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ABSTRACT

ARTICLE INFO

Consistently maintaining high-end product quality in the production process
is challenging. End-quality inspection must be highly sensitive to detect even
minimal deviations, while being fast and accurate. However, quality inspection
systems often face calibration intricacies, are time-consuming, and rely heav-
ily on expert knowledge. They handle substantial data flows and inspect nu-
merous features, some of which contribute minimally to the final grade. To ad-
dress these challenges, the paper proposes employing statistically supervised
machine learning methods for classification. Decision trees, Random forests,
Bagging, and Gradient boosting classifiers are recommended for feature selec-
tion and accurate diagnosis, particularly for electric motor classification. By
utilizing the feature importance attribute for feature selection, the proposed
approach compares model accuracies, reducing ramp-up and commission
times significantly. The study found that all suggested classifiers achieved high
accuracy in classifying electric motors in end-of-line quality inspection system.
Moreover, they effectively reduced the number of features and optimize data-
base operations. Utilizing a reduced feature set streamlined diagnostic algo-
rithms, accelerated learning, and improved model interpretability, enhancing
overall efficiency and comprehension. Furthermore, analysing the feature im-
portance attribute could simplify diagnostic hardware and expedite quality in-
spection by eliminating unnecessary steps. Newly generated models can also
verify expert decisions on feature selection and limit adjustments, enhancing
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1. Introduction

Electric motors are one of the most mass-produced devices and they are produced at highly au-
tomated manufacturing lines equipped with 100 % end-of-line (EoL) quality inspection, [1, 2].
Maintaining constant product quality, detecting faulty products and preventing them to be deliv-
ered to the customers or further built into devices and systems is highly important. With each
production/integration step of faulty part, replacement costs increase substantially [1]. For this
reason, a great attention is put to the design and implementation of fully automated EoL quality
inspection systems. These must be reliable and at the same time fast enough not to hinder the
production line pace. In the presented case, quality inspection of electric motors is performed in
anon-invasive way, where several variables are measured during short test run of the motor. The
measured variables comprise electric parameters (voltage, current and power), speed, torque,
vibrations at different points of motor body and sound at different rotational speeds [1]. The
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mentioned signals are sampled by high frequency (e.g. 50 kHz) and further processed by signal
processing methods (e.g. Digital Filtering, Fast Fourier Transformation, etc.). This reduces the
amount of data considerably while preserving relevant information, but still results in a high
number of calculated parameters - features, representing basis for motor fault detection and iso-
lation. High number of features can be impractical from several reasons: a) not all features carry
useful information, b) some feature may carry the same information, c) comparing a high number
of features against their thresholds values may be time consuming and finally, d) determining
(learning) feature threshold values is demanding and time-consuming process.

With an ultimate goal of developing reliable and fast quality inspection methods, this paper
deals with the problem of reduction of feature space to a limited subspace of relevant features,
carrying enough information for motor quality inspection. The space of features can be reduced
by implementing machine learning methods which select only the relevant features. Since not all
relevant features contribute the same amount of information to final classification, additionally
evaluation of feature selection describes the influence of each observed feature. Therefore, the
features with the minimal influence can be eliminated from learning procedure. This can signifi-
cantly decrease computational demand during learning (ramp-up and commission time) and op-
eration phases. Moreover, in certain cases it can even lead to elimination of particular measure-
ments (sensors), thus simplifying the inspection system hardware and software as well as speed-
ing-up the EoL testing procedure. Study presented in this paper is based on the real industrial
data derived from real EoL quality inspection systems installed at the production site of one of
renowned European mass producer of electric motors. EoL quality inspection line, which is sub-
ject of this paper, was designed and implemented by the authors of the paper.

The paper is organized as follows: In Section 2, the subject of inspection and existing quality
inspection procedure/system are briefly described. The structure of the measured data record
and resulting feature set generated by the inspection of one motor is described. This is then fol-
lowed by the Section 3, where machine learning algorithms (Decision tree, Random forest, Bag-
ging and Gradient boosting) for feature selection are presented. In Section 4 the presented algo-
rithms are evaluated and compared.

