
Also available at http://amc-journal.eu
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 11 (2016) 49–58

Finite two-distance-transitive graphs of valency 6

Wei Jin ∗, Li Tan
School of Statistics, Jiangxi University of Finance and Economics,

Nanchang, Jiangxi, 330013, P.R.China
Research Center of Applied Statistics, Jiangxi University of Finance and Economics,

Nanchang, Jiangxi, 330013, P.R.China

Received 20 December 2014, accepted 8 April 2015, published online 18 August 2015

Abstract

A non-complete graph Γ is said to be (G, 2)-distance-transitive if, for i = 1, 2 and for
any two vertex pairs (u1, v1) and (u2, v2) with dΓ(u1, v1) = dΓ(u2, v2) = i, there exists
g ∈ G such that (u1, v1)g = (u2, v2). This paper classifies the family of (G, 2)-distance-
transitive graphs of valency 6 which are not (G, 2)-arc-transitive.
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1 Introduction
In this paper, all graphs are finite, simple, connected and undirected. For a graph Γ, we
use V (Γ) and Aut(Γ) to denote its vertex set and automorphism group, respectively. For
the group theoretic terminology not defined here we refer the reader to [4, 8, 26]. Let
u, v ∈ V (Γ). Then the distance between u, v in Γ is denoted by dΓ(u, v). A non-complete
graph Γ is said to be (G, 2)-distance-transitive, if for i = 1, 2 and for any two vertex
pairs (u1, v1) and (u2, v2) with dΓ(u1, v1) = dΓ(u2, v2) = i, there exists g ∈ G such
that (u1, v1)g = (u2, v2). An arc is an ordered pair of adjacent vertices. A vertex triple
(u, v, w) with v adjacent to both u and w is called a 2-arc if u 6= w. The graph Γ is said to
be (G, 2)-arc-transitive if G is transitive on both the set of arcs and the set of 2-arcs.

The first remarkable result about (G, 2)-arc-transitive graphs comes from Tutte [20, 21],
and since then, this family of graphs has been studied extensively, see [1, 12, 15, 16, 17,
23, 24]. By definition, every non-complete (G, 2)-arc-transitive graph is (G, 2)-distance-
transitive. The converse is not necessarily true. If a (G, 2)-distance-transitive graph has
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girth 3 (length of the shortest cycle is 3), then this graph is not (G, 2)-arc-transitive.
Thus, the family of non-complete (G, 2)-arc-transitive graphs is properly contained in the
family of (G, 2)-distance-transitive graphs. The graph in Figure 1 is the Kneser graph
KG6,2 which is (G, 2)-distance-transitive but not (G, 2)-arc-transitive of valency 6 for
G = Aut(KG6,2). Therefore the following problem naturally arises: characterize the fam-
ily of (G, 2)-distance-transitive graphs. At the moment, Corr, Schneider and the first author
are investigating such graphs, and they classified the family of (G, 2)-distance-transitive
but not (G, 2)-arc-transitive graphs of valency at most 5 in [6]. Hence 6 is the next small-
est valency for (G, 2)-distance-transitive graphs to investigate. Our main theorem gives a
classification of such graphs.

Figure 1: Kneser graph KG6,2

Remark 1.1. Let Γ be a connected (G, 2)-distance-transitive graph. If Γ has girth at least 5,
then for any two vertices u, v with dΓ(u, v) = 2, there exists a unique 2-arc between u and
v. Hence Γ is (G, 2)-distance-transitive implies that it is (G, 2)-arc-transitive. If Γ has girth
4, then Γ can be (G, 2)-distance-transitive but not (G, 2)-arc-transitive. There are infinitely
many such graphs. For instance, let Γ be the complement of the (2 × pk)− grid where p
is a prime, and let M = Zk

p : Zpk−1, G = Z2 ×M . Then Γ is (G, 2)-distance-transitive
but not (G, 2)-arc-transitive of valency pk − 1 and girth 4. There are also infinitely many
(G, 2)-distance-transitive graphs of girth 4 that are (G, 2)-arc-transitive, for example the
complete bipartite graphs Km,m. If Γ has girth 3, then since Γ is non-complete, it follows
that Gu is not 2-transitive on Γ(u), hence it is not (G, 2)-arc-transitive.

