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Abstract: The paper describes different modeis for the microscopic electric field intensity and electric potential in the surroundings of ionized impurity
atoms in semiconductors. The emphasis is placed on a novel comprehensive model that is an improvement of the Debye-Huckel screening applied to
semiconductors. In contrast to other described models, the improved model is featured by respecting all three mechanisms of electric field attenuation in
solids: dielectric polarization, free carrier screening, and spatial distribution of impurity atoms. Electric potential and electric field intensity profiles are
obtained as numerical solutions of the Poisson equation fully respecting the non-linear space charge dependency. Proposed analytical approximations of
numerical resuits facilitate their further use.

Elektricno polje in potencial v okolici atomov primesi v
polprevodnikih

Kljuéne besede: fizika, elektronika, elektrostatika, modeliranje polprevodnikov, Coulombov potencial, mikroskopski elektri¢ni potencial, mikroskopska
elektricna poljska jakost, Debye-Hiickiov model zakrivanja, analiti¢na aproksimacija, numeri¢na resitev

lzvleGek: V prispevku so opisani razlicni modeli mikroskopskega elekiricnega polja in potenciala v okolici ioniziranih atomov primesi v polprevodnikih.
Poseben poudarek je posvecen novemu izErpnemu modelu, ki predstavlja izboljsavo uporabe Debye-Hiicklovega modela zakritega polja v polprevodni-
kih. Za razliko od ostalih opisanih modelov, se izboljsana inacica odlikuje s tem, da so upostevani vsi trije mehanizmi slabljenja elektricnega polja v trdnih
snoveh: dielektri¢na polarizacija, zakrivanje polia s prostimi nosilci in vpliv sosednjih, prostorsko razporejenih, ioniziranih atomov primesi. Poteki ele-
ktricnega polja in potenciala so izradunani z numeriénim re$evanjem Poissonove enache z upostevanjem nelinearne odvisnosti prostorskega naboja.
Dobljeni numeriéni poteki so aproksimirani z analiti¢nimi funkcijami, ki olajajo njihovo nadaljnjo uporabo.

The microscopic electric potential in the surroundings of
an ionized impurity atom is affected by three main factors,

1 Introduction

Properties of various semiconductor devices are usually
described by analytical approaches based on the macro-
scopic model of the semiconductor structure. In such
models uniform microscopic structure is presumed, e.g.,
the edge of the conducting band varies only macroscopi-
cally because of the built-in impurity concentration profile.
Analytical approaches are usually applied only to one-di-
mensional semiconductor structures. Two or even three-
dimensional analyses are prevalently carried out numeri-
cally as in many cases analytical solutions are not feasible.

Foranalysis, description and understanding of certain phe-
nomena it is inevitably necessary to consider local varia-
tions of microscopic space charge, electric field and po-
tential. Scattering and capture of free charge carriers by
tocalized charges consisting of ionized impurities repre-
sent an important type of such phenomena. Microscopic
gradients of the electric potential play also an important
role at the increase of the concentration of thermally emit-
ted free carriers from the energy states within the gap
across the lowered potential barrier into the conduction or
valence band (Poole-Frenkel effect), tunneling of charge
carriers through thin potential barriers, etc.

namely, the atoms of the base semiconductor, mobile
charge carriers, and adjacent ionized impurities. Each of
these factors weakens the electric field strength and elec-
tric potential in its own way. The most accurate result is
obtained when all factors are taken into account. Of course,
this is not an easy task especially if analytical expressions
for the electric potential are desired. However, it is possi-
ble to find approximate analytical expressions if some ef-
fects are simplified or neglected.

In order to maintain the main ideas clear we will constrain
this discussion to n-type sericonductor that is easier to
describe and understand. Maority mobile charge carriers
in n-type are electrons hence the physical picture is less
demanding, as electrons are real particles. Further, all
numerical examples and presented diagrams are calculat-
ed for silicon since it is the most important semiconductor
material.

