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Abstract

Many numerical and analytical schemes exist for solving heat transfer problems. The meshless method is a
particularly attractive method that is receiving attention in the engineering and scientific modeling
communities. The meshless method is simple, accurate, and requires no polygonalisation. In this study, we
focus on the application of meshless methods using radial basis functions (RBFs) – which are simple to
implement – for thermal problems. Radial basis functions are the natural generalization of univariate
polynomial splines to a multivariate setting that work for arbitrary geometry with high dimensions. RBF
functions depend only on the distance from some center point. Using distance functions, RBFs can be easily
implemented to model heat transfer in arbitrary dimension or symmetry.

Introduction

For decades, finite difference, finite volume, and
finite element methods (FDM/FVM/FEM) have been
the dominant numerical schemes employed in most
scientific computation. These methods have been
used to solve numerous thermal related problems
covering a wide range of applications. A common
difficulty in these classic numerical methods is the
considerable amount of time and effort required to
discretize and index domain elements, i.e., creating a
mesh. This is often the most time consuming part of
the solution process and is far from being fully
automated, particularly in 3D. One method for
alleviating this difficulty has been to utilize the
boundary element method (BEM). The major
advantage of the BEM is that only boundary
discretization is required rather than domain, thereby
reducing the problem by one order. However, the
discretization of surfaces in 3-D can still be a
complex process even for simple shapes. In addition,
these traditional methods are often slowly
convergent, frequently requiring the solution of 100’s
of thousands of equations in order to get acceptable
accuracy.

In recent years, a novel numerical technique called
“meshless methods” (or “mesh-free methods”) has
been undergoing strong development and has
attracted considerable attention from both science
and engineering communities. Currently, meshless

methods are now being developed in many research
institutions all over the world. Various methods
belonging to this family include: Diffuse Element
Methods, Smooth Particle Hydrodynamics Methods,
Element-Free Galerkin Methods, Partition of Unity
Methods, h-p Cloud Methods, Moving Least Squares
Methods, Local Petrov-Galerkin Methods,
Reproducing Kernel Particle Methods, and Radial
Basis Functions.

A common feature of meshless methods is that
neither domain nor surface polygonisation is required
during the solution process. These methods are
designed to handle problems with large deformation,
moving boundaries, and complicated geometry.
Recently, advances in the development and
application of meshless techniques show they can be
strong competitors to the more classical
FDM/FVM/FEM approaches [1,2], and may likely
become a dominant numerical method for solving
science and engineering problems in the 21st century.
A recent book by Liu [3] discusses meshfree
methods, implementation, algorithms, and coding
issues for stress-strain problems. Liu [3] also includes
Mfree2D, an adaptive stress analysis software
package available for free from the web. Atluri and
Shen [4] produced a research monograph that
describes the meshless method in detail, including
much in-depth mathematical basis. They also present
comparison results with other schemes.
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Nomenclature
c shape parameter
C transport variable
D diffusion coefficient
f interior functional
g boundary functional
h convective film coefficient
k thermal conductivity
N number of nodes
q heat flux
Q heat source/sink
r radial distance
t time
T temperature
V velocity vector
x horizontal distance

y lateral distance
thermal diffusivity (k/ cp)
emissivity
Stefan-Boltzmann constant
trial function; field variable
dummy variable
approximation function; streamfunction
vorticity

Subscripts
i,j nodal values
I internal number of node points
o initial value; free parameter
Superscripts
n, n+1 known, unknown values

approximate solution

There exists various types of meshless methods and
each method has its advantages and disadvantages.
Intensive research conducted in many major research
institutions all over the world are now working to
improve the performance of these approaches. In this
study, we focus on the introduction of the basic
concept of meshless methods using radial basis
functions (RBFs) – which are simple to implement.

Currently, there are two major approaches in this
direction: (i) a domain-type meshless method that
was developed by Kansa [5] in 1990; (ii) a boundary-
type meshless method that has evolved from the
BEM [6]. Radial basis functions are the natural
generalization of univariate polynomial splines to a
multivariate setting. The main advantage of this type
of approximation is that it works for arbitrary
geometry with high dimensions and it does not
require any mesh. A RBF is a function whose value
depends only on the distance from some center point.
Using distance functions, RBFs can be easily
implemented to reconstruct a plane or surface using
scattered data in 2-D, 3-D or higher dimensional
spaces.

Similar to FEM techniques, meshless methods
produce banded system matrices that can be handled
in similar fashion. Both sets of methods can utilize
either direct methods based on Gauss elimination or
matrix decomposition methods or iterative methods,
e.g., Gauss-Seidel or SOR techniques. When dealing
with nonlinear problems, additional iterative loops
are needed. Meshless methods generally require more
CPU time since the creation of shape functions are
more time-consuming and are performed during the
computation. However, less time is spent in setting
up computational nodes. Results using meshless
methods are typically more accurate than

conventional numerical methods based on mesh
discretizations -thus the ratio of accuracy to CPU is
likely to be greater for meshless methods.

