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LJUBLJANA, DECEMBER 2018



i
i

“proc18” — 2018/12/10 — 11:44 — page II — #2 i
i

i
i

i
i

The 21st Workshop What Comes Beyond the Standard Models,
23.– 29. June 2018, Bled

was organized by

Society of Mathematicians, Physicists and Astronomers of Slovenia

and sponsored by

Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana

Society of Mathematicians, Physicists and Astronomers of Slovenia

Beyond Semiconductor (Matjaž Breskvar)
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Preface

The series of annual workshops on ”What Comes Beyond the Standard Models?”
started in 1998 with the idea of Norma and Holger for organizing a real workshop,
in which participants would spend most of the time in discussions, confronting
different approaches and ideas. Workshops take place in the picturesque town
of Bled by the lake of the same name, surrounded by beautiful mountains and
offering pleasant walks and mountaineering. Since the 20th workshop we offer
every year during or at the end of the workshop a talk to the general audience of
Bled. This year the talk with the title ”How far do we understand the Universe
in this moment?”, was given by Norma Susana Mankoč Borštnik in the lecture
hall of the Bled School of Management. The lecture hall was kindly offered by the
founder of the school Danica Purg. The talk was, due to the schedule constraint at
the school, delivered after the workshop already finished.
In our very open minded, friendly, cooperative, long, tough and demanding dis-
cussions several physicists and even some mathematicians have contributed. Most
of topics presented and discussed in our Bled workshops concern the proposals
how to explain physics beyond the so far accepted and experimentally confirmed
both standard models – in elementary particle physics and cosmology – in or-
der to understand the origin of assumptions of both standard models and be
consequently able to make predictions for future experiments. Although most of
participants are theoretical physicists, many of them with their own suggestions
how to make the next step beyond the accepted models and theories, experts from
experimental laboratories were very appreciated, helping a lot to understand what
do measurements really tell and which kinds of predictions can best be tested.
The (long) presentations (with breaks and continuations over several days), fol-
lowed by very detailed discussions, have been extremely useful, at least for the
organizers. We hope and believe, however, that this is the case also for most of
participants, including students. Many a time, namely, talks turned into very
pedagogical presentations in order to clarify the assumptions and the detailed
steps, analyzing the ideas, statements, proofs of statements and possible predic-
tions, confronting participants’ proposals with the proposals in the literature or
with proposals of the other participants, so that all possible weak points of the
proposals, those from the literature as well as our own, showed up very clearly.
The ideas therefore seem to develop in these years considerably faster than they
would without our workshops.
This year neither the cosmological nor the particle physics experiments offered
much new, which would offer new insight into the elementary particles and fields,
although a lot of work and effort have been put in, but the news will hopefully
come when analyses of the data gathered with energies up to 13 TeV on the LHC
will be finished.
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We also expect that new cosmological experiments will help to resolve the origin
of the dark matter. Since the results of the DAMA/LIBRA experiments, presented
in this year proceedings, can hardly be explained in some other way than with
the signal of the dark matter, it is expected that sooner or latter other laboratories
will confirm the DAMA/LIBRA results. Several contributions in this proceedings
discuss proposals for the dark matter, suggesting that they might be supersym-
metric partners, dark atoms made of dark barions and ordinary barions, the stable
neutrons of the second group of four families.
Understanding the universe through the cosmological theories and theories of the
elementary fermion and boson fields, have, namely, so far never been so dependent
on common knowledge and experiments in both fields.
The experiments on the LHC and other laboratories around the world might offer
the accurately enough mixing matrices for quark and leptons, so that it will become
clear whether there is the new family to the observed three as well as several scalar
fields, which determine the higgs and the Yukawa couplings, predicted by the
spin-charge-family theory. The symmetry in all orders of corrections of the 4× 4
mass matrices, determined by the scalars of this theory, studied in this proceedings,
limits the number of free parameters of mass matrices, and would for accurately
enough measured matrix elements of the 3× 3 sub-matrices of the 4× 4mixing
matrices predict properties of the fourth family of quarks and leptons. The accurate
(n − 1) × (n − 1) submatrix of any n × n matrix, namely, determines the n × n
matrix uniquely.
The properties of mass matrices of the observed 3 families of quarks are presented,
following while taking into account the measured masses of quarks and the
standard parametrization of the mixing matrix. It is not surprising that the mass
matrices are close to the democratic matrix, since the top quark has much higher
mass and is much weaker coupled to the rest of quarks. Also the spin-charge
family theory predicts that the 4× 4mass matrices of quarks and leptons are close
to the democratic ones. This is even less surprising, since the fourth family with
the masses close to 1 TeV for leptons and above 1 TeV for quarks is even weaker
coupled with the rest three families than it is the third u-quark coupled to the rest
of quarks.
The new data might answer the question, whether laws of nature are elegant (as
predicted by the spin-charge-family theory and also — up to the families — other
Kaluza-Klein-like theories and the string theories) or ”she is just using gauge
groups when needed” (what many models assume, also some presented in this
proceedings). Can the higgs scalars be guessed by smaller steps from the standard
model case, or they must be recognized in more general theories as it is in the
spin-charge-family theory?
The evidences obviously tell that fermion fields have half integer spin and the
charges in the fundamental representations of the so far observed groups.
Shall the study of Grassmann space in confrontation with Clifford space for the
description of the internal degrees of freedom for fermions, discussed in this
proceedings in the first and second quantization of fields, help to better understand
the “elegance of the laws of nature”? While the Clifford space offers the explanation
for all the properties of quarks and leptons, carrying the half integer spin and all
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the charges in the fundamental representations of the groups (which are subgroups
of the large enough Lorentz group), with the families included (the properties
of which are also explainable by the half integer ”family spins and charges”), in
the Grassmann space there are the second quantizable fermions, which carry the
integer spin and charges, both in adjoint representations of the subgroup of the
Lorentz group and no families. And yet there exists the ”Dirac-Grassmann” sea.
While in the Clifford case one Weyl representation includes in SO(13, 1) all the
quarks and leptons and anti-quarks and anti-leptons observed so far (as well as
the right handed neutrino), in Grassmann space particles and anti-particles are in
different representations.
Is the working hypotheses that “all the mathematics is a part of nature” acceptable
and must be taken seriously? If ”nature would make a choice” of the Grassmann
instead of the Clifford algebra, all the atoms, molecules and correspondingly all
the world would look completely different, but yet possible. Why ”she make
a choice” of the Clifford algebra? All these is discussed in this proceedings, in
order to understand better why the spin-charge-family theory is offering so many
answers to the open questions in both standard models.
In one of the contributions the higher integer spin Yang-Mills-like gauge fields
are studied, allowing infinite number of higher spin states. Such theories might,
namely, help to avoid ultraviolet divergences in gauge fields.
Also the supersymmetry offers avoiding some of divergences. The analyze is done
for the possibility that the LHC would confirm the existence of the supersymmetric
partners with masses close or above 1 TeV, as well as of several higgs and of a
new family of quarks and leptons. The spin-charge family theory, offering the
explanation for all the assumptions of the standard model(s), predicting the fourth
family of quarks and leptons around 1 TeV or above, as well as three singlets and
two triplets of scalar fields (all with the properties of the higgs with respect to
the weak and hyper charges) and four additional families, the lowest of which
explains the appearance of the dark matter, does not ”see” the supersymmetric
particles.
Even if the supersymmetry might not be confirmed in the low energy regime,
yet the supergravity models, inspired by the string models, can help to better
understand the inflation in our universe and the observations at its present stage.
The supersymmetry might also help to understand the presence of the (very small)
amount of dark energy, of the dark matter, even for primordial formation of black
holes. All these is studied in three contributions of this proceedings.
It is an interesting observation in this proceedings discussing properties of any
material with only the translational symmetry that there must be regions in quasi
momentum space where an approximate Weyl equation (relativistic equation
for massless particles) determines properties of material, observed, let say, in
graphene. The same effect can be observed also in the universe with a strong
Hubble expansion. Authors explain this effect with the”homolumo-gap”.
As we know from several fields of physics, there are many different models,
seeming to have very little in common, which explain well the same phenomena.
The challenge is to find out what they have in common. There is the contribution
in this proceedings treating electrodynamics and linearized gravity in common,
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causing the spontaneously break of Lorentz invariance by constraints on the
electromagnetic and tensor fields. The model is at low energies still in agreement
with the observations.
Two contributions in the discussion section try to extract properties of quarks and
leptons, that is their masses and the forces among them, from the geometrical
picture of quarks and leptons carrying the charges of the spin-charge-family theory.
How far can such an attempt help to understand our nature?
What is the most efficient way to understand our universe? Is it now the time
that we should make a new step, as it was the standard model step 50 years
ago, with the theory which explains all the assumptions of the standard models?
Is the spin-charge-family the right first step beyond the standard models? Will
experiments confirm the predictions of this theory? Or should we insist with small
steps stimulated by experiments? Is the space-time (3+ 1)-dimensional? Or d is
much larger, infinite? Is the interaction among fermions only gravitational one,
manifesting at (3+ 1) the gravity and the observed gauge fields, with scalar fields
included? Only the theory and the experiment together can answer this question.
Since, as every year also this year there has been not enough time to mature the
very discerning and innovative discussions, for which we have spent a lot of time,
into the written contributions, only two months, authors can not really polish their
contributions. Organizers hope that this is well compensated with fresh contents.
Questions and answers as well as lectures enabled by M.Yu. Khlopov via Virtual
Institute of Astroparticle Physics (viavca.in2p3.fr/site.html) of APC have in ample
discussions helped to resolve many dilemmas.
The reader can find the records of all the talks delivered by cosmovia since Bled
2009 on viavca.in2p3.fr/site.html in Previous - Conferences. The three talks deliv-
ered by: Norma Mankoč Borštnik (Understanding nature with the spin-charge-
family theory, making several predictions), Sergey V. Ketov (Starobinsky inflation
in gravity and supergravity) and H.B Nielsen(Theory for initial State Conditions),
can be accessed directly at
http://viavca.in2p3.fr/what comes beyond the standard model 2018.html
Most of the talks can be found on the workshop homepage
http://bsm.fmf.uni-lj.si/.
Bled Workshops owe their success to participants who have at Bled in the heart of
Slovene Julian Alps enabled friendly and active sharing of information and ideas,
yet their success was boosted by vidoeconferences.
Let us conclude this preface by thanking cordially and warmly to all the partici-
pants, present personally or through the teleconferences at the Bled workshop, for
their excellent presentations and in particular for really fruitful discussions and
the good and friendly working atmosphere.

Norma Mankoč Borštnik, Holger Bech Nielsen, Maxim Y. Khlopov,
(the Organizing comittee)

Norma Mankoč Borštnik, Holger Bech Nielsen, Dragan Lukman,
(the Editors)

Ljubljana, December 2018
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1 Predgovor (Preface in Slovenian Language)

Vsakoletne delavnice z naslovom ,,Kako preseči oba standardna modela, koz-
mološkega in elektrošibkega” (”What Comes Beyond the Standard Models?”) sta
postavila leta 1998 Norma in Holger z namenom, da bi udeleženci v izčrpnih
diskusijah kritično soočali različne ideje in teorije. Delavnice domujejo v Plemljevi
hiši na Bledu ob slikovitem jezeru, kjer prijetni sprehodi in pohodi na čudovite
gore, ki kipijo nad mestom, ponujajo priložnosti in vzpodbudo za diskusije. Od
lanske, 20. delavnice, dalje ponudimo vsako leto med ali ob koncu delavnice
predavanje za splošno občinstvo na Bledu. Letošnje je imelo naslov “Kako dobro
razumemo naše Vesolje v tem trenutku?”, ki ga je imela Norma Susana Mankovč
Borštnik v predavalnici IEDC (Blejska šola za management). Predavalnico nam je
prijazno ponudila ustanoviteljica te šole, gospa Danica Purg. Žal je bilo predavanje,
zaradi urnika na šoli, šele po končani delavnici.
K našim zelo odprtim, prijateljskim, dolgim in zahtevnim diskusijam, polnim
iskrivega sodelovanja, je prispevalo veliko fizikov in celo nekaj matematikov.
Večina predlogov teorij in modelov, predstavljenih in diskutiranih na naših Ble-
jskih delavnicah, išče odgovore na vprašanja, ki jih v fizikalni skupnosti sprejeta
in s številnimi poskusi potrjena standardni model osnovnih fermionskih in bo-
zonskih polj ter kozmološki standardni model puščata odprta. Čeprav je večina
udeležencev teoretičnih fizikov, mnogi z lastnimi idejami kako narediti naslednji
korak onkraj sprejetih modelov in teorij, so še posebej dobrodošli predstavniki
eksperimentalnih laboratorijev, ki nam pomagajo v odprtih diskusijah razjas-
niti resnično sporočilo meritev in nam pomagajo razumeti kakšne napovedi so
potrebne, da jih lahko s poskusi dovolj zanesljivo preverijo.
Organizatorji moramo priznati, da smo se na blejskih delavnicah v (dolgih) pred-
stavitvah (z odmori in nadaljevanji preko več dni), ki so jim sledile zelo podrobne
diskusije, naučili veliko, morda več kot večina udeležencev. Upamo in verjamemo,
da so veliko odnesli tudi študentje in večina udeležencev. Velikokrat so se pre-
davanja spremenila v zelo pedagoške predstavitve, ki so pojasnile predpostavke
in podrobne korake, soočile predstavljene predloge s predlogi v literaturi ali s
predlogi ostalih udeležencev ter jasno pokazale, kje utegnejo tičati šibke točke
predlogov. Zdi se, da so se ideje v teh letih razvijale bistveno hitreje, zahvaljujoč
prav tem delavnicam.
To leto eksperimenti v kozmologiji in fiziki osnovih fermionskih in bozonskih
polj niso ponudili veliko novih rezultatov, ki bi omogočili nov vpogled v fiziko
osnovnih delcev in polj, čeprav je bilo vanje vloženega veliko truda. Upamo, da
bodo podrobne analize podatkov, zbranih na LHC do energij 13 TeV, prinesle
odločujoče rezultate.
Pričakujemo tudi, da bodo nove kozmološke meritve uspele razrešiti izvor temne
snovi. Ker je dolgoletne rezultate poskusa DAMA/LIBRA, ki so predstavljeni v
tem zborniku, le težko pojasniti drugače kot s signali temne snovi, je pričakovati,



i
i

“proc18” — 2018/12/10 — 11:44 — page XII — #12 i
i

i
i

i
i

da bodo tudi ostali poskusi sčasoma potrdili njihove rezultate. Več prispevkov
v tem zborniku obravnava različne predloge, ki naj pojasnijo izvor temne snovi:
supersimetrični partnerji, temni atomi iz temnih barionov in iz barionov običajne
snovi, neutroni iz stabilne pete družine kvarkov in leptonov, ki pripadajo grupi
štirih družin z družinskimi kvantnimi števili in so (skoraj) nesklopljeni s spodnjimi
štirimi družinami, med katerimi tri že poznamo.
Kozmološka spoznanja in spoznanja v teoriji osnovnih fermionskih in bozonskih
polj delcev še nikoli doslej niso bila tako zelo povezana in soodvisna.
Ko bodo z eksperimenti na LHC in v ostalih laboratorijih po svetu uspeli ponuditi
dovolj natančne vrednosti za elemente mešalnih matrik za kvarke in leptone, bo
znan odgovor na vprašanje ali obstaja poleg opaženih treh tudi četrta družina
in več novih skalarnih polj, ki določajo higgsove in Yukawine sklopitve — kar
napoveduje teorija spinov-nabojev-družin. Simetrija popravkov masnih matrik
4× 4 v vseh redih, ki jo določajo skalarji v tej teoriji in jo obravnava prispevek v
zborniku, omeji število prostih parametrov masnih matrik tako, da dovolj natančno
izmerjeni matrični elementi podmatrik 3× 3 v mešalnih matrikah 4× 4 omogočijo
napoved lastnosti četrte družine kvarkov in leptonov, saj podmatrika (n − 1)×
(n− 1) matrike n× n to enolično določa.
Eden od prispevkov v zborniku predstavi študijo, ki določi masne matrike opaženih
3 družin kvarkov iz standardne parametrizacije mešalne matrike in izmerjenih
mass kvarkov. Ne preseneča ugotovitev, da so masne matrike blizu demokratični
matriki, saj ima top kvark veliko večjo maso od odtalih kvarkov in je šibko sklo-
pljen z ostalimi člani družin. Tudi teorija spinov-nabojev-družin pričakovano
napove, da so masne matrike 4× 4 blizu demokratičnim, saj je četrta družina, ki
ima maso nad 1 TeV, šibko sklpopljena s člani ostalih treh družin.
Novi podatki bodo morda dali odgovor tudi na vprašanje, ali so zakoni narave
preprosti (kot napove teorija spinov-nabojev-družin in tudi ostale teorije Kaluza-
Kleinovega tipa, ki pa pojava družin ne pojasnijo, pa tudi teorije strun) ali pa
narava preprosto “uporabi umeritvene grupe, kadar jih potrebuje” (kar pred-
postavi veliko modelov, tudi nekateri v tem zborniku). In tudi ali lahko ugibamo
pojav higgsovih skalarjev z majhnimi odmiki od standardnega modela fermion-
skih in bozonskih polj, ali pa morajo obstoj skalarnih polj pojasniti splošnejše
teorije (kot je teorija spinov-nabojev-družin)?
Vse meritve doslej potrdijo, da imajo fermioni polštevilčne spine ter naboje v fun-
damentalnih upodobitvah dosedaj opaženih grup. Eden od prispevkov obravnava
prvo in drugo kvantizacijo fermionskih polj v Grassmannovem prostoru. Fermioni
nosijo v Grasmannovem prostoru celoštevilčne spine in naboje v adjungirani
upodobitvi grup. Bo primerjava lastnosti fermionskih polj, ki ”živijo” v Grass-
mannovem prostoru, s tistimi, ki živijo v Cliffordovem prostoru, pripomogla k
boljšemu razumevanju “elegance naravnih zakonov” kot avtorji upajo? Cliffordov
prostor ponudi razlago za vse lastnosti kvarkov in leptonov, ki imajo polštevilski
spin in vse naboje v fundamentalni upodobitvi grupe (ki so podgrupe v dovolj
veliki Lorentzovi grupi), vključno z družinami (katerih lastnosti lahko prav tako
pojasnimo s polštevilskimi “spini in naboji družin”). V Grassmannovem prostoru
pa druga kvantizacija ponudi fermione, ki imajo celoštevilske spine in naboje,
oboje v adjungirani upodobitvi podgrupe Lorentzove grupe in nobenih družin.
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“Dirac-Grassmannovo morje” igra vlogo Diracovega morja. Medtem, ko v Clif-
fordovem primeru ena Weylova upodobitev vključuje v SO(13, 1) vse kvarke in
leptone ter antikvarke in antileptone, ki so jih dosedaj opazili (pa tudi desnoročni
nevtrino), so v Grassmannovem prostoru delci in antidelci v različnih upodobit-
vah. Je delovna hipoteza, da je “vsa matematika del narave”, sprejemljiva in jo
moramo upoštevati? Če bi “narava izbrala” Grassmannovo namesto Cliffordove
algebre, bi atomi, molekule in vse vesolje izgledali drugače. Zakaj je ni?
Eden od prispevkov pokaže, kako v ravnem prostoru definirati umeritvena polja
Yang-Millsovega tipa z višjimi spini, ki ponudijo neskončno število stanj umer-
itvenih polj in omogočijo, da se izognemo divergencam pri visokih energijah.
Tudi supersimetrija ponuja možnost obvladovanja nekaterih neskončnosti. Analiza
v prispevku obravnava možnosti, da bi meritve na LHC potrdile obstoj super-
simetričnih partnerjev, ki imajo maso nekaj TeV, pa tudi obstoj večjega števila
skalarnih polj in nove družine kvarkov in leptonov. Teorija spinov-nabojev-družin,
ki napove tri singlete and dva tripleta skalarnih polj, pa tudi četrto družino, ne
”vidi” supersimetričnih delcev.
Tudi če poskusi ne potrdijo obstoja supersimetričnih delcev pri nizkih energijah,
lahko modeli supergravitacije, ki jih porodi teorija strun, pomagajo razumeti pojav
inflacije, ki jo je moralo doživeti v naše vesolje, ker lahko le tako pojasnimo izmer-
jene lastnosti vesolja. Supersimetrija bi morda lahko pojasnila, zakaj je gostota
temne energije tako zelo majhna,pojasnila pa bi tudi prisotnost temne snovi, ter
celo tvorbo prvotnih črnih lukenj. Te možnosti obravnavajo trije prispevki.
Zanimivo je, da iz lastnosti poljubne snovi, ki ima samo translacijsko simetrijo,
sledi, kot obravanva en prispevek, da v prostoru kvazi gibalne količine obstajajo
majhna področja, v katerih približna Weylova enačba (relativistična enačba za
brezmasne delce) določa lastnosti materila, kot je, denimo, grafen. Enak pojav bi
lahko opazili v vesolju pri močni Hubblovi ekspanziji. Avtorja to pojasnjujeta z
vrzeljo“homo-lumo”.
Na različnih področjih fizike obstajajo različni modeli, ki na videz nimajo veliko
skupnega, pa vendar opisujejo iste pojave enako dobro. Prisepvek v zborniku
obravnava skupaj elektrodinamiko in linearizirano gravitacijo v modelu elektro-
gravitacije,v katerem pogoj na vsako od polj povzroči spontano zlomitev Lorent-
zove invariance. Model je pri nizkih energijah skladen z opažanji.
Dva prispevka v sekciji diskusij poskušata iz geometrijske slike v celice porazdel-
jenih fermionov, ki nosijo različne naboje, določiti silo med fermioni. Do kolikšne
mere nam lahko tak pristop pomaga razumeti naravo?
Kakšna je učinkovita pot pri razumevanju našega vesolja? Je dozorel čas, ko lahko
napravimo odločen korak v razumevanju vesolja samo s predlogom teorije, ki po-
jasni vse privzetke obeh standardnih modelov? Je teorija spinov, nabojev in družin
pravi predlog? Bodo poskusi potrdili njene napovedi? Ali pa so majhni koraki
proč od obeh standardnih modelov bolj varna pot pri načrtovanju poskusov? Je
prostor-čas štiri razsežen? Ali pa je njegova razsežnost mnogo večja, neskončna?
Je interalcija med fermioni v mnogo razsežnem prostoru ena sama, tedaj gravitaci-
jska, ki se kaže v opazljivem delu vesolja kot vse poznane sile? Samo teorija in
eksperiment skupaj lahko odgovorita na ta vprašanja.
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Ker je vsako leto le malo časa od delavnice do zaključka redakcije, manj kot dva
meseca, avtorji ne morejo izpiliti prispevkov, vendar upamo, da to nadomesti
svežina prispevkov.
Četudi so k uspehu ,,Blejskih delavnic” največ prispevali udeleženci, ki so na
Bledu omogočili prijateljsko in aktivno izmenjavo mnenj v osrčju slovenskih
Julijcev, so k uspehu prispevale tudi videokonference, ki so povezale delavnice z
laboratoriji po svetu. Vprašanja in odgovori ter tudi predavanja, ki jih je v zadnjih
letih omogočil M.Yu. Khlopov preko Virtual Institute of Astroparticle Physics
(viavca.in2p3.fr/site.html, APC, Pariz), so v izčrpnih diskusijah pomagali razčistiti
marsikatero vprašanje.
Bralec najde zapise vseh predavanj, objavljenih preko ”cosmovia” od leta 2009,
na viavca.in2p3.fr/site.html v povezavi Previous - Conferences. Troje letošnjih
predavanj,
Norma Mankoč Borštnik (Understanding nature with the spin-charge-family the-
ory, making several predictions), Sergey V. Ketov (Starobinsky inflation in gravity
and supergravity) in H.B Nielsen (Theory for initial State Conditions), je dostopnih
na

http://viavca.in2p3.fr/what comes beyond the standard model 2018.html
Večino predavanj najde bralec na spletni strani delavnice na

http://bsm.fmf.uni-lj.si/.

Naj zaključimo ta predgovor s prisrčno in toplo zahvalo vsem udeležencem, pris-
otnim na Bledu osebno ali preko videokonferenc, za njihova predavanja in še
posebno za zelo plodne diskusije in odlično vzdušje.

Norma Mankoč Borštnik, Holger Bech Nielsen, Maxim Y. Khlopov,
(Organizacijski odbor)

Norma Mankoč Borštnik, Holger Bech Nielsen, Dragan Lukman,
(uredniki)

Ljubljana, grudna (decembra) 2018
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Abstract. I discuss a general class of models where the inflation is driven by supersym-
metry breaking with the superpartner of the goldstino (sgoldstino) playing the role of
the inflaton. Imposing an R-symmetry allows to satisfy easily the slow-roll conditions,
avoiding the so-called η-problem, and leads to two different classes of small field inflation
models; they are characterised by an inflationary plateau around the maximum of the scalar
potential, where R-symmetry is either restored or spontaneously broken, with the inflaton
rolling down to a minimum describing the present phase of our Universe. Inflation can be
driven by either an F- or a D-term, while the minimum has a positive tuneable vacuum
energy. The models agree with cosmological observations and in the simplest case predict a
tensor-to-scalar ratio of primordial perturbations 10−9 <∼ r <∼ 10−4 and an inflation scale
1010 GeV <∼ H∗ <∼ 10

12 GeV.

Povzetek. Avtor obravnava razred modelov, v katerih zlomitev supersimetrije povzroči
inflacijo, vlogo inflatona pa igra superpartner goldstina (sgoldstino). Avtorjev privzetek, da
imajo modeli simetrijo R, omogoči, da je izpolnjen pogoj za ’slow-roll’, s čimer se izogne
problemu η. Tem pogojem zadostita dve vrsti modelov inflacije z majhnim poljem. Zanje
je značilen inflacijski plato okrog maksimuma skalarnega potenciala, kjer se simetrija R
bodisi ohrani ali pa spontano zlomi, inflaton pa se zapelje po potencialu do minimuma, ki
opisuje sedanjo fazo našega vesolja. Inflacijo lahko poganja ali člen F ali člen D, minimum
ima pozitivno vakuumsko energijo, ki jo z izbiro parametrov lahko spreminjamo tako, da
se ujemajo s kozmološkimi meritvami. V najpreprostejšem primeru modeli napovedo, da
je bilo, ko je bila v začetku vesolja energijska skala inflacije 1010 GeV <

∼ H∗ <∼ 1012 GeV,
razmerje tenzorskih in skalarnih nehomogenosti 10−9 <∼ r <∼ 10

−4.

