
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 16 (2019) 609–623
https://doi.org/10.26493/1855-3974.1681.4ec

(Also available at http://amc-journal.eu)

Embedding of orthogonal Buekenhout-Metz
unitals in the Desarguesian plane of order q2
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Abstract

A unital, that is a 2-(q3 + 1, q + 1, 1) block-design, is embedded in a projective plane
π of order q2 if its points are points of π and its blocks are subsets of lines of π, the
point-block incidences being the same as in π. Regarding unitals U which are isomorphic,
as a block-design, to the classical unital, T. Szőnyi and the authors recently proved that
the natural embedding is the unique embedding of U into the Desarguesian plane of order
q2. In this paper we extend this uniqueness result to all unitals which are isomorphic, as
block-designs, to orthogonal Buekenhout-Metz unitals.
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1 Introduction
A unital is a set of q3 + 1 points equipped with a family of subsets, each of size q + 1,
such that every pair of distinct points are contained in exactly one subset of the family. In
Design Theory, such subsets are usually called blocks so that unitals are 2-(q3 +1, q+1, 1)
block-designs. A unital U is embedded in a projective plane π of order q2, if its points are
points of π, its blocks are subsets of lines of π and the point-block incidences being the
same as in π.

Sufficient conditions for a unital to be embeddable in a projective plane are given in
[21]. Computer aided searches suggest that there should be plenty of unitals, especially
for small values of q, but those embeddable in a projective plane are quite rare, see [3, 6,
27]. Very recently, the GAP package UnitalSz was released [25]. This package contains
methods for the embeddings of unitals in the finite projective plane.
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In the finite Desarguesian projective plane of order q2, a unital arises from a unitary
polarity: the points of the unital are the absolute points, and the blocks are the non-absolute
lines of the polarity. This unital is called classical unital. The following result comes
from [23].

Theorem 1.1. Let U be a unital embedded in PG(2, q2) which is isomorphic, as a block-
design, to a classical unital. Then U is the classical unital of PG(2, q2).

Buekenhout [11] constructed unitals in any translation planes with dimension at most
two over their kernel by using the Andrè/Bruck-Bose representation. Buekenhout’s work
was completed by Metz [24] who was able to prove by a counting argument that when
the plane is Desarguesian then Buekenhout’s construction provides not only the classical
unital but also non-classical unitals in PG(2, q2) for all q > 2. These unitals are called
Buekenhout-Metz unitals, and they are the only known unitals in PG(2, q2). With the
terminology in [5], an orthogonal Buekenhout-Metz unital is a Buekenhout-Metz unital
arising from an elliptic quadric in Buekehout’s construction.

In this paper, we prove the following result:

Main Theorem. Let U be a unital embedded in PG(2, q2) which is isomorphic, as block-
design, to an orthogonal Buekenhout-Metz unital. Then U is an orthogonal Buekenhout-
Metz unital.

Our approach is different from that adopted in [23]. Our idea is to exploit two different
models of PG(2, q2) in PG(5, q), one of them is a variant of the so-called GF(q)-linear rep-
resentation. We start off with a representation of a non-classical Buekenhout-Metz unital
given in one of these models of PG(2, q2), then we exhibit a linear collineation of PG(5, q)
that takes this representation to a representation of a classical unital in the other model of
PG(2, q2). At this point to finish the proof we only need some arguments from the proof of
Theorem 1.1 together with the characterization of the orthogonal Buekenhout-Metz unitals
due to Casse, O’Keefe, Penttila and Quinn [12, 29].

2 Preliminary results
The study of unitals in finite projective planes has been greatly aided by the use of the
Andrè/Bruck-Bose representation of these planes [1, 9, 10]. Let PG(4, q) denote the pro-
jective 4-dimensional space over the finite field GF(q), and let Σ be some fixed hyperplane
of PG(4, q). LetN be a line spread of Σ, that is a collection of q2 + 1 mutually skew lines
of Σ. We consider the following incidence structure: the points are the points of PG(4, q)
not in Σ, the lines are the planes of PG(4, q) which meet Σ in a line of N and incidence
is defined by inclusion. This incidence structure is an affine translation plane of order q2

which is at most two-dimensional over its kernel. It can be completed to a projective plane
π(N ) by the addition of an ideal line L∞ whose points are the elements of the spread N .
Conversely, any translation plane of order q2 with GF(q) in its kernel can be modeled this
way [9]. Moreover, it is well known that the resulting plane is Desarguesian if and only if
N is a Desarguesian spread [10].