2. Problem description: Subject of inspection and quality inspection system

The subjects of inspection are brushless DC (BLDC) motors for domestic and automotive applica-
tions. An example of such motor used for vacuum cleaning applications, is shown on the Fig. 1.
The addressed motors are manufactured by the renowned mass producer (Domel Slovenia, [3]).
The production takes place at fully automated assembly line equipped with modular EoL quality
inspection system, presented on the Fig. 2. More details can be found in [2], which describes sim-
ilar system.

Fig. 1 Example of the BLDC motor (subject of EoL quality inspection)
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Fig. 2 Modular EoL quality inspection system

The EoL quality inspection system assures “100 % quality inspection” meaning that each pro-
duced motor undergoes the test procedure. In general, the faults fall in two categories: electrical
and mechanical. The latter can be further divided to rotor, bearing and turbine faults. Rotor and
bearing faults are comprehensively elaborated in [4] whereas the explanation of turbine faults
can be found in [1, 2]. The main steps of quality inspection procedure are described in following
sections 2.1, 2.2 and 2.3 and in the Fig. 3.

2.1 Measurement and data acquisition

In the EoL quality inspection system, each motor is started several times and during short test
runs various motor parameter are measured by the automatic measuring and data acquisition
system (Fig. 3, square 1). The following parameters are measured by sensors: electric parameters
(winding voltage and current, power, power supply current and voltage), vacuum pressure, rota-
tion speed, vibrations at several points of motor body, sound at low and high rotational speed and
also environmental conditions (ambient temperature and pressure) to compensate their effect
on motor performance. The results of measurements are time series (waveforms) of particular
parameter, and they represent “raw signals”. Depending on observed parameter and derived fea-
tures, signals are acquired at specific sampling frequency (typically 10-60 kHz) and measurement
duration (typically from 0.1 up to 1 s), resulting in timeseries of various lengths (from 1000 sam-
ples to 30000 samples).

2.2 Feature extraction by signal processing

To reduce the amount of data and to extract the relevant information, raw signals are processed
by signal processing methods, such as filtering (low-pass, high-pass, band-pass filters), down-
sampling, averaging, frequency analysis, etc. The outcome of signal processing is a set of “fea-
tures”, which are detailed in [4] and shown on the Fig. 3 (square 2). They are in general:

e Root-Mean-Square (RMS) values of band-pass-filtered waveforms;
e Power of signals at particular frequencies;
e Aggregated/actual values obtained from specific measurement equipment.

Details of feature extraction and signal processing algorithm are not described in this paper as
they are subject of past research and development, elaborated in detail in [1, 5]. In this particular
case the signal processing algorithm generates 80 features, where each feature is represented by
floating-point numeric value.

2.3 Diagnostic result generation

Based on the on the values of the features, final diagnostic result of the inspected motor is gener-
ated by simple rules, as follows from the Table 1. For each feature it is checked if it is inside spec-
ified range.
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Table 1 Diagnostic result generation

Measurements Features Diagnostic result
All features are within specified ranges Motor GOOD
Completed : e
One or more features are outside specified range Motor BAD

Not completed, due to:
measurement faults
sensor faults

motor manipulation fault
motor transport faults
etc.

UNDEFINED

At the start of the production of new motor type, the motors from test-production set (series
0) are assessed as good or bad by the skilled experts. Based on experiences, the experts select
features that are going to be used in diagnostic result generation. For this case-study system and
motor type, 36 of total 80 features were chosen, and for each of chosen features two limit values
(low and high) are set. In practice, all this is done manually by skilled experts. This is time-con-
suming and highly depends on expert skills. In addition, this method requires regular updates
and fine-tuning of limit values when the mass production starts and production volumes in-
creases [4].

Fig. 3 illustrates the entire procedure of measurement and data acquisition, feature extraction
and diagnostic result generation. The whole process for one motor can be executed under 30 s,
but due to parallel execution of diagnosis steps, the motor inspection rate is 10 s, which means
that every 10 s one motor exists the EoL inspection system.

The described quality inspection algorithm successfully detects motors with insufficient quality,
but it has some drawbacks:

e High number of original features (80) leads to high number of feature range limits that must
be defined;

e Some features carry similar information (redundancy);

e Some features carry no useful information;

o Skilled expert is required to remove redundant features and features that carry no relevant
information and to adjust limit values of feature in use. This is difficult and time consuming
and becomes an issue during start of production and commissioning of new motor types.

