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Abstract

Let q > 2·34t be even. We prove that the only symplectic semifield spread of PG(5, qt),
whose associate semifield has center containing Fq , is the Desarguesian spread. Equiva-
lently, a commutative semifield of order q3t, with middle nucleus containing Fqt and cen-
ter containing Fq , is a field. We do that by proving that the only possible Fq-linear set of
rank 3t in PG(5, qt) disjoint from the secant variety of the Veronese surface is a plane of
PG(5, qt).
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1 Introduction
Let PG(r−1, q) be the projective space of dimension r−1 over the finite field Fq of order
q. An (n− 1)-spread S of PG(2n− 1, q), which we will call simply spread from now on,
is a partition of the point-set in (n − 1)-dimensional subspaces. With any spread S it is
associated a translation planeA(S) of order qn via the André-Bruck-Bose construction (see
e.g. [7, Section 5.1]). Translation planes associated with different spreads of PG(2n−1, q)
are isomorphic if and only if there is a collineation of PG(2n − 1, q) mapping one spread
to the other (see [1] or [16, Chapter 1]). A spread S is said to be Desarguesian if A(S)
is isomorphic to AG(2, qn) and hence a plane coordinatized by the field of order qn. The
spread S is said to be a semifield spread ifA(S) is a plane of Lenz-Barlotti class V and this
is equivalent to saying that A(S) is coordinatized by a semifield.
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A finite semifield S = (S,+, ?) is a finite algebra satisfying all the axioms for a skew-
field except (possibly) associativity of multiplication. The subsets

Nl = {a ∈ S : (a ? b) ? c = a ? (b ? c), ∀b, c ∈ S},
Nm = {b ∈ S : (a ? b) ? c = a ? (b ? c), ∀a, c ∈ S},
Nr = {c ∈ S : (a ? b) ? c = a ? (b ? c), ∀a, b ∈ S} and
K = {a ∈ Nl ∩ Nm ∩ Nr : a ? b = b ? a, ∀b ∈ S}

are fields and are known, respectively, as the left nucleus, the middle nucleus, the right
nucleus and the center of the semifield. A finite semifield is a vector space over its nuclei
and its center.

If A(S) is coordinatized by the semifield S, then S has order qn and its left nucleus
contains Fq .

Semifields are studied up to an equivalence relation called isotopy, which corresponds
to the study of semifield planes up to isomorphisms (for more details on semifields see,
e.g., [7]).

The spread S is said to be symplectic if the elements of S are totally isotropic with
respect to a symplectic polarity of PG(2n−1, q). IfA(S) is coordinatized by the semifield
S, then S is called symplectic semifield and if its center contains Fs ≤ Fq , then from S
we get by the cubical array (see [13]) a semifield isotopic to a commutative semifield with
middle nucleus containing Fq and center containing Fs ([11]).

Let q be even. For n = 2, there is the following remarkable theorem due to Cohen and
Ganley.

Theorem 1.1 ([6]). A commutative semifield of order q2 with middle nucleus containing
Fq is a field.

For n > 2, the only known commutative semifields, that are not a field, are the Kantor-
Williams symplectic pre-semifields of order qn and n > 1 odd ([12]) and their commutative
Knuth derivatives ([11]). Symplectic semifield spreads in characteristic 2 with odd dimen-
sion over F2 give arise to Z4-linear codes and extremal line sets in Euclidean spaces ([4]).

Most of the above mentioned results are obtained with an algebraic approach, whereas
ours is mainly geometric. For small n, the study of semifield spreads has shown to be a
good way to classify semifields.

Let M(n,Fq) be the set of all n × n matrices over Fq . Without loss of generality, we
may always assume that S(∞) := {(0,y) : y ∈ Fnq } and S(0) := {(x,0) : x ∈ Fnq }
belong to S, hence we may write S = {S(A) : A ∈ C} ∪ S(∞), with S(A) :=
{(x,xA) : x ∈ Fnq }, with C ⊂ M(n,Fq) such that |C| = qn and C contains the zero
matrix. The set C is called the spread set associated with S. In order to have a semi-
field spread, the non-zero elements of C must be invertible and C must be a subgroup of
the additive group of M(n,Fq) ([7, Section 5.1]), hence C is a vector space over some
subfield of Fq . If we choose the symplectic polarity induced by the alternating bilinear
form β((x1,y1), (x2y2)) = x1y