Our first step is to outline the usual representation of PG(2, q2) in PG(5, q) due to
Segre [30] and Bose [7]. While such representation is usually thought of in a projective
setting, algebraic dimensions are more amenable to an introductory discussion of it, so we
will mainly take a vector space approach along all this section.
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Look at GF(q2) as the two-dimensional vector space over GF(q) with basis {1, ε}, so
that every x ∈ GF(q2) is uniquely written as x = x0 + x1ε, for x0, x1 ∈ GF(q). Then
the vectors (x, y, z) of V (3, q2) are viewed as the vectors (x1, x2, y1, y2, z1, z2) of V (6, q)
where

x = x0 + x1ε,

y = y0 + εy1 and
z = z0 + εz1.

Therefore the points of PG(2, q2) are two-dimensional subspaces in V (6, q), and hence
lines of PG(5, q), the five-dimensional projective space arising from V (6, q). Such lines
are the members of a Desarguesian line-spread S of PG(5, q) which gives rise to a point-
line incidence structure Π(S) where points are the elements of S, and lines are the three-
dimensional subspaces of PG(5, q) spanned by two elements of S, incidence being in-
clusion. Obviously, Π(S) ' PG(2, q2), and Π(S) is the GF(q)-linear representation of
PG(2, q2) in PG(5, q). Since PG(5, q) is naturally embedded in PG(5, q2), we also have
an embedding of PG(2, q2) in PG(5, q2) via Π(S).

Actually, we will use a different embedding of PG(2, q2) in PG(5, q2) which is more
suitable for computation.

In V (6, q2), let V̂ be the set of all vectors (x, xq, y, yq, z, zq) with x, y, z ∈ GF(q2).
With the usual sum and multiplication by scalars from GF(q), V̂ is a six-dimensional
vector space over GF(q). On the other hand, V (6, q) is naturally embedded in V (6, q2).
Therefore, the question arises whether there exists an invertible endomorphism of V (6, q2)

that takes V̂ to V (6, q). The affirmative answer is given by the following proposition.

Proposition 2.1. V̂ is linearly equivalent to V (6, q) in V (6, q2).

Proof. Write V (6, q) as the direct sum W (1) ⊕W (2) ⊕W (3), with

W (1) = {(a, b, 0, 0, 0, 0) : a, b ∈ GF(q)}
W (2) = {(0, 0, a, b, 0, 0) : a, b ∈ GF(q)}
W (3) = {(0, 0, 0, 0, a, b) : a, b ∈ GF(q)}.

Clearly, each W (i) is isomorphic to V (2, q) = {(a, b) : a, b ∈ GF(q)}. Take a basis
{u1, u2} of V (2, q) together with a Singer cycle σ of V (2, q). Since σ has two distinct
eigenvalues, both in GF(q2) \GF(q), we find two linearly independent eigenvectors v1, v2
that form a basis for V (2, q2). Such a basis {v1, v2} is called a Singer basis with respect to
V (2, q) [15]. In this context, V (2, q) =

{
xv1 + xqv2 : x ∈ GF(q2)

}
[14].

Applying this argument to W (i) with i = 1, 2, 3, gives a Singer basis {v(i)1 , v
(i)
2 } of

W (i) such that W (i) = {xv(i)1 + xqv
(i)
2 : x ∈ GF(q2)}. In this basis we have

V (6, q) = {xv(1)1 + xqv
(1)
2 + yv

(2)
1 + yqv

(2)
2 + zv

(3)
1 + zqv

(3)
2 : x, y, z ∈ GF(q2)}. (2.1)

Now, the result follows from the fact that the change from any basis of V (6, q2) to the basis
{v(i)1 , v

(i)
2 : i = 1, 2, 3} is carried out by an invertible endomorphism over GF(q2).

We call the vector space V̂ the cyclic representation of V (6, q) over GF(q2).
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To state Proposition 2.1 in terms of projective geometry, let PG(5, q) denote the projec-
tive space arising from V (6, q). Also, let PG(V̂ ) = {〈v〉q : v ∈ V̂ } be the five-dimensional
projective space whose points are the one-dimensional GF(q)-subspaces spanned by vec-
tors in V̂ .

Corollary 2.2. PG(V̂ ) is projectively equivalent to PG(5, q) in PG(5, q2).

We call the the projective space PG(V̂ ) the cyclic representation of PG(5, q)
over GF(q2).

Recall that a 2× 2 q-circulant (or Dickson) matrix over GF(q2) is a matrix of the form

D =

(
d1 d2
dq2 dq1

)
with d1, d2 ∈ GF(q2).

Let B denote the basis {v(i)1 , v
(i)
2 : i = 1, 2, 3} of V̂ .

Proposition 2.3. In the basis B, the matrix associated to any endomorphism of V̂ is of the
form D11 D12 D13

D21 D22 D23

D31 D32 D33

 , (2.2)

where Dij is a 2× 2 q-circulant matrix over GF(q2).

