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Abstract

This paper considers combinatorial methods of constructing LR structures: two isolated
constructions, RC and SoP, two closely related constructions, CS(T", B,0) and CS(T', B,1)
using cycle decompositions of tetravalent graphs, a generalization of those, CS(T', B, k)
for k£ > 2, and finally a construction LDCS relating to cycle decompositions of graphs of
higher even valence. This last construction is used to classify all LR structures of types

{3, %} or {4, }.
Keywords: Graph, automorphism group, symmetry, locally arc-transitive graph, semisymmetric graph,
cycle structure, linking ring structure.
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1 Introduction
1.1 History

An LR structure is a finite, simple, connected, tetravalent vertex-transitive graph together
with a decomposition of its edge-set into cycles that satisfies certain symmetry conditions
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(see Section 1.2 for details). It can also be seen as one of the possible symmetry types of
the tetravalent vertex-transitive graphs, namely the one in which the stabiliser of a vertex in
some vertex-transitive group of symmetries acts on the neighbourhood as the Klein 4-group
in its intransitive action on four points (see [10, Section 1] for more on this topic).

This paper is the third in a “trilogy” developing the theory of LR structures. In the first
paper [10], we introduced LR structures and we explained their importance in the search
for semisymetric graphs via the function P which creates a semisymmetric graph from
such a structure. In that paper, we also introduced two related families of LR structures and
discussed certain double covers of LR structures. All definitions from [10] appear in the
next section; please consult [10] for more details.

In the second paper, [9], we showed several purely algebraic constructions for such
structures. We first gave a quite general approach to constructing an LR structure from a
group having certain automorphisms. We then applied these techniques to several families
of abelian groups and to dihedral groups.

We noted in [9] that several of these constructions gave semisymmetric graphs having
large vertex-stabilizers. It has been known for decades that the size of a vertex-stabilizer
in a cubic edge-transitive graph is at most 48 in the dart transitive case (see [12]) and at
most 384 in the semisymmetric case (see [4]). No such absolute bounds exist for tetrava-
lent edge-transitive graphs. However, recently Spiga, Verret and the first mentioned author
of this paper have discovered efficient bounds on the size of the vertex-stabiliser in terms
of the number of the vertices for the case of the tetravalent dart-transitive graphs [7] and
for the case of the tetravalent half-arc transitive graphs [11]. Semisymmetric graphs are
thus the last remaining case of tetravalent edge-transitive graphs for which no good bound-
ing behavior on the size of the vertex stabilizer is known. Perhaps the examples in [9]
and especially the characterisation of the LR structures of type {4, ¢} in this paper will
yield some insight into the phenomenon of the large vertex stabilizer in LR structures, and
consequently, the tetravalent semisymmetric graphs of girth 4 (see Section 5).

1.2 Definitions

Unless explicitly stated otherwise, all the graphs in this paper are finite, simple and con-
nected. Let A be a regular tetravalent graph and C a partition of its edge-set E(A) into
cycles. We shall call such a pair (A, C) a cycle decomposition.

Two edges of A will be called opposite at vertex v, if they are both incident with v and
belong to the same element of C. The partial line graph of a cycle decomposition (A, C)
is the graph P(A, C) whose vertices are edges of A, and two edges of A are adjacent as
vertices in P(A, C) whenever they share a vertex in A and are not opposite at that vertex. A
symmetry of (A,C) is any permutation of the vertices of A which preserves C. The set of
all such is called Aut(A,C).

Because the two edges at v that belong to one cycle are connected to both of the edges
in the other cycle containing v, the edges at each vertex of A form a 4-cycle in P(A,C).
Thus, the girth of P(A, C) is usually 4 and never any larger.

A cycle decomposition (A, C) is said to be flexible provided that for every vertex v
and each edge e containing v, there is a symmetry which fixes pointwise the cycle D € C
containing e and interchanges the other two neighbors of v. The edges joining v to those
neighbors are in some other cycle C' of C. The symmetry then reverses the cycle C' and is
called a C'-swapper at v.

A cycle decomposition (A, C) is called bipartite if C can be partitioned into two subsets



P. Potocnik and S. E. Wilson: Linking rings structures and semisymmetric graphs: Comb. .. 3

G and R so that each vertex of A meets one cycle from G and one from R. Especially in
constructions, we will refer to the edges of the cycles in G and those in R as green and red,
respectively. The largest subgroup of Aut(A, C) preserving each of the sets G and R will
be denoted by Aut™ (A, C), and we will think of it as the color-preserving group of (A, C).

Definition 1.1. A cycle decomposition (A, C) is called a linking rings structure (or briefly,
an LR structure) provided that it is bipartite, flexible and Aut™ (A, C) is transitive on the
vertices of A.

Note that Aut™ (A, C) acts transitively on the darts of each color class, and that (since
A is assumed to be connected) its index in Aut(A, C) is at most 2. If there is a symmetry of
A which preserves C but interchanges the edge color sets G and R (that is, if Aut™ (A, C) #
Aut(A,C)), then we say that (A, C) is self-dual.

