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Abstract: The purpose of this paper is to test the efficiency of the modified orthogonal simulated annealing algorithm. The method is compared with the
COMPLEX method on a set of mathematical functions. The method is then used on three real-world cases of integrated circuits and compared with a

modified COMPLEX method that uses intelligent initial points selection.

Optimizacija integriranih vezij z algoritmom
simuliranega ohlajanja

Kjuéne besede: parametriéna optimizacija, simulirano ohlajanje, nadrtovanje integriranih vezij.

lzviedek: Namen prispevka je preizkusiti ucinkovitost modificiranega ortogonainega simuiranega ohlajanja. Primerjamo ga z metodo COMPLEX na
skupini matematiénih funkcij. Metoda je nato uporabliena na treh realnih primerih integriranih vezij in primerjana z modificirano metodo COMPLEX, ki

uporablja pametno izbiranje zacetnih tock.

1 Introduction

Optimization problems arise in virtually every field of engi-
neering, science, and business. The parametric optimiza-
tion problems are usually presented in the following form:

min f (x)

xeR"
f:R" >R (1)
xe[LU]

where f is the so-called cost function (CF) and x is a vec-
tor of parameter values. L and U are vectors of lower and
upper parameter bounds, respectively. Unfortunately ana-
Ivtical solutions to (1) can only be obtained for some very
simple and small problems. Most practical problems are
complex and often include simulations and measurements,
which are very expensive and time consuming. The com-
plexity of the optimization problem depends on the dimen-
sionality (i.e. the number of optimization parameters) and
on the shape of the CF. The size of the solution space
increases exponentially with the problem dimensionality,
so locating good solutions becomes increasingly more dif-
ficult. But the real challenge arises from the CF itself. In
most real-world applications the CF is nonlinear and has
many local minima. Often the value of the CF is a result of
numerical simulations or measurements that introduce
noise to the CF. Noise makes the fast deterministic gradi-
ent based methods useless and derivative free direct meth-
ods become more attractive. Direct methods are usually
divided in two major groups. Deterministic methods always
produce the same final solution when they start with the

same initial guess. One method from this group is the sim-
plex method which is well known and popular due to its
simplicity and speed. But the simplex method is a local
downhill search method and its solution greatly depends
on the initial guess. Stochastic methods, on the other hand,
introduce randomness to the search process and are ca-
pable of escaping from the local minima in order to find
better solutions. Simulated annealing is a stochastic meth-
od. In this paper we describe a recent version of simulated
annealing referred to as Orthogonal Simulated Annealing
(OSA) /1/ and compare it with a modified simplex method
also known as COnstrained siMPLEX (COMPLEX) /2/. The
comparison is done on a set of mathematical test func-
tions. OSA and modified COMPLEX methods are then used
on three real-world integrated circuit (IC) design problems.
The purpose of comparison is to establish the feasibility of
circuit optimization with OSA.

The paper is organized as follows. In section 2 a brief de-
scription of the basic simulated annealing algorithm is giv-
en and in section 3 the OSA algorithm is described in de-
tail. Section 4 compares the algorithm with the COMPLEX
method on a set of mathematical test functions. In section
5 OSA is compared with a modifed COMPLEX methods
on three cases of IC design. Section 6 gives the conclu-
sions.

2  Simulated annealing algorithm

Downhill methods can easally get trapped in local minima.
To escape from a local minimum uphill moves must be al-
fowed from time to time to give the algorithm a chance to
move to unexplored parts of the solution space. Simulated
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annealing /3/ was developed for this purpose. It always
accepts downhill moves but occasionally uphill moves are
also accepted. The basic features of the algorithm come
from the analogy with the movement of atoms in metal.
When metal is heated up to a very high temperature, at-
oms can move freely even to a state with higher energy.
When the material is cocled down slowly, atoms are more
likely to move to low energy states. If the annealing is slow
enough, the resulting metal has an uniform structure with
very few defects and minimal free energy. The simulated
annealing method mimics this process by introducing an
artifical parameter to the search process often referred to
asthe temperature (T) which controlls the acceptance prob-
ability for the uphill moves. At the beginning of the search
it is set to a high value and most transitions to higher CF
values are accepted. As the search progresses, the tem-
perature is slowly decreased so that the uphill moves be-
come less frequent. If the annealing is done in a sufficient-
ly slow manner, the final solutions reached by the algo-
rithm are near the global minimum of the CF. The CF is an
analogy of the free energy of the atoms in a metal. The
basic steps of the simulated annealing algorithm are:

