
M. POHANKA, J. ONDROU[KOVÁ: IMPLICIT NUMERICAL MULTIDIMENSIONAL HEAT-CONDUCTION ...
183–187

IMPLICIT NUMERICAL MULTIDIMENSIONAL
HEAT-CONDUCTION ALGORITHM PARALLELIZATION AND

ACCELERATION ON A GRAPHICS CARD

PARALELIZACIJA IN POSPE[ITEV IMPLICITNEGA
NUMERI^NEGA VE^DIMENZIJSKEGA ALGORITMA

PREVAJANJA TOPLOTE NA GRAFI^NI KARTICI

Michal Pohanka, Jana Ondrou{ková
Heat Transfer and Fluid Flow Laboratory, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2,

616 69 Brno, Czech Republic
pohanka@fme.vutbr.cz

Prejem rokopisa – received: 2014-07-29; sprejem za objavo – accepted for publication: 2015-03-30

doi:10.17222/mit.2014.128

Analytical solutions are much less computationally intensive than numerical ones, and moreover, they are more accurate
because they do not contain numerical errors; however, they can only describe a small group of simple heat-conduction prob-
lems. A numerical simulation of heat conduction is often used as it is able to describe complex problems, but its computational
time is much longer, especially for unsteady multidimensional models with temperature-dependent material properties. After a
discretization using the implicit scheme, the heat-conduction problem can be described with N non-linear equations, where N is
the large number of the elements of the discretized model. This set of equations can be efficiently solved with an iteration of the
line-by-line method, based on the heat-flux superposition, although the computational procedure is strictly serial. This means
that no parallel computation can be done, which is strictly required when a graphics card is used to accelerate the computation.
This paper describes a multidimensional numerical model of unsteady heat conduction solved with the line-by-line method and
a modification of this method for a highly parallel computation. An enormous increase in the speed is demonstrated for the
modified line-by-line method accelerated on the graphics card, and the durations of the computations for various mesh sizes are
compared with the original line-by-line method.

Keywords: heat conduction, numerical simulation, multidimensional numerical model algorithm, acceleration, parallelization,
graphics card

Analiti~ne re{itve so mnogo manj ra~unsko intenzivne kot numeri~ne, poleg tega pa so bolj natan~ne, ker ne vsebujejo nume-
ri~nih napak, vendar pa lahko opisujejo samo majhno skupino enostavnih problemov prevajanja toplote. Numeri~na simulacija
prevajanja toplote se pogosto uporablja, ker je sposobna opisati kompleksne probleme, vendar pa je ~as izra~una mnogo dalj{i,
{e posebno pri nestabilnih ve~dimenzijskih modelih, z lastnostmi materiala, odvisnimi od temperature. Po diskretizaciji z
uporabo implicitne sheme je mogo~e problem prevajanja toplote opisati z N nelinearnimi ena~bami, kjer je N veliko {tevilo
elementov diskretiziranega modela. Ta sklop ena~b je mogo~e u~inkovito re{iti s pribli`kom metode vrsta za vrsto, ki temelji na
predpostavki toka toplote, ~eprav izra~un poteka serijsko. To pomeni, da ni mogo~ vzporedni izra~un, kar je striktna zahteva,
kadar se uporablja grafi~no kartico za pohitritev izra~una. Ta ~lanek opisuje ve~dimenzijski numeri~ni model nestabilnega
prevajanja toplote, kar je bilo re{eno z metodo vrsta za vrsto in s pospe{itvijo modifikacije te metode na grafi~ni kartici. Trajanje
izra~una je primerjano z osnovno metodo vrsta za vrsto pri razli~nih dimenzijah mre`e.

Klju~ne besede: prevajanje toplote, numeri~na simulacija, ve~dimenzijski model algoritma, pospe{itev, paralelizacija, grafi~na
kartica

1 INTRODUCTION

Although the computational power of modern
computers continues to rapidly increase year by year,
numerical simulations can last several hours or days for
detailed numerical models where high accuracy is
required. The computational time becomes even longer
when the models are used for inverse computations,
where thousands of direct-heat-conduction computations
can be required. Computations of the boundary
conditions (such as the surface temperature, the heat
flux, and the heat-transfer coefficient) for continuous
casting1–2, heat treatment3, hot rolling4–6 and different
types of spray cooling7 using ill-posed inverse methods8,9

are typical applications.

Many very fast algorithms have been developed, but
they are often used strictly in a serial fashion10,11 and
cannot be efficiently used by modern multicore pro-
cessors, as they require parallel processing. It has been
shown that a seemingly lesser algorithm can be much
more efficient because it allows parallel processing12–15

that is absolutely necessary for the use of the maximum
computational power of modern processors, where
thousands of tasks can be computed at the same time.
The time when a personal computer’s central processing
unit (CPU) was able to compute only one thread at a
time is over. Today, CPUs often compute from 4 to 16
threads at the same time.16,17 New graphics processing
units (GPUs)18,19 allow scientific computing in double
precision, which is necessary for numerical heat-con-
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duction computations and the GPUs can run more than
2800 threads at the same time. When looking at the
computational power, a GPU has over 2500 Giga FLoat-
ing-point OPerations per Second (GFLOPS) in double
precision, while a CPU has only 70 GFLOPS. However,
to use all of the computational power of a GPU a highly
parallel computational algorithm is required.

