 0.17 0.06 0.10 0.13
method variance between*

M, 0.00 0.00 0.00 o0.00
M, 0.01 0.01 0.01 0.01
error variance between*

M, 0.02 0.03 0.04 0.00
M, 0.04 0.02 0.02 0.07

* Boldfaced for variances constrained to zero.

The goodness of fit of the final specification fomalysis 4 can be decomposed
into the within and the between pap’§= 52.432 withvg=18 d.f., TLE=0.777,
RMSEAg=0.078, x°w= 90.635 withvy=16 d.f., TLIk=0.973, RMSEA,=0.066).
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The fit thus seems to be worse for the between plathe model. For Analysis 4,
all variances of traits, methods and errors wegmisicantly different from zero
except for the ones constrained in the specificaearch process (¥, Maw,
e418) and eig. This suggests that trait, method and error va@eanoperate both at
the within and between levels and that none offgodors must be removed from
the model specification.

Table 2 shows the variance decomposition accorthngquation 4.13 for the
eight variables (trait-method combinations) obtadirfeom analysis 4. From this
table, within, between and total reliabilities awmdlidities and all other results
described in Section 4.3 can be obtained. Boldfaddes are fixed to zero.

In the following subsections we show the final déswf this analysis 4 in
greater detail while we compare them to the traddil analyses. The first group of
results are abowy (thus involving analyses 2 and 4), the second grofuresults
are aboutXg (analyses 3 and 4) and the third group of resalts aboutXr
(analyses 1 and 4). No distinction is made betwaealyses 1la and 1b as only
goodness of fit measures change, not the pointnes#s.

5.3 Within part. Comparison of analyses 2 and 4

Table 3 presents the most commonly used estimateani MTMM model,
reliability and validity coefficients (square rootsf Equations 2.6 and 2.7
respectively) and trait correlations, that is ctat®ns corrected for measurement
error.

According to Equation 4.7, the results of analy2eend 4 should be about the
same. If we carefully study Table 3, we can confihis equality: the results are
virtually the same. Besides, both analyses requitstraining the variance of M
to zero in order to be admissible (see Table 1).

We find that closeness {)land importance (3) are very highly correlated at
the within level. This means that for a given egliers considered to be very close
are also considered to be very important. Frequariayontact () has moderate
correlations with both abovementioned traits. Festpy of upsetting has lower
correlations, but positive, thus meaning that beupset by an alter is not as
negative as it may appear. Actually, the altersetfirsg you the most are the ones
you feel closest too, maybe because you contaah threre often (actually the
correlation between frequency of contact and freqyeof upsetting is positive) or
because you have higher expectations and thusetampget by a lesser thing.
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Table 3: Within part. Comparison of analyses &) and 4 (multilevel).

Analysis 2 Analysis 4

T, T, T3 Ta T, T, T3 Ta
Reliability
coefficients
M, 0.92 0.89 0.90 0.84|0.92 0.89 0.90 0.84
M 0.92 0.90 0.91 0.85|0.92 0.90 0.91 0.85
Validity coefficients*
M, 0.98 0.97 0.98 0.97|0.98 0.97 0.98 0.97
M, 1.00 1.00 1.00 1.00|1.00 1.00 1.00 1.00
Trait correlations
T, 1.00 1.00
T, 0.57 1.00 0.57 1.00
Ts 0.58 0.99 1.00 0.58 0.99 1.00
Ta 0.41 0.26 0.31 1.00|0.41 0.25 0.31 1.00

* Boldfaced for variances constrained to zero.

As regards measurement quality at the within lewdijch is interpreted in a
psychometric sense within a subject and across ustinTable 3 shows that
frequency of contact (i) is measured with the highest reliability and trequency
of being upset (4) with the lowest for all methods. Telephone intewing (M,)
has higher reliability than personal interviewinil,j for all traits. Validity
coefficients referring to M are equal to 1 because we have constrained the
variance of this method to zero, since it was niegatThis may simply mean that
this variance was very low in the population, satth negative sample estimate
occurred just by chance; the estimate was indeeg v (about 1% of total
within variance) and non-significant. Validity cdefents for M, are similar and
high for all traits.

5.4 Between part. Comparison of analyses 3 and 4

Table 4 presents reliability and validity coeffinis and trait correlations for the
between part, which can be obtained for analysesn® 4. Two unsignificant
negative method variances are constrained to zasoshown in Table 1, and
boldfaced.