T
2 − y1x

T
2 , xi,yi ∈ Fnq , then the subspace S(A) ∈ S is

totally isotropic if and only if A is symmetric. The symmetric matrices form an n(n+1)
2 -

dimensional subspace of M(n,Fq) that then induces a PG
(
n(n+1)

2 − 1, q
)

. The rank-1

symmetric matrices form the Veronese variety V of degree 2 of PG
(
n(n+1)

2 − 1, q
)

(this



V. Pepe: Symplectic semifield spreads of PG(5, qt), q even 517

is the so called determinantal representation of the Veronese variety of degree 2, see [8, Ex-
ample 2.6]). Hence the singular symmetric matrices form the (n− 2)-th secant variety, say
Vn−2, of the Veronese variety. If C is an Fs-vector space, q = st, then dimFs

C = nt and
it defines a subset L of PG

(
n(n+1)

2 − 1, q
)

called Fs-linear set of rank nt (for a complete
overview on linear sets see [18]). So to a symplectic semifield spread of PG(2n − 1, q)

there corresponds an Fs-linear set L, q = st, of PG
(
n(n+1)

2 − 1, q
)

of rank tn such that
L ∩ Vn−2 = ∅ (see also [15]). We recall the associated semifield has left nucleus contain-
ing Fq and if Fs is the maximum subfield with respect to L is linear, then the center of the
semifield is isomorphic to Fs. So the isotopic commutative semifield we get has middle
nucleus containing Fq and center isomorphic to Fs.

In this article, we are focused on the case n = 3, i.e., on symplectic semifield spreads
of PG(5, q), when q is even. In such a case, only two non-sporadic examples are known:
the Desarguesian spread and one of its cousin (see [10]), so they are both obtained by
slicing the so called Desarguesian spread of Q+(7, q). In the former case, the associated
translation plane is the Desarguesian plane, hence it is coordinatized by the finite field of
order q3 and the relevant linear set is actually linear on Fq . In the latter case, the semifield
spread is associated to a spread set C that is an F2-linear set L of PG(5, q), where F2 is the
maximum subfield of Fq for which L is linear, and the associate semifield has order q3 and
center F2.

In [5], it is proven that the only symplectic semifield spread of PG(5, q2), q > 214,
whose associate semifield has center containing Fq , is the Desarguesian spread, meaning
that a commutative semifield of order q6, with middle nucleus containing Fq2 and cen-
ter containing Fq is a field, provided q is not too small. That was done by studying the
intersection of the five non-equivalent Fq-linear sets of PG(5, q2) with the secant variety
V1 of the Veronese variety and the only one that can have empty intersection with V1 is a
plane. A classification of the Fq-linear sets of PG(5, qt) of rank 3t is not feasible, as the
number of non-equivalent ones quickly grows with t. In fact, the present paper, we had a
slightly different approach which allowed us to generalize the result of [5] in PG(5, qt) for
any t: by field reduction, a PG(5, qt) can be seen as PG(6t − 1, q), a linear set of rank
3t as a subspace ∼= PG(3t − 1, q) and V1 an algebraic variety, say Vt1, of codimension
t in PG(6t − 1, q). Hence, we have studied when a subspace of dimension 3t − 1 can
have empty intersection with Vt1 (over Fq), regardless the geometric feature of the linear
set in PG(5, qt).

2 Preliminary results
2.1 Fq-linear sets and the Fq-linear representation of PG(r − 1, qt)

The set L ⊂ PG(V,Fqt) = PG(r − 1, qt), with V an r-dimensional vector space over
Fqt , is said to be an Fq-linear set of rank m if it is defined by the non-zero vectors of an
Fq-vector subspace U of V of dimension m, i.e.

L = LU = {〈u〉Fqt
: u ∈ U \ {0}}.

If r = m and 〈LU 〉 = PG(r − 1, qt), then LU ∼= PG(r − 1, q). In this case, LU is
said to be a subgeometry (of order q) of PG(r − 1, qt). Throughout this paper, we shall
extensively use the following result: a subset Σ of PG(r− 1, qt) is a subgeometry of order
q if and only if there exists an Fq-linear collineation σ of PG(r − 1, qt) of order t such
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that Σ = Fixσ, where Fixσ is the set of points fixed by σ. This is a straightforward
consequence of the fact that there is just one conjugacy class of Fq-linear collineations of
order t in PΓL(r, qt), namely that of

ς : (x0, x1, . . . , xr−1) 7→ (xq0, x
q
1, . . . , x

q
r−1).