The line graph L(Γ) of a graph Γ has the set of edges of Γ as its vertex set, and two
edges are adjacent in L(Γ) if and only if they have a common vertex in Γ. The line graph
of a complete bipartite graph Km,n is called an (m×n)−grid. Let Γ be a connected graph.
The complement graph Γ of Γ, is the graph with vertex V (Γ), and two vertices are adjacent
in Γ if and only if they are not adjacent in Γ. The Hamming graph H(d, n) has vertex
set Zd

n = Zn × Zn × · · · × Zn, and two vertices are adjacent if and only if they have
exactly one different coordinate. We denote by Km[b] the complete multipartite graph with
m parts, and each part has b vertices where m ≥ 3, b ≥ 2. Let p be a prime such that p ≡ 1
(mod 4). Then, the Paley graph P (p) is the Cayley graph Cay(T, S) for the additive group
T = F+

p with S = {w2, w4, . . . , wp−1 = 1} and Γ2(1) = {w,w3, . . . , wp−2}, where w is
a primitive element of Fp, and Aut(Γ) ∼= Zp : Z p−1

2
. In particular, Hamming graphs and

Paley graphs are (G, 2)-distance-transitive for G = Aut(Γ), see [3, 13].
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The diameter diam(Γ) of a graph Γ is the maximum distance occurring over all pairs
of vertices. Let u ∈ V (Γ) and i = 1, 2, . . . ,diam(Γ). We use Γi(u) to denote the set
of vertices at distance i with vertex u in Γ. Sometimes, Γ1(u) is also denoted by Γ(u).
Let Ω be a set of cardinality n. Then the Kneser graph KGn,k is the graph with vertex
set all k-subsets of Ω, and two k-subsets are adjacent if and only if they are disjoint. The
triangular graph T (n) is the graph with vertex set all 2-subsets of Ω, and two 2-subsets are
adjacent if and only if they share one common element. Thus KGn,2 = T (n). A subgraph
X of Γ is an induced subgraph if two vertices of X are adjacent in X if and only if they
are adjacent in Γ. When U ⊆ V (Γ), we use [U ] to denote the subgraph of Γ induced by U .

Since complete graphs have diameter 1, they do not provide interesting examples. Our
main theorem determines the family of non-complete (G, 2)-distance-transitive graphs of
valency 6 which are not (G, 2)-arc-transitive.

Theorem 1.2. Let Γ be a connected non-complete (G, 2)-distance-transitive but not (G, 2)-
arc-transitive graph of valency 6. Let u ∈ V (Γ). Then one of the following holds.

(1) Γ has girth 4, and (Γ, G) = ((2× 7)−grid, S2 ×M) where M is a 2-transitive but
not 3-transitive subgroup of S7.

(2) [Γ(u)] is connected, and Γ is isomorphic to one of: T (5), Paley graph P (13), K3[3]

or K4[2].
(3) [Γ(u)] is disconnected, and either

(3.1) [Γ(u)] ∼= 2K3, Γ ∼= H(2, 4), or |Γ2(u)| = 18 and Γ is a line graph; or
(3.2) [Γ(u)] ∼= 3K2, Γ ∼= KG6,2, or |Γ2(u)| = 12, 24.

Remark 1.3. (1) There exist graphs Γ in Theorem 1.2 (3.1) such that |Γ2(u)| = 18. For
instance the generalized hexagon of order (3, 1) and the generalized dodecagon of order
(3, 1). These two graphs are locally isomorphic to 2K3 and |Γ2(u)| = 18. By [3, p.223],
they are (G, 2)-distance-transitive for G = Aut(Γ), since they are non-complete and have
girth 3, they are not (G, 2)-arc-transitive.

(2) There exist graphs Γ in Theorem 1.2 (3.2) such that |Γ2(u)| = 12 and also exist
graphs such that |Γ2(u)| = 24. For instance H(3, 3) has valency 6, [Γ(u)] ∼= 3K2 and
|Γ2(u)| = 12; the halved foster graph has valency 6, [Γ(u)] ∼= 3K2 and |Γ2(u)| = 24. By
[3, p.223], these two graphs are (G, 2)-distance-transitive for G = Aut(Γ), since they are
non-complete and have girth 3, they are not (G, 2)-arc-transitive.

2 Proof of Theorem 1.2
In this section, we will prove our main theorem by a series of lemmas. All graphs are
non-complete graphs.

A graph Γ is said to be G-distance-transitive if G is transitive on the ordered pairs of
vertices at any given distance. The study of finite G-distance-transitive graphs goes back to
Higman’s paper [10] in which “groups of maximal diameter” were introduced. These are
permutation groups G which act distance-transitively on some graph. Then G-distance-
transitive graphs have been studied extensively and a classification is almost done, see
[2, 9, 11, 18, 19, 22, 25]. By definition, every non-complete G-distance-transitive graph is
(G, 2)-distance-transitive.

The following remark gives an useful observation.

Remark 2.1. Let Γ be a (G, 2)-distance-transitive graph. Let u,w be two vertices such
that dΓ(u,w) = 2.
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Suppose that |Γ3(u) ∩ Γ(w)| = 0. Then since Γ is (G, 2)-distance-transitive, Γ has
diameter 2 and so it is G-distance-transitive.