From the beginning to the end of this article, we shall in-
crease the degree of complexity involved with the de-
scribed solutions of the microscopic electric potential.
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2  Coulomb potential

Silicon crystalline structure is tetrahedral, i.e. each silicon
atom is tied to its four neighbors by covalent bonds con-
sisting of a common pair of valence electrons. In n-type
silicon, a small part of Si atoms is replaced by donors, i.e.,
impurity atoms with five valence electrons. Four valence
electrons form covalent bonds to the four neighboring sili-
con atoms leaving the fifth one loosely tied to the core.
The space around impurities is filled with host atoms Si
that weaken the electrostatic force in such an extent that
at room temperature almost all donors are ionized /1/. In
other words, the fifth electron of almost every donor atom
gets sufficient kinetic energy to become mobile. Impurity
atoms themselves remain firmly bound to the host lattice
and can be treated as a uniform spatial distribution fixed-
point charges +q. However, the spatial pattern of impuri-
ties is not a strict arrangement in the sense of a crystal
lattice, but it is uniform on the average with minor devia-
tions from its regular positions. The process of ionization
does not change the neutrality of the observed volume on
the macroscopic level, because the interstitial space is filed
with mobile electrons, which contribute the negative charge
that exactly compensates the positive charge of fixed ions.

2.1 Electric potential of an isolated ion

The straightforward solution of the electric potential of an
ionized impurity atom can be derived from Coulomb's law
/2/ since an ionized impurity can be viewed as an isolated
point charge +qg

q
Vo) =
) pr— (1)

where g denotes the elementary charge, ris the distance
from the point charge and ¢ is the dielectric constant (per-
mittivity) of the environment. Eq. is well known as Cou-
lomb potential. The potential at a certain point in space is
meaningful only when a reference zero-potential point is
specified. [n most cases, this point is taken at infinity.

The electrostatic potential of an ionized impurity atom al-
ters the shape of band-edge potentials in the close sur-
roundings. The resulting joint profile is obtained by simple
scalar addition of the potentials. This is a significant advan-
tage of using electric potential V rather than electric field
intensity E. The diagram of band-edge potentials, shown
in Fig. 1, illustrates the influence of the Coulomb potential
of an ionized donor in silicon.

The diagram in Fig. 1 is only one -dimensional representa-
tion of the spherically symmetric spatial field. It is actually
the plot of the potential along a straight line, which is laid
through the charged center. The valence and conducting
band-edge potential are denoted by Vv and V¢, respec-
tively. With increasing distance r, those potentials asymp-
totically approach their macroscopic values Vyo and Veo.

In the described Coulomb potential model, only dielectric
attenuation is taken into account. Dielectric polarization of

vr)
vl
0.2+
014 Y
Vio
Ve
Vco
1I 0 I5 (I) é 1|0 r[nm]

Fig. 1: Band-edge potentials in silicon modified by the
Coulomb potential of an isolated ionized donor
atom atr=0.

host semiconductor atoms is responsible for the reduc-
tion of the electric field. The application of the macroscop-
ic dielectric constant for microscopic fields /1/, /3/ is jus-
tified by the fact that the distance between host atoms is
much smaller, e.g., 0.235 nm for silicon, than the distanc-
es of interest.

Permittivities of materials are usually expressed as a prod-
uct of the permittivity of empty space € and the relative
permittivity €, of a particular material. For common semi-
conductor materials €, ranges approx. from 9 to 17, in par-
ticular for silicon we get g, = 11.7 /4/. These relatively high
values of ¢, reduce the electric potential and the associat-
ed binding energy of donors after being incorporated in
host semiconductor.

Finally, the term isolated impurity needs some explana-
tion. We use this expression for semiconductor doped with
very low concentrations, which result in a sparse spatial
distribution of impurities, such that the mutual influences
between immediate neighbors are diminished by large av-
erage distances to a negligible level. There is no explicit
margin of the doping Np, below which the impurities are
considered isolated, but as a rule of thumb Np = 10'* cm™
can be used for silicon.

2.2 Effect of neighbors

Practical doping concentrations are substantially higher
than 10" cm therefore, influences of the ionized impuri-
ty atoms in the neighborhood have to be taken into ac-
count. Neighbors modify the potential and electric field
distribution of an isolated ion (1), introducing saddles be-
tween adjacent charged centers /5/. The modified circum-
stances can be easily explained by the rough draft of the
electrical potential profile along the straight-line laid through
two adjoining charged centers shown in Fig. 2.