In particular, all subgeometries∼= PG(r−1, q) of PG(r−1, qt) are projectively equivalent
to the subgeometry induced by {(x0, x1, . . . , xr−1) : xi ∈ Fq}. A subspace Π of PG(r−1,
qt) defines a subspace of Fixσ ∼= PG(r − 1, q) of the same dimension if and only if
Π = Πσ (see [14, Lemma 1]). It will be more convenient for us to explicitly state the
following equivalent result.

Notation. Let F be any field containing Fq . Throughout the paper we will denote by Π(F)
the unique subspace of PG(r − 1,F) containing Π.

Lemma 2.1. If we consider PG(r − 1, q) embedded as a subgeometry of PG(r − 1, qt)
and Π is a subspace of PG(r − 1, q) of dimension s − 1, then the subspace Π(Fqt) of
PG(r − 1, qt) containing Π has dimension s− 1 as well.

Analogously, if W is an algebraic variety of PG(r − 1, qt), then W ∩ Fixσ ⊂ W ∩
Wσ ∩ · · · ∩ Wσt−1

and henceW ∩ Fixσ has the same dimension and degree ofW if and
only ifW =Wσ .

Remark 2.2. An algebraic varietyW is said to be a variety of PG(r − 1, q) if it consists
of the set of zeros of polynomials f1, f2, . . . , fk ∈ Fq[x0, x1, . . . , xr−1], and we will write
W = V (f1, f2, . . . , fk). By dimension and degree ofW we will mean the dimension and
degree of the variety when considered as variety of PG(r − 1,Fq), with Fq the algebraic
closure of Fq .

In the remaining part of this section, we will describe the setting we adopt to study the
Fq-linear sets of PG(V,Fqt) = PG(r − 1, qt).

When we regard V as an Fq-vector space, dimFq
V = rt and hence PG(V, q) =

PG(rt − 1, q). Furthermore, a point 〈v〉Fqt
∈ PG(r − 1, qt) corresponds to the (t − 1)-

dimensional subspace of PG(rt − 1, q) given by {λv : λ ∈ Fqt}. This is the so-called
Fq-linear representation of 〈v〉Fqt

and the set S, consisting of the (t − 1)-subspaces of
PG(rt − 1, q) that are the linear representation of the points of PG(r − 1, qt), is a parti-
tion of the point set of PG(rt − 1, q). Such a partition S is called Desarguesian spread
of PG(rt − 1, q). In this setting, a linear set LU is the subset of the Desarguesian spread
S with non-empty intersection with the projective subspace ΠU of PG(rt − 1, q) induced
by U .

We shall adopt the following cyclic representation of PG(rt− 1, q) in PG(rt− 1, qt).
Let PG(rt − 1, qt) = PG(V ′, qt), with V ′ the standard rt-dimensional vector space over
Fqt and let ei the i-th element of the canonical base of V ′. Consider the semi-linear
collineation σ with accompanying automorphism x 7→ xq and such that ei 7→ ei+r,
where the subscript are taken mod rt. Then σ is an Fq-linear collineation of order t and
Fixσ = {(x,xq, . . . ,xqt−1

) : x = (x0, x1, . . . , xr−1), xi ∈ Fqt ,x 6= 0} is isomorphic to
PG(rt − 1, q). The elements of S are the subspaces ΠP := 〈P, P σ, . . . , P σt−1〉 ∩ Fixσ,
with P ∈ Π0

∼= PG(r− 1, qt) and Π0 defined by xi = 0 ∀i > r− 1 (see [14]). Let Πi be
Πσi

0 . In the following, we shall identify a point P of Π0 = PG(r − 1, qt) with the spread
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element ΠP . We observe that P is just the projection of ΠP from 〈Π1,Π2, . . . ,Πt−1〉 on
Π0. If LU is a linear set of rank m, then it is induced by an (m− 1)-dimensional subspace
ΠU ⊂ PG(rt − 1, q) = Fixσ and it can be viewed both as the subset of Π0 that is the
projection of ΠU from 〈Π1,Π2, . . . ,Πt−1〉 on Π0 as well as the subset of S consisting of
the elements ΠP such that ΠP ∩ΠU 6= ∅. We stress out that we have defined the subspaces
ΠU and ΠP as subspaces of Fixσ = PG(rt − 1, q). Let F be any field containing Fqt ,
then the projection of ΠU (F) on Π0 from 〈Π1,Π2, . . . ,Πt−1〉 is 〈LU 〉F.