Keywords: supersymmetry breaking, R-symmetry, supergravity, cosmology, infla-
tion

1.1 Introduction

If String Theory is a fundamental theory of Nature and not just a tool for studying
systems with strongly coupled dynamics, it should be able to describe at the
same time particle physics and cosmology, which are phenomena that involve
very different scales from the microscopic four-dimensional (4d) quantum gravity
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2 I. Antoniadis

length of 10−33 cm to large macroscopic distances of the size of the observable
Universe ∼1028 cm spanned a region of about 60 orders of magnitude. In particular,
besides the 4d Planck mass, there are three very different scales with very different
physics corresponding to the electroweak, dark energy and inflation. These scales
might be related via the scale of the underlying fundamental theory, such as string
theory, or they might be independent in the sense that their origin could be based
on different and independent dynamics. An example of the former constraint
and more predictive possibility is provided by TeV strings with a fundamental
scale at low energies due for instance to large extra dimensions transverse to a
four-dimensional braneworld forming our Universe [1]. In this case, the 4d Planck
mass is emergent from the fundamental string scale and inflation should also
happen around the same scale [2].

Here, we will adopt a more conservative approach, trying to relate the scales
of supersymmetry breaking and inflation, assuming that supersymmetry breaking
is realised in a metastable de Sitter vacuum with an infinitesimally small (tuneable)
cosmological constant independent of the breaking scale that may be in the TeV
region or higher.

In a recent work [3], we studied a simple N = 1 supergravity model having
this property and motivated by string theory. Besides the gravity multiplet, the
minimal field content consists of a chiral multiplet with a shift symmetry promoted
to a gauged R-symmetry using a vector multiplet. In the string theory context, the
chiral multiplet can be identified with the string dilaton (or an appropriate com-
pactification modulus) and the shift symmetry associated to the gauge invariance
of a two-index antisymmetric tensor that can be dualized to a (pseudo)scalar. The
shift symmetry fixes the form of the superpotential and the gauging allows for
the presence of a Fayet-Iliopoulos (FI) term [4], leading to a supergravity action
with two independent parameters that can be tuned so that the scalar potential
possesses a metastable de Sitter minimum with a tiny vacuum energy (essentially
the relative strength between the F- and D-term contributions). A third parameter
fixes the Vacuum Expectation Value (VEV) of the string dilaton at the desired
(phenomenologically) weak coupling regime. An important consistency constraint
of the model is anomaly cancellation which has been studied in [5] and implies
the existence of additional charged fields under the gauged R-symmetry.

In a subsequent work [6], we analysed a small variation of this model which
is manifestly anomaly free without additional charged fields and allows to couple
in a straight forward way a visible sector containing the minimal supersymmetric
extension of the Standard Model (MSSM) and studied the mediation of super-
symmetry breaking and its phenomenological consequences. It turns out that an
additional ‘hidden sector’ field z is needed to be added for the matter soft scalar
masses to be non-tachyonic; although this field participates in the supersymmetry
breaking and is similar to the so-called Polonyi field, it does not modify the main
properties of the metastable de Sitter (dS) vacuum. All soft scalar masses, as well
as trilinear A-terms, are generated at the tree level and are universal under the
assumption that matter kinetic terms are independent of the ‘Polonyi’ field, since
matter fields are neutral under the shift symmetry and supersymmetry breaking
is driven by a combination of the U(1) D-term and the dilaton and z-field F-term.
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1 Inflation From Supersymmetry Breaking 3

Alternatively, a way to avoid the tachyonic scalar masses without adding the extra
field z is to modify the matter kinetic terms by a dilaton dependent factor.

A main difference of the second analysis from the first work is that we use
a field representation in which the gauged shift symmetry corresponds to an
ordinary U(1) and not an R-symmetry. The two representations differ by a Kähler
transformation that leaves the classical supergravity action invariant. However, at
the quantum level, there is a Green-Schwarz term generated that amounts an extra
dilaton dependent contribution to the gauge kinetic terms needed to cancel the
anomalies of the R-symmetry. This creates an apparent puzzle with the gaugino
masses that vanish in the first representation but not in the latter. The resolution
to the puzzle is based on the so called anomaly mediation contributions [7,8] that
explain precisely the above apparent discrepancy. It turns out that gaugino masses
are generated at the quantum level and are thus suppressed compared to the scalar
masses (and A-terms).

This model has the necessary ingredients to be obtained as a remnant of mod-
uli stabilisation within the framework of internal magnetic fluxes in type I string
theory, turned on along the compact directions for several abelian factors of the
gauge group. All geometric moduli can in principle be fixed in a supersymmetric
way, while the shift symmetry is associated to the 4d axion and its gauging is a
consequence of anomaly cancellation [9,10].

We then made an attempt to connect the scale of inflation with the electroweak
and supersymmetry breaking scales within the same effective field theory, that at
the same time allows the existence of an infinitesimally small (tuneable) positive
cosmological constant describing the present dark energy of the universe. We thus
addressed the question whether the same scalar potential can provide inflation
with the dilaton playing also the role of the inflaton at an earlier stage of the
universe evolution [11]. We showed that this is possible if one modifies the Kähler
potential by a correction that plays no role around the minimum, but creates an
appropriate plateau around the maximum. In general, the Kähler potential receives
perturbative and non-perturbative corrections that vanish in the weak coupling
limit. After analysing all such corrections, we find that only those that have the
form of (Neveu-Schwarz) NS5-brane instantons can lead to an inflationary period
compatible with cosmological observations. The scale of inflation turns out then
to be of the order of low energy supersymmetry breaking, in the TeV region. On
the other hand, the predicted tensor-to-scalar ratio is too small to be observed.

Inflationary models [12] in supergravity1 suffer in general from several prob-
lems, such as fine-tuning to satisfy the slow-roll conditions, large field initial
conditions that break the validity of the effective field theory, and stabilisation of
the (pseudo) scalar companion of the inflaton arising from the fact that bosonic
components of superfields are always even. The simplest argument to see the fine
tuning of the potential is that a canonically normalised kinetic term of a complex
scalar field X corresponds to a quadratic Kähler potential K = XX̄ that brings
one unit contribution to the slow-roll parameter η = V ′′/V , arising from the eK

proportionality factor in the expression of the scalar potential V . This problem can
be avoided in models with no-scale structure where cancellations arise naturally

1 For reviews on supersymmetric models of inflation, see for example [13].
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due to non-canonical kinetic terms leading to potentials with flat directions (at
the classical level). However, such models require often trans-Planckian initial
conditions that invalidate the effective supergravity description during inflation.
A concrete example where all these problems appear is the Starobinsky model of
inflation [14], despite its phenomenological success.

All three problems above are solved when the inflaton is identified with
the scalar component of the goldstino superfield2, in the presence of a gauged
R-symmetry [16]. Indeed, the superpotential is in that case linear and the big
contribution to η described above cancels exactly. Since inflation arises at a plateau
around the maximum of the scalar potential (hill-top) no large field initial condi-
tions are needed, while the pseudo-scalar companion of the inflaton is absorbed
into the R-gauge field that becomes massive, leading the inflaton as a single scalar
field present in the low-energy spectrum. This model provides therefore a minimal
realisation of natural small-field inflation in supergravity, compatible with present
observations, as we show below. Moreover, it allows the presence of a realistic
minimum describing our present Universe with an infinitesimal positive vacuum
energy arising due to a cancellation between an F- and D-term contributions to
the scalar potential, without affecting the properties of the inflationary plateau,
along the lines of Refs. [3,11,17].

In the above models the D-term has a constant FI contribution but plays no
role during inflation and can be neglected, while the pseudoscalar partner of the
inflaton is absorbed by the U(1)R gauge field that becomes massive away from
the origin. Recently, a new FI term was proposed [19] that has three important
properties: (1) it is manifestly gauge invariant already at the Lagrangian level; (2)
it is associated to a U(1) that should not gauge an R-symmetry and (3) supersym-
metry is broken by (at least) a D-auxiliary expectation value and the extra bosonic
part of the action is reduced in the unitary gauge to a constant FI contribution
leading to a positive shift of the scalar potential, in the absence of matter fields. In
the presence of matter fields, the FI contribution to the D-term acquires a special
field dependence e2K/3 that violates invariance under Kähler transformations.

In a recent work [18], we studied the properties of the new FI term and ex-
plored its consequences to the class of inflation models we introduced in [16].3

We first showed that matter fields charged under the U(1) gauge symmetry can
consistently be added in the presence of the new FI term, as well as a non-trivial
gauge kinetic function. We then observed that the new FI term is not invariant un-
der Kähler transformations. On the other hand, a gauged R-symmetry in ordinary
Kähler invariant supergravity can always be reduced to an ordinary (non-R) U(1)
by a Kähler transformation. By then going to such a frame, we find that the two FI
contributions to the U(1) D-term can coexist, leading to a novel contribution to
the scalar potential.

The resulting D-term scalar potential provides an alternative realisation of
inflation from supersymmetry breaking, driven by a D- instead of an F-term. The
inflaton is still a superpartner of the goldstino which is now a gaugino within

2 See [15] for earlier work relating supersymmetry and inflation.
3 This new FI term was also studied in [20] to remove an instability from inflation in

Polonyi-Starobinsky supergravity.
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1 Inflation From Supersymmetry Breaking 5

a massive vector multiplet, where again the pseudoscalar partner is absorbed
by the gauge field away from the origin. For a particular choice of the inflaton
charge, the scalar potential has a maximum at the origin where inflation occurs
and a supersymmetric minimum at zero energy, in the limit of negligible F-term
contribution (such as in the absence of superpotential). The slow roll conditions
are automatically satisfied near the point where the new FI term cancels the charge
of the inflaton, leading to higher than quadratic contributions due to its non trivial
field dependence.

The Kähler potential can be canonical, modulo the Kähler transformation that
takes it to the non R-symmetry frame. In the presence of a small superpotential, the
inflation is practically unchanged and driven by the D-term, as before. However,
the maximum is now slightly shifted away from the origin and the minimum has
a small non-vanishing positive vacuum energy, where supersymmetry is broken
by both F- and D-auxiliary expectation values of similar magnitude. The model
predicts in general small primordial gravitational waves with a tensor-to-scaler
ration r well below the observability limit. However, when higher order terms
are included in the Kähler potential, one finds that r can increase to large values
r ' 0.015.

On general grounds, there are two classes of such models depending on
whether the maximum corresponds to a point of unbroken (case 1) or broken (case
2) R-symmetry. The latter corresponds actually to a generalisation of the model we
discussed above [11], inspired by string theory [3]. It has the same field content
but in a different field basis with a chiral multiplet S ∝ lnX playing the role of
the string dilaton. Thus, S has a shift symmetry which is actually an R-symmetry
gauged by a vector multiplet and the superpotential is a single exponential. The
scalar potential has a minimum with a tuneable vacuum energy and a maximum
that can produce inflation when appropriate corrections are included in the Kähler
potential. In these coordinates R-symmetry is restored at infinity, corresponding
to the weak coupling limit. Small field inflation is again guaranteed consistently
with the validity of the effective field theory.

In the following, we will present the main features of models of case 1, where
inflation occurs near the maximum of the scalar potential where R-symmetry
is restored and supersymmetry breaking is driven predominantly either by an
F-term or by a D-term.

1.2 Conventions

Throughout this paper we use the conventions of [21]. A supergravity theory is
specified (up to Chern-Simons terms) by a Kähler potential K, a superpotential
W, and the gauge kinetic functions fAB(z). The chiral multiplets zα, χα are enu-
merated by the index α and the indices A,B indicate the different gauge groups.
Classically, a supergravity theory is invariant under Kähler tranformations, viz.

K(z, z̄) −→ K(z, z̄) + J(z) + J̄(z̄),
W(z) −→ e−κ

2J(z)W(z), (1.1)
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where κ is the inverse of the reduced Planck mass, MPl = κ−1 = 2.4 × 1015 TeV.
The gauge transformations of chiral multiplet scalars are given by holomorphic
Killing vectors, i.e. δzα = θAkαA(z), where θA is the gauge parameter of the gauge
group A. The Kähler potential and superpotential need not be invariant under this
gauge transformation, but can change by a Kähler transformation

δK = θA [rA(z) + r̄A(z̄)] , (1.2)

provided that the gauge transformation of the superpotential satisfies δW =

−θAκ2rA(z)W. One then has from δW =Wαδz
α

Wαk
α
A = −κ2rAW, (1.3)

whereWα = ∂αW and α labels the chiral multiplets. The supergravity theory can
then be described by a gauge invariant function

G = κ2K + log(κ6WW̄). (1.4)

The scalar potential is given by

V = VF + VD

VF = eκ
2K
(
−3κ2WW̄ +∇αWgαβ̄∇̄β̄W̄

)
VD =

1

2
(Ref)−1 AB PAPB, (1.5)

where W appears with its Kähler covariant derivative

∇αW = ∂αW(z) + κ2(∂αK)W(z). (1.6)

The moment maps PA are given by

PA = i(kαA∂αK − rA). (1.7)

In this paper we will be concerned with theories having a gauged R-symmetry, for
which rA(z) is given by an imaginary constant rA(z) = iκ−2ξ. In this case, κ−2ξ is
a Fayet-Iliopoulos [4] constant parameter.

1.3 Symmetric versus non-symmetric point

Here, we present a class of inflation models in supergravity theories containing
a single chiral multiplet transforming under a gauged R-symmetry with a cor-
responding abelian vector multiplet [16]. We assume that the chiral multiplet X
(with scalar component X) transforms as:

X −→ Xe−iqω. (1.8)

where q is its charge, andω is the gauge parameter.
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1 Inflation From Supersymmetry Breaking 7

The Kähler potential is therefore a function of XX̄, while the superpotential is
constrained to be of the form Xb:

K = K(XX̄),
W = κ−3fXb, (1.9)

where X is a dimensionless field. For b 6= 0, the gauge symmetry eq. (1.8) becomes
a gauged R-symmetry. The gauge kinetic function can have a constant contribution
as well as a contribution proportional to lnX

f(X) = γ+ β lnX. (1.10)

The latter contribution proportional to β is not gauge invariant and can be used
as a Green-Schwarz counter term to cancel possible anomalies. One can show
however that the constant β is fixed to be very small by anomaly cancellation
conditions and does not change our results [16]. We will therefore omit this term
in our analysis below.

We are interested in the general properties of supergravity theories of inflation
that are of the above form. Before performing our analysis, a distinction should
be made concerning the initial point where slow-roll inflation starts. The inflaton
field (which will turn out to be ρ, where X = ρeiθ) can either have its initial
value close to the symmetric point where X = 0, or at a generic point X 6= 0. The
minimum of the potential, however, is always at a nonzero point X 6= 0. This is
because at X = 0 the negative contribution to the scalar potential vanishes and no
cancellation between F-term and D-term is possible. The supersymmetry breaking
scale is therefore related to the cosmological constant as κ−2m23/2 ≈ Λ. One could
in principle assume that the value of the potential at its minimum is of the order
of the supersymmetry breaking scale. However, in this case additional corrections
are needed to bring down the minimum of the potential to the present value of
the cosmological constant, and we therefore do not discuss this possibility.

In the first case, inflation starts near X = 0, and the inflaton field will roll
towards a minimum of the potential at X 6= 0. On the other hand, in the second
case inflation will start at a generic point X 6= 0. It is then convenient to work with
another chiral superfield S, which is invariant under a shift symmetry

S −→ S− icα (1.11)

by performing a field redefinition

X = eS. (1.12)

In this case the most general Kähler potential and superpotential are of the form

K = K(S+ S̄),
W = κ−3aebS. (1.13)

Note that this field redefinition is not valid at the symmetric point X = 0 for the
first case.



i
i

“proc18” — 2018/12/10 — 11:44 — page 8 — #24 i
i

i
i

i
i

8 I. Antoniadis

1.4 Case 1: Inflation near the symmetric point

1.4.1 Slow roll parameters

In this section we derive the conditions that lead to slow-roll inflation scenarios,
where the start of inflation is near a local maximum of the potential at X = 0.
Since the superpotential has charge 2 under R-symmetry, one has 〈W〉 = 0 as
long as R-symmetry is preserved. Therefore, 〈W〉 can be regarded as the order
parameter of R-symmetry breaking. On the other hand, the minimum of the
potential requires 〈W〉 6= 0 and broken R-symmetry. It is therefore attractive
to assume that at earlier times R-symmetry was a good symmetry, switching
off dangerous corrections to the potential. As similar approach was followed
in [22], where a discrete R-symmetry is assumed. Instead, we assume a gauged
R-symmetry which is spontaneously broken at the minimum of the potential.

While the superpotential is uniquely fixed in eq. (1.9), the Kähler potential is
only fixed to be of the form K(XX̄). We expand the Kähler potential as follows

K(X, X̄) = κ−2XX̄+ κ−2A(XX̄)2,

W(X) = κ−3fXb,

f(X) = 1, (1.14)

where A and f are constants. The gauge kinetic function is taken to be constant
since it was shown that the coefficient β in front of the logarithmic term in eq. (1.10)
is fixed to be very small by anomaly cancellation conditions [16]. As far as the
scalar potential is concerned, the coefficient γ can be absorbed in other parameters
of the theory. We therefore take γ = 1.

The scalar potential is given by

V = VF + VD, (1.15)

where

VF = κ−4f2(XX̄)b−1eXX̄(1+AXX̄)
[
−3XX̄+

(
b+ XX̄(1+ 2AXX̄)

)2
1+ 4AXX̄

]
(1.16)

and

VD = κ−4
q2

2

[
b+ XX̄(1+ 2AXX̄)

]2
. (1.17)

The superpotential is not gauge invariant under the U(1) gauge symmetry.
Instead it transforms as

W →We−iqbw . (1.18)

Therefore, theU(1) is a gauged R-symmetry which we will further denote asU(1)R.
From WXk

X
R = −rRκ

2W, where kXR = −iqX is the Killing vector for the field X
under the R-symmetry, rR = iκ−2ξR with κ−2ξR the Fayet-Iliopoulos contribution
to the scalar potential, andWX is short-hand for ∂W/∂X, we find

rR = iκ−2qb. (1.19)
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A consequence of the gauged R-symmetry is that the superpotential coupling b
enters the D-term contribution of the scalar potential as a constant Fayet-Iliopoulos
contribution.4

Note that the scalar potential is only a function of the modulus of X and that
the potential contains a Fayet-Iliopoulos contribution for b 6= 0. Moreover, its
phase will be ‘eaten’ by the U(1) gauge boson upon a field redefinition of the
gauge potential similarly to the standard Higgs mechanism. After performing a
change of field variables

X = ρeiθ, X̄ = ρe−iθ, (ρ ≥ 0) (1.20)

the scalar potential is a function of ρ,

κ4V = f2ρ2(b−1)eρ
2+Aρ4

(
−3ρ2 +

(
b+ ρ2 + 2Aρ4

)2
1+ 4Aρ2

)
+
q2

2

(
b+ ρ2 + 2Aρ4

)2
.(1.21)

Since we assume that inflation starts near ρ = 0, we require that the potential
eq. (1.21) has a local maximum at this point. It turns out that the potential only
allows for a local maximum at ρ = 0 when b = 1. For b < 1 the potential diverges
when ρ goes to zero. For 1 < b < 1.5 the first derivative of the potential diverges,
while for b = 1.5, one has V ′(0) = 9

4
f2 + 3

2
q2 > 0, and for b > 1.5, on has

V ′′(0) > 0. We thus take b = 1 and the scalar potential reduces to

κ4V = f2eρ
2+Aρ4

(
−3ρ2 +

(
1+ ρ2 + 2Aρ4

)2
1+ 4Aρ2

)
+
q2

2

(
1+ ρ2 + 2Aρ4

)2
.(1.22)

A plot of the potential for A = 1/2, q = 1 and f tuned so that the minimum has
zero energy is given in Figure 1.1.

Note that in this case the the superpotential is linearW = fX, describing the
sgoldstino (up to an additional low-energy constraint) [26]. Indeed, modulo a
D-term contribution, the inflaton in this model is the superpartner of the goldstino.
In fact, for q = 0 the inflaton reduces to the partner of the goldstino as in Minimal
Inflation models [27]. The important difference however is that this is a microscopic
realisation of the identification of the inflaton with the sgoldstino, and that the
so-called η-problem is avoided (see discussion below).

The kinetic terms for the scalars can be written as5

Lkin = −gXX̄∂̂µX∂̂
µX

= −gXX̄
[
∂µρ∂

µρ+ ρ2 (∂µθ+ qAµ) (∂
µθ+ qAµ)

]
. (1.23)

It was already anticipated above that the phase θ plays the role of the longitudinal
component of the gauge field Aµ, which acquires a mass by a Brout-Englert-Higgs
mechanism.

4 For other studies of inflation involving Fayet-Iliopoulos terms see for example [24], or [25]
for more recent work. Moreover, our motivations have some overlap with [22], where
inflation is also assumed to start near an R-symmetric point at X = 0. However, this work
uses a discrete R-symmetry which does not lead to Fayet-Iliopoulos terms.

5 The covariant derivative is defined as ∂̂µX = ∂µX − Aµk
X
R , where kXR = −iqX is the

Killing vector for the U(1) transformation eq. (1.8).
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Fig. 1.1.

We now interpret the field ρ as the inflaton. It is important to emphasise that,
in contrast with usual supersymmetric theories of inflation where one necessarily
has two scalar degrees of freedom resulting in multifield inflation [28], our class
of models contains only one scalar field ρ as the inflaton. In order to calculate the
slow-roll parameters, one needs to work with the canonically normalised field χ
satisfying

dχ

dρ
=
√
2gXX̄. (1.24)

The slow-roll parameters are given in terms of the canonical field χ by

ε =
1

2κ2

(
dV/dχ

V

)2
, η =

1

κ2
d2V/dχ2

V
. (1.25)

Since we assume inflation to start near ρ = 0, we expand

ε = 4
(

−4A+x2

2+x2

)2
ρ2 +O(ρ4),

η = 2
(

−4A+x2

2+x2

)
+O(ρ2), (1.26)

where we defined q = fx. Notice that for ρ � 1 the ε parameter is very small,
while the η parameter can be made small by carefully tuning the parameter A.
Any higher order corrections to the Kähler potential do not contribute to the
leading contributions in the expansion near ρ = 0 for η and ε. Such corrections
can therefore be used to alter the potential near its minimum, at some point X 6= 0
without influencing the slow-roll parameters.

A comment on the η-problem in Supergravity A few words are now in order
concerning the η-problem [29]. The η problem in N = 1 supergravity is often
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stated as follows (see for example [30]): If, for instance, a theory with a single
chiral multiplet with scalar component ϕ is taken, then the Kähler potential can
be expanded around a reference location ϕ = 0 as K = K(0) +Kϕϕ̄(0)ϕϕ̄+ . . . .
The Lagrangian becomes

L = −∂µφ∂
µφ̄− V(0)

(
1+ κ2φφ̄+ · · ·

)
, (1.27)

where φ is the canonically normalised field φφ̄ = Kϕϕ̄(0)ϕϕ̄, and the ellipses
stand for extra terms in the expansion coming from K and W. Following this
argument, the massmφ turns out to be proportional to the Hubble scale

m2φ = κ2V(0) + · · · = 3H2 + . . . , (1.28)

and therefore

η =
m2φ

3H2
= 1+ . . . . (1.29)

Or otherwise stated, this leading contribution of order 1 to the η-parameter has its
origin from the fact that the F-term contribution to the scalar potential contains an
exponential factor eK: V = eXX̄+... [. . . ] resulting in its second derivative VXX̄ =

V [1+ . . . ].
However, in our model the factor ’1’ drops out for the particular choice b = 1

in the superpotential6, resulting in an inflaton massm2ρ which is determined by
the next term A(XX̄)2 in the expansion of the Kähler potential,

m2χ =
(
−4A+ x2

)
κ−2f2 +O(ρ2),

H2 = κ−2f2

6
(2+ x2) +O(ρ2). (1.30)

As a result, there are two ways to evade the η-problem:

• First, one can obtain a small η by having a small q � f, while A should
be of order O(10−1). In this case, the rôle of the gauge symmetry is merely
to constrain the form of the Kähler potential and the superpotential, and to
provide a Higgs mechanism that eliminates the extra scalar (phase) degree of
freedom.

• Alternatively there could be a cancellation between q2 and 4Af2.

Since A is the second term in the expansion of the Kähler potential eq. (1.14), it is
natural to be of orderO(10−1) and therefore providing a solution to the η-problem.

Note that the mass of the inflaton given in eqs. (1.30) is only valid during
inflation at small ρ. The mass of the inflaton at its VEV will be affected by additional
corrections that are needed to obtain in particular a vanishing value for the scalar
potential at its minimum [16].

6 Note that in hybrid inflation models the η-problem is also evaded by a somewhat similar
way, but these models generally include several scalar fields (and superfields) besides
the inflaton (see e.g. [31]).
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The upper bound on the tensor-to-scalar ratio Before moving on to the next
section, let us focus on the approximation at ρ � 1 where the perturbative ex-
pansion of the slow-roll parameters in eqs. (1.26) is valid, and assume that the
horizon exit occurs at the field value ρ∗ very close to the maximum ρ = 0. In this
approximation, eqs. (1.26) become

ε(ρ) ≈ εpert(ρ) = |η∗|
2ρ2, η(ρ) ≈ η∗, (1.31)

where the asterisk refers to the value of parameters evaluated at the horizon exit.
To discuss the upper bound on the tensor-to-scalar ratio, it is convenient to

divide the region [ρ = 0, ρend] into two regions: one is [0, ρp], where the approxima-
tion 1.31 is valid, and the other is the rest [ρp, ρend]. Here ρend means the inflation
end. Note that ρp < ρend because the approximation 1.31 breaks down before the
end of inflation where ε(ρend) = 1 or |η(ρend)| = 1. In terms of this division, the
number of e-folds from the horizon exit to the end of inflation can be approximated
by

NCMB ' Npert(ρ∗, ρp) + κ

∫χend

χp

dχ√
2ε(χ)

, (1.32)

where we introduced

Npert(ρ1, ρ2) = κ

∫χ2
χ1

dχ√
2εpert(χ)

=
1

|η∗|
ln
(
ρ2

ρ1

)
. (1.33)

Here χ is the canonically normalised field defined by eq. (1.24). Let us next focus
on the region [ρp, ρend]. It is natural to expect the following inequality

κ

∫χend

χp

dχ√
2ε(χ)

<
∼ κ

∫χend

χp

dχ√
2εpert(χ)

. (1.34)

This is based on the following observation. The right hand side describes a hypo-
thetical situation, as if the slow-roll condition were valid throughout the inflation
until its end. But since in the actual inflation the slow-roll condition breaks down
in the region [ρp, ρend], the actual number of e-folds in this region will be smaller
than that in the hypothetical situation. AddingNpert(ρ∗, ρp) to the both hand sides
of 1.34 and using 1.32, we find

NCMB <∼
1

|η∗|
ln
(
ρend

ρ∗

)
. (1.35)

Using 1.31 and the definition of the tensor-to-scalar ratio r = 16ε∗, we obtain the
upper bound:

r <∼ 16
(
|η∗|ρende

−|η∗|NCMB

)2
. (1.36)

To satisfy CMB data, let us choose η = −0.02 andNCMB ≈ 50. Assuming ρend <∼ 1/2,
we obtain the upper bound r <∼ 10−4. Note that this is a little bit lower than the
Lyth bound [32] for small field inflation, r <∼ 10−3. From the upper bound on r, we
can also find the upper bound on the Hubble parameter as follows. In general, the
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power spectrum amplitude As is related to the Hubble parameter at horizon exit
H∗ by

As =
2κ2H2∗
π2r

. (1.37)

Combining this with the upper bound r <∼ 10−4 and the value As = 2.2× 10−9 by
CMB data, we find the upper bound on the Hubble parameter H∗ <∼ 109 TeV.

