
ERK'2019, Portorož, 70-73 70

Optimal velocity profile planning considering velocity,
acceleration and jerk constraints

Martina Loknar, Gregor Klančar, Sašo Blažič
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Abstract
The aim of this study is to determine time-minimal veloc-
ity profile for a wheeled mobile robot whose movement
complies with velocity, acceleration and jerk constraints
and is restricted to an arbitrary predefined path. The pro-
posed two-step algorithm first enables the determination
of the velocity profile that respects the speed and accel-
eration constraints and in the second step additionally
applies the limitation of the jerk.

1 Introduction
Optimal control theory describes the application of forces
to a system for the purpose of maximizing some measure
of performance or minimizing a cost function [1]. It is
an extension of the calculus of variations and this math-
ematical optimization method is largely due to the work
of [2]. Using Pontryagin’s maximum principle, in [3] the
authors demonstrated that all time-optimal motions of the
mobile platform with two independently driven wheels
occur for controls that are at each instant on the upper or
lower limit.

Mechanical systems, including biological systems,
have maximum allowances related to various dynamic
variables, above which the components of the system may
begin to fail. Excess of jerk thresholds is associated with
mechanical wear, tool life repercussion and adverse ef-
fect on the actuator performance, degradation of machine
junctions, and in biological systems tear of ligaments and
muscles or breakage of bones [4], [5]. Minimizing jerk
is therefore beneficial in reducing stress and wear of the
mechanical components, extending machine or tool life,
reducing position tracking errors, minimizing the excita-
tion of vibrations in general, enabling better quality fin-
ishes in machining tasks and ensuring that the motor is
able to provide the requested current fast enough. Me-
chanical and robotics engineers have recognized the ben-
efits of jerk minimization and therefore prefer to design
jerk-limited profiles [6].

Authors in [7] investigated time optimal two-stage
path planing under kinematic and dynamic constraints
and obtained the shortest path and a time optimal velocity
profile. A path planning technique to minimise the time
of reaching the end point in desired direction and with de-
sired velocity is presented in [8]. In [9] the authors sug-
gested a methodology to generate minimum time optimal

velocity profiles for a vehicle with prescribed accelera-
tion limits along a specified path. Similarly, a method
for minimum-time velocity planning with velocity, ac-
celeration and jerk constraints was proposed, based on
a sequence of linear programming feasibility checks, de-
pending on motion constraints and generic boundary con-
ditions [10].

This paper outlines a new approach of determining
time-minimal optimal velocity profile for a wheeled mo-
bile robot on a predefined path. We believe that we have
found an innovative solution that is easy to implement
and computationally undemanding with coherent course
of calculation that relies heavily on analytical expressions
of given physical quantities. The first step of the algo-
rithm ensures that the resulting velocity profile complies
with speed and acceleration constraints. The additional
jerk constraints are considered in the second step of the
algorithm, where the acceleration discontinuities are elim-
inated by smoothing the velocity profile from the first
step.

2 Problem formulation
Let the motion of a particle along a three times continu-
ously differentiable plane curve C be described as a func-
tion of time t ∈ [0, tf ] by the position vector r(t) mea-
sured from a given fixed origin. Velocity v(t), acceler-
ation a(t) and jerk j(t) vectors can be expressed in the
tangential-normal form as:

v(t) = v(t) · T̂ (1a)

a(t) = aT (t) · T̂+ aR(t) · N̂ (1b)

j(t) = jT (t) · T̂+ jR(t) · N̂, (1c)

where T̂ and N̂ are the unit tangent vector and the unit
normal vector, respectively:

T̂(t) =
v(t)

‖v(t)‖
, N̂(t) =

˙̂T(t)

‖ ˙̂T(t)‖
. (2)

Given a feasible path from initial to final point, the opti-
mization problem is to find the velocity profile v(t) that
reaches the end of the path in minimum time in a way that
none of the velocity, acceleration or jerk constraints from
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Eqs. (3a, 3b, 3c) are violated:

0 ≤ ‖v(t)‖ ≤ vMAX ; ∀t ∈ [0, tf ] , (3a)

a2T (t)

a2TMAX

+
a2R(t)

a2RMAX

≤ 1; ∀t ∈ [0, tf ] , (3b)

j2T (t)

j2TMAX

+
j2R(t)

j2RMAX

≤ 1; ∀t ∈ [0, tf ] . (3c)

We defined the acceleration and jerk constraints in a sim-
ilar way as [8].