Based on that there are four main goals of the study presented in this paper:

e Automatic selection relevant of features (removing redundant features and features that
do not carry relevant information);

e Decrease the dependence on human expert skills;
e Automatic determination of feature limit values;
e Generating classification models with set of features that hold 95 % of useful information;
e Reducing ramp-up and commission time of the quality inspection system.
1 2 3
MEASUREMENT AND FEATURE DIAGNOSTIC RESULT GENERATION
DATA ACQUISITION EXTRACTION
- Electrical characteristics - filtering Classification based on fixed thresholds
- Vacuum pressure - averaging
- Vibrations: - down sampling Feature 1 | Feature 2 | .. | Featuren|  Result
- Moise at high speed - RMS calculating - { |
_ Noise at low Speed E : Motor 1 457068 446843 | .. | 03281305 OO
- Enviroment conditions — Molor2 | 139728 | 131211 | . | 0747008  BAD |
% | Mataor 3 535507 5.28324 | .. :I."HIEGEI. OO0
;: | Molord | 2.95501 | 4.15309 | .| MaN | UNDEFINED |
< 4.5 ! !
=

Fig. 3 Data transformation during the procedure
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3. Feature selection using machine learning methods

In this section, dedicated machine learning methods will be used to automatically select the rele-
vant features and set their threshold values. In general, feature selection is an effective way to
deal with dimensionality [6] and it is often used in areas where a huge amount data is being ob-
tained, such as identifying genes [7-9], image classification and analysing [10-13] text classifica-
tion [14-16], in recent times also for monitoring manufacturing processes and quality control [17-
19]. Feature selection aims to identify and retain the most relevant features while discarding re-
dundant or uninformative ones by determining the “degree of usefulness” of a specific feature. By
reducing the number of features, also the number feature limit values to be adjusted is reduced.
The risk of the associated quality inspection errors [6] is also decreased. However, within the set
of informative features, some may be significantly more informative than others.

The methods presented not only eliminate non-informative features but also sort the remain-
ing features according to their informativeness. The goal of this paper is therefore to assess
whether the quality inspection can be successfully performed by using only the limited number
of the most informative features. Feature selection reduces the dimensionality of the data; there-
fore, data mining algorithms can be operated faster and more efficient [6]. Reduced amount of
input data simplifies the interpretability of tree-like machine learning methods [20]. Additionally,
such simplified classification methods and reduced input datasets decrease the ramp-up and
commission time of quality inspection system and whole production line. Since some redundant
and non-informative features are removed, sensors associated with removed features can poten-
tially be eliminated. Optimization and reordering of the diagnostic steps based on feature im-
portance can speed-up the quality inspection procedure.

3.1 Supervised machine learning classification methods

Supervised machine learning methods were selected since the labelled data for learning is avail-
able. These methods offer several advantages, including high reliability based on statistics, ro-
bustness, and reduction of the need for expert knowledge (e.g. knowledge about physical back-
ground of the system). However, in order to establish a supervised learning method, a sufficient
amount of data from the production process is required. Therefore, these methods are suitable
for manufacturing lines for mass production, like the one presented in this paper, where a lot of
data is generated. In this paper 4 different methods were tested and compared:

Decision tree classifier (DT);
Random forest classifier (RF);
Bagging classifier (BG);

Gradient boosting classifier (GB).

The decision tree classifier partitions the instance space through a recursive process, forming
a tree model where top nodes (roots) lack incoming edges, while internal nodes (test nodes) split
the space based on attribute values. Internal nodes symbolize decision points, and bottom nodes
(leaves) indicate decision outcomes [21, 22].

Random forests is a powerful ensemble learning method that combines multiple tree predic-
tors. It belongs to family of averaging methods, meaning, the driving principle is to build several
estimators independently and then to average their predictions [23-25].

Bagging, short for bootstrap aggregating, is a powerful and straightforward method for con-
structing an ensemble of classifiers. It also belongs to family of averaging methods. It combines
multiple classifiers' outputs for improved accuracy by training each on a subset of instances ran-
domly drawn from the training set [22, 26, 27].

