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Abstract

A unital, that is a 2-(¢® + 1,¢ + 1, 1) block-design, is embedded in a projective plane
7 of order ¢? if its points are points of 7 and its blocks are subsets of lines of 7, the
point-block incidences being the same as in 7. Regarding unitals ¢/ which are isomorphic,
as a block-design, to the classical unital, T. Sz6nyi and the authors recently proved that
the natural embedding is the unique embedding of I/ into the Desarguesian plane of order
¢%. In this paper we extend this uniqueness result to all unitals which are isomorphic, as
block-designs, to orthogonal Buekenhout-Metz unitals.

Keywords: Unital, embedding, finite Desarguesian plane.
Math. Subj. Class.: 51E05, 51E20

1 Introduction

A unital is a set of ¢3 + 1 points equipped with a family of subsets, each of size ¢ + 1,
such that every pair of distinct points are contained in exactly one subset of the family. In
Design Theory, such subsets are usually called blocks so that unitals are 2-(¢® +1,q+1,1)
block-designs. A unital I/ is embedded in a projective plane 7 of order ¢?2, if its points are
points of 7, its blocks are subsets of lines of 7 and the point-block incidences being the
same as in 7.

Sufficient conditions for a unital to be embeddable in a projective plane are given in
[21]. Computer aided searches suggest that there should be plenty of unitals, especially
for small values of ¢, but those embeddable in a projective plane are quite rare, see [3, 6,
27]. Very recently, the GAP package UnitalSz was released [25]. This package contains
methods for the embeddings of unitals in the finite projective plane.
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In the finite Desarguesian projective plane of order ¢2, a unital arises from a unitary
polarity: the points of the unital are the absolute points, and the blocks are the non-absolute
lines of the polarity. This unital is called classical unital. The following result comes
from [23].

Theorem 1.1. Let U be a unital embedded in PG (2, ¢*) which is isomorphic, as a block-
design, to a classical unital. Then U is the classical unital of PG(2, ¢?).

Buekenhout [11] constructed unitals in any translation planes with dimension at most
two over their kernel by using the Andreé/Bruck-Bose representation. Buekenhout’s work
was completed by Metz [24] who was able to prove by a counting argument that when
the plane is Desarguesian then Buekenhout’s construction provides not only the classical
unital but also non-classical unitals in PG(2, ¢?) for all ¢ > 2. These unitals are called
Buekenhout-Metz unitals, and they are the only known unitals in PG(2,¢?). With the
terminology in [5], an orthogonal Buekenhout-Metz unital is a Buekenhout-Metz unital
arising from an elliptic quadric in Buekehout’s construction.

In this paper, we prove the following result:

Main Theorem. Let 2/ be a unital embedded in PG(2, ¢?) which is isomorphic, as block-
design, to an orthogonal Buekenhout-Metz unital. Then U/ is an orthogonal Buekenhout-
Metz unital.

Our approach is different from that adopted in [23]. Our idea is to exploit two different
models of PG(2, ¢?) in PG(5, q), one of them is a variant of the so-called GF(q)-linear rep-
resentation. We start off with a representation of a non-classical Buekenhout-Metz unital
given in one of these models of PG(2, ¢?), then we exhibit a linear collineation of PG(5, q)
that takes this representation to a representation of a classical unital in the other model of
PG(2,¢?). At this point to finish the proof we only need some arguments from the proof of
Theorem 1.1 together with the characterization of the orthogonal Buekenhout-Metz unitals
due to Casse, O’Keefe, Penttila and Quinn [12, 29].

2 Preliminary results

The study of unitals in finite projective planes has been greatly aided by the use of the
André/Bruck-Bose representation of these planes [1, 9, 10]. Let PG(4, ¢) denote the pro-
jective 4-dimensional space over the finite field GF(g), and let X be some fixed hyperplane
of PG(4, q). Let \ be a line spread of ¥, that is a collection of ¢> + 1 mutually skew lines
of ¥. We consider the following incidence structure: the points are the points of PG(4, q)
not in 3, the lines are the planes of PG(4, ¢) which meet 3 in a line of A/ and incidence
is defined by inclusion. This incidence structure is an affine translation plane of order ¢>
which is at most two-dimensional over its kernel. It can be completed to a projective plane
m(N') by the addition of an ideal line L., whose points are the elements of the spread .
Conversely, any translation plane of order ¢? with GF(g) in its kernel can be modeled this
way [9]. Moreover, it is well known that the resulting plane is Desarguesian if and only if
N is a Desarguesian spread [10].