1 initialize - set algorithm parameters, inital point

2. generate new point - generation mechanism

3. acceptance criterion ~ transition

4. continue with 2 until end of temperature stage

5. annealing - cooling schedule (decrease temperature)
6. continue with 2 until stopping condition is met

These steps must be chosen carefully in order to ensure
the probabilistic convergence to the global optimum. The
obtained algorithms, however, are not very efficient in prac-
tice because the required cooling schedules are too slow
or the generation mechanisms are too inefficient to get
any useful result in a reasonable amount of time. That is
why most practical versions of the algorithm use modified
generation mechanisms and cooling schedules. This way
the convergence proofs (i.e. /5/) no longer apply but good
solutions can still be obtained in a reasonable amount of
time.

3  Orthogonal simulated annealing
algorithm (OSA)

Recently a new version of the simulated annealing algo-
rithm was developed /1/, taking advantage of a carefully
designed set of experiments at every iteration that helps to
choose a good point for the next iteration. Since the re-
sults reported in /1/ were encouraging, this method was
chosen for implementation and testing. All steps of the al-
gorithm are described in this section.

3.1. Initialization

In the initialization step basic algorithm parameters are set.
For this purpose several points (in our case 100) are ran-
domly chosen and evaluated. The best of these points is
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set as the starting point for the algorithm. The initial value
of the temperature parameter T is set to the standard devi-
ation of CF values at these points. Our method differs slight-
ly from the original one /1/. Instead of using the same
parameter (temperature) for the acceptance criterion and
the generation meachanism we use a separate parameter
for generation of random moves. The allowed intervals /L,
U/ for different optimization variables can vary considera-
bly so the generation mechanism must use a separate pa-
rameter for each variable. For this reason we introduce
another vector parameter referred to as the range (R). The
initial values of the components of R are set to allowed
interval widths of optimization variables. Another parame-
ter that needs to be set is the number of moves at each
temperature stage N:. In theory it must be large enough
for the algorithm to reach thermal equlibrium in every tem-
perature stage. In our case N;is set to 10.

3.2. Generation mechanism

The algorithm uses orthogonal experimental design (OED)
to choose good candidates for the next iteration. A care-
fully designed set of experiments allows for an efficient fac-
tor analysis. The main idea is to evaluate a small number of
points in order to estimate factor effects on the given CF.
The selection of these points is done with the help of or-
thogonal arrays. In this context orthogonal means statisti-
cally independent so that the estimation of the effect of
one factor does not affect the estimation of the effects of
others. An example of such an experimental design for
three factors and three levels per factor is given in table 1,
which contains the generated orthogonal array and figure
1, which shows the distribution of the corresponding ex-
perimental points.

Table 1: Orthogonal array for 3 factors and 3 levels per

factor.
experiment | factor I | factor2 | factor3
number level level level
1 1 1 1
2 1 2 2
3 1 3 3
4 2 1 2
5 2 2 3
6 2 3 1
7 3 1 3
8 3 2 1
9 3 3 2

There isatotal of 9" =3 = 27 combinations of factor lev-
els for this example, where Q is the number of levels per
factor and Ny is the number of factors. In our case only
nine experimental points have to be evaluated and the use
of the orthogonal array assures that these points are even-
ly spread around the search space. The algorithm for gen-
eration of orthogonal arrays can be found in /4/.
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Fig. 1: Distribution of experimental points when the
orthogonal array from Table 1 is used.