Gradient boosting is a technique for improving the performance of weak learners [28]. It be-
longs to the family of boosting methods, meaning, base estimators are built sequentially, and one
tries to reduce the bias of the combined estimator. It enhances weak learners sequentially, aiming
to reduce the combined estimator's bias. The technique combines weak models for a powerful
ensemble, particularly effective in decision trees [22, 25].

While the decision tree classifier (DT) stands alone, the remaining three classifiers (RF, BA,
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GB) belong to the ensemble-based methods category. All methods here are “tree-like” classifiers
and can be represented as decision trees using IF-THEN rules. The methods automatically gener-
ate [F-THEN rules for classification, including threshold values for each observed feature.

3.2 Data for learning and evaluation

To implement and test the methods, the data is needed. Data was generated by existing EoL qual-
ity inspection system (Fig. 2) during inspection of a total of 37440 motors. Generated data con-
tains raw time series of measured signals and extracted features (mentioned 80 features), as fol-
lows from the Section 2. For machine learning algorithms, all features are used. The whole data
set of features can be presented as 37440 x 80 matrix. The quality inspection results (1=Motor
GOOD, 2 = Motor BAD, 0 = UNDEFINED) represents 37440 x 1 vector. The entire data set was
divided into two parts: training data (75 % of all data) and testing data (25 % of all data). The
situation is represented by the Table 2.

The data records of all 37440 motors were randomly distributed between training data and
testing data to compensate for possible time drift of product quality. The same training and test-
ing datasets were used during the training and testing of all 4 machine learning methods. Dataset
remained unchanged throughout the entire training process. All involved features are named by
symbols and anonymized to prevent the disclosure of sensitive technical data.

Table 2 Training and testing data arrangement

F1 F2 F80 R
M1 X X X X X
M2 X X X X X Training data
X X X X X (75 %)
M28080 X X X X X
M28081 X X X X X Testing data
X X X X X (25 %)
M37440 X X X X X

M - motors, F - features, R - quality inspection results
3.3 Implementation

Fig. 4 illustrates the proposed process of feature selection.

1 2 3
Set of features Machine leaming Classifiers evaluation:
classifiers:

input matrix ::> ::> - Confusion matrix
B0X37440 - Decision tree - Feature importance

- Random forest

output matrix - Bagging
137440 - Gradient boosting

6 4
: _ 5 New sets of features:
Classifiers evaluation: MeCHing lesming
classifiers: [ Output matrix. 1%x37440 |
- Confusion matrix . +
<:: ~Bedsionee DT matrix: 17x37440

- Random forest

- Bagging
- Gradient boosting

RF matrix: 51x37440
BG matnix: 22x37440
GB matrix: 17x37440

A A A A

Fig. 4 Flow chart of the procedure
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The process is carried-out in six steps:

1. Generation of original feature set (an input matrix of size 80 features x 37440 motors and
output matrix of size one feature - grade x 37440 motors) obtained by data acquisition and
signal processing, described in Section 2.

2. First machine learning to train the classifiers. Feature selection is utilized to eliminate re-
dundant features. Depending on the type of classifier, the range of selected features is re-
duced to 38 (DT classifier), 78 (RF classifier), 42 (BG classifier), and 35 (GB classifier).

3. Evaluation of trained classifiers to present their performance and capability to evaluate
features’ classification impact and importance. From obtained results it followed:

a. Set of features with 95 % informativeness additionally reduce space of features. De-
pending on the type of classifier, the range of selected features is additionally reduced
to 17 (DT classifier), 51 (RF classifier), 22 (BG classifier), and 17 (GB classifier).

b. Certain features, despite their low importance, still persist.

Therefore, it was decided to check the performance of reduced classifiers with fea-
tures that contains 95 % of all useful information.
4. Generation of reduced sets of training and testing data with features with 95 % of useful
information for each classifier, output matrix remains the same from step 1.
5. Second machine learning to train the classifiers with new reduced dataset.
6. Evaluation of new classifiers and comparison to the results of classifiers from step 2.