If we compare both analyses we find very intereptiesults. According to
Equation 4.8, the results should not be the safmgelstudy Table 4 carefully, we
can confirm this inequality. The reliability coeffents are different in a rather
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non-systematic way. The validity coefficients ar®t ncomparable, because
different constraints are applied. The comparigdrirait correlations is rather
more interpretable. Equation 4.8 suggests thatathaysis ofSg is a combination

of the within and between structures. Trait corielas obtained by analysis 3 are
indeed half way between trait correlations withimddetween obtained by analysis
4. In any case, what Table 4 shows most clearltha differences can be large,
which suggest that an analysis® does badly at estimating the between structure
of the data.

Table 4: Between part. Comparison of analysesSg) @nd 4 (multilevel).

Analysis 3 Analysis 4
T, T, T3 T4 | T1 T, T3 Ty

Reliability
coefficients*
M1 0.88 0.84 0.86 0.88|0.95 0.83 0.86 1.00
M, 0.97 0.91 0.93 0.88|/0.91 0.88 0.90 0.82
Validity coefficients*
M1 0.98 0.97 0.97 0.97|1.00 1.00 1.00 1.00
M, 1.00 1.00 1.00 1.00]0.98 0.94 0.96 0.97
Trait correlations
T, 1.00 1.00
T, 0.23 1.00 -0.25 1.00
T3 0.35 0.98 1.00 0.10 0.99 1.00
Ty 0.27 -0.03 0.07 1.00| 0.16 -0.39-0.17 1.00

* Boldfaced for variances constrained to zero.

Given the large differences, for the remaining loktsubsection we interpret
the theoretically correct results of analysis 4. Aegards the trait correlation
matrix we again find that closeness,fTand importance () are very highly
correlated. A more surprising finding is the veowl correlation among all other
pairs of traits, some of which are even negativenuist be taken into account that
at the between level trait correlations refer t@ exyerages. For instance, at the
between level it seems that egos with higher awerfagquency of contact (J do
not feel more close (), on average, to their alters. On the contrarythatwithin
level, alters with whom one particular ego meetgenioequently are the ones that
particular ego feels closest to.

In Table 4 we are also able to observe reliabgityl validity coefficients at the
between level, thus reflecting measurement qualityhe ego averages across all
alters. Unlike the case was at the within levek tbelephone method (Mis not
always more reliable than the personal method.dfiglicoefficients of M equal 1
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for all traits, because we have constrained théawae of this method to zero. The
validity coefficients for M are similar and high for all traits. In averageepall
variables, it cannot be said that measurement tudiifers much from the within
to the between level (the average reliability coedints over all 8 variables are in
fact equal up to the first two decimal places).

Kogovsek et al (2002) also analysed tBe matrix for a somewhat different
data set including a third method and two more dampf egos. Kogovsek et al
(2002) reported M (telephone) to be more valid for all traits and ke more
reliable for all traits but one. In spite of thefdrences in the sample used, this is
much the same conclusion that can be drawn fronysaisa3 in Table 4. Kogovsek
(2002) argued that the telephone method may be mahel than face-to-face
because it is more anonymous and more reliableusegabeing a faster means of
communication, only the most important alters teadoe named. The finding of
KogovsSek et al (2002) that the telephone mode predugood quality data is
specially relevant in the social network literatubecause it contradicts the
common finding in other research fields that theeféo-face mode produces data
of better quality (e.g., Groves, 1989 and refersniteerein). In our analyses it is
not so clear that telephone method,jNs better than face-to-face method Mt
the between level. However, our analyses in theipts subsection did show that
M, produces better quality data at the within lexagld an analysis of th® such
as the one done by Kogovsek et al (2002) is inblytaontaminated by the within
level structure according to Equation 4.8.

Table 5: Overall analysis. Comparison of analysesSi) @nd 4 (multilevel).

Analysis 1 Analysis 4

T, T, T3 T4 | T1 T, T3 Ty
Reliability
coefficients
M1 0.91 0.88 0.89 0.86(0.92 0.88 0.90 0.86
M, 0.93 0.90 0.92 0.85/0.92 0.90 0.91 0.85
Validity coefficients*
M; 0.98 0.97 0.98 0.97(0.98 0.98 0.98 0.97
M, 1.00 1.00 1.00 1.00|1.00 0.99 0.99 0.99
Trait correlations
T 1.00 1.00
T, 0.46 1.00 0.46 1.00
T3 0.50 0.99 1.00 0.50 0.99 1.00
Ty 0.36 0.15 0.22 1.00|/0.36 0.16 0.23 1.00

* Boldfaced for variances constrained to zero.
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5.5 Overall analysis. Comparison of analyses 1 and 4

Table 5 presents overall reliability and validityesficients, which can directly be

obtained for analysis 1 and, by aggregating tmraigthod and error variances, also
for analysis 4. One unsignificant negative methadiance is constrained to zero,
as shown in Table 1, and boldfaced. Overall traitrelations for analysis 4 are

computed by taking overall trait variances and c@reces as the sum of between
and within trait covariances, as in Equation 4.5.

