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Abstract

Jaeger et al. conjectured that every 5-edge-connected graph is Z3-connected. In this
paper, we prove that every 4-edge-connected K1,3-free graph without any induced cycle
of length at least 5 is Z3-connected, which partially generalizes the earlier results of Lai
[Graphs and Combin. 16 (2000) 165–176] and Fukunaga [Graphs and Combin. 27 (2011)
647–659].
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1 Introduction
Graphs in this paper are finite, loopless, and may have multiple edges. Terminology and
notations not defined here are from [1].

For a graph G and v ∈ V (G), denote by NG(v) (or shortly N(v)) the set of neighbors
of v in G. Let dG(v) = |NG(v)| and N [v] = N(v) ∪ {v}. For A ⊂ V (G), let N(A) =
∪v∈AN(v) \ A. A graph G is trivial if |V (G)| = 1, and non-trivial otherwise. An n-
cycle is a cycle of length n. A path Pn is a path on n vertices. The complete graph on
n vertices is denoted by Kn, and K−n is obtained from Kn by deleting an edge. For two
vertex-disjoint subgraphs H1 and H2 of G, denote by eG(H1, H2) (or simply e(H1, H2))
the number of edges with one end vertex in H1 and the other one in H2. If V (H1) = {a},
we use eG(a,H2)(or simply e(a,H2)) instead of eG(H1, H2). For simplicity, if V1, V2
are two disjoint subsets of V (G), we use eG(V1, V2) for eG(G[V1], G[V2]). Similarly, we
define e(V1, V2) and e(a, V2). For graphs H1, . . . ,Hs, a graph G is {H1, . . . ,Hs}-free if
for each i ∈ {1, 2, . . . , s}, G has no induced subgraph Hi.
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LetG be a graph and letD be an orientation ofG. If an edge e = uv ∈ E(G) is directed
from a vertex u to a vertex v, then u is a tail of e, v is a head of e. For a vertex v ∈ V (G), let
E+(v)={e ∈ E(D): v is a tail of e }, and E−(v)={e ∈ E(D): v is a head of e }. Let A be
an abelian group with identity 0 and A∗ = A− {0}. Define F (G,A) = {f : E(G)→ A}
and F ∗(G,A) = {f : E(G) → A∗}. For each f ∈ F (G,A), the boundary of f is a
function ∂f : V (G)→ A given by,

∂f(v) =
∑

e∈E+(v)

f(e)−
∑

e∈E−(v)

f(e),

where “
∑

” refers to the addition in A.
A function b : V (G)→ A is called anA-valued zero-sum function onG if

∑
v∈V (G)

b(v)
= 0. The set of all A-valued zero-sum functions on G is denoted by Z(G,A). A graph G
is A-connected if G has an orientation D such that for any b ∈ Z(G,A), there is a function
f ∈ F (G,A∗) such that ∂f(v) = b. In particular, if ∂f(v) = 0 for each vertex v ∈ V (G),
then f is called a nowhere-zero A-flow of G. More specifically, a nowhere-zero k-flow is
a nowhere-zero Zk-flow, where Zk is the cyclic group of order k. Tutte [16] proved that G
admits a nowhere-zeroA-flow with |A| = k if and only ifG admits a nowhere-zero k-flow.

Integer flow problems were introduced by Tutte in [16]. Group connectivity was in-
troduced by Jaeger et al. in [7] as a generalization of nowhere-zero flows. The following
longstanding conjecture is due to Jaeger et al. and is still open.

Conjecture 1.1. (Jaeger et al. [7] ) Every 5-edge-connected graph is Z3-connected.

Conjecture 1.1 was extensively studied over thirty years. For the literature, some results
can be seen in [3, 4, 10, 13, 17, 18] and so on. Recently, Thomassen [15] proved that every
8-edge-connected graph is Z3-connected, which improved by Lovász, Thomassen, Wu and
Zhang [12] as follows.

Theorem 1.2. Every 6-edge-connected graph is Z3-connected.

However, Conjectures 1.1 is still open. A graph is chordal if every cycle of length at
least 4 has a chord. A graph G is bridged if every cycle C of length at least 4 has two
vertices x, y such that dG(x, y) < dC(x, y). A graph is HHD-free if any k-cycle for
k ≥ 5 in the graph has at least two chords. Lai [9] characterized Z3-connectivity of 3-
edge-connected chordal graphs. Li et al. [11] and Fukunaga [6] generalized this result to
bridged graphs and 4-edge-connected HHD-free graphs.

Theorem 1.3. (Fukunaga[6]) Every 4-edge-connectedHHD-free graph is Z3-connected.
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On the other hand, it is easy to see that a graphG isHHD-free if and only ifG contains
no induced subgraph isomorphic to house, domino and k-cycle where k ≥ 5. Note that a
domino contains a K1,3 as a subgraph. One naturally ask whether both house and domino
may be replaced by a K1,3. On the other hand, Xu [14] proved that Conjecture 1.1 is true
if and only if every 5-edge-connected K1,3-free graph is Z3-connected. Thus, we consider
Z3-connectivity of K1,3-free graphs without induced cycle of length at least 5 and prove
the following theorem in this paper.

Theorem 1.4. LetG be a 4-edge-connected,K1,3-free simple graph. IfG does not contain
any induced cycle of length at least 5, then G is Z3-connected.

Theorem 1.4 cannot be implied by Theorem 1.2 in the sense that there are infinite
graphs which is Z3-connected by Theorem 1.4 but not by Theorem 1.2 as follows. Let H1

be a copy of K5 and H2 be a copy of Km where m ≥ 5. Pick a vertex u of H1 and a
vertex v of H2. Define Gm to be the graph obtained from H1 and H2 by identifying u
and v. It is easy to see that for each m ≥ 5, Gm is a 4-edge-connected K1,3-free graph
without any induced cycle of length at least 5. Thus, Gm is Z3-connected by Theorem 1.4.
Clearly, Gm has an edge cut of size 4 which implies Theorem 1.2 does not show that Gm

is Z3-connected.
Theorem 1.3 cannot imply Theorem 1.4 in the sense that there are infinite graphs which

is Z3-connected by Theorem 1.4 but not by Theorem 1.3 as follows. Let Hi be a copy of
Kni where 1 ≤ i ≤ 4 and ni ≥ 5 for i ∈ {1, 2, 3, 4}. Pick two distinct vertices ui and
vi of Hi. Denote by Γn the graph obtained from H1, H2, H3, H4 by identifying vi with
ui+1 for i = 1, 2, 3, and v4 with u1. It is easy to verify that Γn contains a house and so
Theorem 1.3 cannot guarantee that Γn is Z3-connected but Theorem 1.4 does.