Our first step is to outline the usual representation of PG(2, ¢?) in PG(5,q) due to
Segre [30] and Bose [7]. While such representation is usually thought of in a projective
setting, algebraic dimensions are more amenable to an introductory discussion of it, so we
will mainly take a vector space approach along all this section.
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Look at GF(¢?) as the two-dimensional vector space over GF(g) with basis {1, €}, so
that every z € GF(q?) is uniquely written as z = xq + z1¢, for 2o, 71 € GF(g). Then
the vectors (z,y, ) of V(3, ¢%) are viewed as the vectors (z1, T2, Y1, Y2, 21, 22) of V (6, q)
where

Tr = Zg + T1€,
Y = Yo + €y1 and
Z =20+ €z1.

Therefore the points of PG(2, ¢?) are two-dimensional subspaces in V (6, ¢), and hence
lines of PG(5, q), the five-dimensional projective space arising from V' (6, ¢). Such lines
are the members of a Desarguesian line-spread S of PG(5, ¢) which gives rise to a point-
line incidence structure II(S) where points are the elements of S, and lines are the three-
dimensional subspaces of PG(5, q) spanned by two elements of S, incidence being in-
clusion. Obviously, II(S) ~ PG(2,¢?), and I1(S) is the GF(q)-linear representation of
PG(2,¢?) in PG(5, q). Since PG(5, ¢) is naturally embedded in PG(5, ¢?), we also have
an embedding of PG(2, ¢?) in PG(5, ¢?) via II(S).

Actually, we will use a different embedding of PG(2, ¢?) in PG(5, ¢?) which is more
suitable for computation.

In V(6,¢2), let V be the set of all vectors (x, 2%, y,y9, z, 29) with z,y, 2 € GF(¢?).
With the usual sum and multiplication by scalars from GF(g), V is a six-dimensional
vector space over GF(q). On the other hand, V (6, q) is naturally embedded in V (6, ¢°).
Therefore, the question arises whether there exists an invertible endomorphism of V (6, ¢%)
that takes V to V (6, ¢). The affirmative answer is given by the following proposition.

Proposition 2.1. Vis linearly equivalent to V (6, q) in V (6, ¢%).
Proof. Write V (6, q) as the direct sum W) @ W @ W), with

W® = {(a,0,0,0,0,0) : a,b € GF(q)}

w® ={(0,0,a,b,0,0) : a,b € GF(q)}

W® ={(0,0,0,0,a,b) : a,b € GF(q)}.
Clearly, each W) is isomorphic to V(2,q) = {(a,b) : a,b € GF(q)}. Take a basis
{u1,uz} of V(2,q) together with a Singer cycle o of V(2,¢). Since ¢ has two distinct
eigenvalues, both in GF(¢?) \ GF(g), we find two linearly independent eigenvectors vy, va

that form a basis for V' (2, ¢). Such a basis {v1,v2} is called a Singer basis with respect to
V/(2,q) [15]. In this context, V/(2, ) = {xv; + 2%, : © € GF(¢?)} [14].

Applying this argument to W) with i = 1,2,3, gives a Singer basis {UY), véi)} of
W@ such that WO = {zv{? + 290" : 2 € GF(¢?)}. In this basis we have

V(6,q) = {mvgl) + :cqvél) + yvgz) + yqv§2) + zvf)) + zqvég) 2,9, 2 € GF(¢%)}. (2.1)

Now, the result follows from the fact that the change from any basis of V' (6, ¢?) to the basis
{7 0§ i = 1,2, 3} is carried out by an invertible endomorphism over GF (¢?). O

We call the vector space V the cyclic representation of V (6, q) over GF(q?).
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To state Proposition 2.1 in terms of projective geometry, let PG(5, ¢) denote the projec-
tive space arising from V' (6, ¢). Also, let PG(V') = {(v)4 : v € V'} be the five-dimensional
projective space whose points are the one-dimensional GF(q)-subspaces spanned by vec-
tors in V.

Corollary 2.2. PG(‘A/) is projectively equivalent to PG(5, q) in PG(5, ¢?).