If we compare both analyses we find very interagtiasults. According the
theory explained before, the results should notheesame, but should be similar
and comparable. If we study the tables carefullg @an confirm it. The trait
correlations and reliability coefficients are vesymilar and even the validity
coefficients are, in spite of the constraint of owariances to zero. The analysis
of St may then be appropriate if one is only interestedoverall parameter
estimates, provided that correct test statistieseamployed (i.e. analysis 1b).

If we consider the results of analysis 4, we aréeato observe that the
reliability and validity coefficients of both mettls are quite similar, although M
(telephone) is slightly better, except for the abliity when measuring 4
(frequency of being upset). Reliability coefficisnare very high and validity
coefficients are even more so, which is partly dodhe fact that var(i) and
var(M,y) have been constrained to zero, so that fqrdvlly the within level is
counted and for Monly the between level.

As suggested in section 4.3, when considering thexadl model, the results of
analysis 4 can be used to decompose variance iny nraeresting ways by
combining interesting sets of the 6 variance congmi® in Equation 4.13 and
Table 2. Some of these results are shown in Table 6

Table 6: Some interesting percentages of variance basexhalysis 4.

T, T) T3 Ty

ti“wvar(Tiw)/ [ tj°wVar(Tiw) +
ti°gVar(Tis)]
M; 0.82 0.90 0.87 0.79
M, 0.82 0.90 0.87 0.78
Var(ejw)/ Var(Yi)
M; 0.13 0.19 0.16 0.26
M, 0.12 0.17 0.14 0.20

The first part of Table 6 shows the percentage ilfiiw trait variance over all
trait variance. The results show that most of threrefree variance corresponds to
the within level. This means egos really discrimenamong different alters, which
may also be an indicator of measurement qualitye Becond part of Table 6
shows the percentage of true random error varignaa within error variance, as
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argued in Section 4.3) over the total variance. @neus this percentage (or its
square root) could be an alternative measure ofbiity and would show

measures with M (telephone) to be the most reliable and measures 40

(frequency of upsetting the ego) the least.

6 Discussion

In this article we have used CFA for MTMM model, oge results are equivalent
to TS model (Coenders & Saris, 2000) to study theality of egocentered network
data. We have used an additional constraint inntloglel that makes the trait
loadings to be constant within method in order moréase the stability of the
model. If we impose this assumption standard srgat much lower, which was
quite valuable on a data set with only two methods.

As egocentered network data are hierarchical, wdopmed a multilevel
MTMM analysis. Muthén’s approach (1989, 1990, 19%l)used as we have a
large enough number of groups. We compared theltseesaf this multilevel
analysis to those obtained using traditional aredysf the global, within and
between covariance matrices. The traditional anslg$ the between covariance
matrix proved to yield misleading results, whiclads to the recommendation to
use the multilevel analysis, which provides muchrendetailed information and
thus a much richer view on measurement quality frome single program run.
However, if only the within data are of interestiraditional analysis of the within
covariance matrix could also be performed. In thens way, if only the overall
data are of interest, an analysis of the overallac@nce matrix is also possible,
provided that appropriate corrections are made tandard errors and test
statistics.

In our multilevel analysis, we can immediately dbtawo reliabilities and
validities for each trait-method combination, th@between and within egos. Each
of them has a different interpretation. It is alpwssible compute overall
reliabilities and validities by aggregating allittanethod and error components in
order to obtain similar results to a classic (natltihevel) analysis of the overall
covariances. As is usually done, we can also asbésh percentage of variance is
due to within and between differences. However, neveore useful variance
percentages can be obtained by combining differanthin and between
components in a meaningful way (Hox, 2002) depegdam the results one is
interested in for a particular research problem.

We can also evaluate the goodness of fit of thetileukl model in such a way
as to identify whether the missfit comes from theveen or within parts of the
model (Hox, 2002). In this paper we could thus fthat the between part of the
model fits worse.

According Kogovsek, (2002), telephone interviewiwgs more reliable and
valid than the face-to-face method. According toLéeuw (1992), the advantages
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of telephone interviewing are larger for sensitopgestions, category into which
social support measures can be considered toA&kr our reanalysis of the same
data, we conclude that is not so clear that telaphis more reliable than face to
face. It depends on whether the within or the betwdevel is considered.
Telephone is better than face to face at the witbwel, and about equal to face to
face at the between level. Differences in measumgnguality can also be
encountered for different traits as well. Frequen€ contact is the most reliable
trait in almost all cases, which could be so beeausre frequency is easier for the
respondent to interpret than traits involving fags such as closeness, importance
and upset.
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