Since the color preserving group Aut™ (A, C) of an LR structure (A, C) is transitive on
R and on G, all cycles in R must have the same length, say p, and all cycles in G must be
of the same length, say gq. We then say that the LR structure (A, C) is of type {p, q}. For a
self-dual structure, of course, p = q.

Two LR structures (A1,Cy1) and (Az,Cs) are isomorphic whenever there is a graph
isomorphism from A; to Ay which maps cycles in C; to cycles in Co.

We define the joining sequences of an LR structure to be J, = [s;,d,,w,| and J, =
[sg,dg,wy] Where: s, is the least s such that some two red cycles are joined by two green
paths of length s. The number d,. is the least d such that two such green paths have starting
points that are d apart on one of the red cycles. If the two paths are j apart on the other
red cycle, a symmetry argument shows that d must divide j, and then we set w, = %; see
Figure 1. In the case that no two red cycles are joined by two green paths of the same
length, we declare J, to be [0,0,0]. The numbers s,,dy, w, are defined similarly, with
colors reversed. If (A,C) is self-dual, J, = J,. More usefully, if J, # J,, then the
structure is not self-dual.

by by by b;
g

S S
ayg a a4

Figure 1: Green paths of length s joining two red cycles.

If (A,C) is a cycle decomposition, then a cycle C in A is said to be C-alternating if
no two consecutive edges of C belong to the same element of C. If a C-alternating 4-cycle
exists, then J, = J, = [1,1,1], and (A, C) is the partition of the edges of a toroidal map of
type {4,4} into horizontal and vertical cycles.

Definition 1.2. An LR structure (A, C) is called suitable provided that

(1) (A,C) is not self-dual, and
(2) A has no C-alternating 4-cycles.

The primary result of [10] is that:
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Theorem 1.3. The partial line graph construction P induces a bijective correspondence
between the set of suitable LR structures and the set of worthy tetravalent semisymmetric
graphs of girth 4.

The word worthy in this statement means that no two vertices of the graph have exactly
the same neighbors. Every new suitable LR structure gives a new semisymmetric graph,
and so we are interested in finding and creating LR structures. In the remainder of this
paper, we show how varied examples can be, concentrating on combinatorial constructions.

We first present two simple but non-trivial constructions to show some of the variety
possible and to illustrate how the properties of LR structures enter into proofs.

2 Two constructions
2.1 Rows and columns

We construct an LR structure RC(n, k) in the following way: the vertices are to be all
ordered pairs (¢, (r, 7)) and ((z,7), j), where i and j are in Z,,, and r is in Zj,. Green edges
join (i, (r, 7)) to (i£1, (r,7)) and ((¢,7), j) to ((¢,r), j £ 1), while red edges join (¢, (1, 5))
to ((i,r £ 1),7) and so ((¢,7),7) to (¢, (r £ 1, 7)).

The function (4, (r, 7)) — (i + 1,(r,j)) and ((¢,7),75) — ((i + 1,7), §) is a symmetry
of the graph; we abbreviate it by saying 7 — ¢ + 1. Similarly, each of the functions,
j—=j+lLr—=r+1,i— —i,j— —j,r— —r acts as a symmetry of RC(n, k). These
dihedral symmetries act transitively on the vertices of each kind, and the correspondance
(i,(r,7)) <> ((4,7),1) is a symmetry and interchanges the two sets. The green neighbors
of (0,(0,0)) are (1,(0,0)) and (—1,(0,0)), while the red neighbors are ((0,1),0) and
((0,-1),0).

Swappers at (0, (0,0)), then, are ¢ — —i and r — —r. So RC(n, k) with the given
coloring is an LR structure. It has 2n2k vertices, and its group has order at least 8n2k. The
structure is of type {n, LCM(2, k) }. If k is even, the graph described above is disconnected;
in this case, re-assign the name RC(n, k) to the component containing (0, (0,0)). Then the
graph has only n2k vertices.

It is easy to check that J, = [1, 2, 1], while J, = [2, 1, 1] and so this structure is always
suitable. This LR structure is also described algebraically in [9].

2.2 SoP

In this section, we describe a family of LR structures whose symmetry groups have arbi-
trarily large vertex stabilizers. The structure is SoP(m,n), where m and n are multiples
of 4. Letr = % + 1; then we have that 72 = 1 mod n. Further, if j is even, then rj = j,
while if j is odd, 7j = j + %. The vertex-set is Z, X Zn X Z3. Red edges join (4, j, k) to
(i,7 + % k); for fixed 7 and j, green edges join the two vertices (24, 7,0) and (24,7, 1) to
the two vertices (2i + 1, 4,0) and (2¢ 4+ 1, 7, 1) if j is even, to the two vertices (2¢ — 1, 7, 0)
and (2¢ — 1, 4,1) if j is odd.