Proof. It is easily seen that any matrix of type (2.2) is associated to an endomorphism of V̂ .
Conversely, take an endomorphism τ of V (6, q2) and let T = (tij), tij ∈ GF(q2), be

the matrix of τ in the basis B. For a generic array x = (x, xq, y, yq, z, zq) ∈ V̂ ,

Txt =


...

tk,1x+ tk,2x
q + tk,3y + tk,4y

q + tk,5z + tk,6z
q

...

 , for k = 1, . . . , 6.

If y = z = 0, a necessary condition for Txt ∈ V̂ is

(tk,1x+ tk,2x
q)q = tk+1,1x+ tk+1,2x

q ,

for k = 1, 3, 5, that is,

(tqk,2 − tk+1,1)x+ (tqk,1 − tk+1,2)xq = 0,

for k = 1, 3, 5 and for all x ∈ GF(q2). This shows that the polynomial in x of degree q on
the left hand side of the last equation has at least q2 roots. Therefore, it must be the zero
polynomial. Hence tk+1,1 = tqk,2 and tk+1,2 = tqk,1, for k = 1, 3, 5. To end the proof, it is
enough to repeat the above argument for x = z = 0 and then for x = y = 0.

Next we exhibit quadratic forms on V (6, q2) which induce quadratic forms on V̂ .
The vector space V (2n, q) has precisely two (nondegenerate) quadratic forms, and they

differ by their Witt-index, that is the dimension of their maximal totally singular subspaces;
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see [22, 32]. These dimensions are n − 1 and n, and the quadratic form is elliptic or
hyperbolic, respectively. In terms of the associated projective space PG(2n − 1, q), the
elliptic (resp. hyperbolic) quadratic form defines an elliptic (resp. hyperbolic) quadric of
PG(2n− 1, q).

Fix a basis {1, ε} for GF(q2) over GF(q), and write x = x0 + εx1, for x ∈ GF(q2)
with x0, x1 ∈ GF(q). Here, ε is taken such that ε2 = ξ with ξ a nonsquare in GF(q) for
q odd, and that ε2 + ε = s with s ∈ C1 and s 6= 1 for q even, where C1 stands for the
set of elements in GF(q) with absolute trace 1. Furthermore, Tr denotes the trace map
x ∈ GF(q2)→ x+ xq ∈ GF(q).

Proposition 2.4. Let α, β ∈ GF(q2) satisfy the following conditions:{
4αq+1 + (βq − β)2 is nonsquare in GF(q), for q odd,
αq+1/(βq + β)2 ∈ C0 with β ∈ GF(q2) \GF(q), for q even,

where C0 stands for the set of elements in GF(q), q even, with absolute trace 0. Let Qα,β
be the quadratic form on V (6, q2) given by

Qα,β(X1, X2, Y1, Y2, Z1, Z2) =

δqX1Z2 + δX2Z1 + αδY 2
1 + αqδqY 2

2 + Tr(δβ)Y1Y2,
(2.3)

with δ = ε or δ = 1 according as q is odd or even. then the restriction Q̂α,β of Qα,β on V̂
defines an elliptic quadratic form on V̂ .

Proof. Two cases are treated separately according as q is odd or even.
If q is odd, let bα,β denote the symmetric bilinear form on V (6, q2) associated to Qα,β .

The matrix of bα,β in the canonical basis is

Bα,β =

O2 O2 E
O2 Aα,β O2

E O2 O2

 ,

with

E =

(
0 εq

ε 0

)
, E =

(
0 ε
εq 0

)
and Aα,β =

(
2αε Tr(εβ)

Tr(εβ) 2αqεq

)
.

A straightforward computation shows that Bα,β induces a symmetric bilinear form on
V̂ . Let Q̂α,β denote the resulting quadratic form on V̂ .

Since det Aα,β = 4αq+1 + (βq − β)2 is nonsquare in GF(q), it follows that Qα,β
is nondegenerate. Hence Q̂α,β is nondegenerate, as well. Let H be the four-dimensional
subspace {(x, xq, 0, 0, z, zq) : x, z ∈ GF (q2)} of V̂ . Then the restriction of Q̂α,β on
H is a hyperbolic quadratic form, as L1 = {(x, xq, 0, 0, 0, 0) : x ∈ GF(q2)} and L2 =
{(0, 0, 0, 0, z, zq) : z ∈ GF (q2)} are totally isotropic subspaces with trivial intersection.
The orthogonal space of H with respect to bα,β is L = {(0, 0, y, yq, 0, 0) : y ∈ GF(q2)}.
By [22, Proposition 2.5.11], Q̂α,β is elliptic if and only if the restriction of Q̂α,β on L is
elliptic, that is,

Tr(αεy2 + εβyq+1) = 0 (2.4)
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has no solution y ∈ GF(q2) other than 0.
Write y = y0 +εy1, α = a0 +εa1 and β = b0 +εb1 with y0, y1, a0, a1, b0, b1 ∈ GF(q).