The paper is organized as follows: In Section 2, the former related results are presented,
and some lemmas are established. In Section 3, the main theorem is proved.

2 Lemmas
For a subset X ⊆ E(G), the contraction G/X denotes the graph obtained from G by
identifying the two ends of each edge in X and then deleting all the resulting loops. Note
that even if G is simple, G/X may have multiple edges. For convenience, we write G/e
for G/{e}, where e ∈ E(G). If H is a subgraph of G, then we write G/H for G/E(H).

For k ≥ 2, a wheel Wk is the graph obtained from a k-cycle by adding a new vertex,
called the center of the wheel, which is adjacent to every vertex of the k-cycle. A wheel
Wk is odd (even) if k is odd (or even). For technical reasons, we refer the wheel W1 to a
3-cycle.

In order to prove Theorem 1.4, we need some lemmas. Some results [2, 5, 7, 8, 9, 10]
on group connectivity are summarized as follows.

Lemma 2.1. Let A be an abelian group and G a simple graph. Then each of the following
holds:
(1) K1 is Z3-connected.
(2) If e ∈ E(G) and if G is A-connected, then G/e is A-connected.
(3) If H is a subgraph of G and if both H and G/H are A-connected, then G is A-
connected.
(4) For n ≥ 5, K−n and Kn are Z3-connected;
(5) An n-cycle is A-connected if and only if |A| ≥ n+ 1;
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(6) For every positive integer k, W2k is Z3-connected and W2k+1 is not Z3-connected.
(7) Let H be a Z3-connected subgraph of G. If e(v, V (H)) ≥ 2 for v ∈ V (G −H), then
the subgraph induced by V (H) ∪ {v} is Z3-connected.
(8) Let H1, H2 be subgraphs of G such that H1 and H2 are A-connected, If V (H1) ∩
V (H2) 6= ∅, then H1 ∪H2 is A-connected.

For a graph G with u, v, w ∈ V (G) such that uv, uw ∈ E(G), let G[uv,uw] denote the
graph obtained from G by deleting two edges uv and uw, and then adding a new edge vw,
that is, G[uv,uw] = G ∪ {vw} − {uv, uw}.

Lemma 2.2. (Chen et al. and Lai, [2, 9]) Let A be an abelian group, let G be a graph
and u, v, w be three vertices of G such that d(u) ≥ 4 and v, w ∈ N(u). If G[uv,uw] is
A-connected, then so is G.

A graph G satisfies the Ore-condition if dG(u) + dG(v) ≥ n for every pair of nonadja-
cent vertices u and v of G.

Theorem 2.3. (Luo et al.[13]) Let G be a simple graph on n vertices, where n ≥ 3.
If G satisfies the Ore-condition, then G is not Z3-connected if and only if G is one of
{G1, G2, . . . , G12} shown in Figure 2.
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Figure 2: 14 specified graphs

Lemma 2.4. Suppose that H is one graph of {G7, G13, G14}. Denote by G the graph
obtained from H by adding an edge e = xy which is neither of H nor parallel to any
existing edge of H . Then G is Z3-connected.



X. Li and J. Ma: Z3-connectivity of K1,3-free graphs without induced cycle. . . 39

Proof. We use the same notation of G13, G14 shown in Figure 2. Let H = G7, then G
satisfies the Ore-condition. By Theorem 2.3, G is Z3-connected.

Let H = G13. If x2 ∈ {x, y}, then G satisfies the Ore-condition. By Theorem 2.3, G
is Z3-connected. Thus, assume that x2 /∈ {x, y}. By symmetry, let e = x1x5. Contracting
2-cycle in G[x1x2,x1x3] and contracting all 2-cycles generated in the process, we get an
even wheel W4 with the center at x5, which is Z3-connected by Lemma 2.1 (6) and so G
is Z3-connected by Lemma 2.2.

Let H = G14. If e = x2x8, then G satisfies the Ore-condition. Since |V (H)| = 8,
by Lemma 2.3, G is Z3-connected. Thus, assume that e 6= x2x8. By symmetry, assume
that e = x1x5 or e = x2x6. In the former case, contracting 2-cycle in G[x1x2,x1x3] and
contracting all 2-cycles generated in the process, we obtain an even wheel W4 induced
by {x1, x4, x5, x6, x7} with the center at x5. Contracting this W4 into one vertex and
contracting 2-cycle generated in the process, finally we get a K1 which is Z3-connected.
By Lemmas 2.1 (7) and 2.2, G is Z3-connected. In the latter case, contracting 2-cycle
in G[x1x2,x1x3] and contracting all 2-cycles generated in the process, we obtain an even
wheel W4 induced by {x4, x5, x6, x7, x8} with the center at x5, which is Z3-connected
by Lemma 2.1. Note that x1 has two neighbors in this even wheel. By Lemma 2.1(7),
G[x1x2,x1x3] is Z3-connected. By Lemma 2.2, G is Z3-connected.

3 Proof of Theorem 1.4
Throughout this section, we assume that κ′(G) ≥ 4, K1,3-free simple graph and G does
not contain any induced cycle of length at least 5. We argue our proof by contradiction,
assume that G is a counterexample to Theorem 1.4 with |V (G)| minimized.

Lemma 3.1. Suppose thatH is a maximalZ3-connected subgraph ofG andHi is a compo-
nent of G− V (H). Let x1 ∈ V (H) such that x1y1, . . . , x1yk, where y1, . . . , yk ∈ V (Hi)
and 2 ≤ k ≤ 3. Then each of y1, . . . , yk is not a cut vertex of Hi.