We claim that each of the following mappings p, i, o, 7,7y and 0 is a symmetry of the
structure:

(i, 4,k)p = (6,5 +2,k)

(Z'mja k),u = (ia_ja k)
(i>j7k)0 = (Z+1a]+1ak)
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(ivjvk)T = (1,7‘],1—]{3)

{(i,rj,l —k) ifie{1,2}

(i, k)0 = (i, ], k) ifi g {1,2)

Together, these symmetries show that the structure is vertex-transitive. The symmetry
o acts as a red swapper at (0,0,0), and ¢ acts as a green swapper there. Thus SoP(m,n)
is an LR structure of order 2mn and type {4,n}. The conjugates of § by (¢?) commute
with each other and so form a subgroup of order 22 . We can see, then, that the order of a
vertex-stabilizer is at least 2.

In this case, J, = [1,2, 1], while J, = [2, 2, 1] and so this structure is always suitable.

3 LR structures from cycle structures
3.1 Voltage graphs and 2-coverings

We wish to use the mechanism of voltage graphs to describe a family of LR structures. Let
us first summarize the voltage construction and some related facts in the special case of
2-coverings: Let I' be any connected graph or multigraph. A Z,-voltage assignment on I"
is a function : E(I') — Zz. The corresponding 2-fold covering Cov (T, {) has V(I') x Zg
as its vertex-set. The edge-set is {{(u, %), (v,i + ((e))} | e = {u,v} € E('),i € Zs}.
Two Zso-voltage assignments ¢ and ¢’ are equivalent provided there is an isomorphism
between Cov (T, ¢) and Cov(T', ¢') which acts trivially on first coordinates. For any vertex
v, define the function p,, on the set of all Z,-voltage assignments on I by letting (., be
the assignment defined by

1+ ((e) wisanendvertex of e

(Cro)(e) = {

C(e) v is not an endvertex of e

We call such a function a “local reversal”. Then ( is equivalent to (., and any two
equivalent assignments are related by a series of local reversals. It follows that if ¢ and ¢’
are equivalent, then there is a set U C V(") such that {(e) = ¢’(e) exactly when both ends
of e are in U or both not in U'.

Two voltage assignments ¢ and (' are isomorphic provided that some isomorphism -y
of Cov(T, ¢) onto Cov(T',¢’) has the property that for each vertex v, (v,0)7y and (v, 1)y
have the same first coordinate. Certainly ¢ and ¢’ are isomorphic if there is a symmetry
B of T such that ¢'(ef8) = ((e) for every e. We write ¢’ = ([ in this case, and then
the function which sends (v, ¢) to (vf3,4) is an isomorphism of Cov(T", ¢) onto Cov (T, ¢’).
Finally, we say that a symmetry « of T" lifts to a symmetry & of Cov (T, {) provided that for
each vertex of Cov(T, (), (v,i)@& = (va, ) for some j. Then, clearly, « lifts if and only if
Ca is equivalent to (.

3.2 Voltage description of CS(T', B, ¢)

The construction we wish to present here has to do with a kind of highly symmetric cycle
decomposition called a cycle structure:
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Definition 3.1. A cycle structure in a tetravalent graph I is a cycle decomposition B of I'
such that Aut(I", B) acts transitively on the darts of I".

Consider, for example, the graph of the octahedron O, shown in Figure 2. The set B of

Figure 2: The octahedron.

triangles induced by the triples

{{1,5,6},{1,2,3},{2,4,6},{3,4,5}}

forms a cycle structure in @. (In what follows, we will refer to each of these triangles
by naming the vertex-triple which induces it rather than specifying its edges.) The group
Aut(O, B) is isomorphic to the symmetric group Sy, is dart-transitive and acts as S4 on the
four triangles. In particular, (O, B) is a cycle structure.

Cycle structures were introduced in [5], where it was shown that a vast majority of
dart-transitive 4-valent graphs admit a cycle structures—many have more than one. At the
end of this section we will show all small cycle structures and see how they contribute
semisymmetric graphs.

3.3 The multigraph I'V and its symmetries

We construct an LR structure from a cycle structure (I, B) in two steps: we form a multi-
graph and then 2-cover it. First form the multigraph I from I" by separating each vertex
into a pair of vertices, so that the cycles from 53 remain cycles but become disjoint. Then
connect the two vertices in each pair with two parallel edges. We will refer to these as
“bridge” edges. In our example of the octahedron with cycles {1, 5,6}, {1,2,3},{2,4,6},
{3,4,5}; Figure 3 shows the result.

To be more specific, the vertices of IV are all (C, v) where C' € B, and v € C. “Ordi-
nary” edges join (C, u) to (C, v) where {u, v} is an edge in the cycle C. If v belongs to cy-
cles C and D, the corresponding “bridge” edges e,, o and e, 1 join (C, v) to (D, v). Contin-
uing the example and setting A = {1,5,6}, B = {1,2,3}, C = {2,4,6}, D = {3,4,5},
the corresponding labels of vertices in the split graph are shown in Figure 4.

