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Izvlec̆ek

Članek obravnava uporabo pogosto uporabljenega poenostavljenega računskega modela za analitični izračun prečnih 
premikov vitkih nosilcev, vgrajenih v Winklerjevi zemljini, ki so prečno razpokani. Prikazano je reševanje pripadajočih 
diferencialnih enačb in pridobitev natančnih analitičnih rešitev za izračun prečnih premikov poenostavljenega modela. 
Rešitve za pomike omogočajo izračun porazdelitve notranjih upogibnih momentov in strižnih sil z uporabo znanih zvez iz 
Euler-Bernoullijeve teorije upogiba ali z uporabo dveh mehanskih ravnotežnih pogojev. 

Numerična primera pokrivata obtežni situaciji, na kratko predstavljata možnosti uporabe modela in potrjujeta uporabnost 
predstavljenega pristopa. Rezultati, ki so pridobljeni s predstavljenim pristopom, so primerjani še z vrednostmi iz obsežnih 
diskretnih računskih modelov po metodi končnih elementov, tvorjenimi z 2D končnimi elementi. Očitno je, da se velike 
razlike obsega vloženega računskega dela modelov ne odražajo v pomembnih razlikah rezultatov med računskima mode-
loma.

Kljuc̆ne besede

nosilci s prečnimi razpokami, poenostavljeni računski model, elastična podlaga, Winklerjeva zemljina, prečni pomiki, 
upogibni momenti in prečne sile
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Abstract

This paper discusses the coupling of Winkler’s soil 
model with a simplified computational model that is 
widely used for the calculation of transverse displace-
ments in transversely cracked slender beams. The 
bending problem of a cracked beam embedded in 
Winkler’s soil is addressed by means of an analytical 
approach. The solving of the corresponding differential 
equation solutions is studied in order to obtain exact 
analytical expressions for the transverse displace-
ments of the simplified computational model. After 
the solutions for the displacements of the beam are 
obtained, the inner bending moment and the shear 
force distributions within the beam can be calculated, 
either by using known, established relationships from 
the Euler–Bernoulli beam theory or by implementing 
two mechanical equilibrium conditions.

Numerical examples covering several load situations 
are briefly presented in order to support the discussed 
approach. The results obtained with the presented 
approach are then further compared with the values 
from huge 2D finite-element models, where a detailed 
description of the crack was achieved using the discrete 
approach. It is evident that any drastic difference in 
the computational effort is not reflected in the signifi-
cant differences in the results between the models.
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1 INTRODUCTION

Although cracks can certainly be considered as one 
of the most unfavourable effects that might occur in a 
structure, and many efforts are invested in their preven-
tion during the utilization of a structure, some engineer-
ing situations actually require their inclusion within the 
analysis. A typical example of such a situation is in the 
design of structures for earthquake resistance, according 
to the current regulations. The EN 1998 standard, for 
example, requires that in concrete buildings, in compos-
ite steel-concrete buildings, and in masonry buildings, 
the stiffness of the load-bearing elements should, in 
general, be evaluated by taking into account the effect 
of cracking. This standard further allows for the two 
elastic (flexural as well as shear, but not axial) stiffness 
properties of concrete and masonry elements to be taken 
as being equal to one half of the corresponding stiffness 
of the non-cracked elements, unless a more accurate 
analysis of the cracked elements is performed. Since the 
explicit modelling of cracks requires the implementation 
2D or 3D finite elements, where a detailed discretisa-
tion of the crack and its surrounding can be properly 
achieved with an appropriate mesh of finite elements, 
an accurate analysis is time-consuming and demands a 
substantial computational effort.

However, the structural analysis of cracked beams is 
of great engineering interest (although primarily from 
the inverse-identification point of view), and has been 
extensively studied over recent decades, resulting in 
numerous investigations. Several studies have confirmed 
that cracks can be successfully and implicitly treated as 
slope discontinuities within a 1D model of a beam. This 
simplified model, given by Okamura et al. [1], where 
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the crack is represented by means of an internal hinge 
endowed with a massless rotational spring (using the 
linear moment-rotation constitutive law), thus connect-
ing those non-cracked parts of the structure that are 
modelled as elastic elements, represents the basis for a 
number of papers. Okamura et al. further introduced the 
earliest definition for the rotational linear spring stiff-
ness Kr of a rectangular cross-section. In addition, some 
other researchers [2-8] have presented their definitions. 