As εq = −ε and ε2 = ξ, we have

yq = y0 − εy1
yq+1 = y20 − ξy21
y2 = y20 + ξy21 + 2εy0y1

y2q = y20 + ξy21 − 2εy0y1

αεy2 = ξ(2a0y0y1 + a1(y20 + ξy21)) + ε(a0(y20 + ξy21) + 2ξa1y0y1)

αqεqy2q = ξ(2a0y0y1 + a1(y20 + ξy21))− ε(a0(y20 + ξy21) + 2ξa1y0y1),

whence
Tr(αεy2) = 2ξ(2a0y0y1 + a1(y20 + ξy21)).

Moreover,
Tr(εβyq+1) = 2ξb1(y20 − ξy21).

Then Equation (2.4) has a nontrivial solution y ∈ GF(q2) if and only if (y0, y1) 6= (0, 0)
with y0, y1 ∈ GF(q) is a solution of

(a1 + b1)y20 + 2a0y0y1 + ξ(a1 − b1)y21 = 0. (2.5)

By a straightforward computation, (2.5) occurs if and only if 4αq+1 + (βq − β)2 = u2

for some u ∈ GF(q). But the latter equation contradicts our hypothesis. Therefore, Equa-
tion (2.4) has no nontrivial solution in GF(q2) and hence Q̂α,β is elliptic.

For q even, the above approach still works up to some differences due to the fact that
the well known formula solving equations of degree 2 fails in even characteristic. For
completeness, we give all details.

If q is even, the restriction of Qα,β on V̂ is a quadratic form Q̂α,β on V̂ , and the matrix
of the associated bilinear form bβ is

Bβ =

O2 O2 E
O2 Aβ O2

E O2 O2

 ,

where

E =

(
0 1
1 0

)
and Aβ =

(
0 Tr(β)

Tr(β) 0

)
.

Since β 6∈ GF(q), a straightforward computation shows that the radical of bβ is trivial,
which gives Q̂α,β is nonsingular. As for the odd q case, the orthogonal space of H with
respect to bβ is L. Therefore, Q̂α,β is elliptic if and only if

Tr(αy2 + βyq+1) = 0 (2.6)

has no nontrivial solution y ∈ GF(q2).
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As before, let y = y0 + εy1, α = a0 + εa1 and β = b0 + εb1 with y0, y1, a0, a1, b0, b1 ∈
GF(q). As εq = ε+ 1 and ε2 = ε+ s, with s ∈ C1, we have

yq = y0 + y1 + εy1

yq+1 = y20 + y0y1 + sy21

y2 = y20 + sy21 + εy21

y2q = y20 + (s+ 1)y21 + εy21

αy2 = a0y
2
0 + s(a0 + a1)y21 + ε(a0y

2
1 + a1y

2
0 + (s+ 1)a1y

2
1)

αqy2q = a0y
2
0 + s(a0 + a1)y21 + (a0y

2
1 + a1y

2
0 + (s+ 1)a1y

2
1)

+ ε(a0y
2
1 + a1y

2
0 + (s+ 1)a1y

2
1),

whence
Tr(αy2) = a0y

2
1 + a1y

2
0 + (s+ 1)a1y

2
1 ,

and
Tr(βyq+1) = b1(y20 + y0y1 + sy21).

Therefore, Equation (2.6) has a nontrivial solution in GF(q2) if and only if

(a1 + b1)y20 + b1y0y1 + (a0 + a1 + sa1 + sb1)y21 = 0.

Assume y = y0 ∈ GF(q) is a nontrivial solution of (2.6). Then a1 = b1. This gives

αq+1

(βq + β)2
=
a20
a21

+
a0
a1

+ s ∈ C1,

a contradiction since
a20
a21

+
a0
a1
∈ C0.

Assume that y = y0 + εy1 ∈ GF(q2), with y1 6= 0, is a solution of (2.6). Then y0y−11 is a
solution of

(a1 + b1)X2 + b1X + a0 + a1 + s(a1 + b1) = 0, (2.7)

where b1 6= 0.
Let Y = (a1 + b1)b−11 X . Replacing X by Y in (2.7) gives Y 2 + Y + d = 0 where

d =
a20 + a1a0 + sa21

b20
+
a20 + a21
b20

+
a0 + a1
b0

+ s.

Here, d ∈ C1 by
a20 + a1a0 + sa21

b20
=

αq+1

(βq + β)2
∈ C0.

This shows that Equation (2.7) has no nontrivial solution in GF(q). Hence Equation (2.6)
has no nontrivial solution in GF(q2), as well. Therefore Q̂α,β is elliptic.