Suppose that |Γ3(u) ∩ Γ(w)| = 1. Let (u0, . . . , ui) be a path with dΓ(u0, ui) = i
where i = diam(Γ). Then for each j ≤ diam(Γ)− 2, |Γ3(uj) ∩ Γ(uj+2)| = 1. Note that,
Γj+3(u0) ∩ Γ(uj+2) ⊆ Γ3(uj) ∩ Γ(uj+2), and so |Γj+3(u0) ∩ Γ(uj+2)| = 1, hence Γ is
also G-distance-transitive.

We use G
[1]
u to denote the kernel of the Gu-action on Γ(u).

Lemma 2.2. Let Γ be a (G, 2)-distance-transitive graph. Let u,w ∈ V (Γ) be such that
dΓ(u,w) = 2. Let g ∈ G

[1]
u be with order a prime p. Suppose that |Γ3(u) ∩ Γ(w)| < p.

Then g is not trivial on Γ2(u).

Proof. Suppose that g is trivial on Γ2(u). Let wi ∈ Γ2(u). Since g ∈ G
[1]
u and g is trivial

on Γ2(u), g fixes all the vertices in (Γ(u) ∪ Γ2(u)) ∩ Γ(wi) and g ∈ Gwi
. In particular, g

fixes Γ3(u) ∩ Γ(wi) setwise.
Since Γ is (G, 2)-distance-transitive and |Γ3(u) ∩ Γ(w)| < p, |Γ3(u) ∩ Γ(wi)| < p.

Since the order of g is prime p and g fixes Γ3(u)∩ Γ(wi) setwise, it follows that g fixes all
the vertices in Γ3(u) ∩ Γ(wi). Thus g ∈ G

[1]
wi . Since wi is any vertex of Γ2(u), g fixes all

the vertices of Γ3(u). For any v ∈ Γ(u), Γ2(v) ⊆ Γ(u) ∪ Γ2(u) ∪ Γ3(u). Thus g ∈ G
[1]
v

and fixes all the vertices of Γ2(v).
Since Γ is (G, 2)-distance-transitive, for any z ∈ Γ2(v), |Γ3(v) ∩ Γ(z)| < p. Since g

fixes all the vertices in (Γ(v)∪Γ2(v))∩Γ(z), g fixes all the vertices in Γ3(v)∩Γ(z). Thus
g ∈ G

[1]
z . In particular, g fixes all the vertices of Γ4(u). Since Γ is connected, by induction,

g fixes all the vertices of Γ, so g = 1, which is a contradiction. Thus g is not trivial on
Γ2(u).

Lemma 2.3. Let Γ be a (G, 2)-distance-transitive graph of valency 6. Let u,w ∈ V (Γ)
be such that dΓ(u,w) = 2. If Γ has girth 4 and |Γ(u) ∩ Γ(w)| = 3, then Γ is (G, 2)-arc-
transitive.

Proof. Suppose that Γ has girth 4 and |Γ(u) ∩ Γ(w)| = 3. Let (u, v, w) be a 2-arc. Then
dΓ(u,w) = 2 and |Γ2(u) ∩ Γ(v)| = 5. Since Γ is (G, 2)-distance-transitive, there are 30
edges between Γ(u) and Γ2(u). Since |Γ(u)∩Γ(w)| = 3 and |Γ(u)∩Γ(w)| · |Γ2(u)| = 30,
it follows that |Γ2(u)| = 10. Again since Γ is (G, 2)-distance-transitive, Gu is transitive on
both Γ(u) and Γ2(u), so both |Γ(u)| and |Γ2(u)| divide |Gu|, hence 30 divides |Gu|. Thus
5 divides |Gu,v|, so Gu,v has an element g of order 5. Therefore either 〈g〉 is regular on
Γ(u)\{v} or is trivial on Γ(u)\{v}. If 〈g〉 is regular on Γ(u)\{v}, then Gu,v is transitive
on Γ(u) \ {v}, so Gu is 2-transitive on Γ(u). Thus Γ is (G, 2)-arc-transitive.

Now suppose that g is trivial on Γ(u)\{v}. Then g ∈ G
[1]
u . Since |Γ(u)∩Γ(w)| = 3, it

follows that |Γ3(u)∩Γ(w)| ≤ 3 < 5. Thus by Lemma 2.2, g is not trivial on Γ2(u). Hence
〈g〉 has orbits of size 5 on Γ2(u). Since g fixes Γ2(u)∩Γ(vi) setwise and |Γ2(u)∩Γ(vi)| =
5, it follows that 〈g〉 is transitive on Γ2(u)∩Γ(vi). Thus Gu,vi

is transitive on Γ2(u)∩Γ(vi),
so Γ is (G, 2)-arc-transitive.