Proof. We only prove the case that k = 3. The proof for that k = 2 is similar. Without loss
of generality, we will prove that y3 is a cut vertex of Hi. Suppose otherwise that y3 is not
a cut vertex of Hi. Since the maximality of H , e(yi, H) = 1 by Lemma 2.1 (7). Since G
is K1,3-free, y1y2, y1y3, y2y3 ∈ E(G). Since κ′(G) ≥ 4, let x4 ∈ V (H) and y4 ∈ V (Hi)
such that x4y4 ∈ E(G), and y4 is not in the component of Hi − y3 containing y1 and y2.

Consider the neighbors of y1 and y2. Let N(y1) \ {x1, y2, y3} = {u1, u2, . . . , ua} and
N(y2) \ {x1, y1, y3} = {v1, v2, . . . , vb}. Since G is K1,3-free, both subgraphs induced
by {u1, . . . , ua} and by {v1, . . . , vb} are complete graphs. We assume, without loss of
generality, that a ≥ b. Since G is 4-edge-connected, a ≥ 1 and b ≥ 1. Note that y3 is a cut
vertex of Hi and G is K1,3-free. The following claim is straightforward.

Claim. All neighbors of y3 are y1, y2 in the component of Hi−y3 containing {y1, y2}.

Case 1. {u1, . . . , ua} ∩ {v1, v2, . . . , vb} 6= ∅.

If a ≥ 4, then the subgraph induced by {y1, u1, u2, . . . , ua} is a complete graph Ka+1,
which is Z3-connected by Lemma 2.1 (4). By Lemma 2.1 (7), G contains a Z3-connected
subgraph induced by V (H) ∪ {y1, y2, y3, u1, u2, . . . , ua}, contrary to the maximality of
H . Thus, a ≤ 3.
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Assume that a = 3. If |{u1, u2, . . . , ua} ∩ {v1, v2, . . . , vb}| ≥ 2, then the subgraph in-
duced by {y1, y2, u1, . . . , ua} is K5 or K−5 , which is Z3-connected by Lemma 2.1 (4). By
Lemma 2.1 (7),G contains aZ3-connected subgraph induced by V (H)∪{y1, y2, y3, u1, u2,
. . . , ua} which is larger than H , contrary to the choice of H . Thus, |{u1, u2, . . . , ua} ∩
{v1, v2, . . . , vb}| = 1 and let u1 = v1. Assume that 3 ≥ b ≥ 2. Since κ′(G) ≥ 4,
there is a path from {u2, u3} to v2 avoiding each vertex of {y1, y2, u1}. Since G contains
no induced cycle of length at least 5, uiv2 ∈ E(G) where i ∈ {2, 3}. In this case, G
contains an even wheel W4 induced by {y1, y2, u1, ui, v2} with the center at u1, which is
Z3-connected by Lemma 2.1 (6). By Lemma 2.1 (7), G contains a Z3-connected subgraph
induced by V (H) ∪ {y1, y2, y3, u1, u2, . . . , ua}, contrary to the maximality of H . Thus,
b = 1. In this case, since κ′(G) ≥ 4, let u2p1, u3q1 ∈ E(G) where p1 /∈ {u1, u3, y1}
and q1 /∈ {u1, u2, y1}. Since κ′(G) ≥ 4 and G contains no cycle of length at least
5, p1q1, p1u3, q1u2 ∈ E(G). We replace p1 with u2 and replace q1 with u3. By argu-
ment above, we obtain p2, q2 such that p2q2, p2p1, q2q1, p2q1, q2p1 ∈ E(G). Repeating
such a way, we can obtain two infinite sequences of p1, p2, . . . and q − 1, q2 . . . such that
pipi+1, qiqi+1, piqi, piqi+1, qi, qi+1 ∈ E(G) for i = 1, 2, . . .. This contradicts that G is
finite.

We are left to consider that a ≤ 2. In this case, since G is 4-edge-connected, a = b = 2
and {u1, u2} = {v1, v2}. As the proof above, we also obtain a contradiction.

Case 2. {u1, . . . , ua} ∩ {v1, v2, . . . , vb} = ∅.

We claim that a + b ≥ 4. Suppose otherwise that a + b ≤ 3. It follows that either
a = 2, b = 1 or a = b = 1. We only prove the case when a = 2 and b = 1. The proof is
similar for the case that a = b = 1. Since a = 2 and b = 1, y1u1, y1u2, y2v1 ∈ E(G). By
the Claim, y3 is not adjacent to one of u1, u2 and v1. Thus, {y1u1, y1u2, y2v1} is an edge
cut of size 3, contrary to that κ′(G) ≥ 4.

Assume that a ≥ 4. If b ≥ 4, thenG contains a path from {u1, . . . , ua} to {v1, . . . , vb}.
Note that κ′(G) ≥ 4 and G has no cycle of length at least 5. If 2 ≤ b ≤ 3, then
each vertex of {v1, v2 . . . , vb} has a neighbor in {u1, u2, . . . , ua}. If b = 1, then v1
has three neighbors in {u1, . . . , ua}. By Lemma 2.1 (4), G contains a Z3-connected
subgraph Ka+1. By Lemma 2.1 (7), G contains a Z3-connected subgraph induced by
V (H) ∪ {y1, y2, y3, u1, . . . , ua, v1, . . . , vb}, contrary to the maximality of H .

Assume that a = 3. If b = 3, denote by F the subgraph induced by {u1, u2, u3, v1, v2,
v3, y1, y2}. Since κ′(G) ≥ 4 and G contains no cycle of length at least 5, each vertex of
{u1, u2, u3} is adjacent to one of {v1, v2, v3} and each vertex of {v1, v2, v3} is adjacent to
each vertex of {u1, u2, u3}. Since κ′(G) ≥ 4, e({u1, u2, u3}, {v1, v2, v3}) ≥ 3 and each
vertex of F is of degree 4 and this subgraph satisfies the Ore-condition. By Theorem 2.3,
F is Z3-connected. By Lemma 2.1 (7), G contains a Z3-connected subgraph induced by
V (H) ∪ V (F ), contrary to the maximality of H .