We call the the projective space PG(‘A/) the cyclic representation of PG(5,q)
over GF(q?).
Recall that a 2 x 2 g-circulant (or Dickson) matrix over GF(q?) is a matrix of the form

_(di d
o=(i )
with dq,dy € GF(q2)

Let B denote the basis {v@, véi) :1=1,2,3} of V.

Proposition 2.3. In the basis B, the matrix associated to any endomorphism of Vis of the
form
D11 D2 Das
D21 Daz Das |, (2.2)
D31 D3z Dss
where D;; is a 2 x 2 g-circulant matrix over GF(g?).

Proof. 1tis easily seen that any matrix of type (2.2) is associated to an endomorphism of V.
Conversely, take an endomorphism 7 of V'(6,¢?) and let T = (t;;), t;; € GF(¢?), be

the matrix of 7 in the basis B. For a generic array x = (z,z%,y,y%,2,2%) € V,
Txt = T + thot? + te 3y + teay? +tr sz +tre2? | fork=1,...,6.

If y = z = 0, a necessary condition for Tx! € Vis

(tepx +tg2x9)? = tpp112 + by 027,
for k = 1,3, 5, that is,

(th o = terr,0)z + (K — thy1,2)2? =0,

for k = 1,3,5 and for all # € GF(g?). This shows that the polynomial in z of degree ¢ on
the left hand side of the last equation has at least g2 roots. Therefore, it must be the zero
polynomial. Hence t51,1 = tzg and tp412 = t%l, for k = 1, 3,5. To end the proof, it is
enough to repeat the above argument for x = z = 0 and then for x = y = 0. O

Next we exhibit quadratic forms on V (6, ¢?) which induce quadratic forms on V.
The vector space V' (2n, ¢) has precisely two (nondegenerate) quadratic forms, and they
differ by their Witt-index, that is the dimension of their maximal totally singular subspaces;
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see [22, 32]. These dimensions are n — 1 and n, and the quadratic form is elliptic or
hyperbolic, respectively. In terms of the associated projective space PG(2n — 1, q), the
elliptic (resp. hyperbolic) quadratic form defines an elliptic (resp. hyperbolic) quadric of
PG(2n —1,q).

Fix a basis {1, ¢} for GF(¢?) over GF(q), and write z = x¢ + ex1, for z € GF(¢?)
with xg, 77 € GF(q). Here, € is taken such that €2 = ¢ with ¢ a nonsquare in GF(q) for
g odd, and that €2 4+ ¢ = s with s € C} and s # 1 for q even, where C stands for the
set of elements in GF(q) with absolute trace 1. Furthermore, Tr denotes the trace map

z € GF(¢?) — = + 27 € GF(q).

Proposition 2.4. Let o, 3 € GF(q?) satisfy the following conditions:

40t + (B9 — B)? is nonsquare in GF(q), for q odd,
a?t1 /(B2 + B)% € Cy with B € GF(¢?) \ GF(q), for q even,

where Cyy stands for the set of elements in GF(q), q even, with absolute trace 0. Let Qq. 3
be the quadratic form on V (6, ¢*) given by

Qa,ﬁ(X17X2,Y1,)/é,Z1, ZQ) ==

2.3
81X, Zy + 0XoZy + adYE + 61V 4 Tr(63)Y1 Yo, 23)

with & = € or 6 = 1 according as q is odd or even. then the restriction @aﬁ of Qa,po0n 1%
defines an elliptic quadratic form on V.

Proof. Two cases are treated separately according as ¢ is odd or even.
If ¢ is odd, let b, s denote the symmetric bilinear form on V (6, ¢?) associated to Q3.
The matrix of b, g in the canonical basis is

O, Oy FE
Bapg=|[02 Aap O2],
E O Oq

with

0 e = 0 e 2 Tr(e
E= (6 O)’ E= (eq O) and - Ao = (Tr(eﬁ) 205‘151))’

A stralghtforward computation shows that B, g induces a symmetric bilinear form on
V. Let Qa _p denote the resulting quadratic form on V.