Lemma 2.4. ([6]) Let Γ ∼= Km,m with m ≥ 2. Then Γ is (G, 2)-distance-transitive if and
only if it is (G, 2)-arc-transitive.

A permutation group G on a set Ω is said to be 2-homogeneous, if G is transitive on the
set of 2-subsets of Ω.
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Lemma 2.5. ([8, Theorem 9.4B]) Let G be a 2-homogeneous permutation group which is
not 2-transitive of degree n. Then n = pe ≡ 3 (mod 4) where p is a prime.

Lemma 2.6. Let Γ be a (G, 2)-distance-transitive but not (G, 2)-arc-transitive graph of
valency 6. If Γ has girth 4, then (Γ, G) = ((2× 7)−grid, S2 × M) where M is a 2-
transitive but not 3-transitive subgroup of S7.

Proof. Suppose that Γ has girth 4. Let (u, v, w) be a 2-arc. Then dΓ(u,w) = 2, |Γ2(u) ∩
Γ(v)| = 5 and |Γ(u) ∩ Γ(w)| ≥ 2. Further there are 30 edges between Γ(u) and Γ2(u).
Since Γ is (G, 2)-distance-transitive, |Γ(u)∩Γ(w)| divides 30. Since 2 ≤ |Γ(u)∩Γ(w)| ≤
6, we have |Γ(u) ∩ Γ(w)| = 2, 3, 5 or 6.

Suppose first that |Γ(u) ∩ Γ(w)| = 2. Then since Γ has girth 4, each 2-arc of Γ lies in
a unique 4-cycle. Thus, there is a 1-1 mapping between the unordered vertex pairs in Γ(u)
and vertices in Γ2(u). Since Gu is transitive on Γ2(u), it follows that Gu is transitive on the
set of unordered vertex pairs in Γ(u). Hence G

Γ(u)
u is 2-homogeneous on Γ(u). Further,

since Γ is not (G, 2)-arc-transitive, GΓ(u)
u is not 2-transitive on Γ(u). Thus by Lemma 2.5,

the valency of Γ is pe ≡ 3 (mod 4) where p is a prime, contradicting the fact that Γ has
valency 6.

Next, if |Γ(u) ∩ Γ(w)| = 3, then by Lemma 2.3, Γ is (G, 2)-arc-transitive, which is a
contradiction.

Thirdly, suppose that |Γ(u) ∩ Γ(w)| = 5. Then |Γ3(u) ∩ Γ(w)| ≤ 1. It follows from
Remark 2.1 that Γ is G-distance-transitive. By inspecting the graphs in [3, p. 222-223],
Γ is isomorphic to (2× 7)−grid. Noting that (2× 7)−grid is (Aut(Γ), 2)-arc-transitive.
Thus S2 < G < Aut(Γ) ∼= S2 × S7. Let G = S2 ×M where M < S7. Then Gu = Mu.
Since Γ is (G, 2)-distance-transitive but not (G, 2)-arc-transitive, Mu is transitive but not
2-transitive on Γ(u). Thus M is a 2-transitive but not 3-transitive subgroup of S7.

Finally, if |Γ(u)∩ Γ(w)| = 6, then Γ ∼= K6,6, and by Lemma 2.4, Γ is (G, 2)-distance-
transitive implies that it is (G, 2)-arc-transitive, which is a contradiction.

In a non-complete graph Γ, a 2-geodesic of Γ is a 2-arc (u0, u1, u2) such that dΓ(u0, u2)
= 2. The graph Γ is said to be (G, 2)-geodesic-transitive, if G is transitive on both the set
of arcs and the set of 2-geodesics. Hence, a non-complete G-arc-transitive graph is (G, 2)-
geodesic-transitive if, for any arc (u, v), Gu,v is transitive on Γ2(u) ∩ Γ(v). By definition,
every (G, 2)-geodesic-transitive graph is (G, 2)-distance-transitive.

Suppose that Γ is a G-distance-transitive graph of valency k and diameter d. Then the
cells of the distance partition with respect to vertex u are orbits of Gu, every vertex in Γi(u)
is adjacent to the same number of other vertices in Γi−1(u), say ci. Similarly, every vertex
in Γi(u) is adjacent to the same number of other vertices in Γi+1(u), say bi. The notation
(k, b1, . . . , bd−1; 1, c2, . . . , cd) is called the intersection array of Γ.

Lemma 2.7. Let Γ be a (G, 2)-distance-transitive but not (G, 2)-arc-transitive graph of
valency 6. Let u ∈ V (Γ). If [Γ(u)] is connected, then Γ is isomorphic to one of: T (5),
Paley graph P (13), K3[3] or K4[2].