If v is any symmetry in G = Aut(T", B), we choose the canonical representative o/
of « to be the permutation which sends the vertex (C,v) to (Ca,ve), the ordinary edge
{(C,u),(C,v)} to the ordinary edge {(Cc, uar), (Cer,ver)}, and the bridge edge e, ; to
€va.i- Then o is clearly a symmetry of I". If we let

G ={d | a e G},
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Figure 4: Labels in the octahedron.

then G’ = G. Also, for each v € V(T'), let o, interchange e, o and e, 1 while fixing every
vertex of I'” and every edge other than those two. Clearly, each o, is in Aut(I"). If we let

K = (0, :veV()),

then Aut(T"”) is the inner semidirect product K x G’. For each C' € B, define o¢ to be the
product of all ,, for v € C, and let

L=(oc:CeB) <K.

Since the product of all o for C' € B involves each o, twice, the product is trivial. On
the other hand, if D is a proper non-empty subset of C, then an easy connectivity argument
shows that the product of all o¢ for C' € D is non-trivial. Therefore the group L has
order 2811,

Now, G’ is transitive on the vertices of I and is, in fact transitive on the darts of
ordinary edges. So for any (C, v), some o’ € G’ acts as a swapper of ordinary edges there.
And each non-trivial element of L acts as a swapper of bridge edges.

Then L x G’ is transitive on darts in ordinary edges and on darts in bridge edges as
well. Thus the partition C of the edges of I into cycles covering ordinary edges and cycles
covering bridge edges is an LR coloring of this multigraph.
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In the following sections we will construct two covers of the graph I'V and show that in
both cases, L x G’ is the group of symmetries that lifts.

3.4 The coverings of I

We now assign voltages 0, 1 from Zs to the edges of I in two different ways; the assign-
ments will be called ¢y and (;. For bridge edges, let (;(e,,0) = 0 and (;(e,,1) = 1 for
1 =0,1. We assign (y(e) = 0 for each ordinary edge e. To define (;, we choose one edge
in each cycle C' € B to receive the voltage 1, and assign 0 to the rest of the edges in C.
The isomorphism class of the resulting 2-cover is independent of which edge in each cycle
is chosen, as we show in the next paragraph. Let A(T', B,0) and A(T', B, 1) be the 2-covers
Cov(I”, (o) and Cov(I”, (1) of T resulting from ¢, and (;, respectively.

Let CS(T', B,0) and CS(T", B, 1) be these graphs together with the decompositions into
cycles covering those in C. In Section 3.5 we will show that CS(T", B,0) and CS(T', B,1)
are, in fact, LR structures.

(b) (1 (0)

Figure 5: Voltage assignments.

To support our claim that the isomorphism class of Cov(I”, {;) does not depend on our
choice of representatives in each cycle, it will suffice to show that for any C' € B, two
Zy-assignments which are identical except on two consecutive edges of C' are isomorphic
assignments. So suppose that vertices u, v, w are consecutive in C, and that one of the
assignments is ¢ such that ({(C, u), (C,v)}) = 1, C({(C,v), (C,w)}) = 0, as in Figure 6.
Then ¢ is isomorphic to (o, which in turn is equivalent to (o, (c ) (Where, e,y is a
local reversal as described in Section 3.1) and this assignment is identical to ¢ except on
the edges {u, v}, {v, w}, as required.

Thus, by applying products such as o, p1(c,.) to the assignment at successive vertices v
of C, we can move the edge bearing a 1 from any position in C to any other. By adjusting
each cycle in turn, we can show isomorphism of any two such assignments. This in fact
shows the following useful fact, which we will refer to later.

Remark 3.2. Let ¢ be an assignment on I for which (e, o) = 0 and {(e,1) = 1 for every
vertex v of T, and let C' € B. If the sum of all {(e) for e € C is 0, then ¢ is isomorphic to
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(C,u) (C,u) (C,u)

(D, v) D, v)

Figure 6: Isomorphic voltage assignments.

some assignment ¢’ with ¢/(e) = 0 for all e € C. Similarly, if the above sum is 1, then
is isomorphic to some assignment in which every edge of C' except one has weight 0, and
that one has weight 1. Consequently, every 2-cover of IV without multiple edges in which
all cycles covering those in B have the same length must be isomorphic to CS(T", B, 0) or
CS(T, B,1). O

3.5 The groups of CS(T', B,0) and CS(T', B,1)

We will show in this section that the cycle decompositions CS(T", B,0) and CS(T', B, 1),
are LR structures, each admitting a group of order 2/81|G|.

Let G = Aut(T, B). Since (T, B) is a cycle structure, G is transitive on the darts of T.
Further, let G’, K and L be the groups of symmetries of I as defined in Section 3.3, and
recall that Aut(I) = K x G'.