Since det A, 5 = 49t + (B9 — B)? is nonsquare in GF(g), it follows that Qs
is nondegenerate. Hence @,L g 1s nondegenerate, as well. Let H be the four-dimensional
subspace {(z,29,0,0,z,27) : x,2 € GF(¢*)} of V. Then the restriction of @a,g on
H is a hyperbolic quadratic form, as L; = {(z,2%,0,0,0,0) : € GF(¢?)} and Ly =
{(0,0,0,0,z,27) : z € GF(q*)} are totally isotropic subspaces with trivial intersection.
The orthogonal space of H with respect to b, s is L = {(0,0,y,y%,0,0) : y € GF(¢?)}.
By [22, Proposition 2.5.11], Qa g 1is elliptic if and only if the restriction of Qa s onLis

elliptic, that is,
Tr(cey? + eBy?™) =0 2.4
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has no solution y € GF(¢?) other than 0.
Write y = yo + €y1, @« = ag+eaq and 8 = by + by with yg, y1, ag, a1, bo, b1 € GF(q).
Ase? = —eand €2 = &, we have

y? =yo — €
= yh - &yt
y? =g + &Y + 2eyomn
y*1 = s + Eyi — 2eyoy
aey® = £(2aoyoyr + ar(yg + €y7)) + e(ao(y3 + Eui) + 2Earyoun)
a%ely?? = £(2aoyoys + a1(yg + £y7)) — elao(yg + £uT) + 28aryonn),

Y

whence
Tr(cey?) = 2€(2a0yoys + a1(yg + £y7)).

Moreover,
Tr(efy™™) = 26b1(y5 — &7)-

Then Equation (2.4) has a nontrivial solution y € GF(¢?) if and only if (yo,y1) # (0,0)
with yo,y1 € GF(q) is a solution of

(a1 + b1)yg + 2a0yoy1 + E(ar — by)yi = 0. (2.5

By a straightforward computation, (2.5) occurs if and only if 4a9t + (84 — )2 = ?
for some u € GF(q). But the latter equation contradicts our hypothesis. Therefore, Equa-
tion (2.4) has no nontrivial solution in GF(¢?) and hence @,L 3 is elliptic.

For g even, the above approach still works up to some differences due to the fact that
the well known formula solving equations of degree 2 fails in even characteristic. For
completeness, we give all details.

If ¢ is even, the restriction of ), 3 on V is a quadratic form @,L 4 on V, and the matrix
of the associated bilinear form bg is

0, 0, E
By=|0y 45 0],
E 0, O,

where
E = <(1) é) and Ag = (Tr(zﬂ) Tr(gﬂ)>.

Since 8 ¢ GF(q), a straightforward computation shows that the radical of bg is trivial,
which gives Q) is nonsingular. As for the odd ¢ case, the orthogonal space of H with
respect to bg is L. Therefore, @), g is elliptic if and only if

Tr(ay® + Byt!) =0 (2.6)

has no nontrivial solution y € GF(¢?).
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As before, let y = yo + €y1, @ = ag+€ay and 5 = by + eby with yg, y1, ag, a1, bg, b1 €

GF(q). Ase? = ¢+ 1 and €2 = ¢ + s, with s € C}, we have

y'=yo+y1+en
= yd + yoyr + syi

y* = yp +syi +eyi
v = o+ (s + Dy + ey

ay® = aoyd + s(ao + a1)yi + e(aoy; + aryg + (s + 1)ary?)
aly?! = agyy + s(ao + a1)yi + (aoyi + aryg + (s + Dary?)

+ e(aoyt + aryp + (s + 1)aryy),

Y

whence
Tr(ay®) = aoy? + aryg + (s + aryy,
and
Te(By?™) = bi(ys + yoy1 + sy7)-
Therefore, Equation (2.6) has a nontrivial solution in GF(¢?) if and only if
(a1 + b1)y2 + biyoyr + (ao + a1 + sar + sbi)y? = 0.