Proof. Suppose that [Γ(u)] is connected. Let (u, v, w) be a 2-arc such that dΓ(u,w) =
2. Since Γ is (G, 2)-distance-transitive, Gu is transitive on Γ(u), so [Γ(u)] is a vertex-
transitive graph. Let k be the valency of [Γ(u)]. Since [Γ(u)] is connected and |Γ(u)| = 6,
it follows that k = 2, 3, 4, 5. Let Γ(u) = {v1, v2, v3, v4, v5, v6}.

If k = 5, then [Γ(u)] ∼= K6, and so Γ ∼= K7, contradicting the fact that Γ is non-
complete.
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Suppose that k = 4. Then |Γ(u) ∩ Γ(v1)| = 4, say Γ(u) ∩ Γ(v1) = {v2, v3, v4, v5}.
Since |Γ(u) ∩ Γ(v6)| = 4 and v1, v6 are non-adjacent, it follows that Γ(u) ∩ Γ(v6) =
{v2, v3, v4, v5}. Thus [Γ(u)] has diameter 2, and {v1, v6} is a block. Since [Γ(u)] is
vertex-transitive, [Γ(u)] ∼= K3[2], and by [3, p.5] or [5], Γ ∼= K4[2].

Suppose that k = 3. Then |Γ(u)∩Γ(v1)| = 3, say Γ(u)∩Γ(v1) = {v2, v3, v4}. Assume
first that [Γ(u)] does not have triangles. Then every vertex of {v2, v3, v4} is adjacent to both
v5 and v6. Thus [Γ(u)] ∼= K3,3. Then by [3, p.5] or [5], Γ ∼= K3[3]. Next, assume that
[Γ(u)] has a triangle. Since [Γ(u)] is vertex-transitive, every vertex of Γ(u) lies in a triangle.
Let (v1, v2, v3) be a triangle. Since [Γ(u)] is connected, v4 is adjacent to neither v2 nor v3.
Thus v4 is adjacent to both v5 and v6. Since v4 lies in a triangle and {v5, v6} ⊂ Γ2(v1), it
follows that v5, v6 are adjacent. Further, v2 is adjacent to one of {v5, v6}, say v5, and v3 is
adjacent to the remaining vertex v6. Thus [Γ(u)] is isomorphic to the 3-prism, (v1, v2, v3)
and (v4, v5, v6) are the two triangles, and {v1, v4}, {v2, v5} and {v3, v6} are edges. Since
k = 3, it follows that |Γ2(u) ∩ Γ(v1)| = 2. Set Γ2(u) ∩ Γ(v1) = {w1, w2}. Then
Γ(v1) = {u, v2, v3, v4, w1, w2}. Since [Γ(v1)] is isomorphic to the 3-prism, it follows that
v4 is adjacent to both w1 and w2, v2 is adjacent to one of {w1, w2}, say w1, and v3 is
adjacent to w2. Thus Γ(v4) = {u, v1, v5, v6, w1, w2}. Since [Γ(v4)] is isomorphic to the
3-prism, it follows that w1 is adjacent to one of {v5, v6}, say v5. Thus {v1, v2, v4, v5} ⊆
Γ(u) ∩ Γ(w1). Since w2 ∈ Γ(w1), it follows that |Γ3(u) ∩ Γ(w1)| ≤ 1. Thus by Remark
2.1, Γ is G-distance-transitive.

Since {v1, v2, v4, v5} ⊆ Γ(u) ∩ Γ(w1) and {w1} ⊆ Γ2(u) ∩ Γ(w1), it follows that
|Γ(u) ∩ Γ(w1)| = 4 or 5. Since Γ is (G, 2)-distance-transitive and |Γ2(u) ∩ Γ(v1)| = 2,
there are 12 edges between Γ(u) and Γ2(u). Thus |Γ(u) ∩ Γ(w1)| divides 12, so |Γ(u) ∩
Γ(w1)| = 4. Hence |Γ2(u)| = 3. Since Gu is transitive on Γ2(u), [Γ2(u)] is a vertex-
transitive regular graph. Since w1, w2 are adjacent, [Γ2(u)] ∼= C3. Therefore, |Γ3(u) ∩
Γ(w1)| = 0, Γ has diameter 2 and has 10 vertices. In particular, the intersection array of
Γ is (6, 2; 1, 4). By inspecting the graphs in [3, p.222-223], Γ is T (5) (also known as the
Johnson graph J(5, 2)).