3 Optimal velocity profile algorithm
The predefined path C in the two-dimensional space is
given as sp(u) = [xp(u), yp(u)]

T with parameter u ∈
[u0, uf ]. The parametrized velocity is:

vp(u) =
dsp(u)

du
=
[
x′p(u), y

′
p(u)

]T
(4)

with the magnitude:

vp(u) = ‖vp(u)‖=
√
(x′p(u))

2 + (y′p(u))
2. (5)

The orientation equals the four-quadrant inverse tangent
of the quotient of Cartesian components of the transla-
tional velocity:

φp(u) = atan2(y′p(u), x
′
p(u)), (6)

from which follows the expression for the magnitude of
parametrized angular velocity:

ωp(u) =
dφp(u)

du
=
x′p(u) · y′′p (u)− x′′p(u) · y′p(u)

x′2p (u) + y′2p (u)
.

(7)
The curvature κp(u) is:

κp(u) =
dφp(u)

dl
=
dφp(u)

du
· du
dl

=

=
x′p(u) · y′′p (u)− y′p(u) · x′′p(u)

(x′p(u)
2 + y′p(u)

2)3/2
,

(8)

where l is the arc length parameter of a curve.

3.1 Step 1: Complying with velocity and accelera-
tion constraints

In order to apply actual velocity and acceleration restric-
tions, the two operating physical quantities ought to be
expressed as functions of time.

The robot’s movement on a path can be described by
monotonously increasing parameter u of the curve or by
time t; the former measuring the position on a trajectory
and the latter the time at which a certain position on a
path is reached. We present the dependence of u on t by
schedule u(t) and as a result the parametrized functions
vp, ωp, κp defined in Eq. (5, 7, 8) become composite
functions vp(u(t)), ωp(u(t)) and κp(u(t)). Applying the
chain rule allows us to calculate the magnitudes v(t) and
ω(t):

v(t) =
∥∥∥dsp(u(t))

du
· du
dt

∥∥∥ = vp(u(t)) · u̇(t), (9a)

ω(t) =
dφp(u(t))

du
· du
dt

= ωp(u(t)) · u̇(t). (9b)

Expressing the velocity and angular velocity solely as
functions of time reveals that the time dependant veloci-
ties differ from the corresponding parametrized ones by a
factor of u̇(t). Obtaining the desired velocity profile thus
requires calculating the schedule u = u(t) and its time
derivative u̇(t). The curvature, unlike the velocity or an-
gular velocity, does not depend on the parametrization of
the curve:

κ(t) = κp(u(t)). (10)

Acceleration vector is the derivative of velocity vector
from Eq. (1a):

a(t) =
dv(t)

dt
= v̇(t) · T̂+ v(t) · ˙̂T. (11)

The time derivatives of unit tangential and unit normal
vector can be expressed from the Frenet–Serret formulas:

˙̂T(t) = κ(t) · v(t) · N̂(t), (12a)
˙̂N(t) = −κ(t) · v(t) · T̂. (12b)

Using the equality from Eq. (12a) we find that:

a(t) = v̇(t) · T̂(t) + κ(t) · v2(t) · N̂(t). (13)

The expressions for the normal and tangential compo-
nents with respect to time follow from Eqs. (1a, 9a, 13):

aT (t) = v′p(u(t)) · u̇(t) + vp(u(t)) · ü(t), (14a)

aR(t) = κp(u(t)) · v2p(u(t)) · u̇2(t). (14b)