The model was successfully implemented for a direct 
analysis of the dynamics when determining the natural 
frequencies and mode shapes (Shifrin and Ruotolo 
[9], Khiem and Lien [10], Li [11], Fernández-Sáez and 
Navarro [12]).

Okamura’s simplified computational model has already 
been implemented regarding the experimental inverse 
identification of a crack (Rizos et al. [13], Boltežar et al. 
[14], Vestroni and Capecchi [15], Bamnios et al. [16]). 

However, since the governing differential equations of 
a bending displacement can only be solved analytically 
for moderate structures, the research interest has further 
oriented towards finite-element solutions (Gounaris and 
Dimarogonas [17], Skrinar and Umek [18], Skrinar [19], 
Krawczuk and Žak [20], Kisa and Brandon [21]).

Two main approaches exist for the modelling of cracks 
within those derivations based on the same compu-
tational model. Although they converge towards the 
same results, they differ regarding genuine mechanical 
descriptions, and also mathematical instrumenta-
tions. The first approach, also implemented within the 
presented manuscript, appears to be more mechanical 
(or engineering). It is based on the solutions of coupled 
governing differential equations for the elastic non-
cracked regions where the cracks are modelled as slope 
discontinuities ([7], [9], [10], [12], [14], [16], [18], [19], 
[20], [22]). For various types of problems, the general 
solutions (as functions of four integration constants 
only) are usually given in advance, and the influence of 
the cracks is hence taken into account regarding four 
continuity conditions at each location. Consequently, 
the coefficients that govern displacement functions are 
explicit functions of pure mechanical information – the 
stiffnesses of rotational springs. In the second approach, 
the singularities of flexural stiffness, as represented 
by the Dirac delta unit step functions, are directly 
introduced within the governing differential equation 
(Caddemi and Caliò [23], Biondi and Caddemi [24,25]). 
This governing equation is, thus, exclusively formulated 
over the entire domain of the beam without the explicit 
enforcement of any of those continuity conditions 
already accounted for in the adopted flexural stiffness 

model. However, in order to prevent meaningless nega-
tive values for either the flexural rigidity or the rotational 
stiffness, as caused by the negative impulses applied to 
the flexural rigidity of the element, those coefficients 
(without any apparent physical interpretation) that 
govern the solution of a unique governing differential 
equation, must additionally fulfil certain mathematical 
conditions.

In order to expand previous realizations, the scope of the 
presented paper is oriented towards an examination of 
the simplified model’s behaviour regarding the problems 
of slender-cracked beams resting on an elastic soil. The 
idea of modelling soil as an elastic medium was first 
introduced by Winkler, and since then Winkler’s soil 
model has been the focus of extensive research. This 
model is the most convenient representation of soil 
support within the domain of linear elasticity for framed 
structure-soil interaction analyses. Several approaches to 
the analysis of non-cracked beams on elastic foundations 
can be found in the literature. Jones [26] implemented 
a finite difference theory, Chen [27] used differential 
quadrature to discretize the governing differential equa-
tions defined on all elements for solving the problem 
of beams resting on an elastic foundation, Onu [28] 
derived a formulation leading to an explicit free-of 
meshing stiffness matrix for a beam finite-element 
foundation model. Guo and Weitsman [29] employed 
Green’s foundation formulation to evaluate the response 
of beams on non-uniform elastic foundations, with the 
nonlinear material and geometric behaviours of rein-
forced concrete. The non-linear material and geometric 
behaviour of reinforced concrete deep-beams resting on 
a linear or non-linear Winkler’s foundation was studied 
by Al-Azzawi et al. [30], by implementing a smeared-
crack model within a finite-elements model established 
with ANSYS computer software. For a solution using a 
layer finite-element method, an incremental approach 
within a modified Newton-Raphson iteration method 
was employed by Cerioni and Mingardi [31]. The design 
analysis of beams, circular plates, and cylindrical tanks, 
on elastic foundations with a beam/strip analysis, was 
also studied by Melerski [32].