Let b = 2. Since κ′(G) ≥ 4 and G contains no cycle of length at least 5, each vertex
of {u1, u2, u3} is adjacent to one of {v1, v2} and each vertex of {v1, v2} is adjacent to
two vertices of {u1, u2, u3}. It follows that one, say u3, of {u1, u2, u3} has two neighbors
in {v1, v2}. It implies that the subgraph induced by {u1, u2, u3, v1, v2} is an even wheel
W4 with the center at u3, which is Z3-connected by Lemma 2.1 (6). By Lemma 2.1 (7),
G contains a Z3-connected subgraph induced by V (H) ∪ {y1, y2, y3, u1, u2, u3, v1, v2},
contrary to the maximality of H .

Let b = 1. Since κ′(G) ≥ 4 and G contains no cycle of length at least 5, v1 is adja-
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cent to each vertex of {u1, u2, u3}. The subgraph induced by {u1, u2, u3, v1, y1} is K−5 ,
which is Z3-connected by Lemma 2.1 (4). By Lemma 2.1 (7), G contains a Z3-connected
subgraph induced by V (H)∪ {y1, y2, y3, u1, u2, u3, v1}, contrary to the maximality of H .

Next, assume that a = 2. Let b = 2. Since κ′(G) ≥ 4 and G contains no cycle of
length at least 5, each vertex of {u1, u2} is adjacent to two of {v1, v2} and each vertex
of {v1, v2} is adjacent to two vertices of {u1, u2}. Denote by F the subgraph induced by
{y1, y2, u1, u2, v1, v2}. It follows that F satisfies the Ore-condition and each of 4 vertices
of F is of degree 4. By Theorem 2.3, F is Z3-connected. By Lemma 2.1 (7), G contains a
Z3-connected subgraph induced by V (H) ∪ V (F ), contrary to the maximality of H .

Lemma 3.2. G does not contain a nontrivial Z3-connected subgraph H .

Proof. Suppose that our lemma fails and H is a maximal Z3-connected subgraph of G.
Suppose thatH1, H2, . . . ,Hk are components ofG−V (H), where k ≥ 1. LetG

′
= G/H

and v
′

be the vertex into which H is contracted.
Observe Hi, where i ∈ {1, 2, . . . , k}. Let E(H,Hi) = {x1y1, x2y2, . . . , xtyt}, where

xi ∈ V (H) and yj ∈ V (Hi) for i, j ∈ {1, 2, . . . , t}. Since G is 4-edge-connected, t ≥ 4.
By the maximality and by Lemma 2.1 (7), y1, . . . , yt are distinct t vertices of Hi. Let
ei = xiyi for i ∈ {1, 2, . . . , t}.

Claim 1. E(H,Hi) does not contain 4 edges having a common end-vertex.

Proof of Claim 1. Suppose otherwise that without loss of generality, that e1, e2, e3, e4
have a common vertex x1, that is, x1 = x2 = . . . = x4. Then the subgraph induced
by {x1, y1, . . . , y4} is a complete graph K5 since G is K1,3-free. By Lemma 2.1 (4), K5

is Z3-connected. By Lemma 2.1 (8), G contains a Z3-connected subgraph induced by
V (H) ∪ {x1, y1, . . . , y4}, contrary to the choice of H . Thus, E(H,Hi) contains at most
three edges having a common vertex. This proves Claim 1.

Claim 2. E(H,Hi) does not contain 4 independent edges.

Proof of Claim 2. Suppose otherwise that E(H,Hi) contains 4 independent edges. We
assume,without loss of generality, that e1, e2, e3, e4 are independent edges. Since G has no
induced cycle of length at least 5, as the argument above, yiyj ∈ E(G) for 1 ≤ i < j ≤ 4.
This means that the subgraph the subgraph induced by {y1, y2, y3, y4} is a K4. In the
graph G′, the subgraph induced by {v′, y1, y2, y3, y4} is a K5 which is Z3-connected by
Lemma 2.1 (4). By Lemma 2.1 (3), the subgraph induced by V (H) ∪ {y1, y2, y3, y4} is
Z3-connected, contrary the maximality of H . This proves Claim 2.

Claim 3. E(H,Hi) does not contain 2 edges having a common end-vertex.

Proof of Claim 3. By Claim 2, we assume that t = 4 and e1, e2, e3, e4 have at least a
pair of two edges sharing a vertex in H . Suppose otherwise that we assume, without loss
of generality, that e1, e2 have a common vertex x1, that is, x1 = x2. Since t = 4, we
need to consider e3 and e4 do not share a common end-vertex or e3 and e4 share a common
end-vertex.

In the former case, the subgraph induced by {x1, y1, y2} is a K3 since G is K1,3-free.
Since G has no induced cycle of length at least 5, y3y4 ∈ E(G), y3yi, y4yj ∈ E(G)
where i, j ∈ {1, 2}. By Lemma 3.1, the subgraph induced by {y1, y2, y3, y4} is a K4 since
G has no induced cycle of length at least 5. In the graph G′, the subgraph induced by
{v′, y1, y2, y3, y4} is a K5 which is Z3-connected by Lemma 2.1 (4). By Lemma 2.1 (3),
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the subgraph induced by V (H) ∪ {y1, y2, y3, y4} is Z3-connected, contrary the choice of
H .

In the latter case, we assume, without loss of generality, that e3 and e4 share a common
end-vertex x3. Since G is K1,3-free, the subgraph induced by {x1, y1, y2} is a complete
graph and so is the subgraph induced by {x3, y3, y4}. Since G has no induced cycle of
length at least 5, as the argument above, yiyj ∈ E(G) for some i ∈ {1, 2} and some
j ∈ {3, 4}. We assume, without loss of generality, that i = 2, j = 3. By Lemma 3.1, each
vertex of {y1, y2, y3, y4} is not a cut vertex. Since G has no induced cycle of length at least
5 and G is 4-edge-connected, y2 is adjacent to y4, and y3 is adjacent to y1. In the graph G′,
the subgraph induced by {v′, y1, y2, y3, y4} is a K−5 which is Z3-connected by Lemma 2.1
(4). By Lemma 2.1 (3), the subgraph induced by V (H)∪ {y1, y2, y3, y4} is Z3-connected,
contrary the maximality of H . This proves Claim 3.