After the discretization of a heat-conduction problem
(HCP) using the implicit scheme, the HCP can be des-
cribed with a set of linear equations A·T = B for constant
material properties where T is the unknown temperature
in the model and A is a very large sparse square matrix
for large models. The A matrix has dimensions of N·N
where N is the number of the nodes in the entire model.
For example, a 3D model with 100 nodes in each dimen-
sion has an A matrix of 106 times 106 consisting of 1012

values. It is necessary to compute the huge inverse
matrix A–1 and store this inverse matrix in the computer
memory to compute the T vector. Furthermore, for a
temperature-dependent model, the computation must be
iterated because matrix A and vector B change with a
better estimate of the final T vector. However, there is a
different approach, often called the line-by-line method,
which requires much less computer memory, although
the computation procedure is strictly serial10 and does
not allow for parallel processing.

2 LINE-BY-LINE METHOD FOR HCP

A two-dimensional (2D) problem can be discretized
into an orthogonal mesh.20 One equation is necessary for
each control volume represented by one temperature. An
explicit, implicit, or Crank-Nicholson differencing sche-
me for the time domain can be used. The focus here is on
the implicit scheme because the explicit one is condi-
tionally stable. When writing the heat-flux equation for
each control volume, all the equations can be rearranged
into the matrix form of A·T = B where T is the vector of
nodal temperatures. The inverse matrix A–1 must be
computed to solve this set of equations.21 This approach
is very inefficient and unstable for the models with many
control volumes. The stability problem arises from the
rounding of the values during a large number of ope-
rations because the computers use only a limited number
of decimal places to store these values.

Patankar10 described an approach called the line-by-
line method to overcome the problem with an inverse
matrix. This method uses the principle of the heat-flux
superposition. The domain is solved by iterating two
steps for a 2D model and by iterating three steps for a 3D
model. The 2D model is partitioned into lines in the first
step and into columns in the second step (Figure 1). The
first line is solved separately, then the second one and so
on until all the lines are finished. Each line j (where j =
1..M) is solved using an implicit scheme and the most
up-to-date temperatures for lines j–1 and j+1 are used to
include vertical heat fluxes for line j to ensure the fastest
convergence to the final solution. This means that the
temperatures for line j–1 are those only computed for
this line and the temperatures for line j+1 are those com-
puted during the previous iteration. A similar process is
performed with columns in the second step. This
approach leads to M matrices CjTj = Dj and N matrices
EiTi = Fi where Cj and Ei are tridiagonal matrices. This
set of equations can be solved very fast using the direct
TDMA method.11 These two steps (computations of rows
and columns) are repeated until the desired accuracy of
the computed temperature field is attained.

The problem with the original line-by-line method is
that line j can only be computed when line j-1 has
already been finished. Neither does the TDMA method11

allow parallel processing, which is strictly required by a
GPU. However, parallel processing can be enabled with
a simple modification. The temperatures from the pre-
vious iterations for both line j–1 and j+1 can be used
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Figure 2: Structure of the 2D model used for testing and non-uniform
discretization: 1) silver solder Ag40, 2) thermocouple shield Inconel
600, 3) eletrical insulation MgO, 4) K-thermocouple, 5) stainless steel
1.4301
Slika 2: Zgradba 2D modela, uporabljenega za preizkus in spremen-
ljiva diskretizacija: 1) srebrova spajka Ag40, 2) termoelement Inconel
600, 3) elektri~na izolacija MgO, 4) K-termoelement, 5) nerjavno jek-
lo 1.4301

Figure 1: Line-by-line method for a 2D problem
Slika 1: Metoda vrsta za vrsto za 2D problem



when line j is being computed. However, this modifica-
tion significantly slows down the speed of convergence.

3 EXAMPLE OF PARALLEL PROCESSING

GPU acceleration was tested on a 2D computational
model (Figure 2) which is often used for the inverse
computation of boundary conditions (the cooling inten-
sity of a spraying header on a work roll during hot roll-
ing).6 This represents a cut of a shielded K-thermocouple
soldered with a silver solder in a slot made on the surface
of stainless steel. The actual circular geometry of the
shielded thermocouple is simplified in this example to
the equivalent square geometry so that the model can be
easily refined by dividing the control volumes. Because
the geometry is symmetrical, only one half is used for
the model. All sides are insulated except for the upper
one, where a time-dependent heat flux is applied (Figure
3). The applied heat flux represents the heat flux from
the real cooling measurement during one rotation of a
heated roll. The roll is hollow with an outer perimeter of
2 m and a wall thickness of 25 mm. The velocity of the
outer surface of the roll during the rotation is 2 m/s. One
rotation lasts for 1 s. The sampling frequency is 300 Hz.
The starting temperature is 400 °C. The temperatures
computed on the surface and in the center of the ther-
mocouple are shown in Figure 3.