Let H be a hypersurface of PG(r − 1, qt) and let f ∈ Fqt [x0, x1, . . . , xr−1] a poly-
nomial defining H, i.e., H = V (f). In the linear representation of PG(r − 1, qt) = Π0,
the points of H correspond to the spread elements ΠP such that P ∈ H, hence it is the
intersection of the variety V (f, fσ, . . . , fσ

t−1

) of PG(rt − 1, qt) with Fixσ, where, by
abuse of notation, we extend the action of σ also to polynomials. We observe that the
variety V (f, fσ, . . . , fσ

t−1

) is the join of the varieties H,Hσ, . . . ,Hσt−1

(see [8, Chap-
ter 8]) and hence it has dimension t(dimH + 1) − 1 = t(r − 1) − 1 = tr − t − 1 and
degree deg(H)t. We observe that V (f, fσ, . . . , fσ

t−1

) it is defined by t polynomials and
dimV (f, fσ, . . . , fσ

t−1

) = tr − t − 1 = dim PG(rt − 1, qt) − t, hence V (f, fσ, . . . ,

fσ
t−1

) is a complete intersection (see [8, Example 11.8]). We will denote the join of the
varietiesW1,W2, . . . ,Wk by Join(W1,W2, . . . ,Wk).

Let TP (W) be the tangent space to the algebraic varietyW at the point P ∈ W .

Proposition 2.3 (Terracini’s Lemma [20]). LetW = Join(Y1,Y2) and let P = 〈P1, P2〉 ∈
W with Pi ∈ Yi. Then 〈TP1

(Y1), TP2
(Y2)〉 ⊆ TP (W).

The variety V (f, fσ, . . . , fσ
t−1

) is the join of the varieties Hσi

, i = 0, 1, . . . , t − 1.
We recall that Hσi

is a hypersurface of Πi, hence TPi(Hσ
i

) is a hypersurface of Πi for a
non-singular point Pi ∈ Hσ

i

. By Πi ∩ 〈Πj , j 6= i〉 = ∅, we get

dim〈TP0
(H), TP1

(Hσ), . . . , TPt−1
(Hσ

t−1

)〉 = rt− 1− t

for non-singular points P0, P1, . . . , Pt−1. Since for a non-singular point P ∈ V (f, fσ, . . . ,

fσ
t−1

), dimTP (V (f, fσ, . . . , fσ
t−1

)) = rt− 1− t, we have

〈TP0
(H), TP1

(Hσ), . . . , TPt−1
(Hσ

t−1

)〉 = TP (V (f, fσ, . . . , fσ
t−1

))

for a non-singular P ∈ V (f, fσ, . . . , fσ
t−1

).
Let Sing(W) be the set of the singular points of a varietyW; we recall that Sing(W)

is a subvariety ofW . From the discussion above, it is clear that

Sing(V (f, fσ, . . . , fσ
t−1

)) =

t−1⋃
i=0

Si,

with Si = Join(Sing(Hσi

),Hσj

, j 6= i).

2.2 The Veronese surface and its secant variety

In this section we denote by Pn−1 the (n− 1)-dimensional projective space over a generic
field F.
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The Veronese map of degree 2

v2 : (x0, x1, x2) ∈ P2 7−→ (. . . ,xl, . . .) ∈ P5

is such that xl ranges over all monomials of degree 2 in x0, x1, x2. The image V := v2(P2)
is the quadric Veronese surface, a variety of dimension 2 and degree 4. A section H ∩ V ,
where H is a hyperplane of P5, consists of the points of v2(C), where C is a conic of P2.

If we use the so-called determinantal representation of V (see [8, Example 2.6]), then
we can take P5 as induced by the subspace of M(3,F) consisting of symmetric matrices
and v2(x0, x1, x2) = A such that aij = xixj , i.e., V consists of the rank 1 matrices of
M(3,F).

Hence, the secant variety of V , say V1, consists of the symmetric matrices of rank at
most 2, i.e., V1 consists of the singular symmetric 3× 3 matrices. So V1 is a hypersurface
of P5 of degree 3. It is well known that the singular points of V1 are the points of V .