By Claims 1, 2, and 3, we assume, without loss of generality, that e1, e2, e3 have a
common vertex x1, that is, x1 = x2 = x3. Thus, t = 4 and x4 6= x1. It follows
that the subgraph induced by {x1, y1, y2, y3} is a complete graph K4. Consider the cycle
x1Px4y4Qyj , where V (P ) ⊂ V (H), V (Q) ⊂ V (Hi) and j ∈ {1, 2, 3}. Since G contains
no any induced cycle of length at least 5, V (P ) = V (Q) = ∅ and x1x4, y4yj ∈ E(G).
We assume, without loss of generality, that j = 3, that is, y3y4 ∈ E(G). By Lemma 3.1,
each of {y1, y2, y3} is not cut vertex. Since G contains no any induced cycle of length at
least 5 and κ′(G) ≥ 4, y1y4, y2y4 ∈ E(G). This, in the graph G′, the subgraph induced by
{v′, y1, y2, y3, y5} is a K5, which is Z3-connected by Lemma 2.1 (4). By Lemma 2.1 (3),
the subgraph induced by V (H)∪{y1, y2, y3, y4} is Z3-connected, contrary the maximality
of H .

Proof of Theorem 1.4

Since domino contains an induced K1,3 and G contains no induced K1,3, G contains
no induced domino. By Theorem 1.3 and the choice of G, G contains an induced house.
We use the same notations depicted in Figure 2. By symmetry, assume that d(u) ≤ d(v).

Claim 1. |N(u) ∩N(v) \ {w}| ≤ 1.

Proof of Claim 1. Suppose otherwise that |N(u) ∩ N(v) \ {w}| ≥ 2. Let u1, v1 ∈
N(u) ∩N(v) \ {w}. Denote by F the subgraph induced by {u1, v1, w}. Since G is K1,3-
free, F contains at least one edge. If F contains two edges, then the subgraph induced by
{u1, v1, w, u, v} contains an even wheel W4, which is Z3-connected by Lemma 2.1 (6),
contrary to Lemma 3.2. Thus, F contains only one edge e. By symmetry, assume that
e = wu1 or e = u1v1. In each case, since G is K1,3-free, xv1, yv1 ∈ E(G). This means
that the subgraph induced by {v1, u, v, x, y} is an even wheel W4 with the center at v1,
which is Z3-connected by Lemma 2.1 (6), contrary to Lemma 3.2. This proves Claim 1.

Claim 2. |N(u) ∩N(v) \ {w}| 6= 0.

Proof of Claim 2. Suppose otherwise that |N(u)∩N(v) \ {w}| = 0. Since κ′(G) ≥ 4,
δ(G) ≥ 4. First, we claim that max{d(u), d(v)} ≤ 5. Suppose otherwise that d(u) ≥ 6.
Let u1, u2, u3 ∈ N(u) \ {w, v, x}. Since G is K1,3-free, either G[{u, x, u1, u2, u3}] or
G[{u,w, u1, u2, u3}] is a complete subgraph K5 which is Z3-connected by Lemma 2.1,
contrary to Lemma 3.2. Thus, 4 ≤ d(u), d(v) ≤ 5.

Assume first that d(u) = d(v) = 4. Let N(u) \ {w, v, x} = {u1} and N(v) \
{w, u, y} = {v1}. Since G is K1,3-free and u1v, v1u /∈ E(G)), u1x, v1y ∈ E(G).
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Since G contains no induced cycle of length at least 5 and κ′(G) ≥ 4, u1v1 ∈ E(G).
If u1y ∈ E(G) or xv1 ∈ E(G), then G[{u, v, u1, v1, x, y}] contains a subgraph isomor-
phic to G7 + e which is Z3-connected by Lemma 2.4, contrary to Lemma 3.2. Thus,
assume that u1y, xv1 /∈ E(G). Since G contains no induced cycle of length at least 5,
wv1, wu1 /∈ E(G). Since κ′(G) ≥ 4, there exists a shortest (u1, w)-path P such that
NP (u1) /∈ {u, x, v1}. Since wu1 /∈ E(G), u2 ∈ V (P ) such that u1u2, u2w ∈ E(G) since
G contains no induced cycle of length at least 5. Consider the cycle wu2u1xyvw. Since G
contains no induced cycle of length at least 5, u2y, u2x ∈ E(G). Since |N(u) ∩ N(v) \
{w}| = 0, u2v /∈ E(G). This implies that G contains a K1,3 induced by {u2, u1, w, y}, a
contradiction.

Next, assume that d(u) = 4 and d(v) = 5. Let N(u) \ {w, v, x} = {u1} and
N(v) \ {w, v, y} = {v1, v2}. Since G is K1,3-free and |N(u) ∩ N(v) \ {w}| = 0,
u1x, v1y, v2y, v1v2 ∈ E(G). If wv1, wv2 ∈ E(G), then G contains a K−5 induced by
{w, v, v1, v2, y} which is Z3-connected by Lemma 2.1 (4), contrary to Lemma 3.2. Thus,
assume that wv1 /∈ E(G). Since G contains no induced cycle of length at least 5 and
κ′(G) ≥ 4, u1v1 ∈ E(G). If u1y ∈ E(G) or u1v2 ∈ E(G), thenG[{u, v, x, y, u1, v1, v2}]
contains a subgraph isomorphic to G13 + e which is Z3-connected by Lemma 2.4, contrary
to Lemma 3.2. Thus, assume that u1y, u1v2 /∈ E(G). As the proof above, there is u2 such
that such that u1u2, u2w ∈ E(G) and u2y, u2x ∈ E(G). It follows that G contains a K1,3

induced by {u2, u1, w, y}, a contradiction.
Finally, assume that d(u) = d(v) = 5. Let N(u) \ {w, v, x} = {u1, u2} and N(v) \

{w, u, y} = {v1, v2}. SinceG isK1,3-free and |N(u)∩N(v)\{w}| = 0, u1x, u2x, u1u2,
v1y, v2y, v1v2, u1v1 ∈ E(G). If {u2y, u2v2, u2v1}∩E(G) 6= ∅, thenG[{u, v, x, y, u1, u2,
v1, v2}] contains a subgraph isomorphic to G14 + e which is Z3-connected by Lemma 2.4,
contrary to Lemma 3.2. Thus, assume that u2y, u2v2, u2v1 /∈ E(G). Since G contains no
induced cycle of length at least 5, u2w /∈ E(G). Since κ′(G) ≥ 4, as the proof above,
there exists a vertex u3 ∈ V (P ) such that u2u3, u3w ∈ E(G) and u3x, u3y ∈ E(G). In
this case, G contains a K1,3 induced by {u3, u2, y, w}, a contradiction. This proves Claim
2.