Observe that, since G’ maps a cycle in B to another cycle in B and since L is generated
by all o, C € B, L is normalised by G’ and hence normal in Aut(T"). In particular,
(L,G"Y=LxG.

Fix i € {0,1} and let T' be the group of those symmetries of T that lift to a symmetry
of CS(T', B, 7). In view of Section 3.1, a symmetry /5 of I is in T if and only if the voltage
assignment (; 3 is equivalent to ;.

We will prove that T = L x G’ and that the lift of 7" contains the symmetries needed
to show that CS(T, BB, %) is an LR structure.

Let us first show that for every a@ € G (and thus o/ € G’) there exists 8 € T such
that 8 € o/ K. In other words, we show that G’ C TK, and since G'K = Aut(T"”), that
Aut(I") = G'K =TK.

If i = 0, then (;o/ = (;, implying that « lifts, and we can take 3 to be o’ itself.
Suppose now that ¢ = 1. Then (3o’ also has one edge in each C' € 5 whose voltage is 1.
Then as in Section 3.4, there is a (possibly empty) subpath v1, va, vs, . .., v, of C such that
CLa/ Oy, f(C o) - - - Tuy li(C,w,) coincides with ¢; on C'. Denote

O(a,C) = OvyOuy " Op,  ANA [i(q,0) = H(Co1)IM(Co2) " " H(Cyoy)

and observe that 1’s and the o’s commute in their action on voltage assignments. Hence,
by performing this adjustment for each C' € B in turn, it follows that

k k
G =Gd H O(a,C;) H H(a,C;)
=1 j=1
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and so, letting
k
B=ad H O(a,c;) €K
j=1

we see that (13 is equivalent to ¢; and thus that 5 € T". This completes the proof of the
claim that
Aut(I') = G’K = TK.

Let us now show that TN K = L. This will then imply that G’ = G'K/K = TK/K &
T/(TNK)=T/L and hence that T = L x G’, as claimed.

First note that each element of L lifts, and hence L < T'. To see this, let o € L and
thus 0 = [[ocp oc for some D C B. Since ((;0)(e) = (i(eo) for every edge e of T”,
we see that (; and ;o agree on the ordinary edges and differ on exactly those bridge edges
ey,0 and e,, 1for which v belongs to exactly one of the cycles in D. In particular,

Go =G H H H(C\v)>»
ceDvelC

showing that (;o is equivalent to (; and thus that o € T'.
Suppose now that ¢ € K and that o lifts. Then (; is equivalent to (;o, and in view of
Section 3.1, there is a collection W of vertices of I such that

Gi H Ky = Gio-

(Cw)ew
Since ;o agrees with ¢; on ordinary edges, we see that if a vertex (C, v) is in W, then
every vertex (C,u) for all v in C' must also be in W. Letting, as before,
Hc = H H(Cw)s
velC

for each C' € B, we see that there is a D C B such that

G [ e =Go

CceD

Now, because o € K, there is a subset U of V(I") such that
o= H Oy

and because (;11(c,.) and (;0, agree on bridge edges, U must be the set of those v € V/(I")
that belong to exactly one of the cycles in D. Then o must be

1] 7c.

CceD

and so o € L. This completes the proof that KNT = L, and therefore, that 7' = L x G’ and
has order 2/8/=1|G|. Then because each CS(T', B, i) has a symmetry which interchanges
the two vertices in each fibre, Aut(CS(T, B,)) has order 2!5!|G|.
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Finally, we need to show that each CS(T", B, ) has the symmetries required of an LR
structure. As L x G’ lifts to a group of color-preserving symmetries and is transitive on
vertices, in each case, it suffices to show that L x G’ contains swappers at each vertex of
I". Consider a vertex (C,v), as in Figure 6, above. The symmetry o acts as a swapper
for the bridge edges at (C,v). Now G contains a symmetry o which sends the dart (u, v)
to (w,v); then Ca = C. As above, there exists a corresponding 3 that lifts and such that
B € oK. This 8 and So¢ both lift, and one of them will swap ordinary edges at (C, v).
Thus, CS(T', B, ) is an LR structure of type {4, ¢} (if i = 0) or {4, 2¢} (if i = 1), where
q is the length of a cycle in 5. It has no alternating 4-cycles and cannot be self-dual unless
q=4andi=0.

3.6 Wreath graphs and self-dual LR structures

Define the graph W (n, k) (called a wreath graph) to have kn vertices in n groups of k
each, the groups arranged in a circular order. The edges join every vertex in one group to

every vertex in the groups immediately before and after it. For example, Figure 7 shows
the graph W (5, 2).

Figure 7: The wreath graph W (5, 2).