In Ref. [16], we will also find the lower bound r >∼ 10−9 (equivalentlyH∗ >∼ 107

TeV), based on an model-independent argument. This bound can be lowered at
the cost of naturalness between parameters in the potential.

1.5 On the new FI term

1.5.1 Review

In [19], the authors propose a new contribution to the supergravity Lagrangian of
the form7

LFI = ξ2

[
S0S̄0

w2w̄2

T̄(w2)T(w̄2)
(V)D

]
D

. (1.38)

The chiral compensator field S0, with Weyl and chiral weights (Weyl,Chiral) =
(1, 1), has components S0 = (s0, PLΩ0, F0) . The vector multiplet has vanishing
Weyl and chiral weights, and its components are given by V = (v, ζ,H, vµ, λ,D).
In the Wess-Zumino gauge, the first components are put to zero v = ζ = H = 0.
The multiplet w2 is of weights (1, 1), and given by

w2 =
λ̄PLλ

S20
, w̄2 =

λPRλ̄

S̄20
. (1.39)

The components of λ̄PLλ are given by

λ̄PLλ =
(
λ̄PLλ ;

√
2PL

(
−
1

2
γ · F̂+ iD

)
λ ; 2λ̄PL /Dλ+ F̂− · F̂− −D2

)
. (1.40)

The kinetic terms for the gauge multiplet are given by

Lkin = −
1

4

[
λ̄PLλ

]
F
+ h.c. . (1.41)

The operator T (T̄ ) is defined in [34,35], and leads to a chiral (antichiral) multiplet.
For example, the chiral multiplet T(w̄2) has weights (2, 2). In global supersymme-
try the operator T corresponds to the usual chiral projection operator D̄2.8

From now on, we will drop the notation of h.c. and implicitly assume its
presence for every [ ]F term in the Lagrangian. Finally, the multiplet (V)D is a
linear multiplet with weights (2, 0), given by

(V)D =
(
D, /Dλ, 0,DbF̂ab,−/D /Dλ,−�CD

)
. (1.42)

7 A similar, but not identical term was studied in [33].
8 The operator T indeed has the property that T(Z) = 0 for a chiral multiplet Z. Moreover,

for a vector multiplet V we have T(ZC) = ZT(C), and [C]D = 1
2
[T(C)]F.
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The definitions of /Dλ and the covariant field strength F̂ab can be found in eq. (17.1)
of [23], which reduce for an abelian gauge field to

F̂ab = e µa e
ν
b

(
2∂[µAν] + ψ̄[µγν]λ

)
Dµλ =

(
∂µ −

3

2
bµ +

1

4
wabµ γab −

3

2
iγ∗Aµ

)
λ−

(
1

4
γabF̂ab +

1

2
iγ∗D

)
ψµ.

(1.43)

Here, e µa is the vierbein, with frame indices a, b and coordinate indices µ, ν. The
fields wabµ , bµ, and Aµ are the gauge fields corresponding to Lorentz transforma-
tions, dilatations, and TR symmetry of the conformal algebra respectively, while
ψµ is the gravitino. The conformal d’Alembertian is given by �C = ηabDaDb.

It is important to note that the FI term given by eq. (1.38) does not require the
gauging of an R-symmetry, but breaks invariance under Kähler transformations.
In fact, a gauged R-symmetry would forbid such a term LFI [19].9

The resulting Lagrangian after integrating out the auxiliary field D contains a
term

LFI,new = −
ξ22
2

(s0s̄0)
2
. (1.44)

In the absence of additional matter fields, one can use the Poincaré gauge s0 =

s̄0 = 1, resulting in a constant D-term contribution to the scalar potential. This
prefactor however is relevant when matter couplings are included in the next
section.

1.5.2 Adding (charged) matter fields

In this section we couple the term LFI given by eq. (1.38) to additional matter fields
charged under the U(1). For simplicity, we focus on a single chiral multiplet X.
The extension to more chiral multiplets is trivial. The Lagrangian is given by

L = −3
[
S0S̄0e

− 1
3
K(X,X̄)

]
D
+
[
S30W(X)

]
F
−
1

4

[
f(X)λ̄PLλ

]
F
+ LFI, (1.45)

with a Kähler potential K(X, X̄), a superpotentialW(X) and a gauge kinetic func-
tion f(X). The first three terms in eq. (1.45) give the usual supergravity Lagrangian
[23]. We assume that the multiplet X transforms under the U(1),

V → V +Λ+ Λ̄,

X→ Xe−qΛ, (1.46)

with gauge multiplet parameter Λ. We assume that the U(1) is not an R-symmetry.
In other words, we assume that the superpotential does not transform under the
gauge symmetry. For a model with a single chiral multiplet this implies that the
superpotential is constant

W(X) = F. (1.47)

9 We kept the notation of [19]. Note that in this notation the field strength superfieldWα is
given byW2 = λ̄PLλ, and (V)D corresponds to DαWα.
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Gauge invariance fixes the Kähler potential to be a function of XeqV X̄ (for nota-
tional simplicity, in the following we omit the eqV factors).

Indeed, in this case the termLFI can be consistently added to the theory, similar
to [19], and the resulting D-term contribution to the scalar potential acquires an
extra term proportional to ξ2

VD =
1

2
Re (f(X))−1

(
ikX∂XK+ ξ2e

2
3
K
)2
, (1.48)

where the Killing vector is kX = −iqX and f(X) is the gauge kinetic function. The
F-term contribution to the scalar potential remains the usual

VF = eK(X,X̄)
(
−3WW̄ + gXX̄∇XW∇̄X̄W̄

)
. (1.49)

For a constant superpotential (1.47) this reduces to

VF = |F|2eK(X,X̄)
(
−3+ gXX̄∂XK∂X̄K

)
. (1.50)

From eq. (1.48) it can be seen that if the Kähler potential includes a term
proportional to ξ1 log(XX̄), the D-term contribution to the scalar potential acquires
another constant contribution. For example, if

K(X, X̄) = XX̄+ ξ1 ln(XX̄), (1.51)

the D-term contribution to the scalar potential becomes

VD =
1

2
Re (f(X))−1

(
qXX̄+ qξ1 + ξ2e

2
3
K
)2
. (1.52)

In fact the contribution proportional to ξ1 is the usual FI term in a non R-symmetric
Kähler frame, which can be consistently added to the model including the new FI
term proportional to ξ2.

In the absence of the extra term, a Kähler transformation

K(X, X̄)→ K(X, X̄) + J(X) + J̄(X̄),

W(X)→W(X)e−J(X), (1.53)

with J(X) = −ξ1 lnX allows one to recast the model in the form

K(X, X̄) = XX̄,

W(X) = m3/2X. (1.54)

The two models result in the same Lagrangian, at least classically10. However, in
the Kähler frame of eqs. (1.54) the superpotential transforms nontrivially under the
gauge symmetry. As a consequence, the gauge symmetry becomes an R-symmetry.
Note that [18]:

1. The extra term (1.38) violates the Kähler invariance of the theory, and the two
models related by a Kähler transformation are no longer equivalent.

2. The model written in the Kähler frame where the gauge symmetry becomes
an R-symmetry in eqs. (1.54) can not be consistently coupled to LFI.

10 At the quantum level, a Kähler transformation also introduces a change in the gauge
kinetic function f, see for example [36].
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1.6 The scalar potential in a Non R-symmetry frame

In this section, we work in the Kähler frame where the superpotential does not
transform, and take into account the two types of FI terms which were discussed
in the last section. For convenience, we repeat here the Kähler potential in eq. (1.51)
and restore the inverse reduced Planck mass κ =M−1

Pl = (2.4× 1018GeV)−1:

K = κ−2(XX̄+ ξ1 lnXX̄). (1.55)

The superpotential and the gauge kinetic function are set to be constant11:

W = κ−3F, f(X) = 1. (1.56)

After performing a change of the field variable X = ρeiθ where ρ ≥ 0 and setting
ξ1 = b, the full scalar potential V = VF + VD is a function of ρ. The F-term
contribution to the scalar potential is given by

VF =
1

κ4
F2eρ

2

ρ2b

[(
b+ ρ2

)2
ρ2

− 3

]
, (1.57)

and the D-term contribution is

VD =
q2

2κ4

(
b+ ρ2 + ξρ

4b
3 e

2
3
ρ2
)2
. (1.58)

Note that we rescaled the second FI parameter by ξ = ξ2/q. We consider the
case with ξ 6= 0 because we are interested in the role of the new FI-term in
inflationary models driven by supersymmetry breaking. Moreover, the limit ξ→ 0

is ill-defined [19].
The first FI parameter b was introduced as a free parameter. We now proceed

to narrowing the value of b by the following physical requirements. We first
consider the behaviour of the potential around ρ = 0,

VD =
q2

2κ4

[(
b2 + 2bρ2 +O(ρ4)

)
+ 2bξρ

4b
3

(
1+O(ρ2)

)
+ ξ2ρ

8b
3

(
1+O(ρ2)

)]
,

(1.59)

VF =
F2

κ4
ρ2b
[
b2ρ−2 + (2b− 3) +O(ρ2)

]
. (1.60)

Here we are interested in small-field inflation models in which the inflation starts
in the neighbourhood of a local maximum at ρ = 0. In [16], we considered models
of this type with ξ = 0 (which were called Case 1 models), and found that the
choice b = 1 is forced by the requirement that the potential takes a finite value
at the local maximum ρ = 0. Now, we will investigate the effect of the new FI
parameter ξ on the choice of b under the same requirement.

11 Strictly speaking, the gauge kinetic function gets a field-dependent correction propor-
tional to q2 ln ρ, in order to cancel the chiral anomalies [11]. However, the correction
turns out to be very small and can be neglected below, since the charge q is chosen to be
of order of 10−5 or smaller.
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First, in order for V(0) to be finite, we need b ≥ 0. We first consider the case
b > 0. We next investigate the condition that the potential at ρ = 0 has a local
maximum. For clarity we discuss below the cases of F = 0 and F 6= 0 separately.
The b = 0 case will be treated at the end of this section.

1.6.1 Case F = 0

In this case VF = 0 and the scalar potential is given by only the D-term contribution
V = VD. Let us first discuss the first derivative of the potential:

V ′D =
q2

2κ4

[
4bρ

(
1+O(ρ2)

)
+
8b2

3
ξρ

4b
3

−1
(
1+O(ρ2)

)
+
8b

3
ξ2ρ

8b
3

−1
(
1+O(ρ2)

)]
.

(1.61)

For V ′D(0) to be convergent, we need b ≥ 3/4 (note that ξ 6= 0). When b = 3/4, we
have V ′D(0) = 8b2ξ/3, which does not give an extremum because we chose ξ 6= 0.
On the other hand, when b > 3/4, we have V ′D(0) = 0. To narrow the allowed
value of b further, let us turn to the second derivative,

V ′′D =
q2

2κ4

[
4b
(
1+O(ρ2)

)
+
8b2

3

(4b
3

− 1
)
ξρ

4b
3

−2
(
1+O(ρ2)

)
+
8b

3

(8b
3

− 1
)
ξ2ρ

8b
3

−2
(
1+O(ρ2)

)]
. (1.62)

When 3/4 < b < 3/2, the second derivative V ′′D(0) diverges. When b > 3/2, the
second derivative becomes V ′′D(0) = 2κ−4q2b > 0, which gives a minimum.

We therefore conclude that to have a local maximum at ρ = 0, we need to
choose b = 3/2, for which we have

V ′′D(0) = 3κ−4q2(ξ+ 1). (1.63)

The condition that ρ = 0 is a local maximum requires ξ < −1.
Let us next discuss the global minimum of the potential with b = 3/2 and

ξ < −1. The first derivative of the potential without approximation reads

V ′D ∝ ρ(3+ 3ξe
2
3
ρ2 + 2ξρ2e

2
3
ρ2)(3+ 2ρ2 + 2ξρ2e

2
3
ρ2). (1.64)

Since 3+ 3ξe
2
3
ρ2 + 2ξρ2e

2
3
ρ2 < 0 for ρ ≥ 0 and ξ < −1, the extremum away from

ρ = 0 is located at ρv satisfying the condition

3+ 2ρ2v + 2ξρ
2
ve

2
3
ρ2v = 0. (1.65)

Substituting this condition into the potential VD gives VD(ρv) = 0.
We conclude that for ξ < −1 and b = 3/2 the potential has a maximum

at ρ = 0, and a supersymmetric minimum at ρv. We postpone the analysis of
inflation near the maximum of the potential in section 1.7, and the discussion of
the uplifting of the minimum in order to obtain a small but positive cosmological
constant below. In the next subsection we investigate the case F 6= 0.
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18 I. Antoniadis

We finally comment on supersymmetry (SUSY) breaking in the scalar poten-
tial. Since the superpotential is zero, the SUSY breaking is measured by the D-term
order parameter, namely the Killing potential associated with the gauged U(1),
which is defined by

D = iκ−2
−iqX

W

(
∂W

∂X
+ κ2

∂K
∂X
W

)
. (1.66)

This enters the scalar potential as VD = D2/2. So, at the local maximum and
during inflation D is of order q and supersymmetry is broken. On the other hand,
at the global minimum, supersymmetry is preserved and the potential vanishes.

1.6.2 Case F 6= 0

In this section we take into account the effect of VF; its first derivative reads:

V ′F = κ−4F2
[
b2(2b− 2)ρ2b−3 + 2b(2b− 3)ρ2b−1

(
1+O(ρ2)

)]
. (1.67)

For V ′(0) to be convergent, we need b ≥ 3/2, for which V ′D(0) = 0 holds. For
b = 3/2, we have V ′F(0) = (9/4)κ−4F2 > 0, that does not give an extremum. For
b > 3/2, we have V ′F(0) = 0. To narrow the allowed values of b further, let us turn
to the second derivative,

V ′′F = κ−4F2
[
b2(2b− 2)(2b− 3)ρ2b−4 + 2b(2b− 3)(2b− 1)ρ2b−2

(
1+O(ρ2)

)]
.

(1.68)

For 3/2 < b < 2, the second derivative V ′′F (0) diverges. For b ≥ 2, the second
derivative is positive V ′′(0) > 0, that gives a minimum (note that V ′′D(0) > 0 as
well in this range).

We conclude that the potential cannot have a local maximum at ρ = 0 for any
choice of b. Nevertheless, as we will show below, the potential can have a local
maximum in the neighbourhood of ρ = 0 if we choose b = 3/2 and ξ < −1. For
this choice, the derivatives of the potential have the following properties,

V ′(0) < 0, V ′′(0) = 3κ−4q2(ξ+ 1). (1.69)

The extremisation condition around ρ = 0 becomes

3κ−4q2(ξ+ 1)ρ+
9

4
κ−4F2 ' 0. (1.70)

So the extremum is at

ρ ' −
3F2

4q2(ξ+ 1)
. (1.71)

Note that the extremum is in the neighbourhood of ρ = 0 as long as we keep
the F-contribution to the scalar potential small by taking F2 � q2|ξ + 1|, which
guarantees the approximation ignoring higher order terms in ρ. We now choose
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ξ < −1 so that ρ for this extremum is positive. The second derivative at the
extremum reads

V ′′ ' 3κ−4q2(ξ+ 1), (1.72)

as long as we ignore higher order terms in F2/(q2|ξ + 1|). By our choice ξ < −1,
the extremum is a local maximum, as desired.

Let us comment on the global minimum after turning on the F-term contribu-
tion. As long as we choose the parameters so that F2/q2 � 1, the change in the
global minimum ρv is very small, of order O(F2/q2), because the extremisation
condition depends only on the ratio F2/q2. So the change in the value of the global
minimum is of order O(F2). The plot of this change is given in Fig. 1.2.

Fig. 1.2. This plot shows the scalar potentials in F = 0 and F 6= 0 cases. When F = 0, we
have a local maximum at ρmax = 0 and a global minimum with zero cosmological constant.
For F 6= 0, the local maximum is shifted by a small positive value to ρmax 6= 0. The global
minimum now has a positive cosmological constant.

In the present case F 6= 0, the order parameters of SUSY breaking are both the
Killing potential D and the F-term contribution FX, which read

D ∝ q(3
2
+ ρ2), FX ∝ Fρ1/2eρ

2/2, (1.73)

where the F-term order parameter FX is defined by

FX = −
1√
2
eκ
2K/2

(
∂2K
∂X∂X̄

)−1(
∂W̄

∂X̄
+ κ2

∂K
∂X̄
W̄

)
. (1.74)

Therefore, at the local maximum, FX/D is of order O((ξ+ 1)−1/2F2/q2) because
ρ there is of order O((ξ+ 1)−1F2/q2). On the other hand, at the global minimum,
both D and FX are of order O(F), assuming that ρ at the minimum is of order
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O(1), which is true in our models below. This makes tuning of the vacuum energy
between the F- and D-contribution in principle possible, along the lines of [16,11].

A comment must be made here on the action in the presence of non-vanishing
F and ξ. As mentioned above, the supersymmetry is broken both by the gauge
sector and by the matter sector. The associated goldstino therefore consists of
a linear combination of the U(1) gaugino and the fermion in the matter chiral
multiplet X. In the unitary gauge the goldstino is set to zero, so the gaugino is not
vanishing anymore, and the action does not simplify as in Ref. [19]. This, however,
only affects the part of the action with fermions, while the scalar potential does
not change. This is why we nevertheless used the scalar potential (1.57) and (1.58).

Let us consider now the case b = 0 where only the new FI parameter ξ
contributes to the potential. In this case, the condition for the local maximum of
the scalar potential at ρ = 0 can be satisfied for −3

2
< ξ < 0. When F is set to zero,

the scalar potential (1.58) has a minimum at ρ2min = 3
2

ln
(
− 3
2ξ

)
. In order to have

Vmin = 0, we can choose ξ = − 3
2e

. However, we find that this choice of parameter
ξ does not allow slow-roll inflation near the maximum of the scalar potential.
Similar to the previous model of section 1.4, it may be possible to achieve both the
scalar potential satisfying slow-roll conditions and a small cosmological constant
at the minimum by adding correction terms to the Kähler potential and turning
on a parameter F. However, here, we will focus on b = 3/2 case where, as we will
see shortly, less parameters are required to satisfy the observational constraints.

1.7 Application in Inflation

We recall that the the models we described in section 1.4, the inflaton is identified
with the sgoldstino, carrying a U(1) charge under a gauged R-symmetry and
inflation occurs around the maximum of the scalar potential, where the U(1)
symmetry is restored, with the inflaton rolling down towards the electroweak
minimum. These models avoid the so-called η-problem in supergravity by taking
a linear superpotential, W ∝ X. In contrast, here we will consider models with
two FI parameters b, ξ in the Kähler frame where the U(1) gauge symmetry is not
an R-symmetry. If the new FI term ξ is zero, these models are Kähler equivalent
to those with a linear superpotential (Case 1 models with b = 1). The presence of
non-vanishing ξ, however, breaks the Kähler invariance as we discussed before.
Moreover, the FI parameter b cannot be 1 but is forced to be b = 3/2, according
to the argument in Section 1.6. So the new models do not seem to avoid the η-
problem. Nevertheless, we will show below that this is not the case and the new
models with b = 3/2 avoid the η-problem thanks to the other FI parameter ξ
which is chosen near the value at which the effective charge of X vanishes between
the two FI-terms. Inflation is again driven from supersymmetry breaking but from
a D-term rather than an F-term as we had before.

1.7.1 Example for slow-roll D-term inflation

In this section we focus on the case where b = 3/2 and derive the condition
that leads to slow-roll inflation scenarios, where the start of inflation (or, horizon
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crossing) is near the maximum of the potential at ρ = 0. We also assume that the
scalar potential is D-term dominated by choosing F = 0, for which the model has
only two parameters, namely q and ξ. The parameter q controls the overall scale
of the potential and it will be fixed by the amplitude As of the CMB data. The only
free-parameter left over is ξ, which can be tuned to satisfy the slow-roll condition.

In order to calculate the slow-roll parameters, we need to work with the
canonically normalised field χ defined by eqs. (1.24), (1.25). Since we assume
inflation to start near ρ = 0, the slow-roll parameters for small ρ can be expanded
as

ε =
F4

q4
+
4F2

(
2(ξ+ 1)q4 − 3F4

)
3q6

ρ

+

(
16

9
(ξ+ 1)2 +

2F4
(
18F4 − q4(20ξ+ 11)

)
3q8

)
ρ2 +O(ρ3),

η =
4(1+ ξ)

3
+O(ρ). (1.75)

Note also that η is negative when ξ < −1. We can therefore tune the parameter ξ
to avoid the η-problem. The observation is that at ξ = −1, the effective charge of X
vanishes and thus the ρ-dependence in the D-term contribution (1.58) becomes of
quartic order.

For our present choice F = 0, the potential and the slow-roll parameters
become functions of ρ2 and the slow-roll parameters for small ρ2 read

η =
4(1+ ξ)

3
+O(ρ2) ,

ε =
16

9
(ξ+ 1)2ρ2 +O(ρ4) ' η(0)2ρ2 . (1.76)

Note that we obtain the same relation between ε and η as in the model of inflation
from supersymmetry breaking driven by an F-term from a linear superpotential
and b = 1 (see eq. (1.26)). Thus, there is a possibility to have flat plateau near
the maximum that satisfies the slow-roll condition and at the same time a small
cosmological constant at the minimum nearby.

The number of e-folds N during inflation is determined by

N = κ2
∫χend

χ∗

V
∂χV

dχ = κ2
∫ρend

ρ∗

V
∂ρV

(
dχ

dρ

)2
dρ, (1.77)

where we choose |ε(χend)| = 1. Notice that the slow-roll parameters for small
ρ2 satisfy the simple relation ε = η(0)2ρ2 + O(ρ4) by eq. (1.76). Therefore, the
number of e-folds between ρ = ρ1 and ρ2 (ρ1 < ρ2) takes the following simple
approximate form as in (1.32):

N ' 1

|η(0)|
ln
(
ρ2

ρ1

)
=

3

4|ξ+ 1|
ln
(
ρ2

ρ1

)
. (1.78)

as long as the expansions in (1.76) are valid in the region ρ1 ≤ ρ ≤ ρ2. Here we
also used the approximation η(0) ' η∗, which holds in this approximation.
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We can compare the theoretical predictions of our model to the observational
data via the power spectrum of scalar perturbations of the CMB, namely the
amplitude As, tilt ns and the tensor-to-scalar ratio of primordial fluctuations r.
These are written in terms of the slow-roll parameters:

As =
κ4V∗
24π2ε∗

,

ns = 1+ 2η∗ − 6ε∗ ' 1+ 2η∗ ,
r = 16ε∗ , (1.79)

where all parameters are evaluated at the field value at horizon crossing χ∗. From
the relation of the spectral index above, one should have η∗ ' −0.02, and thus
eq. (1.78) gives approximately the desired number of e-folds when the logarithm is
of order one. Actually, using this formula, we can estimate the upper bound of the
tensor-to-scalar ratio r and the Hubble scaleH∗ following the same argument given
in section 1.4; that is, the upper bounds are given by computing the parameters
r,H∗ assuming that the expansions (1.76) hold until the end of inflation. We then
get the bound

r . 16(|η∗|ρende
−|η∗|N)2 ' 10−4, H∗ . 10

12GeV, (1.80)

where we used |η∗| = 0.02,N ' 50 − 60 and ρend . 0.5, which are consistent with
our models. In the next subsection, we will present a model which gives a tensor-
to-scalar ratio bigger than the upper bound above, by adding some perturbative
corrections to the Kähler potential.

As an example, let us consider the case where

q = 4.544× 10−7, ξ = −1.005. (1.81)

By choosing the initial condition ρ∗ = 0.055 and ρend = 0.403, we obtain the results
N = 58, ns = 0.9542, r = 7.06× 10−6 and As = 2.2× 10−9, which are within the
2σ-region of Planck’15 data [18].

As was shown in Section 1.6.1, this model has a supersymmetric minimum
with zero cosmological constant because F is chosen to be zero. One possible way
to generate a non-zero cosmological constant at the minimum is to turn on the
superpotentialW = κ−3F 6= 0, as mentioned in Section 1.6.2. In this case, the scale
of the cosmological constant is of order O(F2). It would be interesting to find an
inflationary model which has a minimum at a tiny tuneable vacuum energy with
a supersymmetry breaking scale consistent with the low energy particle physics.

1.7.2 A small field inflation model from supergravity with observable
tensor-to-scalar ratio

While the results in the previous example agree with the current limits on r set by
Planck, supergravity models with higher r are of particular interest. In this section
we show that our model can get large r at the price of introducing some additional
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terms in the Kähler potential. Let us consider the previous model with additional
quadratic and cubic terms in XX̄:

K = κ−2
(
XX̄+A(XX̄)2 + B(XX̄)3 + b lnXX̄

)
, (1.82)

while the superpotential and the gauge kinetic function remain as in eq. (1.56). We
now assume that inflation is driven by the D-term, setting the parameter F = 0. In
terms of the field variable ρ, we obtain the scalar potential:

V = q2
(
b+ ρ2 + 2Aρ4 + 3Bρ6 + ξρ

4b
3 e

2
3 (Aρ

4+Bρ6+ρ2)
)2
. (1.83)

We thus have two more parameters A and B. This does not affect the arguments
of the choices of b in the previous sections because these parameters appear in
higher orders in ρ in the scalar potential. So, we consider the case b = 3/2. The
simple formula (1.78) for the number of e-folds for small ρ2 also holds even when
A,B are turned on because the new parameters appear at order ρ4 and higher. To
obtain r ≈ 0.01, we can choose for example

q = 2.121× 10−5, ξ = −1.140, A = 0.545, B = 0.230. (1.84)

By choosing the initial condition ρ∗ = 0.240 and ρend = 0.720, we obtain the results
N = 57, ns = 0.9603, r = 0.015 and As = 2.2× 10−9, which agree with Planck’15
data as shown in Fig. 1.3.