Meshless methods hold promising alternative
approaches for problems involving fluid flow and
heat transfer analyses. The most attractive feature is
the lack of a mesh that is required in the more
conventional numerical approaches. This becomes
particularly interesting in that one can begin to
conduct adaptive analyses for CFD problems.

The Meshless Method using RBFs

In 1990, Kansa [5] extended the idea of interpolation
scheme using RBFs to solving various types of
engineering problems. The method is simple and
direct and is becoming very popular in the
engineering community. To illustrate the application
of the meshless method using Kansa’s method, we
first consider the elliptic problems. For simplicity,
we consider the 2-D Poisson problem with Dirichlet
boundary condition

2T f (x, y), (x, y) ,
T g(x, y), (x, y) .

(1)

Notice that the solution of Eq. (1) is in fact nothing
but a surface. Techniques in surface interpolation can
be applied to solve Eq. (1). To approximate T, Kansa
[5] assumed the approximate solution could be
obtained using a linear combination of RBFs

N

j j
j 1

T(x, y) T (r ) (2)
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N

where {T 1, T2, …,TN} are the unknown
coefficients to be determined, (r j) is some
form of RBF (trial function), and r is defined as

2 2
j j jr (x x ) (y y ) (3)

Since multiquadrics (MQ) are infinitely smooth
functions, they are often chosen as the trial function
for , i.e.,

2 2 2 2 2
j j j j(r ) r c (x x ) (y y ) c (4)

where c is a shape parameter provided by the user.
The optimal value of c is still a subject of
research. Other functions such as polyharmonic
splines can also be chosen as the trial function.

By direct differentiation of Eq. (6), the first and
second derivatives of with respect to x and y can
be expressed as

j j

2 2 2 2

j j

2 2 2 22 2

j j

2 2
2 2 2 2

j j

x x y y
,

x yr c r c

(y y ) c (x x ) c
,

x yr c r c

(5)

Substituting Eq. (3) into Eq. (1) and using
collocation, one obtains

2 2 2
N

i j i j

j i i3 / 2
2 2 2

j 1

i j i j

I

(x x ) (y y ) 2c
T f (x , y ),

(x x ) (y y ) c

i 1, 2, , N
N

2 2 2

j i j i j i i
j 1

I I

T (x x ) (y y ) c g(x , y ),

i N 1, N 2, , N

(6)
where NI denotes the total number of interior points and
NI+1,…, N are the boundary points. Figure 1 shows
two sets of interpolation points: interior and
boundary points. Note that Eq. (6) is a linear system
of N X N equations and can be solved by direct
Gaussian elimination. Once the unknown coefficients
{T1, T2, …, TN} are found, the solution of T can be
approximated at any point in the domain.

For time dependent problems, we consider the
following heat equation as an example:

2T
T f (x, y,T, T)

t
(7)

Figure 1. Interior points and boundary points using
Kansa’s method.

An implicit time marching scheme can be
used and Eq. (7) becomes

n 1 n
2 n 1 n nT T
T f (x, y,T , T )

t
(8)

where denotes the time step, superscript n+1
is the unknown (or next time step) value to be
solved, and superscript n is the current known
value. The approximate solution can be
expressed as

N
n 1 n 1

i i j j i i
j 1

T(x , y , t ) T (x , y ) (9)

Substituting Eq. (9) into Eq. (8), one obtains

N
jn 1 2 n

j j i i i i
j 1

n n n
i i i i i i I

N
n 1 n 1
j i i i i I

j 1

1
T (x , y ) T (x , y )

t t

f (x , y , t ,T (x , y ), T (x , y )), i 1,2, , N

T (x , y ) g(x , y , t ), i N 1, , N

(10)
which produces an N X N linear system of equations
for the unknown n 1

jT . Note that the right hand side
of the first equation in Eq. (10) can be updated
before the next time step, i. e.,
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N
n n

i i j j i i
j 1

N
jn n

x i i j i i
j 1

N
jn n

y i i j i i
j 1

T (x , y ) T (x , y ),

T (x , y ) T (x , y ),
x

T (x , y ) T (x , y )
y

(11)

Heat Transfer Applications

To illustrate the use of meshless methods, let us
begin with a simple heat transfer problem. The
governing equation for temperature transport can be
written as

2T
T T Q

t
V (12)

4 4q k T h(T T ) (T T ) 0 (13)

oT( ,0) Tx (14)

where V is the vector velocity, x is vector space,
T(x,t) is temperature, T is ambient temperature, To is
initial temperature, D is thermal diffusivity ( / cp),
is emissivity, is the Stefan-Boltzmann constant, h is
the convective film coefficient, q is heat flux, and Q
is heat source/sink. Velocities are assumed to be
known and typically obtained from solution of the
equations of motion (a separate program is generally
used for fluid flow [7]).