The use of orthogonal arrays also has drawbacks. The
method works very well when there are no interactions
between different factors. Unfortunately this is usually not
the case. Furthermore optimization problems often include
many optimization variables so the number of required ex-
periments for an efficient factor analysis is large. There-
fore the Ny variables are randomly grouped into Ny factors.
The two most extreme cases are when Ny= Nyand Nf= 1.
In the former case there are many factors but because of
the interaction effects between factors, the estimation of
factor effects is less accurate. In the latter case there is
only one factor and the estimated effect is accurate, but
the optimization requires more iterations. A compromise is
needed. The formula for determining the number of fac-
tors for a given problem is:

Nf _ (3|_log3(2-Nv+1)_[ _ 1)/2 2)

At the beginning of every iteration the variables are ran-
domly divided into Nf groups and every group is consid-
ered as one factor. Then a random perturbation vector is
generated according to a specified probability distribution
(in our case the Cauchy distribution). For every optimiza-
tion parameter x; the probability distribution of perturba-
tion dx; is:

R,
dx,) = i i=12,.N,
p(dx;) W (3)

where Ry is the range parameter of the j-th variable in the
current temperature stage. To generate a random variable
from this distribution the inversion method is used:

dx, =R, -tan(u - (U ~1/2)) i=12,.N,

where U is an uniformly distributed random number from
the interval /0,1/. After generating the perturbation vector
dx, the three levels for every optimization variable are de-
termined as:

X, =X

i

i
x =x{+dx,, i=12,.N

v (5)
xi2 =x; —dx,

where x¢ is the current value of the i-th variable. If x; or x]
violates box-constraints /L; Ui/, its value is chosen ran-
domly from this interval. Since variables are grouped into
factors, setting one factor to some level means setting all
the variables x; from that factor to the corresponding level
(x!, x; or x}). This way the orthogonal array is converted
into experimental points, which are then evaluated. The
main effects of all factor levels are obtained by the follow-
ing formula:

Sj,k:Zyt'F: (6)
t

where Sjx denotes the effect of the k-th level of the j-th
factor and y; is the value of the CF from the #-th experi-
ment. F: has only two possible values. It is 1 if in the t-th
experiment the j-th factor has k-th level. Otherwise F;is O.
The new candidate solution can now be generated. For
every factor {j) the level (k) with the minimum S; is cho-
sen. The CF of the new candidate solution is then evaluat-
ed. The best of all the experimental points and the candi-
date solution is then submitted to the acceptance criterion
as a potential solution for the next iteration. This process is
repeated N; times in every temperature stage.

3.3. Acceptance criterion

Most versions of the simulated annealing algorithm use the
same transition acceptance criterion which is known as
the Metropolis criterion. Downhill transitions are allways
accepted. Uphill transitions are accepted with the proba-
bility:

where y and y are the CF values at the new and the cur-
rent point, respectively, and T is the value of the tempera-
ture parameter. At high temperatures almost all transitions
are accepted but when the temperature is close to zero
most of the uphill moves are rejected and the algorithm
acts as a downhill method.

3.4. Annealing

The next step of the algorithm is the cooling schedule. Sev-
eral schedules have been developed but the best known
and also very popular is the original schedule of Kirkpatrick
/3/. The temperature decreases exponentially:

T)=Tk-1)o, oelol] (8)

where k is the temperature stage index. Large values of &
mean slow convergence but more reliable search for the
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global optimum whereas smaller values mean fast conver-
gence with the increased risk of getting trapped in a local
minimum. The empirically chosen value for ¢ was 0.99. At
the end of every temperature stage the number of moves
Nt in a temperature stage is also decreased by

N, (k)=N,(k-1)-o (9)

The probaility distribution for random moves must also be
adapted. The range parameter R is reduced at the end of
every temperature stage:

R(k)=R(k~1)a, i=12,.N, (10

3.5. Stopping criterion

Several stopping criteria can be used. In our case the al-
gorithm stops when the temperature reaches user speci-
fied minimal value Tmin (in our case10°®) orwhen the number
of CF evaluations exceeds the maximum allowed number
of evaluations.