Assume y = yo € GF(q) is a nontrivial solution of (2.6). Then a; = b;. This gives

+1 2
af ag  ag
—=—+—+seC}
(Bq + ﬁ)2 a% al ’
a contradiction since
a% ap
- + —c Co
1 M

Assume that y = o + ey; € GF(¢?), with ;1 # 0, is a solution of (2.6). Then yoy; * is a
solution of
(a1—|—b1)X2+b1X+a0+a1+s(a1+b1) :O, (27)

where b; # 0.
Let Y = (aj + by)b; ' X. Replacing X by Y in (2.7) gives Y2 + Y + d = 0 where

ag + ajag + sa% ag + a% ag + ay

d =

b2 b2 bo
Here, d € C by , , )
ag + alc;() +sat alt € Co.
b (B9 + B)?
This shows that Equation (2.7) has no nontrivial solution in GF(gq). Hence Equation (2.6)
has no nontrivial solution in GF(g2), as well. Therefore Q.4 is elliptic. O

Let @a, g stand for the elliptic quadric in PG(XA/) defined by the quadratic form @a, 8
on V. Then the coordinates of the points of PG(V’) that lie on Q,, g satisfy the equation

81X 794+ 6X1Z + adY? + o959 4 Tr(63)Y I =0, (2.8)

with § = e or § = 1 according as ¢ is odd or even.
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3 The GF(q)-linear representation of Buekenhout-Metz unitals

-~

In the light of Proposition 2.1, we introduce another incidence structure II(S).
Let ¢ be the bijective map defined by

~

o (my,2) = (w2, 29)

By Proposition 2.1, ¢ is the field reduction of V(3,4?) over GF(q) in the basis
{08 i =1,2,3) of V(6, ¢?).

The points of PG(2, ¢?) are mapped by & to the two-dimensional GF(q)-subspaces of
V of the form

{2, M2 Ay, ANy, A2, \929) : A € GF(¢?)}, for z,y, 2 € GF(¢?),

and hence lines of PG(V). Such lines form a line-spread S of PG(V/). By Proposition 2.1
and Corollary 2.2, Sis projectively equivalent to S in PG(5, ¢%). Hence, S is also a De-
sarguesian line-spread of PG(V). Therefore, in PG(5, ¢2) II(S) is projectively equivalent
to the GF(q)-linear representation I1(S) of PG(2, ¢?).

The following lemma goes back to Singer, see [31].

Lemma 3.1. Let w be a primitive element of GF (q*) over GF(q) with minimal polynomial
f(T) =T? — piT — po. then the multiplication by w in GF(q?) defines a Singer cycle of
V(2,q) = {(a,b) : a,b € GF(q)} whose matrix is the companion matrix of f(T).

Proposition 3.2. Any endomorphism of V (3, q?) with matrix A = (a;;) defines the endo-
morphism of V with matrix

Dy1 D1z Dis

Ds1 Day Das |,

D31 D3z Dass

where D;; = diag(ai;, agj)'

The Frobenius transformation : (x,y,z) + (29,y%, 27) of V (3, ¢*) defines the endo-
morphism of V' with matrix

o o My
o o
Hyo o

where
=~ 0 1
(0 )

Proof. The Singer cycle defined by a primitive element w of GF(¢?) over GF(q) acts on
the GF(q)-vector space {(z,29) : * € GF(¢?)} by the matrix D = diag(w, w?). For every
entry a;; of A, write a;; = w7, 0 < e(i,5) < ¢*> — 2. From Lemma 3.1, the multipli-
cation by a;; in GF(¢?) defines the endomorphism with matrix D*("/) = diag(a;;, aj;)-
From this the first part of the proposition follows. The second part comes from Cooper-
stein’s paper [14]. O
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Remark 3.3. From a result due to Dye [16], the stabilizer of the Desarguesian partition
K in GL(6,q) is the semidirect product of the field extension subgroup GL(3,q?) by
the cyclic subgroup (1) generated by the Frobenius transformation. In terms of projec-
tive geometry, the stabilizer of the Desarguesian spread S in PGL(6, ¢) is (GL(3, ¢?) x
(¥))/ GF(¢)* [16]. It should be noted that the center of GL(V) is the subgroup
{cI : ¢ € GF(q)*}. Proposition 3.2 provides the representation in GL(V) and PGL(V) of
these stabilizers.

In [2] and [17] the orthogonal Buekenhout-Metz unitals are coordinatized in PG(2, q2).
Let Lo, be the line of PG(2, ¢?) with equation Z = 0 and Ps, = ((1,0,0)),2

Theorem 3.4. Let o, 3 € GF(q?) such that

4a9Ft + (B9 — B)? is nonsquare in GF(q), for q odd,
a?tl /(B2 + B)% € Cy with B € GF(¢?) \ GF(q), for q even.