Let Q̂α,β stand for the elliptic quadric in PG(V̂ ) defined by the quadratic form Q̂α,β
on V̂ . Then the coordinates of the points of PG(V̂ ) that lie on Q̂α,β satisfy the equation

δqXZq + δXqZ + αδY 2 + αqδqY 2q + Tr(δβ)Y q+1 = 0, (2.8)

with δ = ε or δ = 1 according as q is odd or even.
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3 The GF(q)-linear representation of Buekenhout-Metz unitals

In the light of Proposition 2.1, we introduce another incidence structure Π(Ŝ).
Let φ̂ be the bijective map defined by

φ̂ :
V (3, q2) −→ V̂
(x, y, z) 7−→ (x, xq, y, yq, z, zq)

.

By Proposition 2.1, φ̂ is the field reduction of V (3, q2) over GF(q) in the basis
{v(i)1 , v

(i)
2 , i = 1, 2, 3} of V (6, q2).

The points of PG(2, q2) are mapped by φ̂ to the two-dimensional GF(q)-subspaces of
V̂ of the form

{(λx, λqxq, λy, λqyq, λz, λqzq) : λ ∈ GF(q2)}, for x, y, z ∈ GF(q2),

and hence lines of PG(V̂ ). Such lines form a line-spread Ŝ of PG(V̂ ). By Proposition 2.1
and Corollary 2.2, Ŝ is projectively equivalent to S in PG(5, q2). Hence, Ŝ is also a De-
sarguesian line-spread of PG(V̂ ). Therefore, in PG(5, q2) Π(Ŝ) is projectively equivalent
to the GF(q)-linear representation Π(S) of PG(2, q2).

The following lemma goes back to Singer, see [31].

Lemma 3.1. Let ω be a primitive element of GF(q2) over GF(q) with minimal polynomial
f(T ) = T 2 − p1T − p0. then the multiplication by ω in GF(q2) defines a Singer cycle of
V (2, q) = {(a, b) : a, b ∈ GF(q)} whose matrix is the companion matrix of f(T ).

Proposition 3.2. Any endomorphism of V (3, q2) with matrix A = (aij) defines the endo-
morphism of V̂ with matrix D11 D12 D13

D21 D22 D23

D31 D32 D33

 ,

where Dij = diag(aij , a
q
ij).

The Frobenius transformation ψ : (x, y, z) 7→ (xq, yq, zq) of V (3, q2) defines the endo-
morphism of V̂ with matrix F̂ 0 0

0 F̂ 0

0 0 F̂

 ,

where

F̂ =

(
0 1
1 0

)
.

Proof. The Singer cycle defined by a primitive element ω of GF(q2) over GF(q) acts on
the GF(q)-vector space {(x, xq) : x ∈ GF(q2)} by the matrixD = diag(ω, ωq). For every
entry aij of A, write aij = ωe(i,j), 0 ≤ e(i, j) ≤ q2 − 2. From Lemma 3.1, the multipli-
cation by aij in GF(q2) defines the endomorphism with matrix De(i,j) = diag(aij , a

q
ij).

From this the first part of the proposition follows. The second part comes from Cooper-
stein’s paper [14].
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Remark 3.3. From a result due to Dye [16], the stabilizer of the Desarguesian partition
K in GL(6, q) is the semidirect product of the field extension subgroup GL(3, q2) by
the cyclic subgroup 〈ψ〉 generated by the Frobenius transformation. In terms of projec-
tive geometry, the stabilizer of the Desarguesian spread S in PGL(6, q) is (GL(3, q2) o
〈ψ〉)/GF(q)∗ [16]. It should be noted that the center of GL(V̂ ) is the subgroup
{cI : c ∈ GF(q)∗}. Proposition 3.2 provides the representation in GL(V̂ ) and PGL(V̂ ) of
these stabilizers.

In [2] and [17] the orthogonal Buekenhout-Metz unitals are coordinatized in PG(2, q2).
Let L∞ be the line of PG(2, q2) with equation Z = 0 and P∞ = 〈(1, 0, 0)〉q2 .

Theorem 3.4. Let α, β ∈ GF(q2) such that{
4αq+1 + (βq − β)2 is nonsquare in GF(q), for q odd,
αq+1/(βq + β)2 ∈ C0 with β ∈ GF(q2) \GF(q), for q even.

Then

Uα,β = {〈(αy2 + βyq+1 + r, y, 1)〉q2 : y ∈ GF(q2), r ∈ GF(q)} ∪ {P∞}

is an orthogonal Buekenhout-Metz unital. Uα,β is classical if and only if α = 0.
Conversely, every orthogonal Buekenhout-Metz unital can be expressed as Uα,β for

some α, β ∈ GF(q2) which satisfy the above conditions.