All classification methods were implemented and tested in Python using the scikit-learn
(sklearn) library. Cross-validation was employed during training (step 2 and step 5) to ensure
robust model evaluation and to prevent model overfitting. For visualization and data manipula-
tion, matplotlib, numpy, and pandas libraries were also utilized.

3.4 Presentation of the results and comparison of the methods

Following the training phases, the trained algorithms were evaluated using the testing data, and
the predicted output classes (quality inspection result) were compared to the actual output clas-
ses. For each method, outcomes are presented in the form of well-known Confusion Matrix (CM).
The CM provides numerical and visual representation of the classification algorithm’s accuracy.
It consists of columns representing the predicted output classes and rows representing the actual
output classes. In the presented case, since there are three classes, the size of the CM is 3 x 3 as
shown in the Table 3. The diagonal elements represent correctly classified instances, while the
off-diagonal elements represent miss-classified instances.

Table 3 Confusion matrix structure

PREDICTED

|
|
|
|
|
|
1
|
|

UNDEFINED
Motor BAD
Motor GOOD

ACTUAL

The CM provides valuable information about the miss-classification, but it does not directly
capture the cost associated with each type of miss-classification. To address this, the Miss-classi-
fication cost matrix can be introduced. This matrix assigns specific costs to different types of miss-
classifications, considering the relative importance or impact of miss-classifying different classes.
The Miss-classification cost matrix has the same dimension as the Confusion matrix and consists
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of numerical values, as shown in the Table 4. The diagonal elements of the Miss-classification cost
matrix are set to zero (correct classification represent no cost). The off-diagonal elements repre-
sent the costs associated with miss-classified instances, with larger values indicating higher risks
or costs associated with miss-classification. In our case the highest cost is associated with situa-
tion when actual faulty or undefined motor is recognized as good one and delivered to the cus-
tomer (actual class BAD or UNDEFINED, predicted class GOOD). The cost of this miss-classifica-
tion is set to 10. Bad motor that is predicted as undefined (and the opposite) presents low cost of
miss-classification, therefore these cases are graded with 0.5. Good motor, ranked as bad or un-
defined, does not present any risk for the customer, but it represents an unnecessary waste of
motors, therefore it is marked with 1.

To calculate the overall miss-classification cost, the CM the Miss-classification cost matrix are
multiplied (element-by-element multiplication) resulting in new 3 x 3 matrix. Total cost is calcu-
lated by adding up all 9 elements of resulting matrix. This value provides a measure of the total
cost incurred due to miss-classification. Ideally, a well-performing classifier would have a miss-
classification cost close to zero, indicating minimal miss-classification and associated risks.

The accuracy of a classifier is a measure of its performance and is calculated as the ratio be-
tween the number of correctly classified elements and the total number of elements. The desired
accuracy is close to 1 (100 %), indicating that almost all elements were classified correctly.

Table 4 Cost matrix

I preEpICTED i
e PREDICTED __ |
I o | I o |
2 1 2 1 8 |
12 1 S 1 S 1
[ o RV |
21 21 & |
Z

P> 1 = 1 = |
I I I I

i T

: | UNDEFINED 0 0.5 10

| 5 ===

I S | MotorBAD 0.5 0 10

[ T

[}
I < 1
! ! Motor GOOD 1 1 0

4. Analysis of the results

During machine learning, all methods generated own IF-THEN rules for classification. In 3.1 it is
explained that chosen methods are “tree-like” and can be explained with IF-THEN rules. In the
Fig. 5, an example of the decision tree of the decision tree classifier is presented. The figure shows
a diagnosis procedure with a tree-like set of rules and leaves. Since the generated decision tree is
very extensive, one rule for the first branch is explained. At the enlarged part of the figure, the
auto generated threshold value for one particular feature (BE_H2) is illustrated. At enlarged part
the gini index value [6, 21, 29] is also illustrated and used as splitting criteria [6]. Further, at this
branch 27064 samples are involved in classification process, where 600 of them are marked as
UNDEFINED, 1355 as Motor BAD and 25109 as Motor GOOD.