Then

Uap = {((ay®+ By"™ +r,y,1))g2 1 y € GF(¢*),7 € GF(q)} U {Px}

is an orthogonal Buekenhout-Metz unital. U, g is classical if and only if o = 0.
Conversely, every orthogonal Buekenhout-Metz unital can be expressed as U, g for
some «, 3 € GF(q?) which satisfy the above conditions.

We go back to the projective equivalence of II(S) and H(§ ) arising from the bijective
map ¢. The line set ¢(Us.5) = {¢(P) : P € Uq 5} can be regarded as the restriction on
Ua,p of the GF(g)-linear representation of PG(2, ¢?) in PG(V).

Remark 3.5. Thas [33] showed that the GF(g)-linear representation of the classical unital
is a partition of an elliptic quadric in PG(5, ¢). Thas’s result is obtained here when the
representation g/zS\(UO,B) is used. Let § = € for odd ¢, and § = 1 for even ¢q. For any
B € GF(q?) satisfying the conditions of Theorem 3.4, Uy g is the set of absolute points of
the unitary polarity associated to the Hermitian form hg of V (3, ¢) with matrix

0o 0 6
Hz=|0 Tx(68) 0
§ 0 0

Hence Uy, 3 has equation
X7 + 81X 794+ Tr(0B)YIT = 0.

Let Tr denote the trace map of GF(¢?) over GF(q). For any v,v" € V (3, 4¢?),

Ny — (¢( ), @(v")), forqodd
fria () _{ bs(d(v), p(v")),  for g even.

This shows that the points in QZ(UO, ) belong to @07 - In particular, the line set Q/Z)\(U(, 8) s
a partition of Qp g.



618 Ars Math. Contemp. 16 (2019) 609-623

We now put in evidence the relation between the elliptic quadric @a, s and the Bueken-
hout representation of U,_s in the André/Bruck-Bose model of PG(2, ¢°).

The subspace A = {{(z,2%,y,y%,¢,¢)), : ¢ € GF(q),z,y € GF(¢?)} is an hy-
perplane of PG (V) containing the 3-dimensional subspace & = {{(x,27,y, 7,0, 0))g :
2,y € GF(¢?)}. The line set ' = {$(P) : P € Lo} is a Desarguesian line spread of .
Hence, N defines the André/Bruck-Bose model of PG(2, ¢?) in A: the points are the lines
of NV and the points of A not in 3, the lines are the planes of A not in 3 which meet 3 in a
line of A and N itself, incidence is defined by inclusion. We denote by 7(/N) this model
of PG(2,¢%). Theset Uy 5 = UpeU%ﬁ ((E(P) N A) is the Buekenhout representation of
Un pinm(N).

The hyperplane A is the orthogonal space of the point R = ((1,1,0,0,0,0)), with
respect the polarity associated with the quadric @a, g. Since R € @a, s, the intersection
between A and @a g is a cone I, g projecting an elliptic quadric from R and containing
the spread element ¢(Psg) = {{(z,2,0,0,0, 0))4 : © € GF(¢?)} as a generator.

Proposition 3.6. The cone T, 5 coincides with the Buekenhout representation U, 5 of
Ua,pin(N), that is,

U @@P)nA)=Tap.

PGUayg
Proof. We have ¢(Ps,) = Qu 5 N E. Forany P = ((ay?® + Byt y, 1)), € Ua.p,
S(P) = {{(May® + By*™), X(ay™ + BYT™), Ay, Xy%, A, A9))g 1 A € GF ()}

Then ¢(P) N A = ((a?® + Byt + 7, %y + B9+ 4.y, 47 1,1)),. From a straight-
forward calculation involving Equation (2.8) of Q, g it follows that ¢(P) N A € Ty g.

Since the size of Jpcy AP} ($(P) N A) equals the size of 'y g \ &(Ps) the result
follows. ’ O

Remark 3.7. The affine points of I', g satisfy the equation
81X + 56X+ adY? + 967721 + Tr(68) YT = 0, 3.1

with § = e or § = 1 according as ¢ is odd or even. It may be observed that Equation (3.1)
is the equation of the affine points of U, g [13, 20]. Equation (3.1) in homogeneous form
is

SIXZ27T 4 6X9Z9 + Y2 2272 + a6V + Tr(6B)Y T 2971 =0,

which is satisfied by the points of the GF(¢)-linear representation a(Ua, 3) of Uy 3.