We go back to the projective equivalence of Π(S) and Π(Ŝ) arising from the bijective
map φ̂. The line set φ̂(Uα,β) = {φ̂(P ) : P ∈ Uα,β} can be regarded as the restriction on
Uα,β of the GF(q)-linear representation of PG(2, q2) in PG(V̂ ).

Remark 3.5. Thas [33] showed that the GF(q)-linear representation of the classical unital
is a partition of an elliptic quadric in PG(5, q). Thas’s result is obtained here when the
representation φ̂(U0,β) is used. Let δ = ε for odd q, and δ = 1 for even q. For any
β ∈ GF(q2) satisfying the conditions of Theorem 3.4, U0,β is the set of absolute points of
the unitary polarity associated to the Hermitian form hβ of V (3, q2) with matrix

Hβ =

0 0 δq

0 Tr(δβ) 0
δ 0 0

 .

Hence U0,β has equation

δXqZ + δqXZq + Tr(δβ)Y q+1 = 0.

Let Tr denote the trace map of GF(q2) over GF(q). For any v, v′ ∈ V (3, q2),

Tr(hβ(v, v′)) =

{
b0,β(φ̂(v), φ̂(v′)), for q odd
bβ(φ̂(v), φ̂(v′)), for q even.

This shows that the points in φ̂(U0,β) belong to Q̂0,β . In particular, the line set φ̂(Uα,β) is
a partition of Q̂0,β .
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We now put in evidence the relation between the elliptic quadric Q̂α,β and the Bueken-
hout representation of Uα,β in the Andrè/Bruck-Bose model of PG(2, q2).

The subspace Λ = {〈(x, xq, y, yq, c, c)〉q : c ∈ GF(q), x, y ∈ GF(q2)} is an hy-
perplane of PG(V̂ ) containing the 3-dimensional subspace Σ = {〈(x, xq, y, yq, 0, 0)〉q :

x, y ∈ GF(q2)}. The line set N = {φ̂(P ) : P ∈ L∞} is a Desarguesian line spread of Σ.
Hence, N defines the Andrè/Bruck-Bose model of PG(2, q2) in Λ: the points are the lines
of N and the points of Λ not in Σ, the lines are the planes of Λ not in Σ which meet Σ in a
line of N and N itself, incidence is defined by inclusion. We denote by π(N ) this model
of PG(2, q2). The set Uα,β =

⋃
P∈Uα,β (φ̂(P ) ∩ Λ) is the Buekenhout representation of

Uα,β in π(N ).
The hyperplane Λ is the orthogonal space of the point R = 〈(1, 1, 0, 0, 0, 0)〉q with

respect the polarity associated with the quadric Q̂α,β . Since R ∈ Q̂α,β , the intersection
between Λ and Q̂α,β is a cone Γα,β projecting an elliptic quadric from R and containing
the spread element φ̂(P∞) = {〈(x, xq, 0, 0, 0, 0)〉q : x ∈ GF(q2)} as a generator.

Proposition 3.6. The cone Γα,β coincides with the Buekenhout representation Uα,β of
Uα,β in π(N ), that is, ⋃

P∈Uα,β

(φ̂(P ) ∩ Λ) = Γα,β .

Proof. We have φ̂(P∞) = Q̂α,β ∩ Σ. For any P = 〈(ay2 + βyq+1, y, 1)〉q2 ∈ Uα,β ,

φ̂(P ) = {〈(λ(ay2 + βyq+1), λq(aqy2
q

+ βqyq+1), λy, λqyq, λ, λq)〉q : λ ∈ GF(q2)}.

Then φ̂(P )∩Λ = 〈(αy2 +βyq+1 + r, αqy2q +βqyq+1 + r, y, yq, 1, 1)〉q . From a straight-
forward calculation involving Equation (2.8) of Q̂α,β it follows that φ̂(P ) ∩ Λ ∈ Γα,β .
Since the size of

⋃
P∈Uα,β\{P∞} (φ̂(P ) ∩ Λ) equals the size of Γα,β \ φ̂(P∞) the result

follows.