Fig. 1.3. A plot of the predictions for the scalar potential with F = 0, b = 3/2, A = 0.545,
B = 0.230, ξ = −1.140 and q = 2.121× 10−5 in the ns - r plane, versus Planck’15 results.

In summary, in contrast to the model in section 1.4, where the F-term contri-
bution is dominant during inflation, here inflation is driven purely by a D-term.
Moreover, a canonical Kähler potential (1.55) together with two FI-parameters (q
and ξ) is enough to satisfy Planck’15 constraints, and no higher order correction to
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the Kähler potential is needed. However, to obtain a larger tensor-to-scalar ratio,
we have to introduce perturbative corrections to the Kähler potential up to cubic
order in XX̄ (i.e. up to order ρ6). This model provides a supersymmetric extension
of the model [37] , which realises large r at small field inflation without referring
to supersymmetry.
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Abstract. New model-independent results from the first six full annual cycles of DAMA/
LIBRA–phase2 (total exposure of 1.13 ton × yr) are presented. The new improved DAMA/
LIBRA–phase2 experimental configuration (' 250 kg highly radio-pure NaI(Tl) with new
HAMAMATSU high quantum efficiency photomultipliers and new electronics) allowed
lower software energy threshold down to 1 keV. The DAMA/LIBRA–phase2 data confirm
the evidence of a signal that meets all the requirements of the model independent Dark
Matter (DM) annual modulation signature, at 9.5 σ C.L. in the (1–6) keV energy range. In the
(2–6) keV energy range, considering all together the data of DAMA/NaI, DAMA/LIBRA–
phase1 and DAMA/LIBRA–phase2 (total exposure 2.46 ton × yr, collected over 20 annual
cycles with three different set-ups), the achieved C.L. is 12.9 σ. No systematics or side
reaction able to mimic the exploited DM signature (i.e. to account for the whole measured
modulation amplitude and to simultaneously satisfy all the requirements of the signature),
has been found or suggested by anyone throughout some decades thus far.

Povzetek. Avtorji predstavijo nove rezultate meritev iz obdobja prvih šest let na experientu
DAMA/LIBRA - faza 2 (z ekspozicijo 1.13 ton ×šest let). Poskrbijo, da so rezultati meritev
neodvisni od izbire modela za opis dogodkov.

Izboljšana izvedba poskusa — z ' 250 kg visoko čistega Na(Tl), z novimi fotopomno-
ževalkami Hamamatsu z višjim kvantnim izkoristkom ter izboljšano elektroniko — je
omogočila, da so energijski prag znižali na 1 keV. Tudi te meritve potrdijo obstoj sig-
nala z letno modulacijo z zanesljivostjo 9.5 σ v območju energij (1–6) keV. Ko združijo
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v območju energij (2–6) keV meritve vseh dosedanjih poskusov v več kot 20 letih, to je
poskusov DAMA/NaI, DAMA/LIBRA-faza1 in DAMA/LIBRA-faza2, ki doseže kupaj
ekspozicijo 2.46 ton × let, dosežejo zanesljivost 12.9 σ. Nikomur dosedaj, bodisi v skupini
DAMA/LIBRA bodisi v katerikoli drugi skupini, ni uspelo najti drugega pojasnila za ta
izmerjeni signal, kot da ga povzroča temne snovi.

Keywords: dark matter detection, experiment, annual modulation signature, galac-
tic dark halo, DAMA/LIBRA

2.1 Introduction

The DAMA/LIBRA [1–12] experiment, as the former DAMA/NaI [10,13–17],
investigates the presence of DM particles in the galactic halo by exploiting the DM
annual modulation signature (originally suggested in Ref. [18,19]). The developed
highly radio-pure NaI(Tl) target-detectors [1,6,9,20] offer sensitivity to a wide
range of DM candidates, interaction types and astrophysical scenarios (see e.g. in
[10] and in literature).

The DM annual modulation signature and its peculiar features are linked
to to the Earth motion with respect to the DM particles constituting the Galactic
Dark Halo; thus, it is not related to terrestrial seasons. In fact as a consequence
of the Earth’s revolution around the Sun, which is moving in the Galaxy with
respect to the Local Standard of Rest toward the star Vega near the constellation
of Hercules, the Earth should be crossed by a larger flux of DM particles around
' 2 June (when the Earth orbital velocity is summed to that of the solar system
with respect to the Galaxy) and by a smaller one around ' 2 December (when the
two velocities are subtracted). In particular, the effect induced by DM particles
must simultaneously satisfy all the following requirements: the rate must contain
a component modulated according to a cosine function (1) with one year period
(2) and a phase that peaks roughly ' 2 June (3); this modulation must only be
found in a well-defined low energy range, where DM particle induced events can
be present (4); it must apply only to those events in which just one detector of
many actually “fires” (single-hit events), since the DM particle multi-interaction
probability is negligible (5); the modulation amplitude in the region of maximal
sensitivity must be <∼ 7% for usually adopted halo distributions (6), but it can be
larger in case of some proposed scenarios such as e.g. those in Ref. [21–25] (even
up to ' 30%). Thus, this signature is very distinctive, has many peculiarities and
allows to test a wide range of parameters in many possible astrophysical, nuclear
and particle physics scenarios.

This DM signature might be mimicked only by systematic effects or side
reactions able to account for the whole observed modulation amplitude and to
simultaneously satisfy all the requirements given above; none able to do that
has been found or suggested by anyone throughout some decades thus far [1–
5,7,8,10,15–17].

The data of the former DAMA/NaI setup and, later, those of the DAMA/LIBRA–
phase1 have already given positive evidence with high confidence level for the
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presence of a signal that satisfies all the requirements of the exploited DM signa-
ture [2–5,10,16,17]. Here the model independent result of six full annual cycles of
DAMA/LIBRA–phase2 is presented [12]. The total exposure of DAMA/LIBRA–
phase2 is: 1.13 ton × yr with an energy threshold at 1 keV. When including
also that of the first generation DAMA/NaI experiment and of DAMA/LIBRA–
phase1 the cumulative exposure is 2.46 ton × yr. Details on the annual cycles of
DAMA/LIBRA–phase2 are reported in Ref. [12]; in particular, the total number of
events collected for the energy calibrations during DAMA/LIBRA–phase2 is about
1.3× 108, while about 3.4× 106 events/keV have been collected for the evaluation
of the acceptance window efficiency for noise rejection near the software energy
threshold [1,6].

The investigation of the DM annual modulation at lower software energy
threshold with respect to DAMA/LIBRA–phase1 is deeply supported by the
interest in studying the nature of the DM candidate particles, the features of
related astrophysical, nuclear and particle physics aspects and by the potentiality
of an improved future sensitivity to investigate both DM annual and diurnal
signatures.

2.2 The set-up

The full description of the DAMA/LIBRA set-up and the adopted procedures
during the phase1 and other related arguments (such as e.g. detector’s radiopurity)
have been discussed in details e.g. in Ref. [1–5,20] and references therein.

At the end of 2010 the upgrade DAMA/LIBRA–phase2 started. All the pho-
tomultipliers (PMTs) were replaced by a second generation PMTs Hamamatsu
R6233MOD, with higher quantum efficiency (Q.E.) and with lower background
with respect to those used in phase1; they were produced after a dedicated R&D
in the company, and tests and selections [6,20]. The new PMTs have Q.E. in the
range 33-39% at 420 nm, wavelength of NaI(Tl) emission, and in the range 36-44%
at peak. The commissioning of the experiment was successfully performed in
2011, allowing the achievement of the software energy threshold at 1 keV, and the
improvement of some detector’s features such as energy resolution and acceptance
efficiency near software energy threshold[6]; the overall efficiency for single-hit
events as a function of the energy is also given in Ref. [6]. The procedure adopted
in the data analysis has been the same along all the data taking, throughout the
months and the annual cycles.

At the end of 2012 new preamplifiers and specially developed trigger modules
were installed and the apparatus was equipped with more compact electronic
modules [26]. Here we just remind that the sensitive part of DAMA/LIBRA–
phase2 set-up is made of 25 highly radio-pure NaI(Tl) crystal scintillators (5-rows
by 5-columns matrix) having 9.70 kg mass each one. Quantitative estimates of
residual contaminants in the detectors were given in Ref. [1]; the detectors are
maintained underground since many years. In each detector two 10 cm long UV
light guides (made of Suprasil B quartz) act also as optical windows on the two end
faces of the crystal, and are coupled to the two low background high Q.E. PMTs
working in coincidence at single photoelectron level. The detectors are housed
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in a sealed low-radioactive copper box installed in the center of a multi-ton low-
radioactive Cu/Pb/Cd-foils/polyethylene/paraffin shield; moreover, about 1 m
concrete (made from the Gran Sasso rock material) almost fully surrounds (mostly
outside the barrack) this passive shield, acting as a further neutron moderator.
The shield is decoupled from the ground by a metallic structure mounted above a
concrete basement; a neoprene layer separates the concrete basement and the floor
of the laboratory. The space between this basement and the basis of the metallic
structure is filled by paraffin for several tens cm in height.

A threefold-level sealing system prevents the detectors from contact with the
environmental air of the underground laboratory and continuously maintains
them in HP (high-purity) Nitrogen atmosphere. The whole installation is under
air conditioning to ensure a suitable and stable working temperature. The huge
heat capacity of the multi-tons passive shield (≈ 106 cal/oC) guarantees further
relevant stability of the detectors’ (whose metallic housings are in direct contact
with the metallic shield) operating temperature. In particular, two independent
systems of air conditioning are available for redundancy: one cooled by water
refrigerated by a dedicated chiller and the other operating with cooling gas. A
hardware/software monitoring system provides data on the operating conditions.
In particular, several probes are read out and the results are stored with the pro-
duction data. Moreover, self-controlled computer based processes automatically
monitor several parameters, including those from DAQ, and manage the alarms
system. All these procedures, already experienced during DAMA/LIBRA–phase1
[1–5], allow us to control and to maintain the running conditions stable at a level
better than 1% also in DAMA/LIBRA–phase2 (see below).

The light response of the detectors during phase2 typically ranges from 6 to 10
photoelectrons/keV, depending on the detector. Energy calibration with X-rays/γ
sources are regularly carried out in the same running condition down to few
keV (for details see e.g. Ref. [1]; in particular, double coincidences due to internal
X-rays from 40K in trace provide (when summing the data over long periods) an
intrinsic calibration point at 3.2 keV, close to the software energy threshold. It is
worth noting that, while DAMA/LIBRA–phase1 showed a very good linearity
between the calibration with the 59.5 keV line of 241Am and the tagged 3.2 keV
line of 40K [1], in DAMA/LIBRA–phase2 a slight non-linearity is observed (it
gives a shift of about 0.2 keV at the software energy threshold, as estimated from
the tagged 3.2 keV line of 40K, and vanishes above 15 keV which is the position of
a bump ascribed to Iodine K-escape peak from small 45 keV structure). This has
been taken into account here1. It is worth noting that the rates are always already
corrected for efficiency and that keV means keV electron equivalent.

The DAQ system records both single-hit events (where just one of the de-
tectors fires) and multiple-hit events (where more than one detector fires). Data
are collected up to the MeV region despite the optimization is performed for the
lowest energy range. The duty cycle of the experiment is high, ranging between

1 Similar non-linear effects cannot be highlighted in experiments where the energy scale is
extrapolated from calibrations at much higher energies or estimated through MonteCarlo
modeling.
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76% and 85%. The routine calibrations and, in particular, the data collection for
the acceptance windows efficiency mainly affect it.

The adopted procedures provide sensitivity to large and low mass DM candi-
dates inducing nuclear recoils and/or electromagnetic signals.

2.3 The annual modulation of the residual rate

The analysis of DAMA/LIBRA–phase2 exploits the same procedures already
adopted for the DAMA/LIBRA–phase1 [1–5].

In particular, the time behaviour of the experimental residual rates of the
single-hit scintillation events in the (1–3), and (1–6) keV energy intervals for the
DAMA/LIBRA–phase2 is shown in Fig. 2.1. The residual rates are calculated from
the measured rate of the single-hit events after subtracting the unmodulated part
[2–5,16,17]. The null modulation hypothesis is rejected at very high C.L. by χ2

test: χ2/d.o.f. = 127.3/52 and 150.3/52 (P-values: 3.0 × 10−8 and 1.7 × 10−11),
respectively. We remind that the residuals of the DAMA/NaI data (0.29 ton × yr)
are given in Ref. [2,5,16,17], while those of DAMA/LIBRA–phase1 (1.04 ton × yr)
in Ref. [2–5].
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Fig. 2.1. Experimental residual rate of the single-hit scintillation events measured by
DAMA/LIBRA–phase2 in the (1–3), (1–6) keV energy intervals, respectively, as a func-
tion of the time. The time scale is the same as in the previous DAMA data releases for
consistency. The data points present the experimental errors as vertical bars, and the widths
of the associated time bins as horizontal bars. The superimposed curves are the cosinusoidal
functional forms A cosω(t − t0) with a period T = 2π

ω
= 1 yr, a phase t0 = 152.5 day (June

2nd) and modulation amplitudes, A, equal to the central values obtained by best fit on
the data points of the entire DAMA/LIBRA–phase2. The dashed vertical lines correspond
to the maximum expected for the DM signal (June 2nd), while the dotted vertical lines
correspond to the minimum.
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Fig. 2.2 shows the residual rates of the single-hit scintillation events of the
former DAMA/LIBRA–phase1 and of the new DAMA/LIBRA–phase2; the energy
interval is from the software energy threshold of DAMA/LIBRA–phase1 (2keV)
up to 6 keV. Again the null modulation hypothesis is rejected at very high C.L. by
χ2 test (χ2/d.o.f. = 199.3/102, corresponding to P-value = 2.9 × 10−8).
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Fig. 2.2. Experimental residual rate of the single-hit scintillation events measured by
DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 in the (2–6) keV energy intervals
as a function of the time. The superimposed curve is the cosinusoidal functional forms
A cosω(t − t0) with a period T = 2π

ω
= 1 yr, a phase t0 = 152.5 day (June 2nd) and

modulation amplitude, A, equal to the central value obtained by best fit on the data points.

The single-hit residual rates of the DAMA/LIBRA–phase2 (Fig. 2.1) have been
fitted with the function: A cosω(t− t0), considering a period T = 2π

ω
= 1 yr and

a phase t0 = 152.5 day (June 2nd) as expected by the DM annual modulation
signature; this can be repeated for the case of (2–6) keV energy interval including
also the former DAMA/NaI and DAMA/LIBRA–phase1 data. The goodness of
the fits is well supported by the χ2 test [12]. The results of the fit obtained for
DAMA/LIBRA–phase2 either including or not DAMA/NaI and DAMA/LIBRA–
phase1 with period and phase kept free in the fitting procedure are reported in
Ref. [12]; the obtained period and phase are well compatible with the expectations
for a DM annual modulation signal. In particular, the phase is consistent with
about June 2nd and is fully consistent with the value independently determined by
Maximum Likelihood analysis (see later). For completeness, we recall that a slight
energy dependence of the phase could be expected (see e.g. Ref. [24,25,27–30]),
providing intriguing information on the nature of the Dark Matter candidate(s)
and related aspects.

2.3.1 Absence of background modulation in DAMA/LIBRA-phase2

As done in previous data releases (see e.g. Ref. [5], and references therein), absence
of any significant background modulation in the energy spectrum has also been
verified in the present data taking for energy regions not of interest for DM. In
fact, the background in the lowest energy region is essentially due to “Compton”
electrons, X-rays and/or Auger electrons, muon induced events, etc., which are
strictly correlated with the events in the higher energy region of the spectrum.
Thus, if a modulation detected in the lowest energy region were due to a modula-
tion of the background (rather than to a signal), an equal or larger modulation in
the higher energy regions should be present.
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Fig. 2.3. Distribution of the percentage variations of R90 with respect to the mean values
for all the detectors in DAMA/LIBRA–phase2 (histogram); the superimposed curve is a
gaussian fit. See text.

For example, the measured rate integrated above 90 keV, R90, as a function
of the time has been analysed. Fig. 2.3 shows the distribution of the percent-
age variations of R90 with respect to the mean values for all the detectors in
DAMA/LIBRA–phase2; this has a cumulative gaussian behaviour with σ ' 1%,
well accounted by the statistical spread expected from the used sampling time.
Moreover, fitting the time behaviour of R90 including also a term with phase and
period as for DM particles, a modulation amplitude AR90 compatible with zero
has been found for all the annual cycles (see Ref. [12]). This also excludes the
presence of any background modulation in the whole energy spectrum at a level
much lower than the effect found in the lowest energy range for the single-hit
scintillation events. In fact, otherwise – considering the R90 mean values – a mod-
ulation amplitude of order of tens cpd/kg would be present for each annual cycle,
that is ' 100 σ far away from the measured values. Similar results are obtained
when comparing the single-hit residuals in the (1–6) keV with those in other energy
intervals [12].

A further relevant investigation on DAMA/LIBRA–phase2 data has been
performed by applying the same hardware and software procedures, used to
acquire and to analyse the single-hit residual rate, to the multiple-hit one. Since the
probability that a DM particle interacts in more than one detector is negligible, a
DM signal can be present just in the single-hit residual rate. Thus, the comparison
of single-hit events with multiple-hit events corresponds to compare the cases of
DM particles beam-on and beam-off. This procedure also allows an additional
test of the background behaviour in the same energy interval where the positive
effect is observed. We note that an event is considered multiple-hit when there is a
deposition of energy in coincidence in more than one detector of the set-up. The
multiplicity can, in principle, range from 2 to 25. A multiple-hit event in a given
energy interval, say (1–6) keV, is given by an energy deposition between 1 and 6
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keV in one detector and other deposition(s) in other detector(s). The residual rate
of events with multiplicity equal or greater than 2 with an energy deposition in
the range 1-6 keV is shown in Fig. 2.4; the only procedure applied to multiple-hit
events is that used to reject noise events near software energy threshold and is the
same used for single-hit events. In particular, in Fig. 2.4 the residual rates of the
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Fig. 2.4. Experimental residual rates of DAMA/LIBRA–phase2 single-hit events (open cir-
cles), class of events to which DM events belong, and for multiple-hit events (filled triangles),
class of events to which DM events do not belong. They have been obtained by considering
for each class of events the data as collected in a single annual cycle and by using in both
cases the same identical hardware and the same identical software procedures. The initial
time of the figure is taken on August 7th. The experimental points present the errors as
vertical bars and the associated time bin width as horizontal bars. Analogous results were
obtained for DAMA/NaI (two last annual cycles) and DAMA/LIBRA–phase1 [2–5,17,10].

single-hit scintillation events collected during DAMA/LIBRA–phase2 are reported,
as collected in a single cycle, together with the residual rates of the multiple-hit
events, in the considered energy intervals2. While, as already observed, a clear
modulation, satisfying all the peculiarities of the DM annual modulation signature,
is present in the single-hit events, the fitted modulation amplitudes for the multiple-
hit residual rate are well compatible with zero: (0.0007 ± 0.0006) cpd/kg/keV,
and (0.0004± 0.0004) cpd/kg/keV, in the energy regions (1–3) keV, and (1–6) keV,
respectively. Thus, again evidence of annual modulation with proper features
as required by the DM annual modulation signature is present in the single-hit
residuals (events class to which the DM particle induced events belong), while it
is absent in the multiple-hit residual rate (event class to which only background
events belong). Similar results were also obtained for the two last annual cycles of
DAMA/NaI [17] and for DAMA/LIBRA–phase1 [2–5]. Since the same identical

2 Just for completeness, it is worth noting that the rate of the multiple-hit events is <∼ 0.1
cpd/kg/keV and is dominated by double hit events from residual 40K in the crystals.
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hardware and the same identical software procedures have been used to analyse
the two classes of events, the obtained result offers an additional support for the
presence of a DM particle component in the galactic halo.

In conclusion, no background process able to mimic the DM annual modu-
lation signature (that is, able to simultaneously satisfy all the peculiarities of the
signature and to account for the measured modulation amplitude) has been found
or suggested by anyone throughout some decades thus far (see also discussions
e.g. in Ref. [1–5,7,8,10]).

2.3.2 The analysis in frequency
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Fig. 2.5. Power spectra of the time sequence of the measured single-hit events for
DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 grouped in 1 day bins. From top
to bottom: spectra up to the Nyquist frequency for (2–6) keV and (6–14) keV energy inter-
vals and their zoom around the 1 y−1 peak, for (2–6) keV (solid line) and (6–14) keV (dotted
line) energy intervals. The main mode present at the lowest energy interval corresponds to
a frequency of 2.74× 10−3 d−1 (vertical line, purple on-line). It corresponds to a period of
' 1 year. A similar peak is not present in the (6–14) keV energy interval. The shaded (green
on-line) area in the bottom figure – calculated by Monte Carlo procedure – represents the
90% C.L. region where all the peaks are expected to fall for the (2–6) keV energy interval. In
the frequency range far from the signal for the (2–6) keV energy region and for the whole
(6–14) keV spectrum, the upper limit of the shaded region (90% C.L.) can be calculated to
be 10.6 (continuous lines, green on-line).

To perform the Fourier analysis of the DAMA/LIBRA–phase1 and –phase2
data in a wider region of considered frequency, the single-hit events have been
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grouped in 1 day bins. Because of the low statistics in each time bin, a procedure
described in Ref. [31] has been followed. The whole power spectra up to the
Nyquist frequency and the zoomed ones are reported in Fig. 2.5. For the lowest
energy interval a clear peak corresponding to a period of 1 year is evident, while in
the (6–14) keV energy region the same analysis gives only aliasing peaks. Neither
other structure at different frequencies has been observed.
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Fig. 2.6. Power spectrum of the annual baseline counting rates for the single-hit events
of DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 in the (2–6) keV energy interval
(dotted line, red on-line). Also shown for comparison is the power spectrum reported in
Fig. 2.5 (solid line). The calculation has been performed according to Ref. [5]. As can be
seen, a principal mode is present at a frequency of 2.74× 10−3 d−1, that corresponds to a
period of ' 1 year. No statistically-significant peak is present at lower frequencies. This
implies that no evidence for a long term modulation is present in the single-hit scintillation
event in the low energy range.

As regards the significance of the peaks present in the periodogram, we
remind that the periodogram ordinate, z, at each frequency follows a simple
exponential distribution e−z in the case of the null hypothesis or white noise [32].
Thus, ifM independent frequencies are scanned, the probability to obtain values
larger than z is: P(> z) = 1− (1− e−z)

M; in generalM depends on the number of
sampled frequencies, the number of data points N, and their detailed spacing. It
turns out thatM is very nearly equal toNwhen the data points are approximately
equally spaced, and when the sampled frequencies cover the frequency range
from 0 to the Nyquist frequency [33,34].

The number of data points used to obtain the spectra in Fig. 2.5 is N =

4341 (days measured over the 4748 days of the 13 DAMA/LIBRA–phase1 and
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–phase2 annual cycles) and the full frequencies region up to Nyquist frequency
has been scanned. Therefore, assuming M = N, the significance levels P = 0.10,
0.05 and 0.01, correspond to peaks with heights larger than z = 10.6, 11.3 and 13.0,
respectively, in the spectra of Fig 2.5.

In the case below 6 keV, a signal is present; thus, the signal must be included
to properly evaluate the C.L.. This has been done by a dedicated Monte Carlo
procedure where a large number of similar experiments has been simulated. The
90% C.L. region (shaded, green on-line) where all the peaks are expected to fall for
the (2–6) keV energy interval is shown in Fig 2.5; several peaks, satellite of the one
year period frequency, are present.

The case of the (1–6) keV energy interval can be studied only for DAMA/LIBRA–
phase2 and is shown in Ref. [12]; as previously, the only significant peak is that
corresponding to one year period. No other peak is statistically significant being
below the area obtained by Monte Carlo procedure.

In conclusion, apart from the peak corresponding to a 1 year period, no other
peak is statistically significant either in the low and in the high energy regions.

In addition, for each annual cycle of DAMA/LIBRA–phase1 and –phase2,
the annual baseline counting rates have been calculated for the (2–6) keV energy
interval. Their power spectrum in the frequency range 0.0002− 0.0018 d−1 (corre-
sponding to a period range 13.7–1.5 year) is reported in Fig. 2.6; for comparison
the power spectrum (solid black line) above 0.0022 d−1 of Fig. 2.5 is shown. The
calculation has been performed according to Ref. [5]. No statistically-significant
peak is present at frequencies lower than 1 y−1. This implies that no evidence for
a long term modulation in the counting rate is present.

2.4 The modulation amplitudes by maximum likelihood
approach

The annual modulation present at low energy can also be pointed out by depicting
the energy dependence of the modulation amplitude, Sm(E), obtained by maxi-
mum likelihood method considering fixed period and phase: T =1 yr and t0 =

152.5 day. For such purpose the likelihood function of the single-hit experimental
data in the k−th energy bin is defined as:

Lk = Πije
−µijk

µ
Nijk
ijk

Nijk!
, (2.1)

where Nijk is the number of events collected in the i-th time interval (hereafter
1 day), by the j-th detector and in the k-th energy bin. Nijk follows a Poisson’s
distribution with expectation value:

µijk = [bjk + Si(Ek)]Mj∆ti∆Eεjk . (2.2)

The bjk are the time-independent background contributions that depend on the
energy and on the detector, Mj is the mass of the j−th detector, ∆ti is the detector
running time during the i-th time interval, ∆E is the chosen energy bin, εjk is the
overall efficiency.
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The signal can be written as:

Si(E) = S0(E) + Sm(E) · cosω(ti − t0) , (2.3)

where S0(E) is the constant part of the signal and Sm(E) is the modulation ampli-
tude. The usual procedure is to minimize the function yk = −2ln(Lk) − const for
each energy bin; the free parameters of the fit are the twenty-five (one for each
detector) fjk = (bjk + S0) contributions and the Sm parameter.
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Fig. 2.7. Modulation amplitudes, Sm, for DAMA/LIBRA–phase2 (exposure 1.13 ton×yr)
from the energy threshold of 1 keV up to 20 keV (full triangles, blue data points on-line) –
and for DAMA/NaI and DAMA/LIBRA–phase1 (exposure 1.33 ton×yr) [4] (open squares,
red data points on-line). The energy bin ∆E is 0.5 keV. The modulation amplitudes obtained
in the two data sets are consistent in the (2–20) keV: the χ2 is 32.7 for 36 d.o.f., and the
corresponding P-value is 63%. In the (2–6) keV energy region, where the signal is present,
the χ2/d.o.f. is 10.7/8 (P-value = 22%).