In [28], Polverino proved that the GF(g)-linear representation of an orthogonal
Buekenhout-Metz unital cover the GF(q)-points of an algebraic hypersurface of degree
four minus the complements of a line in a three-dimensional subspace. She also showed
that the hypersurface is reducible if and only if the unital is classical. Polverino’s result
is obtained here when the representation $(U07 ) is used. Let F be the hypersurface of
PG(5, ¢?) with equation

F:8UX, 72025 + X0 Z3 Zo + adYP Z3 + 169V 77 4 Tr(08Y)Y1YaZ1 Zo = 0.
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The intersection F of F with PG(‘/}) consists of all points of PG (V) satisfying the
equation

§IX 7% £ §X 17292 4 Y2 Z%1 4+ o967V Z2 + Te(6pN)Y T 29T = 0. (3.2)

Clearly, F contains the three-dimensional subspace X. By the above arguments, the GF( )-

linear representation (U, .3) covers the points in F minus the complements of ¢(L)
in X. Furthermore, Equation (3.2) defines an algebraic hypersurface of degree four of
PG(5, q). A straightforward, though tedious, calculation shows that Equation (3.2) is pre-
cisely the algebraic hypersurface provided by Polverino in [28].

As elhptlc quadrlcs in PG( ) are projectively equivalent, some linear collineation 7,
of PG(V) takes Qo’ g to Qa, g. Actually we need such a linear collineation 7, with some
extra-property.

Proposition 3.8. In PG(A) V') there exists a linear collineation ., which takes @0 pto @a B

preserves the subspaces A, ¥, and fixes gb( '~ ) pointwise. Therefore it maps the cone I'y g
into L'y, g.

Proof. The restriction @a7ﬂ|L on the subspace L = {(0,0,y,y9,0,0) : y € GF(¢?)} of
Q. given by (2.3) is the quadratic form defined by

L, y9) = ady® + a96%> + Tr(68)y"™ € GF(q)

which is of elliptic type by the proof of Proposition 2.4. As two such forms are equivalent,
some endomorphism of L maps Qo g|r t0 Qu. |- In a natural way, as in the proof of
Proposition 2.3, we may identify any endomorphism of L with a 2 x 2 g-circulant matrix.
Doing so, the endomorphism with matrix

_fdy dy
D‘(dz d%)’

aitt v aitt =1
dydd = ad Tr(68) 71,

where

maps @07 slL to @a s|L. Let 7, be the linear collineation of PG(V) defined by the matrix

I 02 02
D,=10s D O,
Oy 02 I

It is easily seen that 7, preserves the subspaces A, 3, and fixes gi)( '~ ) pointwise, and that
it maps the cone I'g g into Iy, 5. O

Remark 3.9. BAearing in mind Remark 3.3, one can ask whether 7, is an incidence preserv-
ing map of II(S). The answer is negative by dydy # 0 and Proposition 3.2. This implies
that T'g 3 and I, 5 are Buekenhout representations of unitals of PG(2, ¢*) and that they
are not projectively equivalent. In particular, this provides a new proof for the existence of
non-classical unitals embedded in PG(2, ¢?).
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It is clear that the image S of the Desarguesian line-spread S under the linear
collineation 7, is a Desarguesian line-spread and it defines the GF(g)-linear representa-
tion II(8™) of PG(2, ¢?).

4 The proof of the Main Theorem

In our proof the models of PG(2, ¢?) treated in Section 3 play a role. Two of them arose
from Desarguesian line-spreads of PG(‘A/) denoted by S and 8™ respectively, the third
was the André/Bruck-Bose model 7(N) in the 4-dimensional subspace A.