The joint potential is obtained by adding the Coulomb po-
tentials (1) of each ionized atom, one at the origin and the
other at r = 2R. For distances 0 <r < 2R we get
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Fig. 2: Schematic representation of the electric
potential along the straight-line running through
two adjoining ionized impurity atoms in
n-type semiconductor.
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Adjacent impurity atoms are brought closer to each other
as their concentration Np increases regardless of their
spatial distribution. Consequently, an increased impurity
concentration raises the potential saddle at r = R. The dia-
gram shown in Fig. 2 is valid also for other directions in
space where other neighbors are positioned. If impurities
are assumed to have a simple body-centered cubic lattice
then each ion is surrounded with six closest neighbors.
Though the ideal spherical symmetry of the isolated ion
potential is perturbed, high degree of central symmetry
remains for radii r < R where Eq. (2) may be applied in any
direction. It is important to note that the magnitude of the
electric field intensity £ drops to zero at r = R where the
potential has a local minimum. At this stage, we will not
discuss the exact diagram of band-edge potentials because
in this case the zero-valued reference point at infinity does
not exist. The modified band structure will be presented in
section 4.1,

3 Debye-Hiickel screened potential

Free carriers, which are randomly moving in the space
between the ionized impurities, compensate the space
charge of fixed ions. The electrostatic field is screened by
mobile carriers due to electric forces that concentrate the
cloud of charge carriers near ionized impurity atoms. Such
phenomena have been noticed and first addressed in the
context of electrolytes by Debye and Hiickel /6/. This mod-
el can be applied to analyze the screened Coulomb po-
tential of one ionized impurity atom. One has to be aware
that the Debye-Htickel (DH) theory of screening is based
upon simplifications, which are justified for dilute ionic so-
futions, in order to obtain an analytical expression for the
screened potential. Thus, the DH model involves some
deficiencies, which become rather important when this
model is applied to semiconductors.

The expression for the screened potential is derived by
solving Poisson’s equation /1/,/7/

Vi = _P (3)

e
where ¢ is the macroscopic permittivity of the host semi-
conductor and p is the space charge consisting of rigid
ionized impurities and mobile carries. For n-type semicon-
ductor the charges of ionized impurity atoms and free elec-
trons mutually cancel each other. Only the charge of one
electron remains, since the positive charge of the observed
jon is left out. The solution of (3) is obtained by the linear-
ized Boltzmann distribution that is used for p(V).

For an n-type semiconductor with impurity concentration
Np the DH screened Coulomb potential around the fixed
ionized impurity atom is expressed by /8/

q v
r) = exp| ——
" 4rer P Lp ) )

where Lp is Debye length, given by

kTe
L= |25
D qZND . (5)

Two important distinctions should be made between the
circumstances in semiconductors and those in electrolyt-
ic solutions, on which the DH model is focused:

i. lonsare rigidly builtin the crystal structure of the sem-
iconductor

ii.  Mobile carries are unipolar (of only one polarity) as long
as the observed semiconductor is not intrinsic, i.e., Np
is at least an order of magnitude bigger than n;.

The DH screened potential has zero-valued reference point
at infinity hence it can be easily compared with the Cou-
lomb potential Veou. Plots of both potentials vs. distance r
for silicon (Np = 10"" cm™) are shown diagram in Fig. 3.
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Fig. 3: Microscopic potential against distance r from
ionized impurity in Si.
(11): screened DH potential Eq. (3)
(—): unscreened Coulomb potential Eq. (1)
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The plot of DH screened potential Vpy declines steeper
and is always lower than the Coulomb potential. The de-
gree of reduction is governed by the exponential factor in
Eq. (4) that depends on impurity concentration Np. The
DH approach does not include the influence of neighbor-
ing ions that significantly modify the shape of the potential
as it is shown in section 3.2.

4  Comprehensive model of the
microscopic potential

4.1 Numerical solution

The exact screened potential, which respects the above-
mentioned effects at the highest possible extent, can be
calculated only numerically. In this section, we will present
only the important starting assumptions and the main steps
of the method. More details can be found in /9/, /10/.

Unlike the Debye-Huckel approach, which examines the
potential of a single ion within an unlimited space, the com-
bined approach is focused on a finite volume confined by
the same volumes placed around the neighboring fixed
ions. The volume is approximated with a sphere whose
diameter is equal to the closest distance between adjoin-
ing ions. This approximation substantially simplifies the
mathematical complexity of the problem, as the electric
potential field possesses spherical symmetry. As it is shown
in section 2.2, the potential V{r) becomes flat at midway
between adjacent impurities

av

i = ()

| (6)
The microscopic potential is obtained by solving the Pois-
son differential equation (3) for boundary condition (6). In
spherical coordinates, Eq. (3) becomes an ordinary differ-
ential equation

d*V 2dv p
e — = (7)
dr r dr £

as central symmetry of the potential and space charge is
presumed. Space charge density p of the electron cloud
is expressed by electron concentration n(r) that is deter-
mined by the density of states distribution in the conduc-
tion band and by Fermi-Dirac occupation probability, de-
fining

p=—gn=-gN I, Mc)» (8)

where N; is the effective conduction band density of states
and F1/2(ne) is the Fermi-Dirac integral, which is approxi-
mated by analytical functions in various regions of normai-
ized potential 1 = q(Vr - Ve)/KT /11/.