If k = 2, then [Γ(u)] ∼= C6. Let (v1, . . . , v6) be a 6-cycle. Then |Γ2(u) ∩ Γ(v1)| = 3,
and set Γ2(u) ∩ Γ(v1) = {w1, w2, w3}. Then Γ(v1) = {u, v2, v5, w1, w2, w3}. Since
[Γ(v1)] ∼= C6 and (v2, u, v6) is a 2-arc, it follows that v2 is adjacent to one of {w1, w2, w3},
say w1; v6 is adjacent to one of {w2, w3}, say w3; and w2 is adjacent to both w1 and w3. In
particular, v2 is not adjacent to any of {w2, w3}, and v6 is not adjacent to any of {w1, w2}.
Since |Γ2(u) ∩ Γ(v2)| = 3, there exist w4, w5 in Γ2(u) that are adjacent to v2, and so
Γ(v2) = {u, v1, v3, w1, w4, w5}. Noting that [Γ(v2)] ∼= C6 and (w1, v1, u, v3) is a 3-arc,
so v3 is adjacent to one of {w4, w5}, say w5, w1 is adjacent to w4, and w4, w5 are adjacent.
Thus, {v1, v2, w2, w4} ⊆ (Γ(u) ∪ Γ2(u)) ∩ Γ(w1). Hence 2 ≤ |Γ(u) ∩ Γ(w1)| ≤ 4 and
|Γ2(u) ∩ Γ(w1)| ≥ 2. Since Γ is (G, 2)-distance-transitive and |Γ2(u) ∩ Γ(v1)| = 3, there
are 18 edges between Γ(u) and Γ2(u). Since |Γ(u)∩Γ(w1)| divides 18, |Γ(u)∩Γ(w1)| = 2
or 3.

Suppose that |Γ(u) ∩ Γ(w1)| = 2. Then |Γ2(u)| = 9. Since |Γ2(u) ∩ Γ(w1)| ≥ 2,
|Γ3(u) ∩ Γ(w1)| ≤ 2. If |Γ3(u) ∩ Γ(w1)| ≤ 1, then by Remark 2.1, Γ is G-distance-
transitive. Inspecting the graphs in [3, p. 222-223], such a Γ does not exist. Hence |Γ3(u)∩
Γ(w1)| = 2. Since Γ is (G, 2)-distance-transitive, both |Γ(u)| and |Γ2(u)| divide |Gu|,
hence 18 divides |Gu|. Thus 3 divides |Gu,v|. Therefore Gu,v has an element g of order 3.
Since |Γ(u) \ {v}| = 5, it follows that g is trivial on Γ(u) \ {v}, so g ∈ G

[1]
u . Hence g fixes

Γ2(u) ∩ Γ(vi) setwise. By Lemma 2.2, g is not trivial on Γ2(u). Hence 〈g〉 has orbits of
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size 3 on Γ2(u). Since g fixes Γ2(u)∩Γ(vi) setwise and |Γ2(u)∩Γ(vi)| = 3, it follows that
〈g〉 is transitive on Γ2(u) ∩ Γ(vi). Thus Gu,vi

is transitive on Γ2(u) ∩ Γ(vi). Therefore Γ
is (G, 2)-geodesic-transitive. Then by [7, Corollary 1.4], Γ is either the Octahedron or the
Icosahedron. However, these two graphs do not have valency 6, which is a contradiction.

Finally, suppose that |Γ(u) ∩ Γ(w1)| = 3. Since there are 18 edges between Γ(u) and
Γ2(u), and |Γ2(u)| · |Γ(u) ∩ Γ(w1)| = 18, |Γ2(u)| = 6. Since |Γ2(u) ∩ Γ(w1)| ≥ 2,
|Γ3(u) ∩ Γ(w1)| ≤ 1. Thus by Remark 2.1, Γ is G-distance-transitive. Inspecting the
graphs in [3, p. 222-223], Γ is the Paley graph P (13).

Lemma 2.8. Let Γ be a (G, 2)-distance-transitive graph of valency 6. Let u be a vertex of
Γ. If [Γ(u)] ∼= 2K3, then |Γ2(u)| = 9 or 18.

Proof. Suppose that [Γ(u)] ∼= 2K3. Then each arc lies in a unique K4. Let Γ(u) =
{v1, v2, v3, v4, v5, v6} such that (v1, v2, v3) and (v4, v5, v6) are two triangles. Then for
each vi, |Γ2(u)∩Γ(vi)| = 3. Since [Γ(v1)] ∼= 2K3, it follows that Γ2(u)∩Γ(vi)∩Γ(vj) = ∅
for i, j ∈ {1, 2, 3}. Thus |Γ2(u)| ≥ 9.

On the other hand, since Γ is (G, 2)-distance-transitive and |Γ2(u) ∩ Γ(v1)| = 3, there
are 18 edges between Γ(u) and Γ2(u). Thus |Γ2(u)| divides 18, and so |Γ2(u)| = 9 or
18.

If further |Γ2(u)| = 9, then such a graph is unique.