This paper studies those analytical equations for the 
load-displacement response of a cracked-elastic beam on 
a Winkler’s soil model, as established through the solu-
tions from governing differential equations, regarding an 
implemented, simplified crack-model. These solutions 
can be established in a straightforward manner, in 
order to yield a system of linear algebraic equations that 
can be solved by elementary numerical techniques. To 
complete the study, the results obtained with the simpli-
fied computational model are compared with the results 
obtained from more precise, as well as detailed and, 
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consequently, more computational effort requiring large 
2D finite elements models where the discrete approach 
is utilized for the description of the crack. The presented 
examples confirm that the elaborated solutions may be 
effectively implemented for static structural analyses, 
where cracked beam-like elements are required.

2 SIMPLIFIED MODEL FOR 
CRACKED BEAMS ON 
WINKLER’S FOUNDATION

One of the simplest models for a mathematical descrip-
tion of a cracked structure’s response behaviour is a 
model where the crack is introduced as a rotational 
linear spring connecting the non-cracked parts of the 
structure, as presented by Okamura et al. [1] (Fig. 1). 
Due to the localized effect of the crack, both the non-
cracked adjacent parts of the element (to the left and to 
the right of the crack) are modelled as elastic sections.

Figure 1. Okamura’s computational model for transverse 
displacements.

The crack is defined by its location (i.e., the distance L1 
from the left-hand end), and depth d. The transverse 
displacements are thus (in addition to all the other 
parameters of the structure) a function of the crack stiff-
ness Kr. The stiffness of the massless rotational spring 
depends on the height of the non-cracked cross-section 
h, the relative depth of the crack δ=d/h, and the product 
of the Young's modulus E with the moment of inertia of 
the non-cracked cross-section I, i.e., the flexural rigidity 
EI. Okamura et al. introduced the earliest definition of 
rotational stiffness, and this is the only definition that 
also takes Poisson’s ratio ν into account:

( )r 2K
6 (1 )

EI
h Fn d

=
⋅ ⋅ - ⋅

        (1)

with

( ) 2 3 4 5 6

7 8 9 10
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When studying the elastic displacement of a non-
cracked beam element of infinitesimal length, it is 
possible to derive a governing differential equation that 
relates to the coordinate x, transverse displacement w(x), 
the geometrical and mechanical properties of the cross-
section (flexural rigidity EI), and the applied transverse 
load q(x). The general solution of the equation for a 
beam on Winkler’s soil model, which is a fourth-order 
ordinary differential equation with constant coefficients, 
can be given in two alternative mathematical forms. The 
form, as used in this manuscript, can be found in many 
structural textbooks, for example, in Oden, [33]:

( ) ( )( )( ) cos sinxw x e A x B x eb b b⋅= ⋅ ⋅ ⋅ + ⋅ ⋅ +

( ) ( )( )cos sinxe C x D xb b b- ⋅+ ⋅ ⋅ ⋅ + ⋅ ⋅  + particular integral

with 
4

4
k
E I

b=
⋅ ⋅

where A, B, C and D are constants of the integration 
obtained from boundary conditions, whilst the particu-
lar integral depends on the mathematical form of the 
load q(x). The constant k is referred to as the constant 
of proportionality, given as a product of the modulus 
(or coefficient) of the subgrade reaction ks with the 
width of the beam b. The relationship between the soil 
subgrade reaction modulus and its elastic properties, i.e., 
the modulus of elasticity for the elastic medium Ef and 
the Poisson’s ratioνf  is given by a formula developed by 
Selvadurai [34]:

( )2

0.65
1

f
s

f

E
k
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⋅
=
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However, since the crack separates the beam into two 
elastic parts, the transverse displacements cannot be 
described by a single function anymore and, therefore, 
two displacement functions are required. Consequently, 
two coupled differential equations for the parts on the 
left- (v1(x)) and right-hand (v2(x)) sides of the crack, 
with eight unknown constants altogether, have to be 
solved simultaneously. The solutions, i.e., the functions 
w1(x) and w2(x) for the parts to the left and the right, 
respectively, implement eight unknown constants 
altogether:

( ) ( )( )1 1 1( ) cos sinxw x e A x B xb b b⋅= ⋅ ⋅ ⋅ + ⋅ ⋅ +

( ) ( )( )1 1cos sinxe C x D xb b b- ⋅+ ⋅ ⋅ ⋅ + ⋅ ⋅  + particular integral

( ) ( )( )2 2 2( ) cos sinxw x e A x B xb b b⋅= ⋅ ⋅ ⋅ + ⋅ ⋅ +

( ) ( )( )2 2cos sinxe C x D xb b b- ⋅+ ⋅ ⋅ ⋅ + ⋅ ⋅ + particular integral
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Four of them are determined from the actual boundary 
conditions, and the remaining four are obtained from 
the continuity conditions at the crack location (x=L1), 
where the influence of the crack is introduced as a 
slope discontinuity. These conditions are the equality of 
displacement:

1 1 2 1( ) ( ),w L w L=         (5)

the condition for the discrete increase of the rotations: 

"
1 1

1 1 2 1
( )( ) ( )

r

EI w LL L
K

j j
⋅

+ = ,        (6)

the equality of the bending moments:

" "
1 1 2 1( ) ( )w L w L= ,        (7)

and the equality of the shear forces:

''' '''
1 1 2 1( ) ( )w L w L= .        (8)

The described approach can be straightforwardly 
expanded to cover a situation with Nc cracks that split the 
beam into Nc+1 elastic segments. A transverse displacement 
computation requires solving the Nc+1 coupled governing 
differential equations by implementing four mechanical 
boundary conditions and 4 . Nc continuity conditions. 

After the solutions for the displacements of the beam are 
obtained, the bending moment and shear force distribu-
tions within the beam can be calculated using the well-
known relationships from the Euler–Bernoulli beam 
theory. However, with known solutions for the displace-
ments, the problem becomes statically determinate. 
Consequently, the internal load distributions may also 
be fully determined by implementing two mechanical 
equilibrium conditions without using stiffness criteria.

The discussed approach even allows for analytical solu-
tions of the transverse displacements to be constructed 
for some load situations. However, for two main reasons 
these solutions are not actually essential in engineering 
practice. Firstly, analytical solutions cannot cover all 
the general load cases that may appear, and further-
more, their derivations are also very time consuming. 
Secondly, in engineering practice, numerical results are 
sufficient for the analysis.

3 VALIDATIONS

Two load situations of a cracked structure were analyzed 
in order to verify the discussed approach. The length L 

of the beam was 10 m, the cross-section was a rectangle 
with dimensions of 0.80 m by 0.80 m, and the Young 
modulus was 33 GPa (corresponding to concrete grade 
C30/37). Two cracks were introduced at distances of 3 m 
and 2 m from the left- and right-hand ends, respectively. 
The depths of both cracks were 0.4 m and, from among 
all the existing definitions for a rotational spring, the 
definition given by Okamura was selected (producing 
the value Kr= 4.423902 . 108 Nm) due to the fact that this 
is the only one that takes the Poisson’s ratio into account. 
For this relative depth and a Poisson’s ratio of 0.3, 
Okamura’s definition produces results that have been 
proved to be in good agreement with those experimen-
tally obtained values, as presented by Vestroni [35]. 

The Winkler’s foundation was assumed to have a 
subgrade reaction modulus of ks = 50 MPa/m.

Transverse displacements, shear forces, and bending 
moments along the structure’s length were studied for all 
load cases.

The considered structure was furthermore modelled 
using finite elements by implementing the SolidWorks 
Simulation Professional v. 2011 finite-element program, 
where the discrete-crack approach was utilized to model 
the cracks. The transverse displacements and reactions 
were obtained from a computational model consisting of 
163,369 2D six-noded quadrilateral second-order trian-
gular-shell finite elements with more than 327,747 nodal 
points. In each node, three degrees of freedom were 
taken into account – vertical and horizontal displace-
ments, as well as rotation. The vertical and horizontal 
displacements for each load combination were obtained 
in discrete points by solving approximately 2,000,000 
linear equations.