In CS(T", 3, 0), let the ordinary edges be colored green and the bridge edges, red. Con-
sideration of joining sequences shows that even if ¢ = 0, p = 4, then CS(T, 5,0) is
self-dual if and only if T" is the graph W (n,2) for some n and B is the set of 4-cycles
induced by two consecutive groups of vertices. To see this, first check that in CS(T", B, 0),
J, = [1,2,1]. If CS(T', B,0) is to be self-dual, J, must be [1,2,1] as well. Thus, from
two antipodal vertices in each green cycle, red edges must lead to two antipodal vertices
in another green cycle. As the red cycles in CS(T', B, 0) correspond to vertices in T, this
implies that each 4-cycle in B must share two vertices with each other that it meets. Since
each 4-cycle meets only two others, they must be arranged in a circle, and the graph must
be W (n, 2) for some n.

Thus, in all other cases, the LR structure CS(T", BB, %) is suitable.

In our example in which T' = O, the LR structures CS(O, B, ) for i = 0, 1 are shown
in Figure 8.

We summarize the argument from Sections 3.3, 3.4, 3.5, 3.6 in the following theorem.

Theorem 3.3. If B is a cycle structure for the tetravalent graph T, then CS(T', B,0) and
CS(T, B, 1) are LR stuctures. These LR structures are suitable with the exception that if B
is the decomposition of W (n, 2) into 4-cycles, then CS(W(n,2), B, 0) is self-dual and so
not suitable.
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(a) CS(O, B, 0) (b) CS(0, B, 1)

Figure 8: Two LR structures.

3.7 Occurrences of cycle structures

It is a little surprising that nearly every small dart-transitive 4-valent graph has a suitable
system of block cycles and most have several. Consider the smallest dart-transitive 4-
valent graphs (below, C,,(a,b) denotes the circulant graph on n vertices with connection
set {+a, £b} while R, (a,r) is a rose window graph, defined in [13]):

Graph \ Cycle structures

Ks two 5-cycles

Octahedron | four 3-cycles, three 4-cycles
Kya four 4-cycles, two 8-cycles
Cs x Cy six 3-cycles, three 6-cycles

W (5,2) five 4-cycles

C10(1,3) | two 10-cycles

W (6,2) six 4-cycles, four 6-cycles (two ways), two 12-cycles
Rgs(5,4) eight 3-cycles, six 4-cycles, four 6-cycles

Wreath graphs appear four times in this list: the octahedron is W (3,2) and Ky 4 is
W (4,2). The graph W (n, 2) always has a cycle structure F in which every cycle has length
4. In these cases, as we have shown, the LR structure CS(T", F, 0) is self-dual and thus not
suitable, so only CS(T', F, 1) gives a truly semi-symmetric graph. Therefore, applying CS
and then P to these eight graphs and their 16 cycle structures give us 28 semisymmetric
graphs, having 40 to 96 vertices.

Suppose M is a reflexible map. Its medial graph, the graph MG (M), has one vertex
for each edge of M, and two are joined by an edge in MG(M) if the corresponding edges
in M are consecutive around some face of M. The symmetry group G = Aut(M) of the
map acts on MG (M) as a group of symmetries. G is transitive on darts, and has at least
three block systems of cycles: those corresponding to faces, those corresponding to vertices
and those corresponding to Petrie paths. While two of these could be isomorphic (if M is
self-dual, for instance), it will quite often happen that three different cycle structures, and
hence as many as six different semisymmetric graphs, will result from one map M.
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3.8 Larger coverings

We can generalize CS(T, B, 0) to k-coverings for k > 2. We describe a k-covering of T,
and we call the covering structure CS(T", B, k). Give the weight O to each ordinary edge.
Give each pair of bridge edges voltage 1 in opposite directions. Let CSI(T, 5, k)) be one
component of the resulting k-cover. If (T', B) is bipartite and k is even, then the k-covering
has two components, while in all other cases, it has one. Thus if 5 has m cycles, each
of length n, and so mn /2 vertices, then CSI(T", B, k)) is of type {n, LCM(2, k)} and has
mnk or mnk /2 vertices.

It is easy to check that J, = [2,1, 1], while J, = [1, 2, 1] and so this structure is always
suitable.

4 Other constructions
4.1 Locally circular cycle structures

Definition 4.1. Suppose C is a cycle decomposition of a graph I" of valence 2¢ and let X
be the set of all (C,v) such that C' € C, v € V(I") and C passes through v. For a vertex
v of I' let X, be the set of pairs with second coordinate v. If P is a permutation on X
such that the orbits of (P) are the sets X, for v € V(I'), then we will say that (I, C, P) is
locally circular. We will call such a P a locally circular ordering on (T, C).

Definition 4.2. If ¢ is a symmetry of (I',C), we will say that o respects P provided that,
for each (C,v) € X, (C,v)Po is either (Co,vo)P or (Co,vo)P~L. Let Aut(T, C, P) be
the group of all symmetries of (I', C) which respect P.