The modulation amplitudes obtained considering the DAMA/LIBRA–phase2
data are reported in Fig. 2.7 as full triangles (blue points on-line) from the energy
threshold of 1 keV up to 20 keV; superimposed to the picture as open squared (red
on-line) data points are the modulation amplitudes of the former DAMA/NaI and
DAMA/LIBRA–phase1 [4]. The modulation amplitudes obtained in the two data
sets are consistent in the (2–20) keV, since the χ2 is 32.7 for 36 d.o.f. corresponding
to P-value = 63%. In the (2–6) keV energy region, where the signal is present, the
χ2/d.o.f. is 10.7/8 (P-value = 22%).

As shown in Fig. 2.7 positive signal is present below 6 keV also in the case
of DAMA/LIBRA–phase2. Above 6 keV the Sm values are compatible with zero;
actually, they have random fluctuations around zero, since the χ2 in the (6–20)
keV energy interval for the DAMA/LIBRA–phase2 data is equal to 29.8 for 28
d.o.f. (upper tail probability of 37%). Similar considerations have been done for
DAMA/NaI and DAMA/LIBRA–phase1 where the χ2 in the (6–20) keV energy
interval is 35.8 for 28 d.o.f. (upper tail probability of 15%) [4].

The modulation amplitudes for the whole data sets: DAMA/NaI, DAMA/
LIBRA–phase1 and DAMA/LIBRA–phase2 are plotted in Fig. 2.8; the data below
2 keV refer only to DAMA/LIBRA–phase2. It can be inferred that positive signal



i
i

“proc18” — 2018/12/10 — 11:44 — page 39 — #55 i
i

i
i

i
i

2 New Model independent Results From the First Six. . . 39

Energy (keV)

S
m

 (
cp

d
/k

g
/k

eV
)

-0.05

-0.025

0

0.025

0.05

0 2 4 6 8 10 12 14 16 18 20

Fig. 2.8. Modulation amplitudes, Sm, for the whole data sets: DAMA/NaI, DAMA/LIBRA–
phase1 and DAMA/LIBRA–phase2 (total exposure 2.46 ton×yr) above 2 keV; below 2 keV
only the DAMA/LIBRA–phase2 exposure (1.13 ton × yr) is available and used. The energy
bin ∆E is 0.5 keV. A clear modulation is present in the lowest energy region, while Sm
values compatible with zero are present just above. In fact, the Sm values in the (6–20) keV
energy interval have random fluctuations around zero with χ2 equal to 42.6 for 28 d.o.f.
(upper tail probability of 4%); see text for comments.

is present in the (1–6) keV energy interval, while Sm values compatible with zero
are present just above. All this confirms the previous analyses. The test of the
hypothesis that the Sm values in the (6–14) keV energy interval have random
fluctuations around zero yields χ2 equal to 19.0 for 16 d.o.f. (upper tail probability
of 27%).

For the case of (6–20) keV energy interval χ2/d.o.f. = 42.6/28 (upper tail
probability of 4%). The obtained χ2 value is rather large due mainly to two data
points, whose centroids are at 16.75 and 18.25 keV, far away from the (1–6) keV
energy interval. The P-values obtained by excluding only the first and either the
points are 11% and 25%.

2.4.1 The Sm distributions

The Sm values for each detector in the energy intervals of interest can be obtained
by the maximum likelihood approach. In particular, Fig. 2.9 shows the modulation
amplitudes Sm in the range (2–6) keV for each one of the 25 detectors in the
DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 periods. The hypothesis that
the signal is well distributed over all the 25 detectors is supported by the χ2

analysis; in fact, the Sm values show a random behaviour around the weighted
averaged value (shaded band), and the χ2/d.o.f. is 23.9/24.

The Sm values for each detector for each annual cycle and for the energy bin
of interest are expected to follow a normal distribution in absence of systematic
effects. One can consider the variable x = Sm−〈Sm〉

σ
in each detector, in 16 energy

bins (∆E = 0.25 keV) in the (2–6) keV energy interval, for the seven DAMA/LIBRA–
phase1 annual cycles and in the 20 energy bins in the (1–6) keV energy interval
for the six DAMA/LIBRA–phase2 annual cycles. The errors associated to Sm are
σ and 〈Sm〉 are the mean values of the Sm averaged over the detectors and the
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Fig. 2.9. Modulation amplitudes Sm integrated in the range (2–6) keV for each of the 25
detectors for the DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 periods. The errors
are at 1σ confidence level. The weighted averaged point and 1σ band (shaded area) are
also reported. The χ2 is 23.9 over 24 d.o.f., supporting the hypothesis that the signal is well
distributed over all the 25 detectors.

annual cycles for each considered energy bin. Fig. 2.10 shows the x distributions
and the gaussian fits.

Defining χ2 = Σx2, where the sum is extended over all the 232 (152 for
the 16th detector [4]), χ2/d.o.f. values ranging from 0.69 to 1.95 are obtained
for the 25 detectors. The mean value of χ2/d.o.f. is 1.07, value slightly larger
than 1; this can be still ascribed to statistical fluctuations, anyhow in case one
would assume it as ascribed to systematics an additional error to the modulation
amplitude measured below 6 keV would be derived as: ≤ 2.1× 10−4 cpd/kg/keV,
if combining quadratically the errors, or ≤ 3.0 × 10−5 cpd/kg/keV, if linearly
combining them. This possible additional error: ≤ 2% or ≤ 0.3%, respectively, on
the DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 modulation amplitudes
is an upper limit of possible systematic effects.

The analysis of the energy behaviour of the modulation amplitudes obtained
considering the nine inner detectors and the remaining external ones has also been
carried out for DAMA/LIBRA–phase2 as already done for the other data sets. The
hypothesis that the two sets of modulation amplitudes as a function of the energy
belong to same distribution has been verified by χ2 test, obtaining e.g.: χ2/d.o.f.
= 2.5/6 and 40.8/38 for the energy intervals (1–4) and (1–20) keV, respectively (∆E
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Fig. 2.10. Histograms of the variable Sm−〈Sm〉
σ

, where σ are the errors associated to the Sm
values and 〈Sm〉 are the mean values of the modulation amplitudes averaged over the
detectors and the annual cycles for each considered energy bin (here ∆E = 0.25 keV). Each
panel refers to a single DAMA/LIBRA detector. The entries of each histogram are 232 (the
16 energy bins in the (2–6) keV energy interval of the seven DAMA/LIBRA–phase1 annual
cycles and the 20 energy bins in the (1–6) keV energy interval of the six DAMA/LIBRA–
phase2 annual cycles), but 152 for the 16th detector (see Ref. [4]). The superimposed curves
are gaussian fits.

= 0.5 keV). Thus it is possible to conclude that the effect is well shared between
internal and external detectors.

To evaluate the hypothesis that the modulation amplitudes obtained for each
annual cycle are compatible and normally fluctuating around their mean values
a χ2 test can be applied. The distribution of these modulation amplitudes are
reported in Fig. 2.11, where the χ2/d.o.f. are also given; they corresponds to upper
tail probability of 5.2%, 97%, 25%, 67% and 72%, respectively. In addition to the χ2

test, also the run test has been applied (see e.g. Ref. [35]); it verifies the hypothesis
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Fig. 2.11. Modulation amplitudes of each single annual cycle of DAMA/LIBRA–phase1
and DAMA/LIBRA–phase2. The error bars are the 1σ errors. The dashed horizontal lines
show the central values obtained by best fit over the whole data set. The χ2 test and the
run test accept the hypothesis at 95% C.L. that the modulation amplitudes are normally
fluctuating around the best fit values.

that the positive (above the mean value) and negative (under the mean value)
data points are randomly distributed. The lower (upper) tail probabilities obtained
by the run test are: 70(70)%, 50(73)%, 85(35)%, 88(30)% and 88(30)%, respectively;
this confirms that the data collected in all the annual cycles with DAMA/LIBRA–
phase1 and phase2 are statistically compatible and can be considered together.

2.5 The phase of the measured modulation effect

In order to investigate the phase of the annual modulation effect, it is useful to
write the the signal as:

Si(E) = S0(E) + Sm(E) cosω(ti − t0) + Zm(E) sinω(ti − t0) (2.4)

= S0(E) + Ym(E) cosω(ti − t
∗)

releasing the assumption of a fixed phase at t0 = 152.5 day. For DM induced
signals: i) Zm ∼ 0 (because of the orthogonality between the cosine and the sine
functions); ii) Sm ' Ym; iii) t∗ ' t0 = 152.5 day. In fact, these conditions hold for
most of the dark halo models with some exceptions (see e.g. Ref. [24,25,27–30]).

In Fig. 2.12–left the obtained 2σ contours in the plane (Sm, Zm) are shown for
the (2–6) keV and (6–14) keV energy intervals considering cumulatively the data
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of DAMA/NaI, DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2. In Fig. 2.12–
right instead the obtained 2σ contours in the plane (Ym, t

∗) are depicted. Fig. 2.12
also shows – obviously only for DAMA/LIBRA–phase2 – the 2σ contours in the
(1–6) keV energy interval.

The best fit values in the considered cases (1σ errors) for Sm versus Zm and
Ym versus t∗ are reported in Table 2.1.
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Fig. 2.12. 2σ contours in the plane (Sm, Zm) (left) and in the plane (Ym, t
∗) (right) for: i)

DAMA/NaI, DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 in the (2–6) keV and
(6–14) keV energy intervals (light areas, green on-line); ii) only DAMA/LIBRA–phase2 in
the (1–6) keV energy interval (dark areas, blue on-line). The contours have been obtained by
the maximum likelihood method. A modulation amplitude is present in the lower energy
intervals and the phase agrees with that expected for DM induced signals.

E Sm Zm Ym t∗

(keV) (cpd/kg/keV) (cpd/kg/keV) (cpd/kg/keV) (day)
DAMA/NaI+DAMA/LIBRA–phase1+DAMA/LIBRA–phase2:
2–6 (0.0100 ± 0.0008) -(0.0003 ± 0.0008) (0.0100 ± 0.0008) (150.5 ± 5.0)
6–14 (0.0003 ± 0.0005) -(0.0009 ± 0.0006) (0.0010 ± 0.0013) undefined
DAMA/LIBRA–phase2:
1–6 (0.0105 ± 0.0011) (0.0009 ± 0.0010) (0.0105 ± 0.0011) (157.5 ± 5.0)

Table 2.1. Best fit values (1σ errors) for Sm versus Zm and Ym versus t∗, considering: i)
DAMA/NaI, DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 in the (2–6) keV and
(6–14) keV energy intervals; ii) only DAMA/LIBRA–phase2 in the (1–6) keV energy interval.
See also Fig. 2.12.

The Zm values, obtained in the hypothesis of Sm set to zero in eq. (2.4), are
reported in Fig. 2.13 for DAMA/NaI, DAMA/LIBRA–phase1, and DAMA/LIBRA–
phase2; they are expected to be zero. The χ2 test of the data supports the hypothesis
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Fig. 2.13. Energy distribution of Zm for DAMA/NaI, DAMA/LIBRA–phase1, and
DAMA/LIBRA–phase2 once setting Sm in eq. (2.4) to zero. The energy bin ∆E is 0.5
keV. The χ2 test applied to the data supports the hypothesis that the Zm values are simply
fluctuating around zero, as expected. See text.

that the Zm values are simply fluctuating around zero; in fact, in the (1–20) keV
energy region the χ2/d.o.f. is equal to 44.5/38 corresponding to a P-value = 22%.

Fig. 2.14 shows Ym and t∗ as a function of the energy for DAMA/NaI,
DAMA/LIBRA–phase1, and DAMA/LIBRA–phase2. The Ym are superimposed
with the Sm values with 1 keV energy bin. As in the previous analyses, an annual
modulation effect is present in the lower energy intervals and the phase agrees
with that expected for DM induced signals. No modulation is present above 6 keV
and the phase is undetermined.

2.6 Further investigation on possible systematic effects and
side reactions in DAMA/LIBRA–phase2

The DAMA/LIBRA–phase2 results – as those of DAMA/LIBRA–phase1 and
DAMA/NaI – fulfill the requirements of the DM annual modulation signature
and investigations on absence of any significant systematics or side reaction effect
are already present in the previous sections; however, here the topic is further
addressed.

Sometimes naive statements are put forwards as the fact that in nature several
phenomena may show annual periodicity. However, the point is whether they
might mimic the annual modulation signature, i.e. whether they might be not
only able to quantitatively account for the observed modulation amplitude but
also to contemporaneously satisfy all the requirements of the DM annual mod-
ulation signature. This was deeply investigated in the former DAMA/NaI and
DAMA/LIBRA–phase1 experiments (see e.g. Ref. [16,17,2] and references therein;
no one able to mimic the signature has been found or suggested by anyone so far)
and will be further addressed in the following for the present DAMA/LIBRA–
phase2 data.

Firstly, in order to continuously monitor the running conditions, several pieces
of information are acquired with the production data and quantitatively analysed;
information on technical aspects of DAMA/LIBRA has been given in Ref. [1],
where the sources of possible residual radioactivity have also been analysed.
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Fig. 2.14. Top: Energy distributions of Ym (light data points; red on-line) and of the Sm
variable (solid data points; black on-line) for DAMA/NaI, DAMA/LIBRA–phase1, and
DAMA/LIBRA–phase2. Here, unlike the data of Fig. 2.8, the energy bin is 1 keV. Bot-
tom: Energy distribution of the phase t∗ for DAMA/NaI, DAMA/LIBRA–phase1, and
DAMA/LIBRA–phase2; here the errors are at 2σ. The vertical scale spans over ± a quarter
of period around 2 June; other intervals are replica of it. The phase agrees with that expected
for DM induced signals at low energy. No modulation is present above 6 keV and thus the
phase is undetermined.

LIBRA–phase2-2 LIBRA–phase2-3 LIBRA–phase2-4 LIBRA–phase2-5 LIBRA–phase2-6 LIBRA–phase2-7

Temperature (◦C) (0.0012± 0.0051) −(0.0002± 0.0049) −(0.0003± 0.0031) (0.0009± 0.0050) (0.0018± 0.0036) −(0.0006± 0.0035)

Flux (l/h) −(0.15± 0.18) −(0.02± 0.22) −(0.02± 0.12) −(0.02± 0.14) −(0.01± 0.10) −(0.01± 0.16)

Pressure (mbar) (1.1± 0.9)10−3 (0.2± 1.1)10−3 (2.4± 5.4)10−3 (0.6± 6.2)10−3 (1.5± 6.3)10−3 (7.2± 8.6)10−3

Radon (Bq/m3) (0.015± 0.034) −(0.002± 0.050) −(0.009± 0.028) −(0.044± 0.050) (0.082± 0.086) (0.06± 0.11)

Hardware rate (Hz) −(0.12± 0.16)10−2 (0.00± 0.12)10−2 −(0.14± 0.22)10−2 −(0.05± 0.22)10−2 −(0.06± 0.16)10−2 −(0.08± 0.17)10−2

Table 2.2. Modulation amplitudes (1 σ error) obtained – for each annual cycle – by fitting
the time behaviours of main running parameters including a possible annual modulation
with phase and period as for DM particles. These running parameters, acquired with the
production data, are: i) the operating temperature of the detectors; ii) the HP Nitrogen flux
in the inner Cu box housing the detectors; iii) the pressure of the HP Nitrogen atmosphere
of that inner Cu box; iv) the environmental Radon in the inner part of the barrack from
which the detectors are however excluded by other two sealing systems (see text and Ref. [1]
for details); v) the hardware rate above single photoelectron threshold. All the measured
amplitudes are compatible with zero.

In particular, all the time behaviours of the running parameters, acquired
with the production data, have been investigated. Table 2.2 shows the modulation
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amplitudes obtained for each annual cycle when fitting the time behaviours of the
values of the main parameters including a cosine modulation with the same phase
and period as for DM particles. As can be seen, all the measured amplitudes are
well compatible with zero.

Let us now enter in some more details.

2.6.1 The temperature

The full experiment is placed underground and works in an air-conditioned
environment; moreover, the detectors have Cu housing in direct contact with the
multi-tons metallic passive shield whose huge heat capacity definitively assures
a relevant stability of the detectors’ operating temperature [1]. Nevertheless the
operating temperature is read out by a probe and stored with the production data,
in order to offer the possibility of further investigations.
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Fig. 2.15. left - Distribution of the relative variations of the operating temperature measured
during the DAMA/LIBRA–phase2 six annual cycles (histogram); the superimposed curve
is a gaussian fit. The standard deviation is 0.2%. Right - Distribution of the root mean square
(r.m.s.) detectors’ operating temperature variations within periods with the same calibration
factors (typically' 10 days) during the DAMA/LIBRA–phase2 six annual cycles. The mean
value is 0.03 oC.

Specific information on the DAMA/LIBRA–phase2 six annual cycles can be
derived from Fig. 2.15-left; no evidence for any operating temperature modula-
tion has been observed, as also quantitatively reported in Table 2.2. However,
to properly evaluate the real effect of possible variations of the detectors’ oper-
ating temperature on the light output, we consider the distribution of the root
mean square temperature variations within periods with the same calibration
factors (typically ' 10 days); this is given in Fig. 2.15-right cumulatively for the
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DAMA/LIBRA–phase2 data. The mean value of the root mean square of the vari-
ation of the detectors’ operating temperature is ' 0.03 oC and, considering the
known value of the slope of the light output <∼ -0.2%/oC, the relative light output
variation is <∼ 10

−4, that would correspond to a modulation amplitude <∼ 10
−4

cpd/kg/keV (that is <∼ 0.5% of the observed modulation amplitude).
Moreover, for temperature variations the specific requirements of the DM

annual modulation signature (such as e.g. the 4th and the 5th) would fail, while
they are instead satisfied by the DAMA/LIBRA–phase2 production data.

In conclusion, all the arguments given above quantitatively exclude any
role of possible effects on the observed rate modulation directly correlated with
temperature.

For the sake of completeness, we comment that sizeable temperature varia-
tions in principle might also induce variations in the electronic noise, in the Radon
release from the rocks and in some environmental background; these specific
topics will be further addressed in the following.

2.6.2 The noise

Despite the good noise identification near energy threshold and the stringent noise
rejection procedure which is used [1,6], the role of a possible noise tail in the data
after the noise rejection procedure has been quantitatively investigated.

The hardware rate of each detector above a single photoelectron, RHj (j iden-
tifies the detector), has been considered. Indeed, this hardware rate is significantly
determined by the noise.

For the proposed purpose the variable: RH = Σj(RHj − 〈RHj〉), can be built;
in the present case 〈RHj〉 <∼ 0.2 Hz. The time behaviour of RH during each
DAMA/LIBRA–phase2 annual cycle is shown in Fig. 2.16. As can be seen in
Fig. 2.17, the cumulative distribution of RH for the DAMA/LIBRA–phase2 annual
cycles shows a gaussian behaviour with σ = 0.3%, that is well in agreement with
that expected on the basis of simple statistical arguments.

Moreover, by fitting the time behaviour of RH in the six data taking periods –
including a modulation term as that for DM particles – a modulation amplitude
compatible with zero is obtained: −(0.061±0.067)×10−2 Hz, corresponding to the
upper limit:< 0.6×10−3 Hz at 90% C.L.. Since the typical noise contribution to the
hardware rate of each detector is ' 0.10 Hz, the upper limit on the noise relative
modulation amplitude is given by: 0.6×10

−3Hz
2.5Hz

' 2.4× 10−4 (90% C.L.). Therefore,
even in the worst hypothetical case of a 10% contamination of the residual noise
– after rejection – in the counting rate, the noise contribution to the modulation
amplitude in the lowest energy bins would be < 2.4× 10−5 of the total counting
rate. This means that a hypothetical noise modulation could account at maximum
for absolute amplitudes less than 10−4 cpd/kg/keV.

In conclusion, there is no role of any hypothetical tail of residual noise after
rejection.
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Fig. 2.16. Time behaviours of RH = Σj(RHj − 〈RHj〉), where RHj is the hardware rate of each
detector above single photoelectron threshold (that is including the noise), j identifies the
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the superimposed curve is a gaussian fit.
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2.6.3 The calibration factor

In long term running conditions the periodical calibrations are performed every
' 10 days with 241Am source [1]. Although it is highly unlikely that a variation
of the calibration factor (proportionality factor between the area of the recorded
pulse and the energy), tdcal, could play any role, a quantitative investigation on
that point has been carried out.
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Fig. 2.18. Left: Distribution of the percentage variations (εtdcal) of each energy scale factor
(tdcal) with respect to the value measured in the previous calibration (histogram); the
standard deviation is 0.5%. Right: Distribution of the percentage variations (εHE) of the high
energy scale factor with respect to the mean values (histogram); the standard deviation is
0.6%. The panels refer to the DAMA/LIBRA–phase2 annual cycles and the superimposed
curves are gaussian fits.

For this purpose, we define the percentage variation of each energy scale
factor (tdcal) with respect to the value measured in the previous calibration:
εtdcal = tdcalk−tdcalk−1

tdcalk−1
(here tdcalk is the value of the calibration factor in

the k-th calibration). The distribution of εtdcal for all the detectors during the
DAMA/LIBRA–phase2 annual cycles is given in Fig. 2.18–Left. This distribution
shows a gaussian behaviour with σ ' 0.5%. Since the results of the routine
calibrations are properly taken into account in the data analysis, such a result
allows us to conclude that the energy calibration factor for each detector is known
with an uncertainty� 1% during the data taking periods.

Moreover, the distribution of the percentage variations (εHE) of the high
energy scale factor with respect to the mean values for all the detectors and for
the DAMA/LIBRA–phase2 annual cycles is reported in Fig. 2.18–right. Also this
distribution shows a gaussian behaviour with σ ' 0.6%.
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As also discussed in Ref. [2,15,16], the possible variation of the calibration
factor for each detector during the data taking would give rise to an additional
energy spread (σcal) besides the detector energy resolution (σres). The total energy

spread can be, therefore, written as: σ =
√
σ2res + σ

2
cal ' σres · [1 + 1

2
· (σcal
σres

)2];
clearly the contribution due to the calibration factor variation is negligible since
1
2
· (σcal/E
σres/E

)2 <∼ 7.5× 10
−4 E
20keV

(where the adimensional ratio E
20keV

accounts for
the energy dependence of this limit value). This order of magnitude is confirmed
by a MonteCarlo calculation, which credits – as already reported in Ref. [2,15,16] –
a maximum value of the effect of similar variations of tdcal on the modulation
amplitude equal to 1− 2× 10−4 cpd/kg/keV. Thus, also the unlikely idea that the
calibration factor could play a role can be safely ruled out.

2.6.4 The efficiencies

The behaviour of the overall efficiencies during the whole data taking periods
has been investigated. Their possible time variation depends essentially on the
stability of the efficiencies related to the adopted acceptance windows; they are
regularly measured by dedicated calibrations [1].

In particular, Fig. 2.19 shows the percentage variations of the efficiency values
in the (1-8) keV energy interval for DAMA/LIBRA–phase2. They show a gaussian
distribution with σ = 0.3%. Moreover, we have verified that the time behaviour
of these percentage variations does not show any modulation with period and
phase expected for a possible DM signal. In Table 2.3 the modulation amplitudes
of the efficiencies in each energy bin between 1 and 10 keV are reported, showing
that they are all consistent with zero. In particular, modulation amplitudes –
considering the six DAMA/LIBRA–phase2 annual cycles all together – equal to
−(0.10±0.32)×10−3 and (0.00±0.41)×10−3 are found for the (1-4) keV and (4-6)
keV energy bins, respectively; both consistent with zero. Thus, also the unlikely
idea of a possible role played by the efficiency is ruled out.

Energy Modulation amplitudes (×10−3)
(keV) LIBRA-ph2-2 LIBRA-ph2-3 LIBRA-ph2-4 LIBRA-ph2-5 LIBRA-ph2-6 LIBRA-ph2-7

1-4 −(0.8± 0.7) (0.7± 0.8) (0.9± 0.8) −(1.3± 0.8) −(0.1± 0.8) (0.2± 0.8)
4-6 (0.9± 1.0) (0.9± 1.0) −(1.3± 1.0) (0.5± 1.0) −(1.0± 1.1) −(0.2± 1.0)
6-8 (0.8± 0.8) −(0.7± 0.7) (0.6± 0.8) −(0.1± 0.8) −(1.1± 0.8) (0.5± 0.8)
8-10 −(0.3± 0.6) −(0.5± 0.5) −(0.5± 0.5) −(0.3± 0.5) (0.4± 0.6) (0.3± 0.6)

Table 2.3. Modulation amplitudes obtained by fitting the time behaviour of the efficien-
cies including a cosine modulation with phase and period as for DM particles for the
DAMA/LIBRA–phase2 annual cycles.

2.6.5 The background

In order to verify the absence of any significant background modulation, the
energy distribution measured during the data taking periods in energy regions not
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Fig. 2.19. Percentage variations of the overall efficiency values with the respect to their
mean values for DAMA/LIBRA–phase2 (histogram); the superimposed curve is a gaussian
fit.

of interest for DM detection has been investigated. The presence of background (of
whatever nature) modulation is already excluded by the results on the measured
rate integrated above 90 keV, R90, as a function of the time; the latter one not
only does not show any modulation, but allows one to exclude the presence of a
background modulation in the whole energy spectrum at a level some orders of
magnitude lower than the annual modulation observed in the single-hit events in
the (1–6) keV energy region.

A further relevant support is given by the result of the analysis of the multiple-
hit events which independently proofs that there is no modulation at all in the
background event in the same energy region where the single-hit events present an
annual modulation satisfying all the requirements of the DM annual modulation
signature.

These results obviously already account for whatever kind of background
including that possibly induced by neutrons, by Radon and by side reactions.

... more on Radon The DAMA/LIBRA detectors are excluded from the air of the
underground laboratory by a 3-level sealing system [1]; in fact, this air contains
traces of the radioactive Radon gas (222Rn – T1/2 = 3.82 days – and of 220Rn – T1/2
= 55 s – isotopes, which belong to the 238U and 232Th chains, respectively), whose
daughters attach themselves to surfaces by various processes. In particular: i) the
walls, the floor and the top of the inner part of the installation are insulated by
Supronyl (permeability: 2× 10−11 cm2/s [36]) and a large flux of HP Nitrogen is
released in the closed space of this inner part of the barrack housing the set-up.
An Oxygen level alarm informs the operator before entering it, when necessary; ii)
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the whole passive shield is sealed in a Plexiglas box and maintained continuously
in HP Nitrogen atmosphere in slight overpressure with respect to the environment
as well as the upper glove box for calibrating the detectors; iii) the detectors are
housed in an inner sealed Cu box also maintained continuously in HP Nitrogen
atmosphere in slight overpressure with respect to the environment; the Cu box
can enter in contact only with the upper glove box – during calibrations – which is
also continuously maintained in HP Nitrogen atmosphere in slightly overpressure
with respect to the external environment.