By Claims 1 and 2, assume that N(u) ∩ N(v) \ {w} = {z}. If xz, yz ∈ E(G),
then G[{u, v, x, y, z}] is a Z3-connected subgraph W4, contrary to Lemma 3.2. Thus,
xz /∈ E(G) or yz /∈ E(G). Recall that d(u) ≤ d(v). We claim that d(v) ≤ 6. Otherwise,
sinceG isK1,3-free,G[N [v]\{w, u, z}] contains a complete subgraphKm, wherem ≥ 5,
which is Z3-connected by Lemma 2.1, contrary to Lemma 3.2. Thus, 4 ≤ d(u), d(v) ≤ 6.

Case 1. xz, yz /∈ E(G).
Since G[{u,w, x, z}] is not an induced K1,3, wz ∈ E(G). We first establish a claim.

Claim 3. If d(u) = 4, then d(x) = 4; if d(v) = 4, then d(y) = 4.
Proof of Claim 3. Suppose otherwise that d(x) ≥ 5. Since d(u) = 4, each s ∈

N(x)\{u} is not adjacent to u. Thus,G[N [x]\{u}] is a Z3-connectedKm, wherem ≥ 5,
since G is K1,3-free, contrary to Lemma 3.2. Since G is 4-edge-connected, d(x) ≥ 4.
Thus, d(x) = 4. The proof for the case that d(y) = 4 is similar. This proves Claim 3.

Assume that d(u) = d(v) = 4. By Claim 3, d(x) = 4. Let N(x) \ {u, y} = {x1, x2}.
Since G is K1,3-free, yx1, yx2, x1x2 ∈ E(G). Since κ′(G) ≥ 4, G contains a path
from x1 to w which does not contains any vertex of {x2, x, y, u, v}. Since G contains no
induced cycle of length at least 5, this path is an edge, that is, x1w ∈ E(G) or x1z ∈
E(G). Similarly, we can prove that x2z ∈ E(G) or x2w ∈ E(G). In each case, H =
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G[{u, v, x, y, x1, x2, w, z}] satisfies the Ore-condition. By Lemma 2.3,H isZ3-connected,
contrary to Lemma 3.2.

Assume that d(u) = 4 and d(v) = 5. Let N(v) \ {u,w, z, y} = {v1}. Since G is
K1,3-free, yv1 ∈ E(G). By the Claim, d(x) = 4. Assume that xv1 ∈ E(G). Let xx1 ∈
E(G). Since G is K1,3-free, x1y, x1v1 ∈ E(G). Let H = G[{u, v, x, y, x1, v1, w, z}]. If
wv1 ∈ E(G), contract the 2-cycle (v, v1) in H[wv,wv1,] and repeatedly contact the 2-cycles
generated in the process, eventually, we get a K1 which is Z3-connected. By Lemmas 2.1
and 2.2, H is Z3-connected, contrary to Lemma 3.2. Thus, wv1 /∈ E(G). Since κ′(G) ≥ 4
and G contains no induced cycle of length at least 5, x1w ∈ E(G). As the proof above,
we can get H[x1y,x1v1] is Z3-connected. By Lemma 2.2, H is Z3-connected, contrary to
Lemma 3.2.

Thus, xv1 /∈ E(G). Let xx1, xx2 ∈ E(G). Since G is K1,3-free, yx1, yx2, x1x2 ∈
E(G). Since G contains no induced cycle of length at least 5, x1v1, x2v1, wv1, zv1 /∈
E(G). Since G contains no induced cycle of length at least 5 and κ′(G) ≥ 4, x1w, x2z ∈
E(G) or x1z, x2w ∈ E(G). In each case, L = G[{u, v, x, y, x1, x2, w, z}] satisfies the
Ore-condition. By Lemma 2.3, L is Z3-connected, contrary to Lemma 3.2.

If d(u) = 4 and d(v) = 6, let N(v) \ {u,w, z, y} = {v1, v2}. Since G is K1,3-free,
v1y, v2y, v1v2 ∈ E(G). By the Claim, d(x) = 4. First assume that xv1, xv2 ∈ E(G).
In this case, G contains a Z3-connected subgraph K−5 induced by {x, y, v, v1, v2}, con-
trary to Lemma 3.2. Next, assume that xv1 ∈ E(G) and xv2 /∈ E(G). Let xx1 ∈
E(G). Since G is K1,3-free, x1y, x1v1 ∈ E(G). Let H = G[{w, u, v, x, y, x1, v1, v2}].
If wv1 ∈ E(G) or wv2 ∈ E(G) or x1z ∈ E(G), we can prove that H[wv,wv1] or
H[wv,wv2] or H[x1y,x1v1] is Z3-connected. By Lemma 2.2, H is Z3-connected, contrary
to Lemma 3.2. If x1v2 ∈ E(G), then G contains a Z3-connected subgraph K−5 in-
duced by {x1, y, v, v1, v2}, a contradiction. Thus, wv1, wv2, x1z, x1v2 /∈ E(G). Since
κ′(G) ≥ 4 and G contains no induced cycle of length at least 5, wx1 ∈ E(G). As the ar-
gument above, H[x1y,x1v1] is Z3-connected. By Lemma 2.2, H is Z3-connected, contrary
to Lemma 3.2. Finally, assume that xv1, xv2 /∈ E(G). Let xx1, xx2 ∈ E(G). Since G is
K1,3-free, x1x2, yx1, yx2 ∈ E(G). Since G contains no induced cycle of length at least
5, wv1, wv2, zv1, zv2 /∈ E(G) and e({x1, x2}, {v1, v2}) = 0. Since κ′(G) ≥ 4 and G
contains no induced cycle of length at least 5, wx1, zx2 ∈ E(G) or wx2, zx1 ∈ E(G). In
each case, L = G[{w, u, v, x, y, x1, x2, z}] satisfies the Ore-condition, by Lemma 2.3, L
is Z3-connected, contrary to Lemma 3.2.