The proposed method of incorporating speed and accel-
eration constraints in the calculation of velocity profile,
indirectly determined by schedules u(t) and u̇(t), begins
with the identification of N points on the curve, the so-
called turning points, where the curvature reaches the lo-
cal maximum. The value of parameter u in the i−th turn-
ing point (i ={1, . . . , N}) is denoted as uTPi . The speed
in these points reaches local minimum, the tangential ac-
celeration aT (t) is therefore zero and radial acceleration
aR(t) is maximal. From Eq. (14b) it follows:

u̇TPi =

√
aRMAX

v2p(uTPi) · κp(uTPi)
. (15)

It is also possible to implement the initial and final speed
requirements by treating the initial and final point of the
trajectory similarly as the turning points and using Eq.
(9a). For values of u̇ we get:

u̇TP0 =
v|t=0

vp(uTP0
)
, u̇TPN+1

=
v|t=tf

vp(uTPN+1
)
, (16)

where the initial and the final point are denoted as TP0

and TPN+1, respectively.
To get the complete velocity profile v(t) of the mo-

bile robot, the values of u and u̇ have to be determined
also in between the turning points. Our realization of the
proposed method for this calculation stems from knowing
the fixed values of uTPi and ˙uTPi for i ∈ {0, 1, . . . , N +
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1} and the analytical formula for ü as a function of u and
u̇ that follows from Eqs. (14a, 14b, 3b, 5):

ü(t) =± aTMAX

√
1

x′2p + y′2p
−

(x′2p + y′2p )κ2
p

a2RMAX

u̇4(t)

−
x′px

′′
p + y′py

′′
p

x′2p + y′2p
u̇2(t),

(17)

where all the quantities with the index p depend directly
on u. The basic idea of the algorithm that returns sched-
ules u(t) and u̇(t) is to find the solution to the initial value
problem by applying a numerical method of solving ordi-
nary differential equations; or more specifically: to inte-
grate backward and forward in time around each turning
point where the initial conditions uTPi

and u̇TPi
are set

in order to determine the discrete values of t, u and u̇.
According to Euler’s method (the simplest explicit itera-
tive method) the values uk+1 and u̇k+1 in the (k + 1)-th
step of the calculation are:

u̇k+1 = u̇k ± ük · Ts, (18a)
uk+1 = uk ± u̇k · Ts, (18b)

where Ts is the sampling time and uk, u̇k, ük the val-
ues calculated in the k-th step and perform as the current
initial values and/or slopes with negative or positive sign
(backward/forward integration). The sought-after sched-
ule u̇(u(t)) is defined by the minimum of the separate
profiles around the turning points as shown in Figure (1).

Figure 1: Resulting u̇(u(t)) profile (bold line) on a path
sp(u) = (cos(u), sin(2u)), u ∈ [0, 2π] is determined by the
separate profiles u̇(u(t)) around the TPi (thin lines).

3.2 Step 2: Complying with jerk constraints
The resulting velocity profile of the first step of the cal-
culation is infeasible for an actual implementation on a
robot due to the sudden changes of acceleration. To ap-
ply jerk constraints to the existing velocity profile the ex-
pression from Eq. (1c) can be written more specifically
by differentiating acceleration vector in Eq. (13) using
Eqs. (12a, 12b):

j(t) =
da(t)

dt
=
(
v̈(t)− v3(t) · κ2(t)

)
T̂(t)

+
1

v(t)
·
(
d

dt
v3(t) · κ(t)

)
N̂(t).

(19)

From Eqs. (9a, 19) we get the following expressions for
the tangential component of the jerk:

jT (t) = v′′p (u(t)) · u̇3(t) + 3v′pu̇(t) · ü(t)
− v3p(u(t)) · u̇3(t) · κ2p(u(t))
+ vp(u(t)) ·

...
u(t),

(20)

and its radial component:

jR(t) = 3v′p(u(t)) · vp(u(t)) · u̇3(t) · κp(u(t))+
+ 3v2p(u(t)) · κp(u(t)) · u̇(t) · ü(t)+
+ v2p(u(t)) · u̇3(t) · κ′p(u(t)).