Lemma 2.9. Let Γ be a (G, 2)-distance-transitive graph of valency 6. Let u be a vertex of
Γ. Suppose that [Γ(u)] ∼= 2K3 and |Γ2(u)| = 9. Then Γ ∼= H(2, 4)

Proof. Since [Γ(u)] ∼= 2K3, each arc lies in a unique K4. Let Γ(u) = {v1, v2, v3, v4, v5,
v6}. Let (v1, v2, v3) and (v4, v5, v6) be the two triangles of [Γ(u)]. Then for each vi,
|Γ2(u) ∩ Γ(vi)| = 3. Since [Γ(v1)] ∼= 2K3, it follows that Γ2(u) ∩ Γ(vi) ∩ Γ(vj) = ∅
for i 6= j ∈ {1, 2, 3}. Since |Γ2(u)| = 9, Γ2(u) = (Γ2(u) ∩ Γ(v1)) ∪ (Γ2(u) ∩ Γ(v2)) ∪
(Γ2(u)∩ Γ(v3)). Set Γ2(u)∩ Γ(v1) = {w1, w2, w3}, Γ2(u)∩ Γ(v2) = {w4, w5, w6}, and
Γ2(u) ∩ Γ(v3) = {w7, w8, w9}. Since [Γ(v1)] ∼= [Γ(v2)] ∼= [Γ(v3)] ∼= 2K3, it follows that
(w1, w2, w3), (w4, w5, w6) and (w7, w8, w9) are three triangles.

Since Γ is (G, 2)-distance-transitive and |Γ2(u) ∩ Γ(v1)| = 3, there are 18 edges be-
tween Γ(u) and Γ2(u). Since |Γ2(u)| = 9, it follows that for each wi, |Γ(u)∩Γ(wi)| = 2.
By the previous argument, w1 is not adjacent to any of {v2, v3}, so w1 is adjacent to one
of {v4, v5, v6}, say v4. Then Γ(u) ∩ Γ(w1) = {v1, v4}. As each arc lies in a unique
K4 and (v1, w1, w2, w3) is a K4, it follows that v4 is not adjacent to any of {w2, w3}.
Since |Γ2(u) ∩ Γ(v4)| = 3 and |Γ(vi) ∩ Γ(v4)| = 2 for i = 1, 2, 3, v4 is adjacent
to one of {w4, w5, w6}, say w4, and is adjacent to one of {w7, w8, w9}, say w7. Then
Γ(v4) = {u, v5, v6, w1, w4, w7}. Since [Γ(v4)] ∼= 2K3 and (u, v5, v6) is a triangle, it
follows that (w1, w4, w7) is a triangle. Thus, Γ(w1) = {v1, v4, w2, w3, w4, w7}, and so
Γ3(u) ∩ Γ(w1) = ∅. Since Γ is (G, 2)-distance-transitive, it follows that Γ is G-distance-
transitive with diameter 2 and has 16 vertices. Thus by inspecting the graphs in [3, p.
222-223], Γ ∼= H(2, 4).

Lemma 2.10. Let Γ be a (G, 2)-distance-transitive graph of valency 6. Let u be a vertex
of Γ. If [Γ(u)] ∼= 3K2, then |Γ2(u)| = 8, 12, or 24.

Proof. Suppose that [Γ(u)] ∼= 3K2. Then each arc lies in a unique triangle. Let Γ(u) =
{v1, v2, v3, v4, v5, v6} be such that (v1, v2), (v3, v4), and (v5, v6) are three arcs. Then for
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each vi, |Γ2(u)∩Γ(vi)| = 4. Since [Γ(v1)] ∼= 3K2, it follows that Γ2(u)∩Γ(v1)∩Γ(v2) =
∅. Thus |Γ2(u)| ≥ 8.

Since Γ is (G, 2)-distance-transitive and |Γ2(u) ∩ Γ(v1)| = 4, there are 24 edges be-
tween Γ(u) and Γ2(u). Since |Γ2(u)| divides 24, it follows that |Γ2(u)| = 8, 12, or 24.

If further |Γ2(u)| = 8, then Γ is known.

Lemma 2.11. Let Γ be a (G, 2)-distance-transitive graph of valency 6. Let u be a vertex
of Γ. Suppose that [Γ(u)] ∼= 3K2 and |Γ2(u)| = 8. Then Γ ∼= KG6,2

Proof. Since Γ is symmetric and [Γ(u)] ∼= 3K2, each arc lies in a unique triangle. Set
Γ(u) = {v1, v2, v3, v4, v5, v6}. Let (v1, v2), (v3, v4) and (v5, v6) be three arcs. Then for
each vi, |Γ2(u)∩Γ(vi)| = 4. Since [Γ(v1)] ∼= 3K2, it follows that Γ2(u)∩Γ(v1)∩Γ(v2) =
∅. Since |Γ2(u)| = 8, Γ2(u) = (Γ2(u) ∩ Γ(v1)) ∪ (Γ2(u) ∩ Γ(v2)). Set Γ2(u) ∩ Γ(v1) =
{w1, w2, w3, w4}, and Γ2(u) ∩ Γ(v2) = {w5, w6, w7, w8}. Since [Γ(v1)] ∼= [Γ(v2)] ∼=
3K2, it follows that (w1, w2), (w3, w4), (w5, w6) and (w7, w8) are arcs.