When the computation is accelerated, the GPU is
used as a co-processor. Only the most computationally
intensive sections that can be processed in parallel are
run on the GPU, rather than the whole program. The
main program is run on the CPU and the most compu-
tationally intensive tasks are sent to the GPU using Open
Computing Language (OpenCL).22 In this case, three
procedures are accelerated on the GPU: 1) the comput-
ing-material properties for the actual temperature; 2) the
TDMA method for solving a set of equations; 3) the

estimation of the attained accuracy of the computed
temperature field. The first and the third functions are
well suited for parallelization. Each node can be com-
puted in a separate thread. This means that the total
number of nodes determines the maximum number of
parallel threads. Function 2 is not as well suited for
parallelization. The maximum number of parallel threads
is the number of rows M in the first stage and the number
of columns N in the second stage.

The durations of the computations for functions 1
and 2 are listed in Table 1 for different numbers of
nodes. These are the net values without the time required
for preparing the tasks, data, and for launching. Table 2
includes the results from the entire simulation of one
rotation during the roll cooling. The values for the CPU
were obtained using the original line-by-line method,
computed in one thread, while the values for the GPU
were obtained using the modified line-by-line method,
accelerated on the GPU. The desired accuracy was 1 °C
for the whole simulation in all the nodes. An Intel Core
i5-2500K23 was used for the CPU and an AMD Radeon
HD 797024 was used for the GPU.

Table 1: Computations on CPU and GPU for one iteration
Tabela 1: Izra~unana CPU in GPU za eno ponovitev

Nodes Mat. properties (μs) TDMA M+N(ms)
X Y CPU GPU CPU GPU
32 107 51 19 5 1.1
92 107 147 20 17 1.5

182 212 605 24 72 3.1
362 422 2532 57 293 6.4
722 842 10220 191 1152 12.3

1442 1682 41479 726 4611 16.0

4 DISCUSSION

The test example showed that the GPU acceleration
makes sense for the models with many nodes (the more
nodes the better). For a very fine mesh (800 rows and
800 columns), results can be obtained almost 11 times
faster when using the GPU acceleration. For a very small
number of nodes, the original method used only by the
CPU can be even faster. This is caused by a relatively
slow communication between the CPU and GPU, which
is necessary for the acceleration on the GPU. An explicit
scheme was also tested because it is more suitable for
parallel processing. However, it was found that it is 164
times slower on the CPU than an implicit scheme due to
its conditional stability, which requires a 6000× higher
sampling frequency.

The numbers of iterations for steps 1 and 2 of the
line-by-line method for 2D are listed in Table 2. It is
clear that the original method (the CPU column) needs
approximately half the number of iterations required by
the modified method (the GPU column) to reach the
same 1 °C accuracy. However, the model introduced here
has a very slow convergence rate because the silver
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Figure 3: Computed temperature history for the thermocouple, for the
surface above the thermocouple (corner (0;0)) and the used heat flux
Slika 3: Izra~unana zgodovina temperature v termoelementu, na po-
vr{ini nad termoelementom (vogal (0;0)) in uporabljeni tok toplote



solder used has an approximately five-time higher
thermal conductivity than stainless steel. In the models
where materials with similar thermal conductivities are
used, the number of the necessary iterations is much
smaller.

The computational time required for one node in one
iteration for the CPU is almost independent of the
number of nodes and lasts for about 0.2 μs. The situation
is completely different for the acceleration using the
GPU (it decreases). However, the total time divided by
the product of the number of iterations and the sum of
lines and columns is almost constant (3.8 μs). A similar
situation exists for the TDMA M+N function in Table 1
because this function is the longest during the compu-
tation. The time/(iter.*(M+N)) is almost constant because
there are not enough parallel threads to fully utilize the
GPU. There are only about 800 threads and the GPU can
process over 2000 threads. The increase in TDMA M+N
for a higher number of nodes is caused by a larger
tridiagonal matrix to be solved but not by a higher
number of tridiagonal matrices to be solved.

5 CONCLUSION

It was found that for the models with a high number
of computational elements the acceleration on a GPU
card can speed up 2D heat-conduction calculations by
almost eleven times. For a model with a small number of
nodes, it is better to use a CPU and the original line-
by-line method. The AMD 7970 starts to be fully utilized
when there are more than 32,000 threads. The GPU
acceleration will be even more useful for 3D models
where there may be more parallel threads for the TDMA
function.
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