Definition 4.3. If (T, C, P) is locally circular and G < Aut(I"), we will say it is G-locally
dihedral provided that the following hold:

(i) G acts transitively on darts,
(ii) every element of G respects P,

(iii) for every v € V(I'), the stabiliser G, acts dihedrally on the cycles through v and
contains an element which fixes every cycle through v setwise and reverses at least
one of them.

A locally circular (I',C, P) is locally dihedral if it is G-locally dihedral for some
G < Aut(I).

While this definition appears to be very restrictive, notice that a large class of examples
arises from reflexible maps: if M is a reflexible map of type {p, 2¢}, we can consider two
edges to be opposite at v provided that those edges are ¢ apart in the cycle of edges incident
to v. If M is proper (i.e., no two edges have the same endpoints), the edges fall into cycles
in which each edge is joined to the edges opposite it at each end. Then the family of such
cycles is a locally dihedral cycle structure.

Construction 4.4. If (T, C, P) is locally circular, let LDCS(T', C, P) be the bipartite cycle
decomposition (A, D) in which vertices of A are all (C,v) such that v is a vertex of cycle
C € C, green edges are all {(C,u),(C,v)} such that {u,v} is an edge of cycle C € C,
and red edges are all {(C,v), (C,v)P}.
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Theorem 4.5. If (I',C, P) is a locally dihedral cycle structure, then LDCS(T',C, P) is an
LR structure which has no alternating 4-cycles.

Proof. Every element of G = Aut(T",C, P) acts on LDCS(T", C, P) as a symmetry. Since
G is transitive on darts, Aut(LDCS(T',C, P)) is transitive on vertices. To see that it is
flexible, consider a vertex (C, v). Because (I',C, P) is locally dihedral, it has a symmetry
p € G which fixes v, fixes each cycle at v setwise and reverses C. Then p acts as a green
swapper at (C,v). Also, because G, acts dihedrally on the cycles at v, it has a  which
fixes C (setwise) and interchanges the neighboring cycles in the local order. Then p or pp
is ared swapper at (C, v). If there were an alternating 4-cycle in LDCS(T', C, P), the green
edges would correspond to distinct edges in I' with the same endpoints, which is forbidden
in a graph. O

Our last results in this paper show that the constructions CS and LDCS generate all LR
structures (A, C) for which C contains cycles of length 3 or 4. We begin by showing that
LDCS covers all the cases in which s, > 2.

Theorem 4.6. Let (A,C) be an LR structure of type {p, q} in which no two red cycles (of
length p) are joined by more than one green edge (that is, if the joining sequence J, is not
of the form [1, x, x|). Then there is a locally dihedral cycle structure (T', D, P), where T is
a graph of valence 2p and D is a partition of the edges of T into g-cycles, such that (A, C)
and LDCS(T, D) are isomorphic LR structures.

Proof. Let T be the graph with the vertex set being the set of red cycles in (A, C) with two
red cycles adjacent in I" whenever they are joined by a green edge in A. For each vertex v
of A, let w(v) be the red cycle to which v belongs. We can consider 7 to be a projection
onto I' of the subgraph of A induced by its green edges. Since two red cycles are joined
by at most one green edge, this projection 7 induces a bijection between the green edges in
(A, C) and the edges of T".

Let D be the set of all cycles in I of the form 7(D) where D is a green cycle in (A, C).
Then T" has valence 2p and D is a cycle decomposition of I in which every cycle has
length g.

Let X be the set of all (7(D), C) such that D is a green cycle in (A, C) and C' is ared
cycle in (A, C) contained (as a vertex of I') in the cycle 7(D).

Let us now define the permutation P on X yielding a locally dihedral (T', D, P). For
each red cycle C'in (A, C) choose one of the two possible orientations of C. We then let P
map a pair (7(D),C) € X to the pair (w(D'),C) where D’ is the green cycle through the
next vertex (with respect to the chosen orientation of C') on C' after the unique vertex of A
that belongs to both C' and D. Then all of Aut™ (A, C) respects this P. Since Aut™ (A, C)
is transitive on green darts, it acts dart-transitively on I'. The set stabilizer of a red cycle
acts dihedrally on the set of green cycles meeting it. Any green swapper fixes a red cycle
pointwise and so fixes setwise each green cycle meeting it, and reverses at least one cycle.
Thus (T, D, P) is a locally dihedral cycle structure.

Finally, let ¢ be the mapping which maps a vertex v of A to the vertex (7(D),C) of
LDCS(T', D, P) where C and D are the red and the green cycle of (A, C) containing v, re-
spectively. It is a matter of straightforward computation to verify that ¢ is an isomorphism
of the LR structures (A, C) and LDCS(T', D). O

With Theorem 4.6, we can now easily prove that all LR structures of types {3, ¢} or
{4, ¢} without alternating 4-cycle arise by constructions in this paper. (We point out that
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the LR structures with alternating cycles have been characterised in [10, Lemma 6.3].) The
first of the two corollaries below follows directly from Theorem 4.6 after observing that an
alternating 4-cycle implies that two red cycles are joined by two green edges. The second
one requires some additional work.