Remark 3.7. The affine points of Γα,β satisfy the equation

δqX + δXq + αδY 2 + αqδqY 2q + Tr(δβ)Y q+1 = 0, (3.1)

with δ = ε or δ = 1 according as q is odd or even. It may be observed that Equation (3.1)
is the equation of the affine points of Uα,β [13, 20]. Equation (3.1) in homogeneous form
is

δqXZ2q−1 + δXqZq + αδY 2Z2q−2 + αqδqY 2q + Tr(δβ)Y q+1Zq−1 = 0,

which is satisfied by the points of the GF(q)-linear representation φ̂(Uα,β) of Uα,β .
In [28], Polverino proved that the GF(q)-linear representation of an orthogonal

Buekenhout-Metz unital cover the GF(q)-points of an algebraic hypersurface of degree
four minus the complements of a line in a three-dimensional subspace. She also showed
that the hypersurface is reducible if and only if the unital is classical. Polverino’s result
is obtained here when the representation φ̂(U0,β) is used. Let F be the hypersurface of
PG(5, q2) with equation

F : δqX1Z1Z
2
2 + δX2Z

2
1Z2 + αδY 2

1 Z
2
2 + αqδqY 2

2 Z
2
1 + Tr(δβq)Y1Y2Z1Z2 = 0.
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The intersection F̂ of F with PG(V̂ ) consists of all points of PG(V̂ ) satisfying the
equation

δqXZ2q+1 + δXqZq+2 + αδY 2Z2q + αqδqY 2qZ2 + Tr(δβq)Y q+1Zq+1 = 0. (3.2)

Clearly, F̂ contains the three-dimensional subspace Σ. By the above arguments, the GF(q)-
linear representation φ̂(Uα,β) covers the points in F̂ minus the complements of φ̂(L∞)
in Σ. Furthermore, Equation (3.2) defines an algebraic hypersurface of degree four of
PG(5, q). A straightforward, though tedious, calculation shows that Equation (3.2) is pre-
cisely the algebraic hypersurface provided by Polverino in [28].

As elliptic quadrics in PG(V̂ ) are projectively equivalent, some linear collineation τα
of PG(V̂ ) takes Q̂0,β to Q̂α,β . Actually we need such a linear collineation τα with some
extra-property.

Proposition 3.8. In PG(V̂ ) there exists a linear collineation τα which takes Q̂0,β to Q̂α,β ,
preserves the subspaces Λ, Σ, and fixes φ̂(P∞) pointwise. Therefore it maps the cone Γ0,β

into Γα,β .

Proof. The restriction Q̂α,β |L on the subspace L = {(0, 0, y, yq, 0, 0) : y ∈ GF(q2)} of
Q̂α,β given by (2.3) is the quadratic form defined by

Q̂α,β |L(y, yq) = αδy2 + αqδqy2q + Tr(δβ)yq+1 ∈ GF(q)

which is of elliptic type by the proof of Proposition 2.4. As two such forms are equivalent,
some endomorphism of L maps Q̂0,β |L to Q̂α,β |L. In a natural way, as in the proof of
Proposition 2.3, we may identify any endomorphism of L with a 2× 2 q-circulant matrix.
Doing so, the endomorphism with matrix

D =

(
d1 d2
dq2 dq1

)
,

where

dq+1
1 + dq+1

2 = 1

d1d
q
2 = αδTr(δβ)−1,

maps Q̂0,β |L to Q̂α,β |L. Let τα be the linear collineation of PG(V̂ ) defined by the matrix

Dα =

 I2 O2 O2

O2 D O2

O2 O2 I2

 .

It is easily seen that τα preserves the subspaces Λ, Σ, and fixes φ̂(P∞) pointwise, and that
it maps the cone Γ0,β into Γα,β .

Remark 3.9. Bearing in mind Remark 3.3, one can ask whether τα is an incidence preserv-
ing map of Π(Ŝ). The answer is negative by d1d2 6= 0 and Proposition 3.2. This implies
that Γ0,β and Γα,β are Buekenhout representations of unitals of PG(2, q2) and that they
are not projectively equivalent. In particular, this provides a new proof for the existence of
non-classical unitals embedded in PG(2, q2).
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It is clear that the image Ŝτα of the Desarguesian line-spread Ŝ under the linear
collineation τα is a Desarguesian line-spread and it defines the GF(q)-linear representa-
tion Π(Ŝτα) of PG(2, q2).

4 The proof of the Main Theorem
In our proof the models of PG(2, q2) treated in Section 3 play a role. Two of them arose
from Desarguesian line-spreads of PG(V̂ ) denoted by Ŝ and Ŝτα respectively, the third
was the Andrè/Bruck-Bose model π(N ) in the 4-dimensional subspace Λ.

In PG(2, q2) consider a unital U isomorphic, as a block-design, to an orthogonal
Buekenhout-Metz unital Uα,β with α 6= 0. It is known [2, 17] that Uα,β has a special
point which is the unique fixed point of the automorphism group of Uα,β . Hence the au-
tomorphism group of U fixes a unique point of U . Up to a change of the homogeneous
coordinate system in PG(2, q2), the special point of Uα,β is P∞ = 〈(1, 0, 0)〉q2 and the
tangent line of Uα,β at P∞ is L∞ : Z = 0. Up to a linear collineation, P∞ ∈ U is the fixed
point of the automorphism group of U and L∞ is the tangent to U at P∞. Therefore, U and
Uα,β share P∞ and L∞.