Each of the methods generates similar decision tree scheme where rules are defined by ob-
served features and their threshold values. Threshold values are set automatically during ma-
chine learning and since they are presented as real values. They can be easily checked and re-
adjusted. Such examination of the decision tree structure of each classifier enhances comprehen-
sion of the decision-making process employed by each method. This understanding is particularly
valuable in industrial applications where interpretability is paramount, as it allows users to gain
insights and interpret the decision-making process with clarity.
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Fig. 5 Decision tree of the decision tree classifier

Results of feature selection are collected in Table 5, where the comparison between classifiers
is presented. The results show that all methods successfully executed feature selection in the step
2 (Fig. 4). The gradient boosting classifier selected the lowest number of important features,
meaning, this method requires the smallest amount of data for successful classification. The least
successful method here is random forest.

However, the best performance shows the classifier with the lowest number of wrong classi-
fied motors and with the lowest miss-classification cost. Therefore, bagging overperformed all
other classifiers and gradient boosting yield the worse performance. Fig. 6, Fig. 8, Fig. 10 and Fig.
12 present confusion matrices for each classifier, generated at step 2.

Table 5 Comparison of observed classifiers

Decision Random Bagging Gradient
tree forest boosting
No. of selected features with original dataset after 38 78 42 35
step 2
Number of features for 95 % informativeness 17 51 22 17
Influence of 10 most important features 92 % 69 % 88.6 % 914 %
Accuracy of classifiers with original dataset (step3) 99.2% 99.33 % 99.46 % 99.19 %
Accuracy of classifiers with reduced dataset (step 6) 99.16 % 99.33 % 99.46 % 99.16 %
No. of wrong classified motors of classifiers with 75 53 51 76
original dataset (step 3)
No. of wrong classified motors of classifiers with 79 53 51 79
reduced dataset (step 6)
Miss-classification cost of classifiers with original 426 477 312 679
dataset (step 3)
Miss-classification cost of classifiers with reduced 430 468 348 637

dataset (step 6)
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Further insights into feature selection across different classifiers show that the most influen-
tial features hold the majority of information, useful for classification. Third row in the Table 5
shows a part of information contained in the 10 most important features of each method. In all
methods (except RF) top ten features contain the majority of information and to achieve 95 % of
data informativeness, 17-51 features are required. This comprehensive evaluation provides in-
sights into the strength and weakness of each classifier, considering both accuracy and miss-clas-
sification cost. At the Table 6, where the 10 most influential features for each classifier in the
order of importance are listed, it is shown that all classifiers recognize the majority of features as
important (Figs. 14-17 visually illustrate the informativeness of each observed classifier for 10
most important features). At the Table 7 all features involved in machine learning are listed and
in columns each of them is marked whenever it appears to be important for each classifier. With
gravy are coloured rows of features that are important for all observed classifiers.

These findings can be highly beneficial for tuning classification parameters. Instead of adjust-
ing the thresholds for all observed features, only the most influential features need to be ad-
dressed. Additionally, since some features do not contribute to the final classification decision,
they do not need to be stored in the company database. This results in the reduced computational
burden by focusing only on the most informative features, a smaller data flow between the local
computer and the company database, reduces the potential for communication errors, and ulti-
mately requires less storage space.

Table 6 List of 10 most important features for each classifier

Decision tree Random Bagging Gradient boost
forest

1. important feature BE_H1 BE_H2 BE_H1 BE_H1
2.important feature BE_H2 BE_H1 BE_H2 BE_H2
3. important feature BE_H3 BE_H3 BE_H5 VRC
4. important feature VA BE_H5 VRC VA
5. important feature VRC BE_H4 VA VA_H1
6. important feature HW_H1S BE_H6 HW_H1S HW_H1S
7.important feature VRL_H2 VRC VA_H1 BE_H3
8. important feature HW_H6 VA BE_H3 BE_H6
9. important feature AVR V HW_H1S BE_H6 VRL_H2
10. important feature VW_V VA_H1 HW_H6 FR_H2

Table 7 All features involved in machine learning and their recognition as important for each classifier