Corollary 4.7. If (A, C) is a LR structure of type {3, q} without alternating 4-cycles, then
there is a locally dihedral cycle structure (I, D, P), where T is a graph of valence 6 and
D is a partition of the edges of I into q-cycles, such that (A,C) and LDCS(I', D) are
isomorphic LR structures.

Theorem 4.8. If (A, C) is an LR structure of type {4, q} without alternating 4-cycles, then
one of the following happens:

(1) there is a locally dihedral cycle structure (T, D, P), where T is a graph of valence 8
and D is a partition of the edges of T into g-cycles, such that (A,C) = LDCS(T', D),
or

(2) there is a cycle structure (I', B), where I' has valence 4 and (A,C) = CS(T, B, 1) for
t=0orl

Proof. Suppose that (A,C) is an LR structure, without alternating 4-cycles, in which the
red cycles have length 4. Consider a green edge and the red cycles through its endvertices.
If no other green edge joins those red cycles then Theorem 4.6 applies, and so (1) holds.

If not, then, because (A, C) has no alternating 4-cycles, two green edges join two an-
tipodal vertices on one red cycle with two antipodal vertices on the other red cycle. Call
two green edges which are arranged in this way, mated edges. Then J,. = [1,2,1].

Collapsing each red cycle to a single vertex, as in the proof of Theorem 4.6, identifies
all pairs of mated green edge to form a tetravalent dart-transitive graph I'. The green cycles
of (A,C) are projected onto a cycle structure D in I'. Since the projection is 2-to-1 on
green edges, we see that if mated green edges come from different cycles, those two ¢-
cycles project to a single g-cycle in I'. If they are from the same cycle, then ¢ must be even
and that cycle projects onto a Z-cycle.

Consider now an intermediate projection in which we identify mated green edges, and
within a red cycle identify antipodal vertices and opposite edges. This projects (A, C) onto
a multigraph, in which the red “cycles” are actually 2-gons, i.e., each consists of a pair of
parallel red edges. This is clearly isomorphic to the graph IV formed in the first step of the
construction of CS(T', D, ¢). This presents (A, C) as a 2-covering of .

Remark 3.2 shows that in the case where the green cycles of I' are of length ¢, the LR
structure (A, C) is isomorphic to C'S(T', D, 0), and if the green cycles are of length £, then
(A, C) is isomorphic to CS(T", D, 1). O

5 Conclusion

Though this paper and its predecessors [9, 10] have presented a number of constructions
both agebraic and combinatorial, much remains to be done. Every new discovery of an LR
structure gives us a new semisymmetric graph of girth and valence 4. Thus, finding LR
structures and organizing them into parameterized families is important in the search for
semisymmetric graphs. The smallest known LR structure not yet to be seen as part of a
family of such has 36 vertices, and there are seven more with 72 vertices. Examples such
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as SoP, CS(T, B,0) and CS(T', B, 1), whose vertex-stabilizers can grow without bound add
to our growing knowledge about the structure of semisymmetric graphs.

Our ultimate goal of the study of the LR structures is to develop the tools that would
enable us to construct a complete list of all “small” LR structures. Such lists exist for
both types of edge-transitive cubic graphs (see [1, 3] for the census of cubic edge-transitive
graph of order at most 768 and [2] for the extension to order up to 10000 in the case
of dart-transitive graphs) and for cubic vertex-transitive graphs [6] for orders up to 1 280.
Moreover, lists of all dart-transitive and %-transitive tetravalent graphs of order up to 1 000
have recently been compiled (see [6, 8]). The main ingredient of these results was always a
theoretical result that bounded the order of the vertex-stabiliser in such a graph. While it has
long been known that this order is bounded by a constant in the case of cubic edge-transitive
graphs, this is not the case in the cubic vertex-transitive or tetravalent edge-transitive cases.
What is more, for these cases, families of graphs where the order of the stabiliser grows
exponentially with the order of the graph are known. The crucial point in the enumeration
of these graphs was a result that identified the “problematic” families and proved that the
order of the vertex-stabiliser in the “non-problematic” graphs is bounded by a tame (possi-
bly sublinear) function of the order of the graph. As it happens, all the problematic graphs
contain cycles of girth 4 (and there is a deep group theoretical reason for that). There is
strong evidence that a similar result might hold in the case of the LR structures. This leads
to the following question (we thank Gabriel Verret for a fruitful discussion on this topic):

Question 5.1. Does there exist a polynomial function f such that for every LR struc-
ture (A, C) of type other than {4, ¢}, the symmetry group Aut(A,C) has order at most

FAV D

This question complements Corollary 4.8 which reduces the classification of the LR
structures of type {4, ¢} to the study of 8-valent locally dihedral cycle structures and cycle
structures in tetravalent dart-transitive graphs.
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