If d(u) = 5 and d(v) = 5, let N(u) \ {v, w, z, x} = {u1} and N(v) \ {u,w, z, y} =
{v1}. Since G is K1,3-free, u1x, v1y ∈ E(G). Since κ′(G) ≥ 4 and G contains no
induced cycle of length at least 5, u1v1 ∈ E(G). If u1y ∈ E(G) or v1x ∈ E(G), then
G[{u, v, x, y, u1, v1}] contains a subgraph isomorphic to G7 + e which is Z3-connected by
Lemma 2.4, contrary to Lemma 3.2. Thus, u1y, v1x /∈ E(G). Assume that u1z ∈ E(G).
Since G is K1,3-free, v1z ∈ E(G). It follows that G contains a Z3-connected subgraph
W4 induced by {u, v, u1, v1, z} with the center at z, contrary to Lemma 3.2. Thus, by
symmetry, we assume that u1z, v1z /∈ E(G) and wu1, wv1 /∈ E(G). As κ′(G) ≥ 4, there
is w1 such that u1w1, w1w ∈ E(G). Observe cycle ww1u1xyvw. Since G contains no
induced cycle of length at least 5, w1y ∈ E(G). It follows that G contains a K1,3 induced
by {w1, u1, w, y}, a contradiction.

If d(u) = 5 and d(v) = 6, let N(u) \ {v, w, z, x} = {u1} and N(v) \ {u,w, z, y} =
{v1, v2}. Since G is K1,3-free, u1x, v1y, v2y, v1v2 ∈ E(G). Since G contains no induced
cycle of length at least 5, wv1, wv2, zv1, zv2 /∈ E(G). Since κ′(G) ≥ 4 and G contains
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no induced cycle of length at least 5, by symmetry, we assume that u1v1 ∈ E(G). If
{u1y, u1v2, v1x, v2x} ∩ E(G) 6= ∅, then G[{u, v, x, y, u1, v1, v2}] contains a subgraph
isomorphic to G13 + e which is Z3-connected by Lemma 2.4, contrary to Lemma 3.2.
Thus, assume that u1y, u1v2, v1x, v2x /∈ E(G). Since G has no induced cycle of length
at least 5, u1z, wu1 /∈ E(G). Since κ′(G) ≥ 4 and G contains no induced cycle of
length at least 5, there is w1 such that such that u1w1, w1w ∈ E(G). Since G is K1,3-free,
w1y, w1x ∈ E(G). This implies thatG[{w1, u1, w, y}] is an inducedK1,3, a contradiction.

If d(u) = 6 and d(v) = 6, letN(u)\{v, w, z, x} = {u1, u2} andN(v)\{u,w, z, y} =
{v1, v2}. since G is K1,3-free, u1x, u2x, u1u2, v1y, v2y, v1v2 ∈ E(G). If either
e({u1, u2}, {v1, v2}) ≥ 2 or e({u1, u2}, {v1, v2}) = 1 and {u1y, u1v2, u2y, u2v2, u2v1}∩
E(G) 6= ∅, then G[{u, v, x, y, u1, u2, v1,
v2}] contains a subgraph isomorphic toG14+ewhich is Z3-connected by Lemma 2.4, con-
trary to Lemma 3.2. Thus, e({u1, u2}, {v1, v2}) ≤ 1. Moreover, if e({u1, u2}, {v1, v2} =
1 and u1y, u1v2, u2y, u2v2, u2v1 /∈ E(G). In this case, let u1v1 ∈ E(G). Since G con-
tains no induced cycle of length at least 5, wu1, wu2, wv1, wv2, u2z /∈ E(G). Consider
the case that e({u1, u2}, {v1, v2}) = 0. By Lemmas 2.4 and 3.2, e(x, {v1, v2}) ≤ 1 and
e(y, {u1, u2}) ≤ 1. Since G contains no induced cycle of length at least 5, wu2, u2z /∈
E(G). In each case, since κ′(G) ≥ 4 and G contains no induced cycle of length at least 5,
there is w1 such that such that u2w1, w1w ∈ E(G) and w1y, w1x ∈ E(G). In this case, G
contains a K1,3 induced by {w1, u2, w, y}, a contradiction.

Case 2. one edge of {xz, yz} is not in E(G).

We assume, without loss of generality, that xz ∈ E(G) and yz /∈ E(G). Since G
is K1,3-free, wz ∈ E(G). Consider that d(u) = d(v) = 4. Since δ(G) ≥ 4 and
G is K1,3-free, d(y) = 4. Let {y1, y2} ⊆ N(y) \ {x, v}. Assume that one edge of
y1z, y2z is inG, without loss of generality, assume that y1z ∈ E(G). SinceG isK1,3-free,
y1x, y2x, y1y2 ∈ E(G). Let H = G[{u, v, w, x, y, z, y1, y2}]. Contracting the 2-cycle
(y1, y2) inH[yy1,yy2] and repeatedly contacting the 2-cycles generated in the process, even-
tually, we get a K1 which is Z3-connected. By Lemmas 2.1 and 2.2, H is Z3-connected,
contrary to Lemma 3.2. Thus, y1z, y2z /∈ E(G). Since κ′(G) ≥ 4 and G contains no
induced cycle of length at least 5, wy1 ∈ E(G) or wy2 ∈ E(G). In each case, Contracting
2-cycle (u,w) and contracting all 2-cycle generated in the process in H[wu,wz], we ob-
tain a K−5 which is Z3-connected by Lemma 2.1 (1). By Lemma 2.2, H is Z3-connected,
contrary to Lemma 3.2.