4 Optimization of mathematical test
functions

Orthogonal simulated annealing was compared with the
COMPLEX method /2/ on a set of mathematical functions.
The set includes unimodal functions, functions with a small
number of local minima (considered as moderatelly diffi-
cult problems) and difficult problems with many local mini-
ma, noise, nonlinearity and strong interactions between
variables. All of the tested functions can be found in /4/.
The optimization was repeated 50 times for every function
with randomly chosen initial points. Both methods had the
same limited number of CF evaluations (60000 and 70000
for problems with Ny, = 30 and N, = 100, respectively).
The optimization results are given in table 2.

The results show that the OSA method is promising when
compared to COMPLEX. The COMPLEX method exhibits
very fast convergence but gets stuck in a local minimum in
almost every tested case. It outperforms the OSA method
in some cases of unimodal functions and functions with
strong noise. The latter is not unexpected since the meth-
od maintains a population of points between iterations.
Simulated annealing, on the other hand, starts every itera-
tion from a single point. On multimodal functions OSA out-
performed the COMPLEX method in terms of global search
capabilities. Due to the modified generation mechanism
and cooling schedule the algorithm was not able to locate
the global minimum in all optimization runs, but the solu-
tions that were found were still fairly good when compared
to the global minimum.

5 Optimization of integrated circuits

Since the OSA performance on mathematical functions was
very promising, the next step was to test it on real-world
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N, | COMPLEX OSA global

minimum

£l 30 | -9596.2 -12569.5 -12569.5
-3012.3 -12569.5

£ |30 6.9709 3.5527-10% 0
224.67 1.9899

£ | 30 | 16714107 | 1.5234-107 0
3.93447 2.7337-107

f, | 30 [22362:10° | 1.7375:107 0
3.04840 1.6971-10""

£ | 30 | 2.1584-10° | 1.6672:107° 0
1.59433 2.0732:10"

/. | 30 | 19551107 | 3.1601-10° 0
6.99148 1.0987-10”

7, | 100 [ -61.124 -98.861 -99.2784
-29.261 -97.860

f, | 100 | -70.408 -78.332 -78.33236
-63.311 -78.331

fio | 100 113.13 283.59 0
196.95 795.04

£ | 30 | 2.598110° | 5.4955.10° 0
5.3587-10° | 8.2124-10°"

fio | 30 | 4.1618:107 | 2.4360-107 0
2.0489-10° | 1.5660-10"

fi, | 30 ] 19705107 | 1.8169-107 0
3.6034 8.2303-107

S | 30 | 8.9943.107 102.83 0
39.777 1928.0

fie | 30 1.8026 1.2809-10° 0
9.4910 8.4080-10"!

Table 2. Table shows the best and the worst solution
found in 50 optimization runs. The functions
used are defined in [4].

electronic circuit design problems and compare its per-
formance with the COMPLEX method. For this purpose
SPICE OPUS circuit simulator was used /6/. In SPICE
OPUS a modified COMPLEX method is already integrated
as one of the available optimization methods. Since the
original method has very fast convergence, restart with
intelligent initial points selection is conducted every time
the basic method reaches its stopping criterion /7/. This
process is repeated untill the given limit of CF evaluations
is reached. The final result is the best solution of all the
runs. The OSA method had to be implemented in C langu-
nage and added as one of the available optimization meth-
ods in SPICE OPUS.

Three cases of electronic circuit design were considered.
The first circuit was a simple delay element, the second an
operational amplifier, and the third a rather complex ampli-
fier circuit. Circuit topologies for all three cases are given
in figures 2, 3, and 4. The key properties of all three opti-
mization problems are given in table 3.

Optimization parameters were resistances, capacitances
and transistor channel lengths, widths, and multiplier fac-
tors. For every circuit several design goals were set. A sin-
gle CF is constructed as a combination of all the design
goals /8/. Optimization is conducted across several cor-



J. Olengek, J. Puhan, A. Blrmen, S. Tomazié, T. Tuma:

Optimization of Integrated Circuits by Means of Simulated Annealing

Informacije MIDEM 36(2006)2, str. 79-84

vddd
,(J ; »"(*i
il I
als -
o L |
in l ﬁi v | out
Co—= P 6— L4 L—L‘)
i L R
* |
=
I
vssd : ’
i [ = i

Fig. 2: Topology of the first circuit.
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Fig. 4: Topology of the third circuit.

