Implementation of autonomous SLAM on a robotic rover using
ROS

Guillaume Peter', Tadej Petri¢’> and Andrej Gams?

it of Cachan, Université Paris-Sud, 9 Avenue de la Division Leclerc, 94234 Cachan, France
2Department of Automatics, Biocybernetics and Robotics, JoZef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
E-mail: guillaume.peter @u-psud.fr, andrej.gams @ ijs.si

Abstract

In this paper we present an implementation of autono-
mous rover-robot navigation. This robot makes mapping
using a SLAM system implemented with ROS. The robot
can make a map of the environment and navigate in this
environment without the intervention of a human. Initial
implementation results are presented.

1 Introduction

Autonomous and mobile robots are the future of robotics
in our world. To operate in the world, robots need to
navigate in unknown environments. In order to locate
themselves, robots typically use SLAM (Simultaneous
Localization And Mapping) algorithms. Robots equipped
with such technology are able to explore and understand
a complex environment.

Programing of these robots is very complicated, as
many things have to be taken into consideration. Build-
ing on previously developed and published tools makes it
easier. This is the reason why we are using ROS (Robot
Operating System) [1, 2]. This powerful and professional
tool permits to make a link between simulation, program-
ming and 3D visualization.

This paper presents the implementation of autonomous
rover navigatoin behavior using a SLAM system within
ROS. In Section 2 the meta-operating system called ROS
is presented with its advantages and weaknesses. In Sec-
tion 3 we discuss autonomous mapping with different ap-
proaches. Finally, Section 4 presents initial implementa-
tion results in the Piborg rover.

2 ROS

ROS is an open source software used to easily develop
robotic applications. It was created in 2007 and since
then the ROS community is getting bigger every year.
It is being used by independent programmers and com-
panies because of its compatibility. When you program
with ROS you have the choice between C++ and Python
and for the OS it’s compatible with Linux, Mac OS and
Windows.

When a project combines numerous micro controllers
with a lot of different actions, their communication and
integration quickly become overly complex. ROS sim-
plifies all the communications between micro controllers

ERK'2018, Portoroz, 167-169 167

and computers. Like this the calculation part is made by
the computer and the micro controller makes only basic
calculations. This environment is a multi-task environ-
ment with a very precise architecture. First, you need
to run a master program which will setup the environ-
ment. Then we can run tasks in the environment. A task is
called a node and it is used to communicate with another
node. It can be used for different actions like read a sen-
sor, control motors or make calculations. All the nodes
can subscribe and publish topics. A topic is a named bus
over which nodes exchange information. For example,
a node which reads a temperature sensor will publish a
topic with the value of the temperature. The big advan-
tage of ROS is all the nodes can access to the topics, so
data communications are easier.

But ROS doesn’t have only advantages. This software
need specific version of the OS. You can’t adapt the ver-
sion of ROS to your OS, you have to adapt your OS to the
version of ROS. It’s a very big forward jump concerning
robotic interfaces but it takes some times to understand it
clearly.

3 Autonomous Mapping
3.1 Hardware

i

Figure 1: The small robot Piborg used in the project.

Figure 1 shows the robot we used for the project. To



implement a SLAM algorithm we need a mobile robot.
For the chassis of the robot we used a simple 6 wheels
rover which turns by inverting the rotation of the wheels.
Like this the robot can turn on the spot. Each wheels is
equipped with a motor in order to have total control of the
robot. To control the motors we use a Piborg card com-
municating in I2C with a Raspberry 2B, hence the name
of the robot is Piborg [4]. This controller is a 2 channels
controller. You can choose the way of rotation and the
speed of rotation with it. In order to make the mapping
we use a rotating range finder lidar sensor. It is situated
at the top of the robot. This sensor is a distance sensor
that measures distances on a plane around it. From the
position of the sensor we can create a map with the col-
lected data. We are using the Hokuyo UTM-30LX [3]
which has a distance range of 30 meters and a resolution
of 0.25 degree on 270 scanning degrees. It communicates
by a USB cable with the Raspberry and the Raspberry is
linked to the computer through a local network (for now
ethernet cable, but we will make it wireless in the next im-
plementation). We can summarize the connections with
the schematic presented in Fig. 2. It shows the schematic
of the connection between all the materials

éthernet

éthernet Moteurs

Raspberry

Contréleur
de moteurs

Ordinateur

usB

I

Lidar

Figure 2: Schematic of the connections.

In Fig. 2, Ordinateur stands for computer, Contrdleur
de moteurs is the Motor controller, and Moteurs are Mo-
tors. The cloud symbolizes Internet, because you need to
be connected to Internet.