Notwithstanding the above considerations, the Radon in the installation
outside the Plexiglas box, containing the passive shield, is continuously monitored;
it is at level of sensitivity of the used Radon-meter as reported in Fig. 2.20. Table
2.2 has already shown that no modulation of Radon is present in the environment
of the set-up; moreover, the detectors are further isolated by the other two levels
of sealing [1].
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Fig. 2.20. Time behaviours of the Radon in the inner part of the barrack (from which – in
addition - the detectors are further isolated by other two levels of sealing [1]) during the
DAMA/LIBRA–phase2 annual cycles. The measured values are at the level of sensitivity of
the used Radon-meter.

In Fig. 2.21 the distributions of the relative variations of the HP Nitrogen flux
in the inner Cu box housing the detectors and of the pressure of it are shown as
measured during the DAMA/LIBRA–phase2 annual cycles (the typical flux mean
value for each annual cycle is of order of ' 320 l/h and the typical overpressure
mean value is of order of 3.1 mbar).
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Fig. 2.21. Distributions of the HP Nitrogen flux in the inner Cu box housing the detectors
and of the pressure of it as measured during the DAMA/LIBRA–phase2 annual cycles
(histograms); the superimposed curves are gaussian fits. For clarity the HP Nitrogen flux
has been given in terms of relative variations.

Possible Radon trace in the HP Nitrogen atmosphere inside the Cu box,
housing the detectors, has been searched through the double coincidences of
the gamma-rays (609 and 1120 keV) from 214Bi Radon daughter, obtaining an
upper limit on the possible Radon concentration in the Cu box HP Nitrogen
atmosphere: < 5.8 × 10−2 Bq/m3 (90% C.L.) [2]. Thus, a rate roughly < 2.5 ×
10−5 cpd/kg/keV can be expected from this source at low energy. This shows
that even an hypothetical, e.g. 10%, modulation of possible Radon in the HP
Nitrogen atmosphere of the Cu box, housing the detectors, would correspond
to a modulation amplitude < 2.5× 10−6 cpd/kg/keV (< 0.01% of the observed
modulation amplitude).

Moreover, it is worth noting that, while the possible presence of a sizeable
quantity of Radon nearby a detector would forbid the investigation of the an-
nual modulation signature (since every Radon variation would induce both the
variation in the whole energy distribution and the continuous pollution of the
exposed surfaces by the non-volatile daughters), it cannot mimic the DM an-
nual modulation signature in experiments such as the former DAMA/NaI and
DAMA/LIBRA–phase1 and the present DAMA/LIBRA–phase2 which record
the whole energy distribution; in fact, possible presence of Radon variation can
easily be identified in this case and some of the six requirements of the DM annual
modulation signature would fail.

In conclusion, no significant role is possible from the Radon.

... more on side processes As mentioned, possible side reactions have also been
carefully investigated and none able to mimic the exploited signature is available;
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previous results on the topics hold (see e.g. Ref. [5], and references therein). In
particular, the case of neutrons, muons and solar neutrinos has been discussed
in details in Ref. [7,8], where it has been demonstrated that they cannot give any
significant contribution to the DAMA annual modulation result. Table 2.6.5 sum-
marizes the safety upper limits on the contributions to the observed modulation
amplitude due to the total neutron flux at LNGS, either from (α,n) reactions,
from fissions and from muons and solar-neutrinos interactions in the rocks and
in the lead around the experimental set-up; the direct contributions of muons
and solar neutrinos are reported there too. Not only the limits are quantitatively
marginal, but none of such contributions is able to simultaneously satisfy all
the requirements of the exploited signature. Other arguments can be found in
Ref. [1–4,7,5,11,8,16,17,15].

Source Φ
(n)
0,k ηk tk R0,k Ak = R0,kηk Ak/S

exp
m

(neutrons cm−2 s−1) (cpd/kg/keV) (cpd/kg/keV)
thermal n 1.08× 10−6 ' 0 – < 8× 10−6 � 8× 10−7 � 7× 10−5

(10−2 − 10−1 eV) however� 0.1

SLOW
neutrons epithermal n 2× 10−6 ' 0 – < 3× 10−3 � 3× 10−4 � 0.03

(eV-keV) however� 0.1

fission, (α, n) → n ' 0.9× 10−7 ' 0 – < 6× 10−4 � 6× 10−5 � 5× 10−3

(1-10 MeV) however� 0.1

µ→ n from rock ' 3× 10−9 0.0129 end of � 5× 10−4 � 7× 10−6 � 6× 10−4

FAST (> 10MeV) June
neutrons

µ→ n from Pb shield ' 6× 10−9 0.0129 end of � 1.1× 10−3 � 1.4× 10−5 � 1.3× 10−3

(> 10MeV) June

ν→ n ' 3× 10−10 0.03342∗ Jan. 4th∗ � 5× 10−5 � 1.8× 10−6 � 1.6× 10−4

(few MeV)
direct µ Φ

(µ)
0 ' 20 µm−2d−1 0.0129 end of ' 10−7 ' 10−9 ' 10−7

June
direct ν Φ

(ν)
0 ' 6× 1010 ν cm−2s−1 0.03342∗ Jan. 4th∗ ' 10−5 3× 10−7 3× 10−5

Table 2.4. Summary of the contributions to the total neutron flux at LNGS; the value, Φ(n)
0,k ,

the relative modulation amplitude, ηk, and the phase, tk, of each component is reported. It
is also reported the counting rate, R0,k, in DAMA/LIBRA–phase2 for single-hit events, in
the (1 − 6) keV energy region induced by neutrons, muons and solar neutrinos, detailed
for each component. The modulation amplitudes, Ak, are reported as well, while the last
column shows the relative contribution to the annual modulation amplitude observed by
DAMA/LIBRA–phase2, Sexpm ' 0.011 cpd/kg/keV. For details see Ref. [8] and references
therein.

∗ The annual modulation of solar neutrino is due to the different Sun-Earth distance along
the year; so the relative modulation amplitude is twice the eccentricity of the Earth orbit
and the phase is given by the perihelion.

2.6.6 Conclusions on possible systematics effects and side reactions

No modulation has been found in any possible source of systematics or side
reactions; thus, upper limits (90% C.L.) on the possible contributions to the
DAMA/LIBRA–phase2 measured modulation amplitude are summarized in Table
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2.5. In particular, they cannot account for the measured modulation both because
quantitatively not relevant and unable to mimic the observed effect.

Source Main comment Cautious upper limit
(see also Ref. [1]) (90%C.L.)

Sealed Cu Box in
Radon HP Nitrogen atmosphere, < 2.5× 10−6 cpd/kg/keV

3-level of sealing
Temperature Air conditioning < 10−4 cpd/kg/keV

+ huge heat capacity
Noise Efficient rejection < 10−4 cpd/kg/keV

Energy scale Routine < 1 − 2× 10−4 cpd/kg/keV
+ intrinsic calibrations

Efficiencies Regularly measured < 10−4 cpd/kg/keV
No modulation above 6 keV;

no modulation in the (1 – 6) keV
Background multiple-hit events; < 10−4 cpd/kg/keV

this limit includes all possible
sources of background

Side reactions From muon flux variation < 3× 10−5 cpd/kg/keV
measured by MACRO

In addition: no effect can mimic the signature

Table 2.5. Summary of the results obtained by investigating possible sources of systematics
or of side reactions in the data of the DAMA/LIBRA–phase2 annual cycles. None able
to give a modulation amplitude different from zero has been found; thus cautious upper
limits (90% C.L.) on the possible contributions to the measured modulation amplitude have
been calculated and are shown here.

2.7 Conclusions

The data of the new DAMA/LIBRA–phase2 confirm a peculiar annual modulation
of the single-hit scintillation events in the (1–6) keV energy region satisfying all
the many requirements of the DM annual modulation signature; the cumulative
exposure by the former DAMA/NaI, DAMA/LIBRA–phase1 and DAMA/LIBRA–
phase2 is 2.46 ton × yr.

As required by the exploited DM annual modulation signature: 1) the single-
hit events show a clear cosine-like modulation as expected for the DM signal; 2)
the measured period is equal to (0.999 ± 0.001) yr well compatible with the 1
yr period as expected for the DM signal; 3) the measured phase (145 ± 5) days
is compatible with the roughly ' 152.5 days expected for the DM signal; 4) the
modulation is present only in the low energy (1–6) keV interval and not in other
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higher energy regions, consistently with expectation for the DM signal; 5) the
modulation is present only in the single-hit events, while it is absent in the multiple-
hit ones as expected for the DM signal; 6) the measured modulation amplitude in
NaI(Tl) target of the single-hit scintillation events in the (2–6) keV energy interval,
for which data are also available by DAMA/NaI and DAMA/LIBRA–phase1, is:
(0.0103± 0.0008) cpd/kg/keV (12.9 σ C.L.). No systematic or side processes able
to mimic the signature, i.e. able to simultaneously satisfy all the many peculiarities
of the signature and to account for the whole measured modulation amplitude,
has been found or suggested by anyone throughout some decades thus far. In
particular, arguments related to any possible role of some natural periodical
phenomena have been discussed and quantitatively demonstrated to be unable
to mimic the signature (see e.g. Ref. [7,8]). Thus, on the basis of the exploited
signature, the model independent DAMA results give evidence at 12.9 σ C.L. (over
20 independent annual cycles and in various experimental configurations) for the
presence of DM particles in the galactic halo.

In order to perform corollary investigation on the nature of the DM particles in
given scenarios, model-dependent analyses are necessary3; thus, many theoretical
and experimental parameters and models are possible and many hypotheses
must also be exploited. In particular, the DAMA model independent evidence is
compatible with a wide set of astrophysical, nuclear and particle physics scenarios
for high and low mass candidates inducing nuclear recoil and/or electromagnetic
radiation, as also shown in a wide literature. Moreover, both the negative results
and all the possible positive hints, achieved so-far in the field, can be compatible
with the DAMA model independent DM annual modulation results in many
scenarios considering also the existing experimental and theoretical uncertainties;
the same holds for indirect approaches. For a discussion see e.g. Ref. [5] and
references therein. Model dependent analyses, to update the allowed regions in
various scenarios and to enlarge the investigations to other ones, will be presented
elsewhere.

Finally, we stress that to efficiently disentangle among the many possible
candidates and scenarios an increase of exposure in the new lowest energy bin is
important. The experiment is collecting data and related R&D is under way.
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Abstract. It is shown that in a flat background one can define higher spin (HS) gauge
theories with an infinite number of fields. In particular here HS YM-like in any dimension
and HS CS-like theories in any odd dimension are introduced and analyzed. They are
invariant under HS gauge transformations which include ordinary U(1) gauge transforma-
tions and diffeomorphisms. It is also shown how to recover local Lorentz invariance. The
action, equations of motion and conserved currents in the HS YM-like theories are explicitly
exhibited.

Povzetek. Avtor v prispevku pokaže, da lahko definira na ravnem ozadju umeritvene
teorije višjih spinov z neskončnim številom polj. Kot poseben primer uvede in analizira
teorije Yang-MIllsovega tipa z višjim spinom v poljubni dimenziji in teorije Cherna-Simmonsa
z višjim spinom v poljubni lihi dimenziji. Te teorije so invariantne na umeritvene transfo-
macije za višje spine, ki vključujejo običajne transformacije U(1) in difeomorfizme. Pokaže
še, kako znova vpeljati lokalno Lorentzovo invarianco. V teorijah Yang-Millsovega tipa z
višjim spinom zapiše akcijo ter enačbe gibanja in ohranitvene tokove.

Keywords: Higher spin theories, Yang-Mills like theories, Chern-Simmons theories,
flat spacetime

3.1 Introduction. . .

There are compelling motivations for research to study spin (HS) theories, that
is theories with an infinite number of fields with increasing spin. In a theory
that unifies all the forces of nature such a feature seems to be inevitable. First
(super)string theories have this characteristic. It is well known that the infinite
number of fields with increasing spins is related to their good UV behavior. Also
the AdS/CFT correspondence indicates that if we wish to resolve the singularities
of the theory on the boundary we have to turn to the dual theory, which is a
(super)string theory. Other arguments suggest that, when gravity is involved,
infinite many local fields of increasing spins are needed in order to avoid possible
conflicts with causality [1].

Starting from on these general motivations, in this contribution I will focus
on a specific problem, for which for a long time there have been no answers, or
only negative ones, in the literature: can one formulate a sensible local massless
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HS theory in a flat space-time? The standard lore in the literature may be sum-
marized by two objections: first, there are the so-called no-go theorems, which
prevent the existence of such theories under rather general conditions; second, the
construction of massless HS theories has been so far only successful in AdS spaces.
However here I will exhibit examples of HS theories defined in flat spacetime
in any dimension, which are massless, gauge invariant and, at least classically,
consistent.

In [3] and, later on, in [4,7] a method has been proposed to produce HS
effective actions by integrating out matter fields coupled to external potentials
and quantized according to the worldline quantization. The method consists in
computing current correlators, see [5,6], and explicitly determine the effective
action. Barring anomalies, we are guaranteed that the result is HS gauge invariant.
Unfortunately the method is very cumbersome and the resulting effective action
is not guaranteed to be local.

In this paper I would like to show that there exists a shortcut. Exploiting
the analogy of the HS gauge transformations with the gauge transformations
in ordinary non-Abelian gauge theories, one can construct analogous local HS
invariants and covariant objects, and in particular actions. In this way one can
define (perturbatively) local HS Yang-Mills theories in any dimension and HS
Chern-Simons theories in any odd dimension. I will focus in particular on the
former. They are characterized by a coupling constant, like the ordinary YM
theories. I will show how to define the action, their equations of motion and
their conserved quantities. The HS gauge transformations contains in particular
the ordinary U(1) gauge transformations and the diffeomorphisms. They do not
include the local Lorentz transformations. Since the HS YM-like theories are
formulated in a frame-like formalism, local Lorentz transformations are relevant
in order to permit their gravitational interpretation. Below I will show how to
local Lorentz invariance is hidden in the formalism and how to recover it.

3.2 Higher spin effective action

This section is devoted to a concise presentation of the effective action method.
The effective action here is defined via the worldline quantization method. This
method consists, roughly speaking, in considering the coordinates on which the
field depends, as the position of a quantum particle, while the latter is quantized
according to the Weyl-Wigner quantization.

Let us consider a free fermion theory

S0 =

∫
ddxψ(iγ·∂−m)ψ, (3.1)

coupled to external sources. According to the Weyl quantization method for a
particle worldline, the full action is expressed as an expectation value of operators

S = 〈ψ|− γa(P̂a − Ĥa) −m|ψ〉 (3.2)
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We recall that a quantum operator Ô can be represented with a symbol O(x, u)
through the Weyl map

Ô =

∫
ddxddy

ddk

(2π)d
ddu

(2π)d
O(x, u) eik·(x−X̂)−iy·(u−P̂) (3.3)

where X̂ is the position operator. The symbol of the product of two operators is
the ∗ product (or Moyal product) of the corresponding symbols.

In (3.2) P̂a is the momentum operator whose symbol is the classical momen-
tum ua

1 . Ĥa is an operator whose symbol is ha(x, u), where

ha(x, u) =

∞∑
n=0

1

n!
hµ1...µna (x)uµ1 . . . uµn (3.4)

s = n+ 1 is the spin and the tensors are assumed to be symmetric in µ1, . . . , µn.
Any field like ha(x, u), which depends also from the momentum u, will be referred
to as master field.

One should notice that there are two kind of labels a and µi. They will be
interpreted later as flat and curved indices, respectively, but in a flat background
they play the same role. Their true nature will illustrated later on.

Now one makes the above formalism explicit in (3.2), where we also insert two
completenesses

∫
ddx|x〉〈x|, and make the identification ψ(x) = 〈x|ψ〉. Expressing

S in terms of symbols one finds

S = S0 +

∫
ddu

(2π)d
ddxddz eiu·zψ

(
x+

z

2

)
γ·h(x, u)ψ

(
x−

z

2

)
(3.5)

= S0 +

∞∑
s=1

∫
ddx J(s)µ1...µs(x)h

µ1...µs
(s) (x)

The tensor field hµ1...µna is linearly coupled to the HS current

Jaµ1...µn(x) =
in

n!

∂

∂z(µ1
. . .

∂

∂zµn)
ψ
(
x+

z

2

)
γaψ

(
x−

z

2

) ∣∣∣
z=0

. (3.6)

For instance, for s = 1 and s = 2 one obtains

J(1)a = ψγaψ (3.7)

J(2)aµ1 =
i

2

(
∂(µ1ψγa)ψ−ψγa∂µ1)ψ

)
(3.8)

The HS currents are on-shell conserved in the free theory (3.1)

∂aJ
aµ1···µs−1
(s) = 0 (3.9)

1 Throughout the paper the position in the phase space are denoted by couples of letters
(x, u), (y, v), (z, t), (w, r), the first letter refers to the space-time coordinate and the second
the the momentum of the worldline particle. The letters k, p, q will be reserved to the
momenta of the (Fourier-transformed) physical amplitudes.
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3.2.1 HS gauge symmetries

The action (3.2) is trivially invariant under the operation

S = 〈ψ|ÔÔ−1ĜÔÔ−1|ψ〉 (3.10)

where Ĝ = −γ·(P̂ − Ĥ) −m. So it is invariant under

Ĝ −→ Ô−1ĜÔ, |ψ〉 −→ Ô−1|ψ〉 (3.11)

Writing Ô = e−iÊ we easily find the infinitesimal version.

δ|ψ〉 = iÊ|ψ〉, δ〈ψ| = −i〈ψ|Ê, (3.12)

and

δĜ = i[Ê , Ĝ] = i[γ·(P̂ − Ĥ) , Ê] = γ·δĤ (3.13)

Let the symbol of Ê be ε(x, u), then the symbol of [iγ·P̂, Ê] is∫
ddy〈x− y

2
|[iγ·P̂, Ê]|x+ y

2
〉 eiy·u = −iγ·∂xε(x, u) (3.14)

Similarly

Symb
(
[Ĥa, Ê]

)
= [ha(x, u) ∗, ε(x, u)] (3.15)

where [a ∗, b] ≡ a ∗ b− b ∗ a is the ∗-commutator. Therefore, in terms of symbols,

δεha(x, u) = ∂
x
aε(x, u) − i[ha(x, u)

∗, ε(x, u)] ≡ D∗xa ε(x, u) (3.16)

where the covariant derivative defined by

D∗xa = ∂xa − i[ha(x, u) ∗, ] (3.17)

has been introduced.
The variation in eq.(3.16) will be referred to hereafter as HS gauge transforma-

tion, and the corresponding symmetry HS gauge symmetry. For the transformations
of ψ, see [4] .

It is easy to see that the conservation law in the classical interacting theory

D∗ax Ja(x, u) = 0 (on − shell) (3.18)

follows from the above.
Using the ∗-Jacobi identity (which holds also for the Moyal product, because

the latter is associative) one can easily get

(δε2δε1 − δε1δε2)h
µ(x, u) = i (∂xa[ε1

∗, ε2](x, u) − i[ha(x, u) ∗, [ε1 ∗, ε2](x, u)]])

= iD∗xa [ε1 ∗, ε2](x, u) (3.19)

i.e. the HS ε-transform is of Lie algebra type.
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3.2.2 The HS effective action

The general formula for the effective action is

W[h] =W[0]+

∞∑
n=1

1

n!

∫ n∏
i=1

ddxi
ddui

(2π)d
W(n)
a1,...,an

(x1, u1, . . . , xn, un, ε)

×ha1(x1, u1) . . . han(xn, un) (3.20)

where W(n)
a1,...,an(x1, u1, . . . , xn, un, ε) are the n-point functions of the currents

Ja1(x1, u1), . . . , Jan(xn, un).W[0] is the constant 0-point contribution, which will
be disregarded in the sequel. There are various ways to compute these amplitudes.
The most popular is by means of Feynman diagrams. For instance, the 3-point
function can be calculated via the Feynman diagram integral

〈Ja1(x1, u1)Ja2(x2, u2)Ja3(x3, u3)〉

= −i

∫
ddq1

(2π)d
ddq2

(2π)d
ei(q1+q2)·x1e−iq1·x2e−iq2·x3

× δ
(
u1 −

2p− q1 − q2
2

)
δ

(
u2 −

2p− q1
2

)
δ

(
u3 −

2p− 2q1 − q2
2

)
×
∫
ddp

(2π)d
tr

(
γa1

1
/p+ m

γa2

1
/p− /q1 + m

γa3

1
/p− /q1 − /q2 + m

)
, (3.21)

to which one must add the cross term. q1, q2 are the momenta of two external
outgoing legs. The third one has incoming momentum q1 + q2.

These amplitudes have cyclic symmetry. The invariance of the effective action
under (3.16) is expressed by

0= δεW[h] =

∞∑
n=1

1

(n− 1)!

∫ n∏
i=1

ddxi
ddui

(2π)d
(3.22)

×W(n)
a1,...,an

(x1, u1, . . . , xn, un)D∗µ1x ε(x1, u1)h
a2(x2, u2) . . . h

an(xn, un)

The generalized equations of motion are obtained by varyingW[h] with respect to
the master field ha(x, u). Let us write them in the compact form

Fa(x, u) = 0 (3.23)

where

Fa(x, u) ≡
∞∑
n=0

1

n!

∫ n∏
i=1

ddxi
ddui

(2π)d
W(n+1)
aa1...an

(x, u, x1, u1, . . . , xn, un, ε)

×ha1(x1, u1) . . . han(xn, un)

The EoM’s (3.23) are covariant under HS gauge transformation

δεFa(x, u) = i[ε(x, u) ∗, Fa(x, u)] (3.24)
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3.3 Yang-Mills-like theories

3.3.1 The gauge transformation in the fermion model

Let us return to the gauge transformation (3.16)

δεha(x, u) = ∂
x
aε(x, u) − i[ha(x, u)

∗, ε(x, u)] ≡ Dx∗a ε(x, u) (3.25)

and write it down in components. To avoid a proliferation of numerical indices,
let us write the expansion of ha(x, u) as

ha(x, u) = Aa(x) + χ
µ
a(x)uµ +

1

2
bµνa uµuν +

1

6
cµνλa uµuνuλ + . . . (3.26)

As noted above we use two different types of indices. In the expansion (3.4) the
indices µ1, . . . , µn are upper (contravariant), as it should be, because in the Weyl
quantization procedure the momentum has lower index, since it must satisfy
[xµ, pν] = i δµν. The index a instead is traditionally reserved for a flat index. Of
course when the background metric is flat the indices a and µi are on the same
footing, but it is useful to keep them distinct. Let us see why.

For the HS gauge parameter we write

ε(x, u) = ε(x) + ξµuµ +
1

2
Λµνuµuν +

1

3!
Σµνλuµuνuλ + . . . (3.27)

The transformation (3.25) to the lowest order reads,

δAa = ∂aε+ ξ·∂Aa − ∂ρεχ
ρ
a + . . . (3.28)

δχνa = ∂aξ
ν + ξ·∂χνa − ∂ρξνχ

ρ
a + ∂ρAaΛρ

ν − ∂λεba
λν + . . .

δbνλa = ∂aΛ
νλ + ξ·∂baνλ − ∂ρξνbaρλ − ∂ρξλbaρν + ∂ρχ

ν
aΛρ

λ + ∂ρχ
λ
aΛρ

ν

−χρa∂ρΛνλ + . . .

The next nontrivial order contains terms with three derivatives, and so on.
It is natural to compare the previous HS gauge variations with the ordinary

gauge, diff, ... transformations. To this end let us denote by Ãa the standard U(1)
gauge field and by ẽµa = δµa − χ̃µa the standard inverse vielbein, and let us restrict
the previous general transformation to gauge and diff transformations alone. We
have

δÃa ≡ δ
(
ẽµaÃµ

)
≡ δ

(
(δµa − χ̃µa)Ãµ

)
(3.29)

=
(
−ξ·∂χ̃µa + ∂λξ

µχ̃λa
)
Ãµ + (δµa − χ̃µa)

(
∂µε+ ξ·Ãµ

)
≈ ∂aε+ ξ·Ãa − χ̃µa∂µε

and

δẽµa ≡ δ(δµa − χ̃µa) = ξ·∂ẽµa − ∂λξ
µẽλa = −ξ·χ̃µa − ∂aξ

µ + ∂λξ
µχ̃λa (3.30)

so that

δχ̃µa = ξ·∂χ̃µa + ∂aξ
µ − ∂λξ

µχ̃λa (3.31)
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where we have retained only the terms at most linear in the fields. From the above
we see that the natural identifictions are

Aa = Ãa, χµa = χ̃µa (3.32)

The transformations (3.28) are consistent with the ordinary gauge and diffeo-
morphism transformations. Therefore the master field ha can describe in particular
the geometry of the gauge theories and the geometry of gravity. The above does
not explain the nature of the index a. It is natural to interpret it as a flat index, but
this calls for local Lorentz symmetry. This issue will be resumed later on.

3.3.2 Analogy with gauge transformations in gauge theories

It should be remarked that in eq.(3.25) and (3.28) the derivative ∂a means ∂a =

δµa∂µ, not ∂a = eµa∂µ = (eµa − χµa + . . .)∂µ. In fact the linear correction −χµa∂µ is
contained in the term −i[ha(x, u) ∗, ε(x, u)], see for instance the second term in
the RHS of the first equation (3.28). The obvious remark is that the transformation
(3.25) looks similar to the ordinary gauge transformation of a non-Abelian gauge
field

δλAa = ∂aλ+ [Aa, λ] (3.33)

where Aa = AαaT
α, λ = λαTα, Tα being the Lie algebra generators.

In gauge theories it is useful to represent the gauge potential as a connection
one form A = Aadx

a, so that (3.33) becomes

δλA = dλ+ [A, λ] (3.34)

We can do the same for (3.25)

δεh(x, u) = dε(x, u) − i[h(x, u) ∗, ε(x, u)] ≡ Dε(x, u) (3.35)

where d = ∂a dx
a,h = hadx

a and xa are coordinates in the tangent spacetime,
and it is understood that

[h(x, u) ∗, ε(x, u)] = [ha(x, u) ∗, ε(x, u)]dx
a

We will apply this formalism to the construction of HS CS or YM-like actions.