In this first example, a two-dimensional plate is
subjected to prescribed temperatures applied along
each boundary [8], as shown in Fig. 2. The
temperature at the mid-point (1,0.5) is used to
compare the numerical solutions with the analytical
solution. The analytical solution is given as

n 1
8

1

n 12 1

T T 2 1 1 n x sinh(n y / L)
(x, y) sin

T T n L sinh(n W / L)

which yields (1,0.5) = 0.445, or T(1,0.5) = 94.5oC.
Table 1 lists the final temperatures at the mid-point
using a finite element method, a boundary element
method, and a meshless method, compared with the
exact solution.

Table 1. Comparison of results for example 1

Method mid-pt (oC) Elements Nodes
Exact 94.512 0 0
FEM 94.605 256 289
BEM 94.471 64 65
Meshless 94.514 0 325

As a second example, a two-dimensional domain is
prescribed with Dirichlet and Neumann boundary
conditions applied along the boundaries, as shown in
Fig. 3(a,b,c). This problem, described in Huang and
Usmani [2], was used to assess an h-adaptive FEM
technique for accuracy. A fixed temperature of 100oC
is set along side AB; a surface convection of 0oC acts
along edge BC and DC with h = 750 W/moC and k =
52 W/moC. The temperature at point E is used for
comparative purposes. The severe discontinuity in
boundary conditions at point B creates a steep
temperature gradient between points B and E. Figures
3(b,c) show the initial and final FEM meshes after
two adaptations using bilinear triangles. The
analytical solution for the temperature at point B is T
= 18.2535oC. Table 2 lists the results for the three
methods compared with the exact solution. The initial
3-noded triangular mesh began with 25 elements and
19 nodes.

Table 2. Comparison of results for example 2

Method Pt E (oC) Elements Nodes
Exact 18.2535 0 0
FEM 18.1141 256 155
BEM 18.2335 32 32
Meshless 18.253 1 0 83

A simple irregular domain is used for the third
example and results compared with the three
methods. Results from a fine mesh FEM technique
(without adaptation) are used as a reference
benchmark [7]. The discretized domain and
accompanying boundary conditions set along each
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surface are shown in Fig. 4. The FEM results are
displayed as contour intervals.

Figure 5(a,b) shows meshless results (using FEM
fine mesh nodes for contouring) versus FEM
solutions using adapted quadrilateral elements. Heat
conduction occurs as a result of constant
temperatures set on the top and bottom surfaces,
adiabatic faces in the upper right cutout and lower
cutout portions, and convective heating along the
right and left vertical walls. Adaptive meshing occurs
in the corners as a result of steep temperature
gradients; this is not evident when using meshless
methods.

(c)
Figure 3. Problem (a) geometry - boundary
conditions, (b) initial FEM mesh, and (c) final FEM
adapted mesh (from [2])

Figure 4: Problem specification for heat transfer in a
user-defined domain.

The FEM, BEM, and meshless mid-point values at
(0.5,0.5) are listed in Table 3.

Table 3. Comparison of results for example 3

Method mid-pt (oC) Elements Nodes
FEM 75.899 138 178
BEM 75.885 36 37
Meshless 75.893 0 96

All three techniques provide accurate results for
the three example cases. The meshless method was
clearly the fastest, simplest, and least storage
demanding method to employ. Advances being made
in meshless methods will eventually enable the
scheme to compete with the FEM and BEM on a
much broader range of problems [3,4]. Dr. Y. C.
Hon1 is a leading expert in the application of
Kansa’s method. Much work in engineering
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modeling using Kansa’s method has been done by his
research group.

Figure 5: FEM solutions (a) meshless (on FEM fine
mesh) and (b) adapted mesh.

1 Department of Mechanical Engineering, Hong
Kong University, Hong Kong, China

Natural Convection Test Case

Natural convection within a 2-D rectangular
enclosure is a well-known problem commonly used
to test the ability of a numerical algorithm to solve
for both fluid flow and heat transfer. The equations
are strongly coupled through the buoyancy term in
the momentum equations and the temperature. There
are various ways to nondimensionalize the
equations, and numerous references can be found in
the literature and on the web regarding these various
forms. The solution to the problem generally splits
between solving either the primitive equations for
velocity or the vorticity equation, coupled with the
transport equation for temperature. The issue in this
early development of the meshless approach is not to
dwell on various schemes to deal with pressure (e.g.,
projection methods or the SIMPLE scheme both of
which are well known). Hence, most researchers that
have developed meshless approaches use the
streamfunction-vorticity and temperature equations
[3]. These equations are the well-known set
generally formulated as follows:

2Pr Pr Ra T
t

V (20)

2T T T
t

V (21)

2 (22)

where is vorticity and is streamfunction, with the
conventional definitions for velocity in terms of the
streamfunction gradients. Pr is the Prandtl number
( / ) and Ra is the Rayleigh number. Figure 6 shows
the physical and computational domain with
accompanying boundary conditions. Two types of
nodal configurations are shown in Fig. 7 (a,b)
utilizing 256 nodes. Results are in excellent
agreement with well-known results in the literature
for 103 Ra 105 [3]. Figure 8 (a,b) shows
streamlines and isotherms for the differentially
heated enclosure for Ra = 105. Convergence rates
showing the difference in rates between a
conventional FDM and applications of two meshless
techniques is discussed in Liu [3]. The two meshless
methods converged more rapidly than the finite
difference scheme.
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Figure 6. Boundary conditions for natural convection
within a rectangular enclosure (from [3]).

Figure 7. Nodal configurations for a) uniform
distribution and b) arbitrary distribution for 256 nodes
(after [3]).

Figure 8. Natural convection results showing a)
streamlines and b) isotherms for Ra = 105 using the
MLPG method (after [3]).

Sarler et al [9] simulated natural convection within a
rectangular enclosure using the RBF approach of
Kansa [5]. Solving a nonlinear Poisson re-formulation
of the general transport equation representing mass,
energy, and momentum, the problem was solved by
dividing the physical domain into two parts consisting
of an internal array of nodes and a set of boundary
nodes for the Dirichlet and Neumann conditions. The
governing equation for the transport variable is of the
form (with C( ))

( C) ( C) ( C) S
t

V D (23)

where , , V, t, D, and S denote density, transport
variable, velocity, time, diffusion matrix, and source.
The transport variable C consisted of enthalpy C(h( =
T)), velocity C( = u,v), and pressure C( = p), with a
pressure correction Poisson equation used to resolve the
pressure. The nonlinear equations solved with the
meshless technique were of the form

2 (24)

( 'C S) /
t

D (25)

' C D' /V D (26)

where denotes density, C( ) the transport variable, t is
time, V is velocity, and D is the diffusion matrix with D'
being the nonlinear anisotropic part. The variable C( )
denotes the relation between the transported and the
diffused variable. The solution requires the use of an
iterative technique. The final form of the transformed
Poisson equation is

2 ( ) ( ) (27)

where the bar denotes values from the previous iteration.
Time discretization utilizes the relation

oC( ) C( )
S /

t
D (28)

¬
with the unknown field approximated by the N global
approximation functions n(p) and their coefficients n,
i.e.,

n n(p) (p) , n 1,2, , N (29)

The global radial basis function approximation was
based on multiquadrics with the free parameter ro:

1/ 22 2
n n or r (30)

The coefficients were calculated from the N collocation
equations of which N were equally distributed over
boundary and N over the domain . Separate
relations were established for the boundary condition
indicators.
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The computational domain was discretized into 80
boundary nodes and 361 domain nodes. The
multiquadrics constant ro was set to 0.2. Steady state
results were achieved after 34 iterations for Ra = 103,
187 iterations for Ra = 104, and 293 iterations for Ra
= 105. The calculated values for temperature and
velocity were in excellent agreement with results
obtained using a fine grid FDM [10].

Conclusions

Meshless methods are a unique and novel numerical
technique now making inroads into various fields.
Their advantages in solving problems associated with
crack propagation and stress/strain including
deformation over more conventional numerical
schemes have been demonstrated repeatedly in the
literature. The application of meshless methods for
heat transfer is equally advantageous; such methods
have become very competitive with both finite volume
and finite element methods for problems involving
irregular geometries. The requirements for creating
grids as well as the detailed input necessary for
establishing volume or element properties is greatly
reduced or eliminated. However, much has yet to be
done before meshless methods can handle a wide
range of fluid flow problems and produce results with
confidence and surety. Only a small portion of
incompressible flow problems has been addressed;
advances are just now being made in the area of
porous media flows. Application to compressible
flows has yet to be addressed.

While meshless methods may be more accurate than
FDM/FVM/FEM techniques, they can be much slower
with regards to computational time to achieve
convergence. This is due in part to some of the effort
needed for numerical integration and subsequent use
of a direct matrix solver. However, meshless methods
do not need any prior knowledge of their nodal
arrangement, as in conventional numerical schemes.
This makes the method particularly attractive for
developing adaptive capabilities. Since much of a
modeler’s efforts are generally spent on developing a
good mesh that will lead to a converged solution, the
overall time for obtaining problem solutions using
meshless methods can be significantly less.

Additional information regarding FDM, FVM, and
FEM algorithms and some of the meshless techniques
can be obtained from the web site
http://www.unlv.edu/NCACM.
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