3.1 LOAD CASE 1: THREE CONCEN-
TRATED DOWNWARD FORCES

During the first load situation three vertical downward 
transverse forces were applied, located at the left-end 
(F1=500 kN), mid-span (F2=800 kN), and the right-
end (F3=250 kN), Fig. 2. Since the structure had two 
cracks and a concentrated in-field transverse load, the 
corresponding computational model of the considered 
load combination consisted of four elastic segments. 
Consequently, four coupled functions for four elastic 
regions had to be analyzed in order to obtain vertical 
displacement distributions along the structure. The 
interpolation functions for each region followed the 
mathematical form of Eq.(1), without a particular 
integral, since no distributed load was applied to the 
structure.
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3.2 LOAD CASE 1: RESULTS AND DISCUSSION

The following functions for transverse displacements 
of the axis were obtained from the system of 16 linear 

algebraic equations (resulting from four coupled govern-
ing differential equations, GDE), by the implementation 
of mechanical boundary conditions, as well as continuity 
conditions:

Figure 3. Comparison of transverse displacements.

Figure 2. First example setup.
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The transverse displacements along the axis of the struc-
ture obtained by GDEs were compared to the discrete 
values obtained from the FE mesh, and are presented 
in Fig. 3, where only small discrepancies are noticeable. 
The transverse displacements for the non-cracked struc-
ture are also shown, exclusively to emphasize the effect 
of the introduced cracks. 

The stress distribution at the soil surface can be obtained 
directly by multiplying the transverse displacements 
by the constant of proportionality. Fig. 4, therefore, 
shows the complete beam in the deformed state with the 
distance between the nodes being approximately 1 cm. 
It is obvious from Fig. 4 that the deformed curve of the 
contact surface is smooth and without any significant 
variations.

The same behaviour is evident, even in the vicinities 
of both cracks, Fig. 5 and, consequently, it can be 
concluded that strong local variations of the soil stresses 
are not actually presented.

It is further evident from Fig. 5 that open cracks do not 
exhibit any unexpected behaviour.

The differences between the displacements from both 
models were additionally examined since the transverse 
displacements represent a foundation for a further 
analysis of the inner forces and the bending moments. 
Fig. 6 shows the discrepancies in the results from both 
computational models at some discrete points along 
the structure. As expected, slightly larger discrepancies 
appeared at all the positions of the local effects (applied 
transverse loads and cracks). The average discrepancy 
was slightly below 0.77 %, with a maximum positive 
discrepancy of 2.01 % appearing at the right-end, and 
a maximum negative discrepancy of 2.09 % appearing 
at the left crack. It should be mentioned that the non-
cracked situation was also considered, bringing the aver-
age discrepancy slightly below 0.37 %, with a maximum 
discrepancy of 1.19 % appearing at the mid-span. This 
proves that the discrepancies for the cracked situation do 
not originate solely from the applied simplified model.

Figure 4. Deformed beam.

Figure 5. Details of the beam deformed state in the vicinity of the cracks.
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Figure 6. Discrepancies in transverse displacements.

Afterwards, the solution of GDEs allowed the bending 
moments to be evaluated analytically along the structure 
by implementing the second derivatives of the transverse 
displacement functions. The results obtained with this 
approach coincide completely at every point with the 
values obtained from the simple equilibrium conditions 
of the rotations. 

Furthermore, the bending moment values from the 
2D FE model were additionally required in order to 
provide a reliable assesment of the obtained results. Two 
unrelated approaches were conducted, since the bending 
moment values could not be retrieved directly from 
the 2D FE computational model. In the first approach, 
polynomial interpolation was utilized individually for all 
four regions in order to construct transverse displace-

ment functions within the range of each discrete set of 
evaluated displacements (presented in Fig. 3). When 
using a polynomial interpolation, the interpolant is a 
polynomial and, thus, infinitely differentiable, which 
then made it possible to determine the bending-moment 
functions. However, although the matching of the 
transverse displacement functions was excellent and 
completely without any oscillatory artefacts, these 
negative effects become more than just evident at the 
end points of all four bending-moment functions, Fig. 7 
(dashed line). Consequently, the interpolated transverse 
displacement functions were exclusively implemented 
within the equilibrium conditions of the rotations, thus 
providing results (dotted line) in excellent agreement 
with GDEs solutions from the simplified computational 
model (solid line). 