3.3.3 HS Yang-Mills action

In analogy with the ordinary Yang-Mills theory one can introduce the curvature
2-form

G = dh −
i

2
[h ∗, h], (3.36)

whose components are

Gab = ∂ahb − ∂bha − i[ha ∗, hb] (3.37)
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Their transformation rule is

δεGab = −i[Gab ∗, ε] (3.38)

Next we will consider functionals which are integrated polynomials of G or
of its componentsGab. In order to exploit the transformation property (3.16) in the
construction we need the ‘trace property’, analogous to the trace of polynomials
in ordinary non-Abelian gauge theories. The only object with trace properties we
can define in the HS context is

〈〈f ∗ g〉〉 ≡
∫
ddx

∫
ddu

(2π)d
f(x, u) ∗ g(x, u)

=

∫
ddx

∫
ddu

(2π)d
f(x, u)g(x, u) = 〈〈g ∗ f〉〉 (3.39)

From this, plus associativity, it follows that

〈〈f1 ∗ f2 ∗ . . . ∗ fn〉〉 = (−1)ε1(ε2+...+εn)〈〈f2 ∗ . . . ∗ fn ∗ f1〉〉 (3.40)

where εi is the Grassmann degree of fi. In particular

〈〈[f1 ∗, f2 ∗ . . . ∗ fn}〉〉 = 0 (3.41)

where [ ∗, } is the ∗-commutator or anti-commutator, as appropriate.
This property holds also when the fi are valued in a Lie algebra, provided

the symbol 〈〈 〉〉 includes also the trace over the Lie algebra generators.
Let us return to Gab. From the propery (3.41) it follows that

δε〈〈Gab ∗Gab〉〉 = −i〈〈Gab ∗Gab ∗ ε− ε ∗Gab ∗Gab〉〉 = 0 (3.42)

Therefore

YM(h) = −
1

4g2
〈〈Gab ∗Gab〉〉 (3.43)

is invariant under the HS gauge transformation and it is a well defined functional
in any dimension.

This construction can be easily generalized to the non-Abelian case, that is
when the master field ha is valued in a Lie algebra with generators Tα: ha = hαaT

α.
See [8] .

3.3.4 HS CS action

Using the above properties it is not hard to prove, [7] that

CS(h) = n
∫1
0

dt〈〈h ∗Gt ∗ . . . ∗Gt〉〉 (3.44)

where

Gt = dht −
i

2
[ht ∗, ht], ht = th, (3.45)

is HS gauge invariant in a space of odd dimension d = 2n− 1. It defines the HS
CS action in any odd-dimensional spacetime.
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3.3.5 Covariant YM-type eom’s

From(3.43) we get the following eom:

∂bG
ab − i[hb ∗, G

ab] ≡ D∗bGab = 0 (3.46)

which is covariant under the HS gauge transformation

δε
(
D∗bGab

)
= −i[D∗bGab, ε] (3.47)

In components this equation splits into an infinite set according to the powers of
u. Let us expand Gab in the notation of sec.3.3.1. We have

Gab = Fab + X
µ
abuµ +

1

2
Bµνabuµuν +

1

6
Cµνλab uµuνuλ + . . . (3.48)

and express them in terms of the component fields of ha(x, u).
For instance, the first eom (O(u0)) is

0 = �Ab − ∂b∂·A+
1

2
(∂σ∂·Aχσb + ∂σA

a∂aχ
σ
b − ∂σ∂

aAbχ
σ
a − ∂σAb∂·χσ)

+
1

2
∂σA

a

(
∂aχ

σ
b − ∂bχ

σ
a +

1

2

(
∂λAab

λσ
b − ∂λAbb

λσ
a + ∂λχ

σ
aχ
λ
b − ∂λχ

σ
bχ
λ
a

))
−
1

2
χσa

(
∂σ∂

aAb − ∂σ∂bA
a

+
1

2

(
∂σ∂λA

aχλb + ∂λA
a∂σχ

λ
b − ∂σ∂λAbχ

aλ − ∂λAb∂σχ
aλ
))

(3.49)

+ . . . . . .

The second (O(u1))

�χµa − ∂a∂
bχµb=

1

2

(
∂b(∂σAa b

σµ
b − ∂σAb b

σµ
a + ∂σχ

µ
aχ
σ
b − ∂σχ

µ
bχ
σ
a) (3.50)

+∂τA
b∂ab

µτ
b − ∂τA

b∂bb
µτ
a + ∂τχ

bµ∂aχ
τ
b − ∂τχ

bµ∂bχ
τ
a

−∂τ∂aAb b
bτµ + ∂τ∂bAa b

bτµ − ∂τ∂aχ
µ
bχ
bτ + ∂τ∂bχ

µ
aχ
bτ
)
+ . . .

Ellipses denote terms with a larger number of spacetime derivatives.
Let us see a few elementary examples. Consider the case of a pure U(1) gauge

field A alone. The equation of motion is

∂aF
ab = �Ab − ∂b∂·A = 0 (3.51)

In the ‘Feynman gauge’ ∂·A = 0 this reduces to �Ab = 0.
Let us suppose next that only gravity is present. Eq.(3.50) becomes

∂aX
abµ = �χµb − ∂b∂·χµ = 0 (3.52)

In the ‘Feynman gauge’ ∂·χµ = 0, (3.52) reduces to �χµb = 02.

2 In ordinary gravity (Rµν = 0) we have to impose the DeDonder gauge in order to obtain
the same result.
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Finally, keeping only the spin 3 field the eom becomes

∂aB
abµν = �bb

µν − ∂b∂
abµνa = 0 (3.53)

Again in the ‘Feynman gauge’ ∂abµνa = 0we get �bbµν = 0.
In general we can impose for all the fields the Feynman gauge

∂aha(x, u) = 0 (3.54)

As is clear from (3.49), for instance, the above eom’s are characterized by
the fact that at each order, defined by the number of derivatives, there is a finite
number of terms. This defines a perturbatively local theory.

3.3.6 Conserved currents

The conservation laws of the HS models can be found following the analogy of a
current in an ordinary gauge theory or the energy momentum tensor in gravity
theories. For instance, if in HS YM we express the invariance of the action under
the HS gauge transformation we can write

0 = −
1

4
δε〈〈Gab ∗Gab〉〉 = 〈〈δεha ∗ D∗bGab〉〉

= 〈〈D∗aε ∗ D∗bGab〉〉 = −〈〈ε ∗ D∗aD∗bGab〉〉, (3.55)

This implies the off-shell relation or conservation law

D∗aD∗bGab = 0 (3.56)

from which we can identify the conserved master current

Ja = D∗bGab (3.57)

These conserved currents vanish on shell and are conserved off-shell. Expanding
in u

Ja =

∞∑
n=0

1

n!
J µ1...µna (x)uµ1 . . . uµn (3.58)

we find the conserved components.

Remark. The approach to covariance implicit in the HS YM theory (but also in
the effective action method) is entirely new. Unlike most HS approaches we do not
start from the EH action for gravity, and we do not replace ordinary derivatives
with Riemannian covariant derivatives. We obtain nevertheless an action invariant
under HS gauge transformations. The gauge transformation (3.16) reproduces
both ordinary U(1) gauge transformations and diffeomorphisms, but the action
functional is defined in the phase space. It gives nevertheless rise to local (HS
gauge covariant) equations of motion that reproduce the ordinary YM eoms, and,
although not completely, the metric equations of motion of EH gravity: the linear
eom coincide with the ordinary one after gauge fixing. Although the equations
(3.50) is very reminiscent of ordinary gravity, this is not yet enough to identify the
type of gravity described by it. In fact this problem requires further investigation
and will be discussed in a forthcoming paper.
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3.4 Local Lorentz symmetry

As pointed out before the HS YM action is fully invariant in particular under
diffeomorphisms. This prompted us to interpret the second component of ha(s, u)
in the u expansion, χµa, as a vielbein fluctuation, and δµa − χµa as a vielbein or local
frame. However this implies that a is a flat index and must transform appropriately
under local Lorentz transformations. But, at least at first sight, local Lorentz
invariance is absent. Consider simply the case in which only the field Aa is non-
vanishing, the form of the Lagrangian is

LA ∼ FabF
ab, Fab = ∂aAb − ∂bAa (3.59)

This is not invariant under a Lorentz transformation, because when Aa → Aa +

Λa
bAb we generate terms ((∂aΛb

c)Ac − (∂bΛa
c)Ac) F

ab, that do not vanish.
This is a simple example of a general problem in HS YM. It is crucial to clarify it.

3.4.1 Inertial frames and connections

Let us start from the definition of trivial frame. A trivial (inverse) frame eµa(x)
is a frame that can be reduced to a Kronecker delta by means of a local Lorentz
transformation (LLT), i.e. there exists a (pseudo)orthogonal transformationOab(x)
such that

Oa
b(x)eb

µ(x) = δµa (3.60)

As a consequence ebµ(x) contains only inertial (non-dynamical) information. A
full gravitational (dynamical) frame is the sum of a trivial frame and a nontrivial
piece

Ẽµa(x) = ea
µ(x) − χ̃µa(x) (3.61)

By means of a suitable LLT it can be cast in the form

Eµa(x) = δ
µ
a − χµa(x) (3.62)

This is the form we have encountered above in HS theories. But it should not be
forgotten that the Kronecker delta is a trivial frame. If we want to recover local
Lorentz covariance instead of ∂a = δµa∂µ we must understand

∂a = ea
µ(x)∂µ (3.63)

where eaµ(x) is a trivial (or purely inertial) vielbein. In particular, under an in-
finitesimal LLT, it transforms according to

δΛea
µ(x) = Λa

b(x)eb
µ(x) (3.64)

A trivial connection (or inertial spin connection) is defined by

Aabµ =
(
O(x)∂µO

−1(x)
)a
b (3.65)
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where O(x) is a generic local (pseudo)orthogonal transformation (finite local
Lorentz transformation). As a consequence its curvature vanishes

Rabµν = ∂µAabν − ∂νAabµ +AacµAcbν −AacνAcbµ = 0 (3.66)

Let us recall that the space of connections is affine. We can obtain any connection
from a fixed one by adding to it adjoint-covariant tensors. When the spacetime is
topologically trivial we can choose as origin of the affine space the 0 connection.
The latter is a particular member in the class of the trivial connections. To see this
let us suppose we start with the spin connection (3.65). A Lorentz transformation
of a spin connection Aµ = AµabΣab is

Aµ(x)→ L(x)DµL
−1(x) = L(x)(∂µ +Aµ)L−1(x) (3.67)

where L(x) is a (finite) LLT. If we choose L = O−1 we get

Aµ(x)→ 0 (3.68)

But at this point the LL symmetry is completely fixed. Thus choosing the zero spin
connection amounts to fixing the local Lorentz gauge.

The connection Aµ contains inertial and no gravitational information. It will
be referred to as the inertial connection. It is a non-dynamical object (its content is
pure gauge). The dynamical degrees of freedom will be contained in the adjoint
tensor to be added to Aµ in order to form a fully dynamical spin connection3. Aµ
is nevertheless a connection and it makes sense to introduce the inertial derivative

Dµ = ∂µ −
i

2
Aµ (3.69)

which is Lorentz covariant.
It is clear that the results ensuing from the effective action method, as well

as the HS YM and HS CS theories, are all formulated in a trivial frame setting,
eq.(3.62), with a trivial spin connection. In other words the local Lorentz gauge is
completely fixed. However from this formalism it is not difficult to recover explicit
local Lorentz covariance.

3.4.2 How to recover local Lorentz symmetry

Let us restart from the definition of Ja(x, u)

Ja(x, u)=

∞∑
n,m=0

(−i)nim

2n+mn!m!
∂µ1 . . . ∂µmψ̄(x)γa∂ν1 . . . ∂νnψ(x)

× ∂n+m

∂uµ1 . . . ∂uµm∂uν1 . . . ∂uνn
δ(u)

=

∞∑
s=1

(−1)s−1J(s)aµ1...µs−1(x)
∂s−1

∂uµ1 . . . ∂uµs−1
δ(u) (3.70)

3 The splitting of vierbein and spin connection into an inertial and a dynamical part is
characteristic of teleparallelism, [9]
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from which we derive

J(s)aµ1...µs−1(x) =

s−1∑
n=0

(−1)n

ss−1(s− 1)!
∂(µ1 . . . ∂µnψ̄(x)γa∂µn+1

. . . ∂µs−1)ψ(x)(3.71)

Assume now the following LLT

δΛψ = −
i

2
Λψ, Λ = ΛabΣab, Σab =

i

4
[γa, γb] (3.72)

δΛψ̄ =
i

2
ψ̄Λ

and replace in (3.71) the ordinary derivative on ψ with the inertial covariant
derivative

∂µψ→ Dµψ =

(
∂µ −

i

2
Aµ
)
ψ (3.73)

and on ψ̄with

∂µψ̄→ D†µψ̄ = ∂µψ̄+
i

2
ψ̄Aµ (3.74)

Eq.(3.71) becomes

J ′(s)aµ1...µs−1(x) (3.75)

=

s−1∑
n=0

(−1)n

ss−1(s− 1)!
D†(µ1 . . . D

†
µn
ψ̄(x)γaDµn+1

. . . Dµs−1)ψ(x)

Now, given

δΛAµ = −∂µΛ+
i

2
[Aµ, Λ] (3.76)

and (3.12), it is easy to prove that

δΛ(Dµψ) = −
i

2
Λ(Dµψ), δ(D†µψ) =

i

2
(D†µψ)Λ (3.77)

The same holds for multiple covariant derivatives

δΛ(Dµ1 . . . Dµnψ) =
i

2
Λ(Dµ1 . . . Dµnψ), etc.

It follows that

δΛJ
′(s)
aµ1...µs−1

(x)

= −

s−1∑
n=0

(−1)n

ss−1(s− 1)!
D†(µ1 . . . D

†
µn
ψ̄(x)[γa, Λ]Dµn+1

. . . Dµs−1)ψ(x)

= Λa
b(x) J ′

(s)
bµ1...µs−1

(x) (3.78)
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Therefore the interaction term

S ′int =

∞∑
s=1

∫
ddx J ′(s)aµ1...µs−1(x)h

aµ1...µs−1 (3.79)

is invariant under (3.12) and (3.76) provided

δΛh
aµ1...µn(x) = Λab(x)h

bµ1...µn(x) (3.80)

On the other hand, writing

S ′0 =

∫
ddx ψ̄

(
iγa

(
∂a −

i

2
Aa
)
−m

)
ψ (3.81)

instead of S0, also S ′0 turns out to be invariant under LLT. So, provided we define
LLT via (3.12) and (3.76), S ′ = S ′0 + S

′
int is invariant.

Replacing simple spacetime derivatives ∂µ with the inertial ones Dµ every-
where is not enough. As pointed out above instead of ∂a = δµa∂µ we should write
∂a = ea

µ(x)∂µ, where eaµ(x) is a purely inertial frame. Moreover, whenever it
appears, we should rewrite Aa(x) = eaµ(x)Aµ(x).

With this new recipes all inconsistencies disappear. For instance

δΛ(DaJb) = Λa
c(DcJb) +Λb

c(DaJc)

Therefore δΛ(ηabDaJb) = 0. Likewise

δΛGab = Λa
cGcb +Λb

cGac (3.82)

which implies the local Lorentz invariance of GabGab.

Summary. The HS effective action approach fixes completely the local Lorentz gauge.
This is due the fact that in its formalism (and in the general in the HS YM and CS
formalism) the choice eµa = δµa and Aa = 0 for the inertial frame and connection, is
implicit. However the same formalism offers the possibility to recover the LL invariance by
means of a simple recipe:

1. replace any spacetime derivative, even in the ∗ product, with the inertial covariant
derivative,

2. interpret any flat index a attached to any object Oa as eµa(x)Oµ.

Anticipating future developments we add that in the process of quantization
eµa(x) and Aa(x) will be treated as classical backgrounds.

3.5 Conclusions

The main message of this paper is that it is possible to construct field teory models
of Yang-Mills type with infinite many HS fields in flat spacetime in any dimension.
It is also possible to construct similar models of Chern-Simons type in any odd
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dimensional flat spacetime. We have seen that of such models we can define the
actions, invariant under HS gauge transformations, which encompass the ordinary
gauge transformations and the diffeomorphisms. It was also shown that although
the local Lorentz gauge is fixed in this formalism, local Lorentz invariance can be
easily implemented. We can derive sensible eom’s. A more detailed account and
further developments are contained in related papers[7,8] : for instance one can
introduce matter master scalar and fermion fields, and realize the analog of Higgs
mechanism; one can also introduce ghosts, and carry out the BRST quantization
and develop the practical machinery for perturbative calculations via Feynman
diagrams.

All these results may be at first surprising, because, as noted in the intro-
duction, there exist no-go (Weiberg-Witten) theorems forbidding the existence of
interacting massless HS theories in flat spacetime (for a review see [10]). A full
discussion of this problem will be given in [8] . Here let us simply notice that such
theorems are based on a set of hypotheses, which are very plausible in ordinary
field theories, but can be circumvented in theories like the ones introduced here.
For instance two basic requirements are the minimal coupling of the matter fields
to gravity and the polynomial structure of the energy-momentum tensor. It turns
out that none of these requirements is realized in HS YM-like theories: gravity is
non-minimally coupled to HS fields and the energy-momentum tensor is not a
polynomial of the fields, but a series.
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Abstract. Now, it is already not a big surprise that due to the spontaneous Lorentz in-
variance violation (SLIV) there may emerge massless vector and tensor Goldstone modes
identified particularly with photon and graviton. Point is, however, that this mechanism is
usually considered separately for photon and graviton, though in reality they appear in
fact together. In this connection, we recently develop the common emergent electrograv-
ity model which would like to present here. This model incorporates the ordinary QED
and tensor field gravity mimicking linearized general relativity. The SLIV is induced by
length-fixing constraints put on the vector and tensor fields, A2µ = ±M2

A and H2µν = ±M2
H

(MA andMH are the proposed symmetry breaking scales) which possess the much higher
symmetry than the model Lagrangian itself. As a result, the twelve Goldstone modes are
produced in total and they are collected into the vector and tensor field multiplets. While
photon is always the true vector Goldstone boson, graviton contain pseudo-Goldstone
modes as well. In terms of the appearing zero modes, theory becomes essentially nonlinear
and contains many Lorentz and CPT violating interaction. However, as argued, they do not
contribute in processes which might lead to the physical Lorentz violation. Nonetheless,
how the emergent electrogravity theory could be observationally differed from conventional
QED and GR theories is also briefly discussed.

Povzetek. Avtorji so razvili model za elektrogravitacijo, ki vsebuje običajno kvantno elek-
trodinamiko in tenzorsko polje gravitacije. Slednje predstavlja linearizirano splošno teorijo
relativnosti. Spontano kršitev Lorentzove invariance sprožijo s predpisom za vektorska
in tenzorska polja: A2µ = ±M2

A in H2µν = ±M2
H (MA in MH sta predlagani skali zlomitve

simetrije). Predpis prinese mnogo višjo simetrijo kot jo ima Lagrangeva gostota modela.
Dvanajst Goldstonovih delcev tvori multiplete vektorskih in tenzorskih polj. Foton je vedno
pravi vektorski Goldstonov bozon, graviton pa vsebuje tudi psevdo Goldstonove načine.
Model postane tako nelinearen in vsebuje vrsto interakcij, ki zlomijo Lorentzovo in CPT
simetrijo, ki pa ne vodijo do fizikalne zlomitve Lorentzove simetrije. Avtorji komentirajo, v
čem se elektrogravitacija razlikuje od elektrodinamike in gravitacije.

Keywords: Spontaneous symmetry violation, Lorentz invariance violation, emer-
gent field theory.

4.1 Introduction

While Lorentz symmetry looks physically as an absolutely exact spacetime sym-
metry, the spontaneous Lorentz invariance violation (SLIV) suggests a beautiful
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scenario where massless vectors and/or tensor fields emerge as the corresponding
zero modes which may be identified with photons, gravitons and other gauge
fields [1–3]. Though they appear through condensation of the pure gauge de-
grees of freedom in the starting theory their masslessness are provided by their
Nambu-Goldstone nature [4–12] rather than a conventional gauge invariance.

4.1.1 Emergent vector fields theory

In order to violate Lorentz invariance one necessarily needs field(s) being sensitive
to the spacetime transformations, as vector or tensor fields are. They can evolve
vacuum expectation value which fixes direction of the violation in the spacetime
and create the corresponding condensate. Therefore, if there is an interaction with
this condensate one could expect Lorentz violation to be manifested physically. If
we want to arrange spontaneous Lorentz violation by the vector field, we could
start, as usual, with the potential terms in the Lagrangian

L = −
1

4
F2µν − V ; V = λ

(
A2µ − n2µM

2
A

)2
(4.1)

F2µν = FµνF
µν ; A2µ = AµA

µ ; n2µ = nµn
µ

where nµ is an unit constant vector specifying character of Lorentz violation. If nµ
is time-like vector, we have time-like violation breaking SO(1, 3) to SO(3). If nµ is
space-like vector, we have space-like violation breaking SO(1, 3) to SO(1, 2).

We started with gauge invariant kinetic term, but since potential violates
gauge invariance anyway, we could have started with general kinetic terms

Lk = a (∂αAβ)
2
+ b (∂αA

α)
2 (4.2)

but problem arising here is a propagating ghost mode, which we get ride off with
the gauge invariant form of kinetic terms.

Such a system of vector field with potential, generally appears not stable, its
energy is not bound from below unless phase space is restricted with condition

A2µ − n2µM
2
A = 0 (4.3)

While this condition may appear out of the blue, it is actually motivated by the
conserved current of (4.1)

Jµ = Aµ(A
2
α − n2αM

2
A) (4.4)

and if in the initial condition the conserved charge of this current is set to zero ,
which means (4.3) is always zero, no propagating ghosts, Hamiltonian is positively
defined and Coulomb law stays the same [13]. So, basically we arrived to the
point where we accept to take λ in (4.1) to infinity as a Lagrange multiplier and
get conventional vector field kinetics with the addition of (4.3) condition. This
condition still is a cause for spontaneous Lorentz invariance violation, but in
contrast now Higgs mode is set to zero. This was Nambu’s original idea [14]. It is
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easy to see, if we write expansion of the vector field A into Goldstone and Higgs
modes in the exponential manner, which is

Aµ = (MA + h)nν exp Jνµ (4.5)

where h is Higgs mode and Goldstone modes aµ are sitting in Jνµ (generators for
Lorentz transformation) and aµ =MAnνJ

ν
µ, aµnµ =MAn

µnνJ
ν
µ = 0. So,

A2µ = (MA + h)2n2ν = n2αM
2
A =⇒ h = 0 (4.6)

Expansion (4.5) is nonlinear with respect to vector Goldstone modes, but aµ
MA

is a small parameter and we can expand exponent in the power series and in the
second approximation get

Aµ =

(
MA −

n2αa
2
α

2MA

)
nµ + aµ (4.7)

It is clear now that we get nonlinear Lagrangian for vector Goldstone modes,
which in the first approximation is

L(A)→ L(a) = −
1

4
fµνf

µν −
1

2
δ(nαa

α)2 −
1

2

n2

MA
fµνn

µ∂νa2 (4.8)

δ is Lagrange multiplier setting orthogonality condition for the vector Goldstone
field, thus treating it as gauge fixing one. In general, we have here pletora Lorentz
and CPT violating couplings like n2

MA
fµνn

µ∂νa2 in the higher orders, especially if
charged currents are introduced as well, but it appears in all physical processes
(photon-photon, matter-photon, matter-matter interactions) at least in the tree and
one loop level, there is no sign of physical Lorentz invariance violation. Looks like
Lorentz invariance is realized in nonlinear fashion and Lorentz breaking condition
(4.3) is treated like a nonlinear gauge choice for vector field [16,17].

Consideration of the spontaneous Lorentz violation scenarios for non-Abelian
vector fields meet same challenges, though consequently lead to the same conclu-
sions as in the Abelian vector field case, despite the fact that there are some sig-
nificant differences as well. The length fixing constraint adapted for non-Abelian
vector fields in fact violates not only Lorentz symmetry, but an accidental symme-
try SO(N, 3N) of the constraint itself (here N defines unitary symmetry group of
vector fields) which is much higher than symmetry of the theory Lagrangian. This
gives extra massless modes which together with the true Lorentzian Goldstone
complete the whole gauge multiplet of the non-Abelian theory taken [18].

4.1.2 Emergent tensor field gravity

Actually, for the tensor field gravity we can use the similar nonlinear constraint
for a symmetric two-index tensor field

H2µν = n2M2
H , H2µν ≡ HµνHµν, n2 ≡ nµνn

µν = ±1 (4.9)

(where nµν is now a properly oriented unit Lorentz tensor, which supposedly
specifies vacuum expectation values, while MH is the proposed scale for Lorentz
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violation in the gravity sector) which fixes its length in the same manner as it
appears for the vector field (4.3). Again, the nonlinear constraint (4.9) may in
principle appear from the standard potential terms added to the tensor field
Lagrangian

U(H) = λH(H
2
µν − n2M2

H)
2 (4.10)

in the nonlinear σ-model type limit when the coupling constant λH goes to infinity.
Just in this limit the tensor field theory appears stable, but doing so, we are
effectively excluding corresponding Higgs mode from the theory and it does not
lead to physical Lorentz violation [19].

This constraint (4.9), like the non-Abelian vector field, has higher symmetry
then the kinetic term, particularly SO(7, 3). So, spontaneous symmetry violation
breaks not only Lorentz symmetry, but also this SO(7, 3) and therefore produces
also PGM-s, but in contrast to vector field, when we had only two channels of
Lorentz symmetry violation to SO(3) or SO(1, 2) and three true Goldstone modes
always, for tensor field we have more possibilities. If we write down constraint in
more details

H2µν = H200 +H
2
i=j + (

√
2Hi 6=j)

2 − (
√
2H0i)

2 = n2M2
H = ±M2

H (4.11)

we see that if only one component of the tensor field should acquire vacuum
expectation value (assuming minimal vacuum configuration) we have following
alternatives:

(a) n00 6= 0 , SO(1, 3)→ SO(3)

(b) ni=j 6= 0 , SO(1, 3)→ SO(1, 2) (4.12)

(c) ni 6=j 6= 0 , SO(1, 3)→ SO(1, 1)

for n2 = 1 and
(d) n0i 6= 0 , SO(1, 3)→ SO(2) (4.13)

for n2 = −1. For a, b cases we have three true Goldstone modes and for c, d
we have five, since only one generator of Lorentz transformations remains un-
broken. While in b, c, d cases physical graviton consists, at least partially, from
true Goldstone modes, in case a only true goldstones are H0i components, thus
physical graviton will be constructed from PGM-s. One should notice that pseudo-
Goldstone nature of some components of tensor multiplet poses no threats and
generally in contrast to the scalar pseudo-Goldstone modes they do not acquire
mass duo to the quantum effects, if diffeomorphism (diff) invariance is present.