The automorphism group Ĝ of V is the lifting of G = PGL(3,F) acting in the obvious
way: v2(p)ĝ = v2(pg) ∀g ∈ PGL(3,F). The group Ĝ obviously fixes V1.

The maximal subspaces contained in V1 are planes and they are of three types: the
span of v2(`), with ` a line of P2, the tangent planes TP (V) for P ∈ V , and, when the
characteristic of F is even, the nucleus plane πN .

Let the characteristic of F be even. The plane πN of P5 consists of the symmet-
ric matrices with zero diagonal, hence πN is contained in V1. By the Jacobi’s formula,
∂

∂aij
detA = tr(adj(A) ∂A

∂aij
), where tr(M) is the trace of a matrix M and adj(M) is the

adjoint matrix of M . Let Eij be the 3× 3 matrix with 1 in the ij-position and 0 elsewhere,
so we have ∂

∂aij
detA = tr(adj(A) ∂A

∂aij
) = tr(adj(A)(Eij+Eji)) = 0 ∀i 6= j. It follows

that a hyperplane is tangent to V1 if and only if it contains πN . Also, each point of πN is
the nucleus of a point of a unique conic v2(`).

If P ∈ V1, then the tangent hyperplane H to V1 at P is such that H ∩ V = v2(`2),
where ` = 〈p1, p2〉 if P /∈ πN and hence P ∈ 〈v2(p1), v2(p2)〉, or ` is such that P is the
nucleus of v2(`) if P ∈ πN . The tangent plane at v2(p) to V is the intersection of three
hyperplanes K1,K2,K3 such that Ki ∩ V = v2(`i ∪ `′i), where `i, `′i are lines through p.

If F is an algebraically closed field, then any subspace of P5 of dimension at least 1 has
non-empty intersection with V1. If F = Fq , then there are subspaces of larger dimension
disjoint from V1 and, by the Chevalley-Warning Theorem, we know that they can have
dimension at most 2. For q even we have the following result.

Theorem 2.4 ([5]). Let q ≥ 4 be even, then there exists one orbit of planes under the action
of Ĝ disjoint from V1.

3 Proof of the main result
Through this section, we assume q to be even. Let Fq be the algebraic closure of Fq .

We adopt the Fq-linear representation of PG(5, qt), i.e., we regard the points of
PG(5, qt) as elements of a Desarguesian spread of PG(6t − 1, q) and LU as the subset
of the spread with non-empty intersection with a (3t − 1)-dimensional subspace ΠU of
PG(6t−1, q); also, we consider PG(6t−1, q) as subgeometry of PG(6t−1, qt) (cf. Sec-
tion 2). Let f be the polynomial with coefficients in F2 such that V1 = V (f), hence the Fq-
linear representation of V1 is V (f, fσ, . . . , fσ

t−1

)∩Fixσ. Let Vt1 be V (f, fσ, . . . , fσ
t−1

).
We have that V1 ∩ LU = ∅ ⇔ Vt1 ∩ ΠU = ∅ ⇔ Vt1 ∩ Fixσ ∩ ΠU (Fqt) = ∅. LetW

be ΠU (Fq) ∩ Vt1. We observe thatW = Wσ , hence dimW = dimW ∩ Fixσ. We stress
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out thatW is defined by polynomials in Fqt [x0, x1, . . . , x6t−1] but it might not contain any
Fqt -rational point. The linear representation of πN is the (3t − 1)-dimensional subspace
ΠN of Fixσ that is partitioned by the spread elements {ΠP : P ∈ πN}. As LU ∩ πN = ∅,
we must have ΠU ∩ ΠN = ∅ and hence, by Lemma 2.1, ΠU (Fqt) ∩ ΠN (Fqt) = ∅ and
ΠU (Fq) ∩ΠN (Fq) = ∅.

Theorem 3.1. Let P ∈ W , then dimTP (Vt1) ∩ΠU (Fq) = dimTP (Vt1)− 3t.

Proof. The subspace ΠU (Fq) has codimension 3t, hence

dimTP (Vt1) ∩ΠU (Fq) ≥ dimTP (Vt1)− 3t.

Let P ∈ 〈P0, P1, . . . , Pt−1〉 with Pi ∈ Πi(Fq). We have that

TP (Vt1) = 〈TP0
(V1), TP1

(Vσ1 ), . . . , TPt−1
(Vσ

t−1

1 )〉

and πσ
i

N ⊂ TPi(Vσ
i

1 ) ∀i, hence ΠN (Fq) ⊂ TP (Vt1). Since ΠU (Fq) ∩ ΠN (Fq) = ∅ and
dim ΠN (Fq) = 3t − 1, we have dimTP (Vt1) ∩ ΠU (Fq) ≤ dimTP (Vt1) − 3t, hence the
statement follows.