Since Γ is (G, 2)-distance-transitive and |Γ2(u) ∩ Γ(v1)| = 4, there are 24 edges be-
tween Γ(u) and Γ2(u). As |Γ2(u)| = 8, it follows that for each wi, |Γ(u) ∩ Γ(wi)| = 3.
By the previous argument, w1 is not adjacent to v2. Noting that Γ2(u)∩Γ(vi)∩Γ(vj) = ∅
for (i, j) = (1, 2), (3, 4), (5, 6). Thus w1 is adjacent to one of {v3, v4}, say v3, and is also
adjacent to one of {v5, v6}, say v5. Then Γ(u) ∩ Γ(w1) = {v1, v3, v5}. Since each arc
lies in a unique triangle and (v1, w1, w2) is a triangle, it follows that v3 is not adjacent to
w2. By |Γ2(u) ∩ Γ(v3)| = 4 and |Γ(vi) ∩ Γ(v3)| = 3 for i = 1, 2, v3 is adjacent to one of
{w3, w4}, say w3, and is also adjacent to two vertices of {w5, w6, w7, w8}, say w5, w7.

Then Γ(v3) = {u, v4, w1, w3, w5, w7}. Since [Γ(v3)] ∼= 3K2 and (u, v4) is an arc,
it follows that (w1, w5) and (w3, w7) are two arcs. Thus, {v1, v3, v5} ∪ {w2, w5} ⊆
Γ(w1), and so |Γ3(u) ∩ Γ(w1)| ≤ 1. Since Γ is (G, 2)-distance-transitive, it follows
from Remark 2.1 that Γ is G-distance-transitive. One part of the intersection array of Γ
is (6, 4, . . . ; 1, 3, . . .). By inspecting the graphs in [3, p.221], Γ ∼= KG6,2.

Lemma 2.12. Let Γ be an arc-transitive graph and let u be a vertex of Γ. Suppose that
Γ(u) = U ∪W , where |U | = |W | = n and U ∩W = ∅. Assume further that [U ] ∼= [W ] ∼=
Kn. Let v1 ∈ U . If |Γ(u) ∩ Γ(v1) ∩W | ≤ n− 2, then Γ is a line graph.

Proof. Suppose that |Γ(u) ∩ Γ(v1) ∩W | ≤ n − 2. Then [U ] and [W ] are the only two
n-cliques of Γ(u). It follows from [14, Proposition 2.1] that Γ is a line graph.

Proof of Theorem 1.2. Let Γ be a connected non-complete (G, 2)-distance-transitive but
not (G, 2)-arc-transitive graph of valency 6. If Γ has girth at least 5, then for any two
vertices with distance 2, there exists a unique 2-arc between these two vertices. Thus Γ
is (G, 2)-arc-transitive, which is a contradiction. Hence Γ has girth 3 or 4. If Γ has girth
4, then it follows from Lemma 2.6 that (Γ, G) = ((2× 7)−grid, S2 ×M) where M is a
2-transitive but not 3-transitive subgroup of S7, so that (1) holds.

Suppose that Γ has girth 3. Let (u, v, w) be a 2-arc such that dΓ(u,w) = 2. If [Γ(u)] is
connected, then by Lemma 2.7, Γ is isomorphic to one of: T (5), Paley graph P (13), K3[3]

or K4[2], (2) holds. If [Γ(u)] is disconnected, then Gu has blocks in Γ(u), and each block
has cardinality 2 or 3. If each block has cardinality 3, then [Γ(u)] ∼= 2K3; if each block
has cardinality 2, then [Γ(u)] ∼= 3K2. Suppose that [Γ(u)] ∼= 2K3. Then by Lemma 2.8,
|Γ2(u)| = 9 or 18. If |Γ2(u)| = 9, then by Lemma 2.9, Γ ∼= H(2, 4). If |Γ2(u)| = 18, then
by Lemma 2.12, Γ is a line graph, (3.1) holds.



W. Jin and L. Tan: Finite two-distance-transitive graphs of valency 6 57

Finally, if [Γ(u)] ∼= 3K2, then by Lemma 2.10, |Γ2(u)| = 8, 12, or 24. In particular, if
|Γ2(u)| = 8, then by Lemma 2.11, Γ ∼= KG6,2, so that (3.2) holds.
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