Feature DT RF BG GB BM_U X

name BM_V X X X X
VA X X X X BM_W X X

VA_H1 X X X FR_H1 X X X X

VA_H2 X FR_H2 X X X X

VA_H3 X BE_HO

VA_H4 X BE_H1 X X X X

VA_H5 X BE_H2 X X X X

VA_H6 X X BE_H3 X X X X

VA_H7 X BE_H4 X X X X

VA_H8 X BE_H5 X X X X

VA_H9 X X BE_H6 X X X X

VA_H10 X CP X X X

VA_H11 X VW_U X X X

VA_H12 X X VW_V X X X

VA_H13 X X VW_W X X X X

VA_H14 X VRC X X X X

VA_H15 X X VRC H1 X

AVR_U X X X VRC_H2 X X

AVR_V X X X X VRC_H3 X

AVR. W X VRC_H4 X X X
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At last, the performance of classifiers, trained with features of 95 % information (step 5), is
evaluated (step 6). The resultin Table 5 shows that the accuracies and performances of classifiers
do not change a lot. However, despite the RF and GB classifier, the cost of miss-classification in-
creased, meaning, those classifiers miss-classified performed slightly worse. (as shown at Fig 6-
13). Despite minor fluctuations in accuracy, the overall performance remains relatively stable
what indicate the robustness of chosen methods. However, the increase in miss-classification
costs for certain classifiers indicates potential areas for optimization in future iterations.
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5. Conclusion

This study introduced and compared various classifiers for feature selection purposes used for
automated end-of-line quality inspection of electric motors within the real manufacturing line.
Decision tree, Random forest, Bagging, and Gradient boosting classifiers were implemented and
assessed based on their complexity (number of selected features), accuracy, and the impact of the
important features. Initial goal of the study was achieved successfully. All four tested classifiers
demonstrated high accuracy, proving their suitability for electric motor classification in an end-
of-line quality inspection system. All investigated classifiers successfully reduced the number of
features and thus optimized the database operation. Further, the second step of feature selection,
with a reduced dataset featuring features that hold 95 % of useful information, yielded high ac-
curacy of trained classifiers. This reduced feature set simplifies the diagnostic algorithm, speeds-
up its’ learning, improves the interpretability of the observed models and makes them more un-
derstandable and explainable. In addition, new classification models, learned with reduced da-
taset, simplify the end-of-line quality inspection, decrease the ramp-up and commission time,
eliminate unnecessary steps of diagnosis, reduce equipment complexity (in some cases eliminate
the need for particular sensors), reduce costs, and minimize data flow. Consequently, company
databases are optimized. Due to fully automated learning procedures, reliance on specialized ex-
perts is reduced. Developed classification models can also be used as a verification of experts’
decision regarding feature selection and threshold values adjustment. In summary, this study en-
compasses insights into feature selection, practical implications for industrial applications con-
sidering methods robustness and comprehensive evaluation of different classifier, considering
accuracy and miss-classification cost, aiding in decision making when selecting the most suitable
classifier for specific application.
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During research and implementation, two interesting and useful future topics of research were
identified: 1. Transferability of classification models, and 2. Condition monitoring of production
lines.

Within the first topic it could be investigated if classification models derived for one motor
type could be used for quality inspection of similar motor types, or if they could increase learning
procedure of new motor types. Based on the manufacturer’s experiences, the diagnosis procedure
across various manufacturing lines follows a similar approach, leading to the detection of similar
faults and malfunctions across different products. Furthermore, common features are identified,
suggesting that the feature selection process from observed classifiers of a particular motor type
could be applied to other product. This transferability would be beneficial especially for small-
series products. Some motor types are manufactured in small-series (e.g. up to thousand pieces
per year), therefore it is challenging to establish accurate classification model with limited
amount of learning data. Exploring the applicability of these findings across various motor types
can speed-up the creation of quality inspection algorithms for new motor types in the future. As
new motor types are developed frequently and produced in varying quantities, the transferability
of the methods can establish a standardized approach to implement quality inspection algorithms
for new motor types, reducing costs and thus enhancing the whole manufacturing process.

Second topics regards possibilities of condition monitoring of production line. In normal con-
ditions (when there is no degradation of the manufacturing process) features importance attrib-
utes do not significantly change with time. On the other hand, an increase of importance of par-
ticular feature may indicate the issue of particular manufacturing operation or an issue of input
material or components. Periodic evaluation of feature importance attributes can therefore help
to detect faults or degradations of various steps of manufacturing process or issues with input
materials and components.
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