Corollary 3.2. We have dimW = 2t− 1, henceW is a complete intersection.

Proof. If P is non-singular for Vt1, then dimTP (Vt1) = dim(Vt1) = 5t − 1, whereas
dimTP (Vt1) > 5t − 1 for P ∈ Sing(Vt1). As W = Vt1 ∩ ΠU (Fq), TP (W) = TP (Vt1) ∩
ΠU (Fqt). By Theorem 3.1,

dimTP (Vt1) ∩ΠU (Fq) = dimTP (Vt1)− 3t ≥ 2t− 1,

and
dimTP (Vt1) ∩ΠU (Fq) > 2t− 1

only if P ∈ Sing(Vt1). Hence dimW = 2t−1. We observe that 2t−1 = dim ΠU (Fq)− t,
henceW is a complete intersection.

Corollary 3.3. Sing(W) = Sing(Vt1) ∩ΠU (Fq).

Proof. By Theorem 3.1, dimTP (W) = dimTP (Vt1)−3t, hence dimTP (W) > dimW =
2t− 1 if and only if dimTP (Vt1) > 5t− 1 = dim(Vt1), i.e., P ∈ Sing(Vt1).

If a variety Y is a complete intersection and dimY − dim Sing(Y) ≥ 2, then Y is
normal (see [19, Chapter 2, Section 5.1] for the general definition of normal varieties). An
important tool for our proof is the following reformulation of the Hartshorne connectedness
theorem ([9]).

Theorem 3.4 ([3, Theorem 2.1]). If Y is a normal complete intersection, then Y is abso-
lutely irreducible.

Theorem 3.5. If W is reducible and LU ∩V1 = ∅, then LU is a plane which is isomorphic
to PG(2, qt) disjoint from V1.
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Proof. IfW is reducible, thenW is not normal and hence dim Sing(W) = dimW − 1 =
2t − 2. A point P ∈ W is singular if and only if P ∈ Sing(Vt1) ∩ ΠU (Fq). We have
Sing(Vt1) =

⋃t−1
i=0 Si, with

Si = Join(Sing(Vσ
i

1 ),Vσ
j

1 , j 6= i) = Join(Vσ
i

,Vσ
j

1 , j 6= i)

(see Section 2), so Sσ
i

0 = Si and hence

dim Sing(Vt1) ∩ΠU (Fq) = dimS0 ∩ΠU (Fq) = 2t− 2.

Let P ∈ S0∩ΠU (Fq) with P = 〈P0, P1, . . . , Pt−1〉, P0 ∈ V, Pi ∈ Vσ
i

1 , i = 1, 2, . . . , t−1,
then the tangent space TP (S0 ∩ΠU (Fq)) is

〈TP0(V), TP1(Vσ1 ), . . . , TPt−1(Vσ
t−1

1 )〉 ∩ΠU (Fq)
= K∗1 ∩K∗2 ∩K∗3 ∩H∗1 ∩ · · · ∩H∗t−1 ∩ΠU (Fq),

with K∗i , H
∗
j hyperplanes of PG(6t − 1, qt) such that K∗i projects on the hyperplane Ki

of Π0 for i = 1, 2, 3, H∗j projects on the hyperplane Hj of Πj ∀j = 1, 2, . . . , t − 1,
K1 ∩ K2 ∩ K3 = TP0(V) and Hj = TPj (Vσj

1 ). We can take K1,K2,K3 such that
K1 ∩ V = v2(`21), K2 ∩ V = v2(`22) and K3 ∩ V = v2(`1 ∪ `2). Hence, K∗1 ∩K∗2 ∩H∗1 ∩
· · · ∩H∗t−1 contains ΠN and so dimK∗2 ∩K∗3 ∩H∗1 ∩ · · · ∩H∗t−1 ∩ΠU (Fq) is the smallest
possible, i.e., 2t− 2. Hence,