(21)

The third time derivative of parameter u(t) with imple-
mented jerk constraints follows from Eq. (20):

...
u =

1

vp
·
(
jT (t)− v′′p u̇3 − 3v′pu̇ü+ v3pu̇

3κ2p
)
. (22)

Using Eq. (22) and Eq. (3c) to determine the value
of jT (t), the aim of the second step of calculation is to
smooth the intervals in the original velocity profile that
contain points with abrupt changes of acceleration. Simi-
larly as in the Eq. (18a, 18b), forward Euler integration is
applied, yet with an additional calculation in the (k+1)-
th step:

ük+1 = ük +
...
uk · Ts. (23)

To determine the adequate initial value of Euler method,
let us first introduce uCP`

and its corresponding time deriva-
tive u̇CP`

, ` ∈ {1, . . . ,M}, as the value of u and u̇ in
the critical points on the curve, where the acceleration is
discontinuous. Two guesses for the initial value of u for
each critical point CP`, uL`

and uH`
, are then selected

according to the following restriction:

uCP`−1
< uL`

< uH`
< uCP`

. (24)

Euler integration from either uH`
and uL`

onward pro-
duces a smooth extension to the original profile u̇(u);
in the former case the extension forms an obtuse angle
at point of intersection with the original profile (Figure
(2), left) and in the latter case the extension never recon-
nects back onto the original profile (Figure (2), middle).
The correct initial value for the forward Euler method is
found by bisecting the interval [uL`

, uH`
]. The solution

is a range of values of u and u̇ that does not introduce
additional discontinuities when inserted into the existing
u̇(u) profile (Figure 2, right).

Figure 2: A display of iteration steps of bisection for determi-
nation of a smooth u̇(u(t)) profile that eliminates acceleration
discontinuities.
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4 Results
In order to demonstrate our proposed method, the prob-
lem is defined as follows: Compute the optimal veloc-
ity profile that will result in the shortest travelling time
for a path xp(u) = cos(u), yp(u) = sin(2u) where u ∈
[0, 2π] with the following restrictions: vMAX = 1.5m/s,
aTMAX

= 2m/s2, aRMAX
= 4m/s2, jTMAX

= 10m/s3

and jRMAX
= 10m/s3.

Figure (3) shows u̇(u) dependence after the first (u̇I(u))
and the second step (u̇II(u)) of the calculation of the op-
timal velocity profile. The velocity profile vI(t) in Figure
(4) respects speed and acceleration restrictions, but the
final velocity profile vII(t) complies also with the jerk
constraints. Figure (5) shows the temporal dependence of
normalized values of speed, acceleration and jerk restric-
tions and proves optimality because at any given moment
on the curve one of these dynamical quantities reaches its
maximum.

Figure 3: u̇I(u) and u̇II(u) with identified TPi and CPi. The
hatched areas represent speed restriction intervals, shaded areas
jerk restriction intervals and areas with the white background
acceleration restriction intervals.

Figure 4: vI(t) and vII(t) profiles.

Figure 5: Normalized dynamical restrictions over time.

5 Conclusion
The results of this study support the proposed idea of gen-
erating an optimal velocity profile for a wheeled mobile

robot that moves on an arbitrary path as in every point
in time of the movement the robot has either maximum
allowed speed, acceleration or jerk.

The present study has only investigated and limited
jerk at the switch-overs from the intervals of restricted
speed movement to the intervals of restricted accelera-
tion movement and vice versa, where the infinite delta
impulses of the jerk were expected. Generally speaking,
the non-compliance to the jerk limitations could also ap-
pear in other points or intervals of the path if only jTMAX

and jRMAX
were set low enough. We are now in the

process of investigating this problem with significantly
greater complexity.
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B. Potočnik, “Time optimal path planning considering
acceleration limits,” Robotics and Autonomous Systems,
vol. 45, no. 3-4, pp. 199–210, 2003.

[9] E. Velenis and P. Tsiotras, “Minimum-time travel for a
vehicle with acceleration limits: Theoretical analysis and
receding-horizon implementation,” Journal of Optimiza-
tion Theory and Applications, vol. 138, no. 2, pp. 275–
296, 2008.

[10] G. Lini, L. Consolini, and A. Piazzi, “Minimum-time
constrained velocity planning,” 2009 17th Mediterranean
Conference on Control and Automation, no. 5, pp. 748–
753, 2009.