The screened potential of the localized charge V, which
modifies V¢ and thus the space charge density p (8), has

to meet the neutrality condition that can be expressed in
integral form

J;/J-fpdv—l—q:(), ©)

where Vs denotes the observed sphere. The a priori un-
known difference Vg = Vo - Veo at midway r = R, upon
which the total charge of the electron cloud depends, is
determined by an iterative algorithm. The non-linear Pois-
son equation, obtained by inserting (8) into (7), is solved
by numerical integration, which starts at midway r = R, us-
ing boundary condition (6) and an initial guess value Vp.
After each iteration, Vg is successively adjusted until the
neutrality condition (9) is achieved.

7 (r)
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Fig. 4. Schematic diagram of band-edge potentials on
a straight line running through two positive ions.
Macroscopic band-edge potentials \Vivo and Vco
are modified by the screened potential V(r).

The band-edge potentials are then given by

Ve =Veg +V, (10)
and similarly

Vi =Vyg +V. (11)

Schematic diagram of screened band-edge potentials is
shown in Fig. 4, where some important properties of the
final solution can be seen. The polarity of V is both, posi-
tive and negative, thus conduction band-edge potential Ve
is located partly above and partly below its macroscopic
value Veo. This variation of V¢ is accompanied with similar
but more intense deviations of the electron density n from
its macroscopic equilibrium value Np. In the spherical re-
gion close to the ion, the concentration of free electrons n
is much above Np. This increased negative space charge
is compensated by n < Np in the outer shell in order to
meet the neutrality condition (9). The screened potential V
is always negative for radii r beyond a certain r > ro (see
Fig. 4), hence Vg = V(R) is always slightly negative.

The range of the horizontal axis in Fig. 5 covers all the radii
within the observed sphere from O to R, because for simple
cubic spatial distribution of impurities and Np = 107 cm™®,
we get R=10"%m.
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Fig. 5: Numerical and classical potentials against
distance r from ionized impurity in n-type Si,
Np = 10"7cmS,
(1 1): screened potential - numerical solution
of Eq. (7)
(—): screened DH potential Eq. (3)
(- ): unscreened Coulomb potential Eq. (1)

The numerically computed potential, combines all three
major mechanisms that attenuate the electric potential as
we move from the charged center, i.e., dielectric polariza-
tion, space charge screening, and the influence of adja-
cent ions, thus it exhibits a significant improvement upon
the classical expressions, i.e., the Coulomb and DH po-
tential, respectively.

4.2 Analytical approximations

4.2.1 Screened electric field intensity

The main drawbacks of the numerical method are, first,
the very nature of numerical results, which are usually ob-
tained in tabular form, and second, the extensive and time-
consuming iterative algorithm. In this section, we present
analytical approximations proposed in /10/ for the numer-
ical solution of the microscopic electric field and potential,
respectively. Throughout this article, the main emphasis is
put on the electric potential, owing to its scalar nature and
its tight connection to energy bands in semiconductor.
Though in some cases, especially those involved with kin-
ematics of charged particles, electric field intensity E
seems 1o be more appropriate.

The magnitude of electric field intensity £ of a positive
charge q given by Coulomb’s law

Jo—

" dmer? t12)

becomes zero only when the distance r gets infinite. The
same applies to DH screened electric field, which is ob-
tained by differentiating the potential (4). The boundary con-
dition (6), which is postulated to mimic the effect of neigh-
bors, can be met by an approximate expression for the
electric field in the range O <r <R in the form

B q r m
E_4n8r2 1_[Ej (13)

in which the screening effect is contained in the factor [1 -
(r/RY™], where m determines the degree of screening. The
general Eq. (13) satisfies the boundary condition (8) for
any selected value of m. When lowering the exponent m,
the electric field decreases more vigorously with an increas-
ing radius r, thus enhancing the screening effect. At low
values of r/R the electric field in Eqg. (13) approaches the
unscreened Coulomb case.