If d(u) = 4 and d(v) = 5, let v1 ∈ N(v) \ {w, u, y, z}. Since G is K1,3-free,
v1y ∈ E(G). Since κ′(G) ≥ 4, let yy1 ∈ E(G). Let H be the subgraph induced by
{u, v, x, y, w, z, y1, v1}. Since G is K1,3-free, xy1 ∈ E(G). Since G contains no induced
cycle of length at least 5, v1w /∈ E(G). We claim that v1x /∈ E(G) for otherwise, assume
that v1x ∈ E(G). Since G is K1,3-free, y1v1 ∈ E(G). Contracting 2-cycle (y1, v1) and
contracting all 2-cycles generated in the process in H[xy1,xv1], we get a K−5 which is Z3-
connected by Lemma 2.1 (4). By Lemma 2.2, H is Z3-connected, contrary to Lemma 3.2.
If v1z ∈ E(G), by Lemma 3.2, v1u, v1w /∈ E(G). In this case, the subgraph induced by
{z, x, w, v1} is a K1,3, a contradiction. Thus, v1z /∈ E(G). If wy1 ∈ E(G), then H[wu,wz]

contains a 2-cycle (u, z). Contracting this 2-cycle and contracting all 2-cycles generated
in the process, finally we obtain a K1. By Lemma 2.1 (1) (3) (5), and by Lemma 2.2, H
is Z3-connected, contrary to Lemma 3.2. Thus, wy1 /∈ E(G). Recall that wx /∈ E(G).
Since κ′(G) ≥ 4, there is a vertex w1 such that ww1, w1v1 ∈ E(G). Since d(u) = 4
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and d(v) = 5, w1u,w1v /∈ E(G). Since G has no induced cycle of length at least 5,
w1x ∈ E(G). In this case, the subgraph induced by {w,w1, x, v1} is a K1,3, a contradic-
tion.

If d(u) = 4 and d(v) = 6, let N(v) \ {w, u, x, z} = {v1, v2}. Since G is K1,3-free,
yv1, yv2.v1v2 ∈ E(G). Assume that v1z ∈ E(G). Observe the subgraph G[{z, x, w, v1}].
Since G is K1,3-free, xv1 ∈ E(G) or wv1 ∈ E(G). In the former case, G contains
a Z3-connected subgraph W4 induced by {z, u, x, v1, v} with the center at z, contrary
to Lemma 3.2. In the latter case, G contains a Z3-connected subgraph W4 induced by
{w, u, z, v1, v} with the center at v, contrary to Lemma 3.2. Thus, v1z /∈ E(G). Similarly,
v2z /∈ E(G). If v1x, v2x ∈ E(G), then G contains a Z3-connected subgraph K−5 induced
by {y, x, v1, v, v2}, contrary to Lemma 3.2. Thus,|{v1x, v2x} ∩ E(G)| ≤ 1. Assume that
v1x /∈ E(G). Since G contains no induced cycle of length at least 5, wv1, wv2 /∈ E(G).
Since κ′(G) ≥ 4 and G contains no induced cycle of length at least 5, there exists a vertex
w1 such that ww1, w1v1 ∈ E(G) and w1x ∈ E(G). In this case, G contains a K1,3

induced by {w1, w, x, v1}, a contradiction.
If d(u) = d(v) = 5, let N(u) \ {w, v, x, z} = {u1} and N(v) \ {w, u, y, z} = {v1}.

Since G is K1,3-free, u1x, v1y ∈ E(G). Since G is K1,3-free, zu1 ∈ E(G). Since G has
no induced cycle of length at least 5, wv1 /∈ E(G). We claim that zv1 /∈ E(G). To the
contrary, assume that zv1 ∈ E(G). Since G is K1,3-free, u1v1, xv1 ∈ E(G). Let H =
G[{u, v, w, x, y, z, u1, v1}]. Contracting the 2-cycle (u, x) in H[u1u,u1x] and repeatedly
contacting the all 2-cycles generated in the process, eventually, we get a K1 which is Z3-
connected. By Lemmas 2.1 and 2.2, H is Z3-connected, contrary to Lemma 3.2. Thus,
v1z /∈ E(G). In this case, since κ′(G) ≥ 4, there is a path Q from u1 to v1 avoiding
any vertex in {z, w, u, v}. Since G has no induced cycle of length at least 5, |E(Q)| =
1, that is, v1u1 ∈ E(G). If u1y ∈ E(G) or v1x ∈ E(G), then G[{u, v, x, y, u1, v1}]
contains a subgraph isomorphic to G7 + e which is Z3-connected by Lemma 2.4, contrary
to Lemma 3.2. Thus, u1y, v1x /∈ E(G). Since G has no induced cycle of length at least 5,
wu1 /∈ E(G). As κ′(G) ≥ 4, there is a path P from w to v1. Since wv1 /∈ E(G), there is
w1 ∈ V (G) such that w1w,w1v1 ∈ E(G). Since G has no induced cycle of length at least
5, w1x,w1y ∈ E(G). Since G is K1,3-free, xv1 ∈ E(G). This is a contradiction, as we
have proved xv1 /∈ E(G).

If d(u) = 5 and d(v) = 6, let N(u) \ {w, v, x, z} = {u1} and N(v) \ {w, u, y, z} =
{v1, v2}. Since G is K1,3-free, u1x, v1y, v2y, v1v2, zu1 ∈ E(G). Since G has no induced
cycle of length at least 5, wv1, wv2 /∈ E(G). We claim that none of {zv1, zv2} is in E(G).
Suppose otherwise that assume that zv1 ∈ E(G). Since G is K1,3-free, u1v1, xv1 ∈
E(G). Let H = G[{u, v, w, x, y, z, u1, v1, v2}]. Then H is isomorphic to G14 + e, which
is Z3-connected by Lemma 2.4, contrary to Lemma 3.2. Thus, zv1, zv2 /∈ E(G). As
κ′(G) ≥ 4, there is a path P from u1 to v1 avoiding any vertex in {z, w, u, v, x, y}. Since
G has no induced cycle of length at least 5, u1v1 ∈ E(G). In this case, the subgraph
induced by {u, v, x, y, z, u1, v1, v2} is also isomorphic to G14 + e, which is Z3-connected
by Lemma 2.4, contrary to Lemma 3.2.

If d(u) = d(v) = 6, let N(u) \ {w, v, x, z} = {u1, u2} and N(v) \ {w, u, y, z} =
{v1, v2}. Since G is K1,3-free, u1x, u2x, u1u2, v1y, v2y, v1v2, zu1, zu2 ∈ E(G). This
means that the subgraph induced by {z, u, u1, u2, x} is a K5, which is Z3-connected by
Lemma 2.1, contrary to Lemma 3.2.
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