We interpret the isomorphism between U and Uα,β in each of the above three mod-
els of PG(2, q2). The representation Û = {φ̂(P ) : P ∈ U} of U in Π(Ŝ) is iso-
morphic, as a block-design, to Ûα,β = {φ̂(P ) : P ∈ Uα,β}. The Buekenhout rep-
resentation U =

⋃
P∈U (φ̂(P ) ∩ Λ) of U in π(N ) is isomorphic, as a block-design, to

Uα,β =
⋃
P∈Uα,β (φ̂(P ) ∩ Λ). Here, by Proposition 3.6, Uα,β is the cone Γα,β . This gives

that the representation Ũ = {L ∈ Ŝτα : L ∩ Λ ⊂ U} of U in Π(Ŝτα) is isomorphic, as a
block-design, to Ũα,β = {L ∈ Ŝτα : L ∩ Λ ⊂ Γα,β}.

From Proposition 3.8, the lines which are the points of Ũα,β partition the elliptic quadric
Q̂α,β = Q̂τα0,β . On the other hand, from Remark 3.5, Q̂0,β is partitioned by lines which are

the points of the classical unital Û0,β in Π(Ŝ). This yields that Ũα,β coincides with Ûτα0,β .

It turns out that Ũα,β is a classical unital in Π(Ŝτα), and hence Ũ is isomorphic, as a
block-design, to the classical unital.

Now we quote the following result from [23] which was the keystone in the proof of
Theorem 1.1.

Lemma 4.1. Let U be a unital embedded in a Desarguesian finite projective plane π and
isomorphic, as a block-design, to the classical unital. For any block B of U , let ` be the
line of π containing B. Then B is an orbit of a cyclic subgroup of order q+ 1 contained in
the projectivity group of `. This implies that B is a Baer subline of `.

We emphasize that the proof of Lemma 4.1 only uses arguments involving point-block
incidences of U viewed as a block-design embedded in π.

Therefore, Lemma 4.1 applies to Ũ . Thus, every block of Ũ is a Baer subline of Π(Ŝτα),
that is, a regulus of PG(V̂ ). From this, each block of U is the intersection of these reg-
uli with Λ. In particular, each block of U through φ̂(P∞) is the union of φ̂(P∞) with q
collinear affine points, and this implies that each block of Û through φ̂(P∞) is a regulus
of PG(V̂ ) whose lines are in Ŝ. Under φ̂, these reguli correspond to Baer sublines of
PG(2, q2) through P∞. This yields that the points of U on each of the q2 secant lines to
U form a Baer subline through P∞. By the characterization of such unitals of PG(2, q2)
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given in [12, 29], we may conclude that U is a Buekenhout-Metz unital. By definition, the
Buekenhout representation U of U is a cone that project an ovoidO from a point of φ̂(P∞)
not in O. Here an ovoid is a set of q2 + 1 points in a 3-dimensional subspace of Λ no three
of which are collinear.

To conclude the proof we only need to prove that O is an elliptic quadric. Since the
ovoids in PG(3, q) with odd q are elliptic quadrics, see [4, 26], we assume q = 2h. In
PG(3, 2h), there are known two ovoids, up to projectivities, namely the elliptic quadric
which exist for h ≥ 1, and the Tits ovoid which exists for odd h ≥ 3; see [18, Chapter 10].
Let Ω be the 3-dimensional subspace of Λ containing O. Note that O = Ω ∩ U . Set α∞ to
be the plane Ω ∩ Σ. Then α∞ meets O exactly in the point O ∩ φ̂(P∞), and it is a simple
matter to show that α∞ contains only one line φ̂(P ) of N . Also, φ̂(P ) is distinct from
φ̂(P∞). Let α1, . . . , αq denote the further planes of Ω through φ̂(P ). As these planes are
lines of π(N ) through the point φ̂(P ), each of them meets U in 1 or q + 1 points. This
holds true for O.

It is well known [19, Section 12.3] that in a finite Desarguesian projective plane through
any point off a unital there are exactly q + 1 tangent lines, that is, lines of the plane that
intersects the unital in exactly one point. In terms of the unital U this property states that
there is only one plane among α1, . . . , αq that meetsO in exactly one point. Let α1 denote
this plane. Then the block αi ∩ O of U , for i = 2, . . . , q, is the intersection of αi with a
regulus in PG(V̂ ). Since that regulus does not contain φ̂(P ), the block αi ∩ O is a conic
Ci of αi, for i = 2, . . . , q. Thus the blocks αi ∩ O, for i = 2, . . . , q, are q − 1 conics that
partition all but two points of O. By [8, Theorem 5] O is an elliptic quadric.
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