K∗1 ⊇ K∗2 ∩K∗3 ∩H∗1 ∩ · · · ∩H∗t−1 ∩ΠU (Fq)

and the projection of ΠU (Fq) on Π0 is a subspace Π′0 such that the tangent space of P0 at
V ∩Π′0 has codimension 2 in Π′0. So either the codimension of Π′0∩V in Π′0 is 2 or Π′0∩V
has codimension 3 in Π′0 but it has singular points. Suppose we are in the latter case. The
Veronese variety V is smooth, hence Π′0 can by a 3 or 4-dimensional subspace of Π0. If Π′0
is a hyperplane of Π0 and Π′0 ∩ V(Fq) has singular points, then Π′0 ∩ V is is either v2(`2)
or v2(`1 ∪ `2). In the first case, Π′0 contains πN . A plane ∼= PG(2, qt) is a Fq-linear set
of rank 3t, so Π′0(Fqt) ∼= PG(4, qt) contains two linear sets of rank 3t that must intersect
by Grassmann, i.e., LU ∩ V1 6= ∅. If Π′0 ∩ V = v2(`1 ∪ `2), then Π′0 contains the tangent
space at V of the point P = v2(`1 ∩ `2) and it is the unique tangent space at V contained
in Π′0. Let τ be the collineation induced by the field automorphism x 7→ xq

t

, then both Π′0
and V(Fq) are fixed by τ , hence TP (V)τ = TP (V) and, by Lemma 2.1, TP (V) contains a
PG(2, qt). Again, by Grassmann, LU ∩V1 6= ∅. Suppose that Π′0 is a 3-dimensional space,
so it contains 4 points counted with their multiplicity and at least one of them is multiple. If
P is a multiple point and it is Fqt -rational, i.e., P = P τ , then Π′0 contains a line tangent to
V at P that it is fixed by τ and hence contains a PG(1, qt), so, by Grassmann, LU ∩V1 6= ∅.
So a multiple point P must be Fqst -rational, but also P τ ∈ Π′0 ∩ V would be, hence s = 2
and we have Π′0 ∩V = {P, P τ}, with P ∈ Π′0(q2t). The line joining P and P τ is set-wise
fixed by τ and so it contains a PG(1, qt), yielding again LU ∩ V1 6= ∅. So suppose that
the codimension of Π′0 ∩ V(Fq) in Π′0 is 2. Hence Π′0 is either a 3-dimensional space or
a plane. Suppose that Π′0 is a 3-dimensional space and so dim Π′0 ∩ V(Fq) = 3 − 2 = 1.
Since Π′0 ∩ V(Fq) is the Veronese embedding of the intersection of two distinct conics,
Π′0 contains the Veronese embedding of a line ` and it cannot contain the embedding of
any other line. Hence v2(`)τ ⊂ Π′0 implies v2(`)τ = v2(`) and so 〈v2(`)〉 contains a
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plane ∼= PG(2, qt). By Grassmann, LU ∩ V1 6= ∅. Hence Π′0(qt) is a plane and so
LU = Π′0(qt).

Theorem 3.6. If W is absolutely irreducible and q > 2 · 34t, thenW ∩ Fixσ has at least
one point.

Proof. By [2, Corollary 7.4], an absolutely irreducible algebraic variety of PG(n − 1, q)
with dimension r and degree δ for q > max{2(r + 1)δ2, 2δ4} has at least one Fq-rational
point. By r = 2t− 1 and δ ≤ 3t = degVt1, we have the statement.

We conclude the section with our main result.

Theorem 3.7. Let q > 2 · 34t be even. The only symplectic semifield spread of PG(5, qt)
whose associate semifield has center containing Fq , is the Desarguesian spread.

Proof. By Theorems 3.6 and 3.5, we have that the only Fq-linear set of rank 3t disjoint
from V1 is a plane. The planes disjoint from V1 form a unique orbit under the action of
Ĝ (see Theorem 2.4). In this case, the linear set is Fqt -linear as well, hence the semifield
associated to the spread is 3-dimensional over its center. By [17], in even characteristic this
implies that the semifield is a field, hence the spread is Desarguesian.

Corollary 3.8. Let q > 2 · 34t be even. Then a commutative semifield of order q3t, with
middle nucleus containing Fqt and center containing Fq , is a field.

Remark 3.9. We emphasize that the hypothesis of even characteristic is crucial for all our
arguments: only for even q the variety V1 contains the plane πN , and using L ∩ πN = ∅
we can prove thatW is a complete intersection, i.e. W has codimension t, and the singular
points ofW are just the ones coming from V .
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