Figure 7. Comparison of bending moments.
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In the second approach, the moments of normal stresses 
from the 2D FE model were numerically integrated in 
several selected transverse sections in order to construct 
bending moments. This approach produced values that 
were completely independent of the obtained displace-
ments. Special attention was paid to those locations 
where the local stress singularities were caused by the 
applied concentrated loads or cracks, primarily due the 
fact that the stresses were actually obtained in Gauss 
integration points within the finite elements, and their 
nodal values were further obtained by extrapolation, 
automatically executed by the original algorithm of the 
FE software. Nevertheless, an excellent agreement of 
the results from both computational models was clearly 
proved when comparing the integrated values (discrete 
dots in Fig. 8) to the values obtained from the GDEs 
(solid line). The discrepancy in the results at the position 
of the maximum negative (hogging) moment (located 
between the left end and left crack) was 0.98 %, while 
at the position of maximum positive (sagging) moment 
(located at the mid-span), the discrepancy was 1.51 %. 

The discrepancies at the cracks’ locations were 1.71 % and 
1.17 % for the left- and right-hand cracks, respectively.

An identical situation was also detected when the 
shear forces were studied and all four computational 
techniques were implemented. Again, both computations 
based on GDEs solutions of the simplified model (the 
third derivative of transverse displacements, as well as the 
applied vertical equilibrium) produced identical results 
(red solid line in Fig. 9). Furthermore, the first solution 
based on the discrete displacements from the FE model, 
i.e., the implementation of the interpolated displace-
ments within the condition of the vertical equilibrium, 
again provided an exceptional agreement with the first 
two approaches (dashed line). Like with the bending 
moments, the integration of the shear stresses from the 
FE model at certain selected cross-sections (discrete 
dots) again produced excellent matching of the results, 
even at the centre of the structure, where a concentrated 
transverse load was applied and, consequently, an abrupt 
change in the shear forces was expected.

Figure 8. Comparison of bending moments.

Figure 9. Comparison of shear forces.
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The discrepancy of the results at the position of the 
maximum negative shear force (located at the left-end) 
was 0.12 %, while at the position of the maximum 
positive shear force (located at the left-hand side of the 
midspan) the discrepancy was 0.28 %.

3.3 LOAD CASE 2: THREE CONCEN-
TRATED DOWNWARD FORCES AND 
TWO UNIFORM TRANSVERSE LOADS

In the second load case, three vertical downward 
transverse forces from the first load situation remained 
on the structure; however, both side forces were shifted 
by 20 cm towards the centre of the beam. Furthermore, 
two uniform transverse continuous loads were applied. 
The downward uniform load of 50 kN/m was applied in 
the region between the left-end and the mid-span of the 
structure, while the remainder of the element was loaded 
by a downward uniform load of 75 kN/m, Fig. 10. 

3.4 LOAD CASE 2: RESULTS AND 
DISCUSSION

Since the structure had two cracks and three concen-
trated in-field transverse loads, the corresponding 
computational model of the considered load combina-
tion consisted of six elastic segments. Consequently, 
six coupled functions for six elastic regions had to be 
analyzed in order to obtain the vertical displacement 
distributions along the structure. Since the distributed 
load was applied to each part of the structure, the 
interpolation function for each region followed the 
mathematical form of Eq.(2), with the particular integral 
equal to -q/k.

The following functions for the transverse displacements 
were obtained from a system of coupled governing 
differential equations (GDEs) by the implementation of 
mechanical boundary conditions, as well as the continu-
ity conditions:

Figure 10. Second example setup.
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The transverse displacements along the axis of the 
structure obtained by the GDEs were compared to the 
discrete values obtained from the FE mesh, as presented 
in Fig. 11, where only small discrepancies are noticeable. 
The transverse displacements for the non-cracked struc-
ture are also shown, exclusively to emphasize the effect 
of the introduced cracks.

The differences between the displacements from both 
models were further examined. Figure 12 shows the 
discrepancies in the results from both computational 
models at some discrete points along the structure. 
Again, extreme local discrepancies appeared at all 
positions regarding local effects (applied transverse 
loads and cracks). Compared to the first load case, the 
average discrepancy was even better, i.e., slightly below 

0.5 %. Furthermore, both of the obtained extreme values 
were also lower. A maximum positive discrepancy of 
1.18 % and a maximum negative discrepancy of 1.33 
% again appeared at the same points: at the right-end 
and the left-crack, respectively. It should also be noted 
that, for the considered load case, the discrepancy at the 
right-crack also decreased, while at the left-end of the 
structure the discrepancy remained almost identical, 
when compared to the first load case.