In PG(2,q?) consider a unital Z/ isomorphic, as a block-design, to an orthogonal
Buekenhout-Metz unital U, g with o # 0. It is known [2, 17] that U, g has a special
point which is the unique fixed point of the automorphism group of U, g. Hence the au-
tomorphism group of U fixes a unique point of &//. Up to a change of the homogeneous
coordinate system in PG(2, ¢?), the special point of U, 5 is Ps = {((1,0,0)),2 and the
tangent line of U, g at P, is Lo, : Z = 0. Up to a linear collineation, P,, € U is the fixed
point of the automorphism group of &/ and L, is the tangent to I/ at P,. Therefore, I/ and
Uq,p share Py and L

We interpret the isomorphism between U/ and U, g in each of the above three mod-
els of PG(2,¢?). The representation U = {$(P) : P e U} of U in II(S) is iso-
morphic, as a block-design, to U B = {d)( ) : P € Uyp}. The Buekenhout rep-
resentation U/ = J Jpeu (qS( )N A) of U in w(N) is isomorphic, as a block-design, to
Uas =Upco. , (6(P) N A). Here, by Proposition 3.6, U, is the cone I’y 3. This gives

that the representation U= {L €8 : LNA C U} of i in II(S™) is isomorphic, as a
block-design, to U, s={L¢€ S :LNACT, Bt

From Prop0s1t10n 3.8, the lines which are the pomts of U, «, partition the elliptic quadric
Qa B = QO °- On the other hand, from Remark 3.5, QO .3 is partitioned by lines which are

the points of the classical unital U07 g in H(S ). This yields that Ua, g coincides with UO -

It turns out that ﬁaﬁ is a classical unital in H(S\TQ), and hence U/ is isomorphic, as a
block-design, to the classical unital.

Now we quote the following result from [23] which was the keystone in the proof of
Theorem 1.1.

Lemma 4.1. Let U be a unital embedded in a Desarguesian finite projective plane m and
isomorphic, as a block-design, to the classical unital. For any block B of U, let { be the
line of m containing B. Then B is an orbit of a cyclic subgroup of order q + 1 contained in
the projectivity group of €. This implies that B is a Baer subline of (.

We emphasize that the proof of Lemma 4.1 only uses arguments involving point-block
incidences of U viewed as a block-design embedded in 7.

Therefore, Lemma 4.1 apphes toU. Thus, every block of U is a Baer subline of H(Sm)
that is, a regulus of PG( ). From this, each block of I is the intersection of these reg-
uli with A. In particular, each block of U/ through gb( ~) 18 the union of gb( o) With ¢
collinear affine points, and this 1mp11es that each block of I/ through ¢( ) 1s a regulus
of PG(V) whose lines are in S. Under QS, these reguli correspond to Baer sublines of
PG(2,¢?) through P.,. This yields that the points of I/ on each of the ¢? secant lines to
U form a Baer subline through P,,. By the characterization of such unitals of PG(2, ¢?)
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given in [12, 29], we may conclude that I/ is a Buekenhout-Metz unital. By definition, the
Buekenhout representation I/ of U is a cone that project an ovoid O from a point of a(Pm)
not in O. Here an ovoid is a set of ¢> + 1 points in a 3-dimensional subspace of A no three
of which are collinear.

To conclude the proof we only need to prove that O is an elliptic quadric. Since the
ovoids in PG(3, q) with odd q are elliptic quadrics, see [4, 26], we assume ¢ = 2". In
PG(3,2"), there are known two ovoids, up to projectivities, namely the elliptic quadric
which exist for & > 1, and the Tits ovoid which exists for odd » > 3; see [18, Chapter 10].
Let  be the 3-dimensional subspace of A containing O. Note that O = QN U. Set a to
be the plane {2 N X. Then ay, meets O exactly in the point O N a(POO), and it is a simple
matter to show that s, contains only one line g/b\(P) of A. Also, (E(P) is distinct from
qAS(POO). Let ay,. .., a4 denote the further planes of 2 through qAS(P) As these planes are
lines of 7(\) through the point ¢(P), each of them meets I in 1 or ¢ + 1 points. This
holds true for O.

Itis well known [19, Section 12.3] that in a finite Desarguesian projective plane through
any point off a unital there are exactly ¢ + 1 tangent lines, that is, lines of the plane that
intersects the unital in exactly one point. In terms of the unital I/ this property states that
there is only one plane among a, . . ., o, that meets O in exactly one point. Let a; denote
this plane. Then the block o; N O of U, for i = 2,...,q, is the intersection of a; with a
regulus in PG(‘A/). Since that regulus does not contain (Z(P), the block a; N O is a conic
C; of ay, fori = 2,...,q. Thus the blocks a;; N O, fori = 2,...,q, are ¢ — 1 conics that
partition all but two points of O. By [8, Theorem 5] O is an elliptic quadric.
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