The optimal value mept, which minimizes the total squared
error between the analytic approximation and the numeri-
cal solution, is shown /10/ to depend slightly on the impu-
rity concentration. The exponent mep: decreases from 1.8
to 0.9 as the impurity concentration Np is being increased
from 10'° up to 10'° ecm™, respectively. If simplicity of the
analytical expression is desired then integer values 1 and
2 are preferred.

The diagram in Fig. 6 shows different plots of the magni-
tude of electric field intensity in the surroundings of an ion-
ized impurity atom, namely, Ecou given by (12) (Coulomb’s
law), Enum is obtained numerically, using the algorithm pre-
sented in previous section, and Eapp according to the ana-
lytical approximation with m = 1.5, The plot of the approx-
imate electric field Eapp exhibits very good matching to the
numerical electric field Enum, which is considered accu-
rate, The values of Enum and Vium are computed simulta-
neously when the Poisson's equation (7) is being solved.
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Fig. 6:  Magnitude of electric field intensity in the
region of an ionized impurity atom in n-type Si,
Np = 70"7cm™,
(——): numerical solution
(eeee): analytical approximation Eq. (13) with
m=15
{----): unscreened Coulomb electric field Eqg. (12)

4.2.2 Screened electric potential

In order to analyze the effect of the proposed approxima-
tion (13), an electrostatic potential for arbitrary m is ob-

5
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tained. Integrating Eq. (13) in the range from R to arbitrary
r gives the form

., q L (rY__m r
4 VR_4n£r{1+(m—1)(R) (m—l)R}’ ()

where Vgis the potential at r = R, referenced to the macro-
scopic band-edge potential Vco (see Fig. 4). The expres-

sion is valid even for m = 1 since the limit ’}}E(V - Vz)

exists. In this special case Eq. (14) changes to

q ror., r
V-V, = l—-—+—In—
. 4nsr( R R Rj‘ (15)

The exact value of Vg can be obtained numerically from
the boundary condition (9) and Eq. (8) for the space charge
of the electron cloud. However, it is possible to obtain an
approximate value of Vg by expressing the electron con-
centration with the Boltzmann instead of the Fermi-Dirac
distribution. The derivation of Vg /10/ yields two final ana-
Iytical expressions for the screened potential:

g 1 Lm_é mm+1) r
V—4n8r{l+(m—l)(1€) 2(m—1)(m+2)RJ’(6)

for the general value of m# 1 and

q rlr Tr
V= l+ln—| = |- ——
4TCSI”I: "R [Rj 6R]' (17)

for the special case with m = 1.

An evaluation of the approximate screened potential (16)
is shown in Fig. 7. The approximation Vapp withm = 1.5is
plotted together with the numerical potential Vyym dis-
cussed in section 4.1 and Coulomb potential Vcou, which
is shown for reference. The value of the exponent m is not
exactly the optimal value for Np = 10"7cm™®, but is a rea-
sonable choice for most doping concentrations that ap-
pear in electron devices.

The shapes of the potential profiles Vapp and Vyum are in
good agreement over the whole range of distances. How-
ever, there is small constant difference between the two
potentials that are being compared. In contrast with the
interweaving plots of electric field Eapp and Enum in Fig. 6,
the potential Vapp remains slightly above Vyum over the en-
tire range of radii. This difference arises from the deriva-
tion of VR, in which linearization of the Boltzmann expo-
nential dependency is used.

5 Conclusion

The intention of this article was to present a review of the
various models for the microscopic electric field and po-
tential. The described models were devised or modified

6
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Fig. 7. Approximate and numerical potential versus
distance r from ionized impurity in n-type Si,
Np = 10"cm™.
(—): screened potential Vnym = numerical
solution of Eq. (7)
(---): analytical approximation Vapp Eq. (16)
withm = 1.5
(---); unscreened Coulomb potential Eq. (1)

for the use in semiconductors, however, some of them,
e.g. the numerical method, can be applied also in other
areas.

In order to maintain informational nature and clearness of
the paper many details and results have been omitted.
Extensive tests of numerical method for the whole range
of interesting doping concentrations have been carried out.
The results show god agreement between the approximate
and numerical profiles.

Numerically calculated potential and its approximation rep-
resent a significant improvement of the DH model, because
all three mechanisms of electric field attenuation (dielec-
tric polarization, screening by mobile charge carriers, ef-
fects of neighbor impurity atoms) are taken into account.
The choice of the appropriate model in a particular case
depends on a variety of factors. As general rule, it can be
suggested that in cases where higher doping concentra-
tions are concerned a comprehensive model would be
more appropriate, since the effect of screening is more
intense at high space charge densities.
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