The bending moments were evaluated analytically along 
the structure by implementing the second derivatives of 
the transverse displacement functions from the solutions of 
the GDEs. The results obtained with this approach at every 
point coincided completely with those values obtained 
from the simple equilibrium conditions of the rotations. 

Figure 12. Discrepancies of transverse displacements.

Figure 11. Comparison of transverse displacements.
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As in the first load case, the displacement results from 
the 2D FE model were additionally implemented in 
two approaches for the comparative evaluation of the 
bending moments. In the first approach a polynomial 
interpolation was again utilized individually for all six 
regions in order to construct the transverse displace-
ment functions within the range of each discrete set of 
evaluated displacements. However, it transpired that 
the transverse displacements for both short-ending 
regions can also be completely and adequately described 
by those functions belonging to the next neighbouring 
region. The interpolated functions were afterwards 
implemented within the equilibrium conditions of the 
rotations, providing results (dotted line) in excellent 
agreement with GDEs solutions from the simplified 
computational model (solid line), Fig. 13. In the second 
approach, the moments of the normal stresses from 
the discrete points of the FE model were numerically 
integrated within several selected transverse sections in 

order to construct the bending moments (discrete dots 
in Fig. 11), again proving the quality of the results from 
the simplified model.

The discrepancy in the results at the position of the 
maximum negative (hogging) moment (located between 
the left-end and left-crack) was 1.07 %, whilst at the 
position of the maximum positive (sagging) moment 
(located at the mid-span) the discrepancy was 1.21 %. 
The discrepancies at the crack locations were 1.69 % and 
1.13 % for the left and right-cracks, respectively.

The shear forces were aditionally studied, implement-
ing all four computational techniques. As expected, 
both computations based on the GDEs solutions 
of the simplified model (the third derivative of the 
transverse displacements, as well as the applied verti-
cal equilibrium) produced identical results (red solid 
line in Fig. 14). Furthermore, the first solution based 

Figure 14. Comparison of shear forces.

Figure 13. Comparison of bending moments.
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on the discrete displacements from the FE model, i.e., 
the implementation of the interpolated displacements 
within the condition of the vertical equilibrium, again 
provided an exceptional agreement with the first two 
approaches (dashed line). Finally, the integration of the 
shear stresses at certain selected isolated cross-sections 
(discrete dots) again produced an excellent matching of 
the results, even within the positions of the concentrated 
transverse loads, where abrupt changes in the shear 
forces clearly appeared.

The discrepancy in the results at the position of the 
maximum negative shear force (located at the right-side 
of the left transverse force) was 1.59 %, while at the posi-
tion of the maximum positive shear force (located at the 
left-side of the mid-span) the discrepancy was 0.30 %. 

4 CONCLUSIONS 

Okamura’s simplified computational model of cracked 
beams was implemented to evaluate the transverse 
displacements and inner forces for transversely cracked 
slender beams resting on Winkler’s foundation. The 
transverse displacements were firstly evaluated from 
solutions of coupled differential equations, while the 
implementation of well-known relationships from the 
Euler–Bernoulli beam theory further allowed for the 
bending moments and shear forces to be computed. 

The results obtained with the discussed approach were 
afterwards compared to the results obtained from the 
pure numerical approach implementing parabolic 
triangular-shell finite elements within the framework 
of the finite-elements method. Despite the clear 
computational differences between both approaches, the 
considered examples showed that the application of the 
simplified model produces excellent matching results. 
The proposed computational model has also proved 
itself to be useable for beams on Winkler’s foundation, 
as the discrepancies in the results obtained with this 
approach compared with the results obtained with much 
more complex and time-consuming 2D finite-elements 
models are just up to 2.2 %, despite the enormous 
differences in the computational effort. Furthermore, 
the transverse displacement solutions obtained from 
differential equations are given in analytical form, which 
allows for a straightforward further analysis of the bend-
ing moments and shear forces.

The proposed approach thus yields an adequate, as well 
as accurate, approach for the modelling of cracked beam 
structures in engineering situations where the cracks 
have to be considered during the analysis.
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