Table 3: Summary of the optimization cases: number of
optimization parameters, number of design
goals, and number of corner points.

case N, design goals | corner points
1 12 7 1
2 15 14 14
3 17 32 17

ner points to account for different envirenmental conditions
(supply voltage, temperature, process parameter variations,
...). Since every CF evaluation requires a separate circuit
simulation for each corner point, a large number of simula-

tions is expected resulting in very long run times. There-
fore every circuit was optimized only once. The results of
the optimization are given in table 4.

Table 4: Optimization results: number of function
evaluations (FE) to find a solution of the given
quality, and final solutions. For modified
COMPLEX method the number of the run in
which a solution was found, is also given in

brackets.
mdified
case COMPLEX OSA
FE until cost < 100:10° 253 (1) 1011
FE until cost < 20-10° 660 (1) 12758
1 best cost 6.39-10° 11.3-10°
FE until best cost 21409 (28) 14703
final FE > 100 000 16122
FE until cost <50 124 (1) 58
FE until cost <10 2483 (2) 33595
2 best cost 8.07 7.37
FE until best cost 96912 (69) 47605
final FE > 100 000 47768
FE until cost < 10 3672 (3) 32014
FE until cost < 1 26688 (21) 34248
3 best cost 0.282 0.088
FE until best cost 41131 (32) 43877
final FE > 45 000 44164

Since the modified COMPLEX method uses restarts and
can explore several local solutions within the given number
of CF evaluations, the number of the run in which a solu-
tion was found is given in brackets. The number of CF eval-
uations after which the COMPLEX method was manually
stopped, is also given. The OSA method stopped auto-
matically when the temperature reached its final value. Both
tested methods were compared in terms of the solution
quality and the number of CF evaluations (FE).

The first case is the most simple of the three cases consid-
ered. It only has a few design goals and does not include
corner points. It also has the least optimization variables.
All this makes the solution space smaller and the CF less
complex. For this case the modified COMPLEX method
performed considerably better than OSA. It did however
require more CF evaluations and several restarts to reach
a good solution. In the second case multiple corner points
and more design goals were considered. OSA outper-
formed the modified COMPLEX method in terms of solu-
tion quality and number of required CF evaluations. The
third case has the largest number of optimization variables,
design goals, and corner points. In this case OSA was also
more successfull than the modified COMPLEX method.
These results show that for simpler cases the modified
COMPLEX method clearly is a better choice. But when it
comes to complex circuits, many design goals, and, above
all, alarge number of corner points, it does not perform as
good as OSA. Not even restarts helped the COMPLEX
method to find a better solutions than the one OSA found
in a single run.
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6 Conclusions

A recently developed optimization method called Orthog-
onal Simulated Annealing (OSA) is described and com-
pared against a version of the simplex algorithm (COM-
PLEX method). Both methods are first tested on a set of
mathematical test functions. The results showed that OSA
performs better when the CF has many local minima. On
the other hand, the COMPLEX method is a good choice
when finding a local minimum quickly is more important
than finding a global minimum. OSA and modified COM-
PLEX method were then tested on three IC design cases.
The results showed that on the simpler case the modified
COMPLEX method using restarts outperformed the OSA
method. As the problem complexity increased, the ability
of the OSA to explore the search space more thoroughly
resulted in better performance (compared to the modified
COMPLEX method). But in order to obtain a good solution
in a reasonable amount of time, probabilistic global con-
vergence of the algorithm had to be sacrificed {modified
generation mechanism and cooling schedule). Therefore
there is no guarantee as to when and if the global mini-
mum will actually be found. Nevertheless OSA is well suit-
ed to IC optimization and design, particularly for problems
with many variables and corner points.
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