3.2 Software

Concerning ROS we are using ROS Kinetic which is known
as a very stable version. On the computer we are using
Ubuntu 16.04 and in the Raspberry we are using Ubuntu
Mate. At the beginning of the project we first tried with
Raspian for the Raspberry but quickly we concluded it
was not appropriate for the application. In order to vi-
sualize the output of the sensor for mapping we use the
vizualization software package Rviz.

3.3 SLAM

A robot equipped with a SLAM system is an autonomous
robot. The objective is not limitied only to avoiding a
wall. The robot must also understand its environment and

168

how it can navigate in this environment. In the next sec-
tion we give a brief overview about 2D navigation. Here
we do not take in the consideration the z axis, since the
robot navigates on a flat surface.

The first step is to create a map with the robot. The
robot needs to know everything about its environment. It
will explore and scan it with the lidar. Result of a scan is
shown in Fig. 3. The software regroups all the collected
data with the scans and builds a map in 2D.

Figure 3: Result of a scan in Rviz

The robot needs numerous scans because like this it
can confirm clearly the position of a wall or of an object.
The robot needs to create a closed space, on the map there
is no open door. To improve the quality of the mapping
it’s recommended to put encoders on the wheels.

Once it’s made, the robot knows its environment but
it needs to know its own position as well. It will navigate
in a closed space with walls and objects, so the size of the
robot is very important. A free space is not all the time a
space where the robot can go. When the robot will move
in the environment the lidar will scan all around it. Then
the software will compare the obtained data with the map
and find the position of the robot. This technique works
better in an irregular space. In a square room with nothing
on the ground, everything is too similar. Each scan has to
indicate a unique space.

The SLAM method with ROS can be used easily be-
cause it can exploit the main feature of ROS - re-usability
of robotic software. We just need to change some pa-
rameters. The tool named “hector slam” [6, 5] permits to
create maps and we can visualize it with Rviz. Odome-
try is taken in consideration by the software so it’s very
complete. But without odometry, if you don’t have a ref-
erential point in a square room the localization doesn’t
work.

4 Results

In this part we discuss more about the project. What we
have made, how we have made and how we want to ex-
ploit the project?



As you can see on the schematic in Fig. 4, our imple-
mentation relies on 3 nodes and 2 topics. We decided to
separate the tasks to be more efficient.

/scan

/hokuyo_node llaser_listener

topic

node

Figure 4: Schematic of architecture of the program.

The hokuyo sensor node is a task taken from the li-
braries of ROS. It permits to exploit correctly the lidar
connected by the USB cable. This node publishes some
topics, like the topic named scan. So the first node creates
a link between the sensor and the Raspberry. The node
named laser listener is a subscriber of the topic scan. It
receives different data concerning the scans made by the
sensor. Every 0.25 degrees made of the rotating sensor,
the distance to objects around the robot is measured. Ev-
ery revolution of the lidar the topic scan contains an array,
each case corresponding to a distance taken at a precise
angle. It is in the node laser listener we will detect objects
in front of the robot. The robot needs to create a map and
to not touch walls or objects. So if we see something in
front of the robot it will turn in another direction.

But it is not the only task made by the laser listener
node. The two nodes we have seen are implemented in
the Raspberry. As said, the raspberry cannot make all
the calculations to make the mapping. It would take too
much time and we need a fixed screen where we can see
the robot moving in the map. So we need to transmit all
the data from the raspberry to the computer. For this we
use an ethernet cable. Like this all the data are received
on the computer and we can create and visualize the map
in real time. The software Rviz is able to locate the topic
scan as if it was running on the computer. It is one of the
reason why ROS is very helpful. Once you are connected
to the device you can visualize data as if everything is one
system. The topic chatter permits to read the data of the
sensor and the node listener permits to receive them.

Concerning the project, we are creating the map from
the collected data as you can see in the Fig. 5

The final target of this is to put the robot in a room.
Then with the SLAM system it makes a map of the room
and we save it. But we want an autonomous navigation
from the robot. Our goal is to put the robot in the room
and on the software we select a point to go on the map.
The robot should autonomously navigate to that position
using the collected data from the sensor. Note that no
odometry data will be present. The final goal is to build
up the knowledge to implement similar autonomous be-
havior on a more advanced mobile robotic platform.

References

[1] ROS, http://www.ros.org/

169

(2]

(3]
(4]
(5]

(6]
(7]

Figure 5: Visualization of a map on Rviz

ROS,http://www.willowgarage.com/papers/ros-
open-source-robot-operating-system

Hokuyo, https://www.hokuyo-aut.jp/
Piborg, https://www.piborg.org/

SLAM, https://husarion.com/tutorials/ros-
tutorials/6-slam-navigation/

SLAM, https://www.mrpt.org/

Ubuntu MATE, https://ubuntu-mate.org/raspberry-
pi/