So, we are putting (4.9) on the tensor field mimicking linearized general
relativity

L = L(H) + LS −
1

MP
HµνT

µν
S (4.14)

where

L(H) =
1

2
∂λH

µν∂λHµν −
1

2
∂λHtr∂

λHtr − ∂λH
λν∂µHµν + ∂νHtr∂

µHµν (4.15)
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Here Htr stands for the trace of Hµν (Htr = ηµνHµν) and L(H) is invariant under
the diff transformations

δHµν = ∂µξν + ∂νξµ , δxµ = ξµ(x) , (4.16)

while LS and TµνS are the Lagrangian and corresponding energy momentum tensor
of whatever is gravitating, (vector fields, matter). In case, vector field is considered

L(A) = −
1

4
FµνF

µν, Tµν(A) = −FµρFνρ +
1

4
ηµνFαβF

αβ (4.17)

where L(H) is fully diff invariant, but that is not the case for other parts of La-
grangian and diff invariance is satisfied only proximately, but they become more
and more invariant when the tensor field gravity Lagrangian (4.14) is properly
extended to GR with higher terms in H-fields included1.

Once tensor field acquires vacuum expectation value, we can expand it into
Goldstone mode

Hµν = hµν + nµνMH −
n2h2

2MH
+O(1/M2

H), n · h = 0 (4.18)

Here hµν corresponds to the pure emergent modes satisfying the orthogonality
condition and h2 ≡ hµνhµν, n · h ≡ nµνh

µν.
Lets specify once again that hµν consists of Goldstone and PGM-s. Only case,

when physical graviton will consists of only Goldstone mode is when Lorentz in-
variance is fully broken, we have six emergent goldstone modes and other pseudo
Goldstone components is gauged away by fixing remaining gauge freedom (more
about supplementary conditions below). Such a scenario can not be achieved by
minimal vacuum configuration. Nevertheless, whether tensor field will be defined
only by Goldstone modes or by a mixture with PGM-s, hole tensor multiplet
always stays strictly massless. A particular case of interest is that of the traceless
VEV tensor nµν

nµνη
µν = 0 (4.19)

in terms of which the emergent gravity Lagrangian acquires an especially simple
form (see below). It is clear that the VEV in this case can be developed on several
Hµν components simultaneously, which in general may lead to total Lorentz viola-
tion with all six Goldstone modes generated. For simplicity, we will use sometimes
this form of vacuum configuration in what follows, while our arguments can be
applied to any type of VEV tensor nµν.

Alongside to basic emergent orthogonality condition in (4.18) one must also
specify other supplementary conditions for the tensor field hµν(appearing eventu-
ally as possible gauge fixing terms in the emergent tensor field gravity). We have

1 Such an extension means that in all terms included in the GR action, particularly in the
QED Lagrangian term , (−g)1/2gµνgλρFµλFνρ, one expands the metric tensors

gµν = ηµν +Hµν/MP , gµν = ηµν −Hµν/MP +HµλHνλ/M
2
P + · · ·

taking into account the higher terms in H-fields.
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remaining three degrees of gauge freedom. Usually, spin 1 states in tensor field is
gauged away by the conventional Hilbert-Lorentz condition

∂µhµν + q∂νhtr = 0 (4.20)

(q is an arbitrary constant, giving for q = −1/2 the standard harmonic gauge
condition), because spin-1 component always has negative contribution in energy
and therefore it is desirable action. However, as we have already imposed the
emergent constraint (4.18), we can not use the full Hilbert-Lorentz condition (4.20)
eliminating four more degrees of freedom in hµν. Otherwise, we would have an
”over-gauged” theory with a non-propagating graviton. In fact, the simplest set of
conditions which conform with the emergent condition n · h = 0 in (4.18) turns
out to be

∂ρ(∂µhνρ − ∂νhµρ) = 0 (4.21)

This set excludes only three degrees of freedom 2 in hµν and, besides, it automati-
cally satisfies the Hilbert-Lorentz spin condition as well.

Putting parameterization (4.18) into the total Lagrangian given in (4.14), one
comes to the truly emergent tensor field gravity Lagrangian containing an infinite
series in powers of the hµν modes. For the traceless VEV tensor nµν, without loss
of generality, we get the especially simple form

L =
1

2
∂λh

µν∂λhµν −
1

2
∂λhtr∂

λhtr − ∂λh
λν∂µhµν + ∂νhtr∂

µhµν +

−
n2

MH
h2nµλ

[
∂λ∂

νhµν −
1

2
∂µ∂λhtr

]
+

n2

8M2
H

(
ηµν −

nµλnνλ

n2

)
∂µh

2∂νh
2

+LS −

(
MHnµν + hµν −

h2nµν
2MH

)
TµνS
MP

+O(1/M2
H) (4.22)

The bilinear field term

MH

MP
nµνT

µν
S (4.23)

in the third line in the Lagrangian (4.22) merits special notice. This term arises from
the interaction term with tensor field. It could significantly affect the dispersion
relation for the all the fields included in TµνS , thus leading to an unacceptably large
Lorentz violation if the SLIV scaleMH were comparable with the Planck massMP.
However, this term can be gauged away [19] by an appropriate redefinition of the
fields involved by going to the new coordinates

xµ → xµ + ξµ. (4.24)

In fact, with a simple choice of the parameter function ξµ(x) being linear in 4-
coordinate

2 The solution for a gauge function ξµ(x) satisfying the condition (4.21) can generally be
chosen as ξµ = �−1(∂ρhµρ) + ∂µθ, where θ(x) is an arbitrary scalar function, so that
only three degrees of freedom in hµν are actually eliminated.
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ξµ(x) =
MH

MP
nµνxν , (4.25)

the term (4.23) is cancelled by an analogous term stemming from the kinetic term
in LS. On the other hand, since the diff invariance is an approximate symmetry
of the Lagrangian L we started with (4.14), this cancellation will only be accurate
up to the linear order corresponding to the tensor field theory. Indeed, a proper
extension of this theory to GR1 with its exact diff invariance will ultimately restore
the usual dispersion relation for the vector field and other matter fields involved.
We will consider all that in significant detail in the next section.

So, with the Lagrangian (4.22) and the supplementary conditions (4.18) and
(4.21) lumped together, one eventually comes to a working model for the emer-
gent tensor field gravity [19]. Generally, from ten components of the symmetric
two-index tensor hµν four components are excluded by the supplementary con-
ditions (4.18) and (4.21). For a plane gravitational wave propagating in, say, the
z direction another four components are also eliminated, due to the fact that the
above supplementary conditions still leave freedom in the choice of a coordinate
system, xµ → xµ + ξµ(t− z/c),much as it takes place in standard GR. Depending
on the form of the VEV tensor nµν, caused by SLIV, the two remaining transverse
modes of the physical graviton may consist solely of Lorentzian Goldstone modes
or of pseudo-Goldstone modes, or include both of them. This theory, similar to the
nonlinear QED [14], while suggesting an emergent description for graviton, does
not lead to physical Lorentz violation [19].

4.1.3 Length Fixing Constraints and Nonlinear Gauge

We have overviewed above the SLIV scenarios for vector and tensor fields and
could see that, though the well motivated length fixing constraint for a given field
causes spontaneous Lorentz violation, somewhat counterintuitively, in physical
processes, Lorentz symmetry appears intact. Therefore we rightfully suspect that
the Lorentz breaking constraint condition acts effectively as a gauge fixing condi-
tion. To prove or disprove whether this suspicion is reasonable one either should
check the SLIV effects in the corresponding physical processes in all orders, that
looks unrealistic, or has to find some generic argument, particularly find a solution
for gauge function or, at least, prove that such a solution exists.

In case of vector field Aα and Lorentz breaking condition A2α = n2βM
2
A , the

corresponding equation for gauge function S is

(Aα + ∂αS)
2
= n2βM

2
A (4.26)

This equation is nonlinear and its exact solution for arbitrary Aα is not yet found.
However, to our fortune, it is well known that this equation taken for time-like
violation case (n2β = 1) is in fact the Hamilton-Jacobi equation for the relativistic
particle, which moves in the external electromagnetic field. An action for such a
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system is given by

S =

∫
M
√
dxαdxα −Aαdx

α

=

∫ (
M
√
uαuα −Aαu

α
)
dτ (4.27)

where τ is evolution parameter and uα =
dxα

dτ
. In this case, even though we do

not have exact solution for that, we know that an action S describes a physical
system and therefore it has a solution for an arbitrary electromagnetic field Aα.

Analogously, for the space-like nβ (n2β = −1) our basic equation (4.26) might
be considered as the Hamilton-Jacobi equation for a hypothetical tachyon moving
in the external electromagnetic field

S =

∫
M
√
−dxαdxα −Aαdx

α =

∫ (
M
√
−uαuα −Aαu

α
)
dτ (4.28)

So, though this action can only correspond to a hypothetical particle, which is not
discovered so far, theoretically it might exist at least as a free particle state. At this
point we are unable to solve (4.26) exactly nor for time-like, neither for space-like
cases, but we can check that ultra-relativistic particle and tachyon (in the limit
of very large momenta, when particle velocity vp −→ c from below and tachyon
velocity vt −→ c from above) have somewhat similar equations of motions

d

dt
pi = F0i −

p
l√
p2
k

Fli

d

dt
pi = −F0i +

p
l√
p2
k

Fli (4.29)

with the electromagnetic field flipped for tachyon (pi stands for the corresponding
three-momenta). No dependent, one believes or not in an existence of charged
tachyon one might at least can take this similarity as a hint that in space-like case,
similar to a time-like violation, we are dealing with effectively nonlinear gauge
fixing condition.

For the tensor field, diff gauge invariance also could only fully be approved,
when corresponding gauge function ξα(xµ) is found, which satisfies the following
equation

(Hαβ + ∂αξβ + ∂βξα)
2
= ±M2

H (4.30)

While we do not have a heuristic argument like that we had above for the vector
field time-like SLIV case, we can provide some arguments very similar to its
space-like violation case leading again to the mainly intuitive suggestion.

So, to conclude, though the above discussion looks highly suggestive towards
the vector and tensor field constraints, (4.3) and (4.9), to consider them as the be
nonlinear gauge choices, they are not yet, sure, the rigorous proofes. Therefore,
presently the only way to check whether these constraints are just gauge choices
or not is actually related to seeking of the SLIV efects by a direct analysis of the
corresponding physical processes.
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4.2 Electrogravity model

Usually, an emergent gauge field framework is considered either regarding emer-
gent photons or regarding emergent gravitons, but in nature they do not exist
in separate framework, they are different parts of one picture and therefore the
most natural thing is to discuss them as such. For the first time, we consider it
regarding them both in the so-called electrogravity theory where together with
the Nambu QED model [14] with its gauge invariant Lagrangian we propose the
linearized Einstein-Hilbert kinetic term for the tensor field preserving a diff invari-
ance (more details can be found in our recent paper [20]). We show that such a
combined SLIV pattern, conditioned by the constraints (4.3) and (4.9), induces the
massless Goldstone modes which appear shared among photon and graviton. One
needs in common nine zero modes both for photon (three modes) and graviton
(six modes) to provide all necessary (physical and auxiliary) degrees of freedom.
They actually appear in our electrogravity theory due to spontaneous breaking
of high symmetries of our constraints. While for a vector field case the symme-
try of the constraint coincides with Lorentz symmetry SO(1, 3), the tensor field
constraint itself possesses much higher global symmetry SO(7, 3), whose sponta-
neous violation provides a sufficient number of zero modes collected in a graviton.
As we understand already these modes are largely pseudo-Goldstone modes
since SO(7, 3) is symmetry of the constraint (4.9) rather than the electrogravity
Lagrangian whose symmetry is only given by Lorentz invariance.

4.2.1 Constraints and zero mode spectrum

Before going any further, let us make some necessary comments. Note first of
all that, apart from dynamics that will be described by the total Lagrangian, the
vector and tensor field constraints (4.3, 4.9) are also proposed to be satisfied. In
principle, these constraints, like in previous cases, could be formally obtained from
the conventional potential introduced in the total Lagrangian. The most general
potential, where the vector and tensor field couplings possess the Lorentz and
SO(7, 3) symmetry, respectively, must be solely a function of A2µ ≡ AµAµ and
H2µν ≡ HµνHµν. Indeed, it cannot include any contracted and intersecting terms
like as Htr, HµνAµAν and others which would immediately reduce the above
symmetries to the common Lorentz one. So, one may only write

U(A,H) = λA(A
2
µ − n2M2

A)
2 + λH(H

2
µν − n2M2

H)
2 + λAHA

2
µH

2
ρν (4.31)

where λA,H,AH stand for the coupling constants of the vector and tensor fields,
while values of n2 = ±1 and n2 = ±1 determine their possible vacuum config-
urations. As a consequence, an absolute minimum of the potential (4.31) might
appear for the couplings satisfying the conditions

λA,H > 0 , λAλH > λAH/4 (4.32)

However, as in the pure vector field case discussed in section 1, this theory is
generally unstable with the Hamiltonian being unbounded from below unless
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the phase space is constrained just by the above nonlinear conditions (4.3, 4.9).
They in turn follow from the potential (4.31) when going to the nonlinear σ-model
type limit λA,H →∞. In this limit, the massive Higgs mode disappears from the
theory, the Hamiltonian becomes positive, and one comes to the pure emergent
electrogravity theory considered here.

We note again that the Goldstone modes appearing in the theory are caused
by breaking of global symmetries related to the constraints (4.3, 4.9) rather than
directly to Lorentz violation. Meanwhile, for the vector field case symmetry of the
constraint (4.3) coincides in fact with Lorentz symmetry whose breaking causes
the Goldstone modes depending on the vacuum orientation vector nµ, as can
be clearly seen from an appropriate exponential parametrization for the starting
vector field (4.5). However, in the tensor field case, due to the higher symmetry
SO(7, 3) of the constraint (4.9), there are much more tensor zero modes than would
appear from SLIV itself. In fact, they complete the whole tensor multiplet hµν in
the parametrization (4.18). However, as was discussed in the previous section,
only a part of them are true Goldstone modes, others are pseudo-Goldstone ones.
In the minimal VEV configuration case, when these VEVs are developed only
on the single Aµ and Hµν components, one has several possibilities determined
by the vacuum orientations nµ and nµν. There appear the twelve zero modes in
total, three from Lorentz violation itself and nine from a violation of the SO(7, 3)
symmetry that is more than enough to have the necessary three photon modes
(two physical and one auxiliary ones) and six graviton modes (two physical and
four auxiliary ones). We could list below all possible cases corresponding n − n

values, the timelike-spacelike SLIV, when n0 6= 0 and ni=j 6= 0, the spacelike-
timelike (nonzero ni and n00), spacelike-spacelike diagonal (nonzero ni and ni=j)
and spacelike-spacelike nondiagonal (nonzero ni and ni 6=j) cases, but for brevity,
instead we only list the most interesting cases corresponding to minimal and
maximal Lorantz symmetry breaking.

(1) When both nµ 6= 0 and nµµ 6= 0, wether µ is time or space component we
have minimally broken Lorentz invariance and only three broken generators and
therefore three Goldstone modes and all of them is collected into the photon, while
components of hαβ needed for physical graviton and its auxiliary components can
be only provided by the pseudo-Goldstone modes following from the symmetry
breaking SO(7, 3)→ SO(6, 3) related to the tensor-field constraint (4.9).

(2) For the case, when ni 6= 0 and nβγ 6= 0 (one of the nondiagonal space
components of the unit tensor nµν is nonzero), when i 6= β 6= γ Lorentz symmetry
appears fully broken so that the photon aµ has three Goldstone components ,
while the graviton is collected by the rest of true Goldstone and PGM–s.

(3) Only case when both physical photon and graviton hij consists of true
Goldstone modes is when n0 6= 0 and ni 6=j 6= 0, but some gauge degrees of
freedom for a graviton are given by the PGM states stemming from the symmetry
breaking of the tensor-field constraint (4.9).

In any case, while photon may only contain true Goldstone modes, some
PGM-s appear necessary to be collected in graviton together with some true
Goldstone modes to form full tensor multiplet.
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4.2.2 The Model

In the previous section and Generally in emergent tensor field gravity theories
we considered the vector field Aµ as an unconstrained material field which the
emergent gravitons interacted with, but now in electrogravity model we propose
that the vector field also develops the VEV through the SLIV constraint (4.3), thus
generating the massless vector Goldstone modes associated with a photon. We
also include the complex scalar field ϕ (taken to be massless, for simplicity) as an
actual matter in the theory

L(ϕ) = Dµϕ (Dµϕ)
∗
, Dµ = ∂µ + ieAµ . (4.33)

So, the proposed total starting electrogravity Lagrangian is

Ltot = L(A) + L(H) + L(ϕ) + Lint(H,A,ϕ) (4.34)

where L(A) and L(H) are U(1) gauge invariant and diff invariant vector and tensor
field Lagrangians, while the gravity interaction part

Lint(H,A,ϕ) = −
1

MP
Hµν[T

µν(A) + Tµν(ϕ)] (4.35)

contains the tensor field couplings with canonical energy-momentum tensors of
vector and scalar fields.

In the symmetry broken phase one goes to the pure Goldstone vector and
tensor modes, aµ and hµν, respectively, Which is thoroughly discussed in the
previous sections (4.8), (4.22). At the same time, the scalar field Lagrangian L(ϕ)
in (4.34) is going now to

L(ϕ) =
∣∣∣∣(∂µ + ieaµ + ieMAnµ − ie

n2

2MA
a2nµ

)
ϕ

∣∣∣∣2 (4.36)

while tensor field interacting terms (4.35) in Lint(H,A,ϕ) convert to

Lint = −
1

MP

(
hµν +MHnµν −

n2

2MH
h2nµν

)[
Tµν

(
aµ −

n2

2MA
a2nµ

)
+ Tµν(ϕ)

]
(4.37)

where the vector field energy-momentum tensor is now solely a function of the
Goldstone aµ modes.

4.2.3 Emergent electrogravity interactions

To proceed further, one should eliminate, first of all, the large terms of the false
Lorentz violation being proportional to the SLIV scalesMA andMH in the inter-
action Lagrangians (4.36) and (4.37). Arranging the phase transformation for the
scalar field in the following way

ϕ→ ϕ exp[−ieMAnµx
µ] (4.38)



i
i

“proc18” — 2018/12/10 — 11:44 — page 85 — #101 i
i

i
i

i
i

4 Emergent Photons and Gravitons 85

one can simply cancel that large term in the scalar field Lagrangian (4.36), thus
coming to

L(ϕ) =
∣∣∣∣(Dµ − ie

n2

2MA
a2nµ

)
ϕ

∣∣∣∣2 (4.39)

where the covariant derivativeDµ is read from now on asDµ = ∂µ+ieaµ. Another
unphysical set of terms (4.23) appear from the gravity interaction Lagrangian Lint
(4.37) where the large SLIV entity MHnµν couples to the energy-momentum
tensor. They also can be eliminated by going to the new coordinates (4.24), as was
mentioned in the previous section.

For infinitesimal translations ξµ(x) the tensor field transforms according to
(4.16), while scalar and vector fields transform as

δϕ = ξµ∂
µϕ, δaµ = ξλ∂

λaµ + ∂µξνa
ν , (4.40)

respectively. One can see, therefore, that the scalar field transformation has only
the translation part, while the vector one has an extra term related to its nontrivial
Lorentz structure. For the constant unit vector nµ this transformation looks as

δnµ = ∂µξνn
ν, (4.41)

having no the translation part. Using all that and also expecting that the phase
parameter ξλ is in fact linear in coordinate xµ (that allows to drop out its high-
derivative terms), we can easily calculate all scalar and vector field variations,
such as

δ (Dµϕ) = ξλ∂
λ(Dµϕ)+∂µξλD

λϕ, δfµν = ξλ∂
λfµν+∂µξ

λfλν+∂νξ
λfµλ (4.42)

and others. This finally leads to the total variations of the above Lagrangians.
Whereas the pure tensor field Lagrangian L(H) (4.15) is invariant under diff trans-
formations, δL(H) = 0, the interaction Lagrangian Lint in (4.34) is only approxi-
mately invariant being compensated (in the lowest order in the transformation
parameter ξµ) by kinetic terms of all the fields involved. However, this Lagrangian
becomes increasingly invariant once our theory is extending to GR1.

In contrast, the vector and scalar field Lagrangians acquire some nontrivial
additions

δL(A) = ξλ∂λL(A)

−
1

2
(∂µξλ + ∂λξµ)

[
fµνfλν +

n2

MA

(
fλν∂

µνa2 +
1

2
fρν∂

ρν
(
aµaλ

))]
δL(ϕ) = ξλ∂λL(ϕ) + (∂µξν + ∂νξµ)

[
(Dµϕ)

∗
Dνϕ+

aµaνn2

2MA
nλJλ

]
(4.43)

where Jµ stands for the conventional vector field source current

Jµ = ie[ϕ∗Dµϕ−ϕ (Dµϕ)
∗
] (4.44)

while Dνϕ is the SLIV extended covariant derivative for the scalar field

Dνϕ = Dνϕ− ie
n2

2MA
a2nνϕ (4.45)
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The first terms in the variations (4.43) are unessential since they simply show
that these Lagrangians transform, as usual, like as scalar densities under diff
transformations.

Combining these variations with Lint (4.37) in the total Lagrangian (4.34)
one finds after simple, though long, calculations that the largest Lorentz violating
terms in it

−

(
MH

MP
nµν −

∂µξλ + ∂λξµ
2

)[
−fµνfλν −

n2

MA
fνλ∂

µλa2 + 2Dνϕ (Dµϕ)
∗
]

(4.46)

will immediately cancel if the transformation parameter is chosen exactly as is
given in (4.25) in the previous section. So, with this choice we finally have for the
modified interaction Lagrangian

L′int(h, a,ϕ) = −
1

MP
hµνT

µν(a,ϕ) +
1

MPMA
L1 +

1

MPMH
L2 +

MH

MPMA
L3
(4.47)

where

L1 = n2hµν

[
fνλ∂

µλa2 − nµJν + ηµν
(
−
1

4
fλρ∂

λρa2 + nλJλ

)]
L2 =

1

2
n2h2nµν

[
−fµλfνλ + 2Dνϕ (Dµϕ)

∗]
L3 = n2nµλ

[
1

2
fρν∂

ρν
(
aµaλ

)
− (aµaλ)nνJν

]
(4.48)

Thereby, apart from a conventional gravity interaction part given by the first term
in (4.47), there are Lorentz violating couplings in L1,2,3 being properly suppressed
by corresponding mass scales. Note that the coupling presented in L3 between the
vector and scalar fields is solely induced by the tensor field SLIV. Remarkably, this
coupling may be in principle of the order of a normal gravity coupling or even
stronger, if MH > MA. However, appropriately simplifying this coupling (and
using also a full derivative identity) one comes to

L3 ∼ n2
(
nµλa

µaλ
)
nρ [∂νfνρ − Jρ] (4.49)

that after applying of the vector field equation of motion turns it into zero. We
consider it in more detail in the next section where we calculate some tree level
processes.

4.3 The lowest order SLIV processes

The emergent vector field Lagrangian (4.8) and emergent gravity Lagrangian in
(4.22) taken separately present in fact highly nonlinear theory which contains lots
of Lorentz andCPT violating couplings. Nevertheless, as it was shown in [19,16,17]
in the lowest order calculations, they all are cancelled and do not manifest them-
selves in physical processes. As we talked about earlier, this may mean that the
length-fixing constraints (4.3,4.9) put on the vector and tensor fields appear as the
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gauge fixing conditions rather than a source of an actual Lorentz violation. In the
context of electrogravity model, which contains both photon and graviton as the
emergent gauge fields, this means that only source of new physics can be (4.47).
Even if suspicion that length fixing constraints are nonlinear gauge choices is true,
for Lorentz invariance to be realized anyway, U(1) and diff gauge transformations
should commute in the symmetry broken phase and then we could claim that
L1 and L2 in (4.47) will have no physical effects, but there is also (4.48), which is
proportional to diff transformation parameter and strictly speaking it is not zero
Lagrangian. So, in this picture to be logically sound and consistent we should
check all interactions in the (4.47) anyway.

For that one properly derive all necessary Feynman rules and then calculate
the basic lowest order processes, such as photon-graviton scattering and their
conversion, photon scattering on the matter scalar field and other, that has been
throughly carried out in our paper mentioned above [20] where can be found
all necessary details. These calculations explicitly demonstrate that all the SLIV
effects in these processes are strictly cancelled. This appears due to an interrela-
tion between the longitudinal graviton and photon exchange diagrams and the
corresponding contact interaction diagrams. So, physical Lorentz invariance in all
processes is left intact. Apart, many other tree level Lorentz violating processes
related to gravitons and vector fields (interacting with each other and the matter
scalar field in the theory) may also appear in higher orders in the basic SLIV
parameters 1/MH and 1/MA, by iteration of couplings presented in our basic
Lagrangians (4.22, (4.47)) or from a further expansions of the effective vector and
tensor field Higgs modes (4.7, 4.18) inserted into the starting total Lagrangian
(4.34). Again, their amplitudes appear to cancel each other, thus eliminating physi-
cal Lorentz violation in the theory.

Most likely, the same conclusion could be expected for SLIV loop contribu-
tions as well. Actually, as in the massless QED case considered earlier [16], the
corresponding one-loop matrix elements in our emergent electrogravity theory
could either vanish by themselves or amount to the differences between pairs of
similar integrals whose integration variables are shifted relative to each other by
some constants (being in general arbitrary functions of the external four-momenta
of the particles involved) which, in the framework of dimensional regularization,
could lead to their total cancellation.

So, after all, it should not come as too much of a surprise that emergent
electrogravity theory considered here is likely to eventually possess physical
Lorentz invariance provided that the underlying gauge and diff invariance in the
theory remains unbroken.

4.4 Conclusion

We have combined emergent photon and graviton into one framework of electro-
gravity. While photon emerges as true vector Goldstone mode from SLIV, graviton
at least partially consists of PGM-s as well, because alongside of Lorentz symmetry
much bigger global symmetry of (4.9) SO(7, 3) is broken as well. Configuration of
true Goldstone and PGM-s inside graviton solely depends on VEV-s of vector and
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tensor fields. So, in total 12 massless Goldstone modes are born to complete photon
and graviton multiplets with an orthogonality conditions nµaµ = 0, nµνhµν = 0

in place. Emergent electrogravity theory is nonlinear and in principal contains
many Lorentz and CPT violating interactions, when expressed in terms of Gold-
stone modes. Nonetheless, all non-invariant effects disappear in all possible lowest
order physical processes, which means that Lorentz invariance is intact and hence
Lorentz invariance breaking conditions (4.3, 4.9) act as a gauge fixing for photon
and graviton, instead of being actual source of physical Lorentz violation in the
theory. If this cancellation occurs in all orders (i.e. (4.3, 4.9) are truly nonlinear
gauge fixing conditions), then emergent electrogravity is physically indistinguish-
able from conventional gauge theories and spontaneous Lorentz violation caused
by the vector and tensor field constraints (4.3, 4.9) appear hidden in gauge degrees
of freedom, and only results in a noncovariant gauge choice in an otherwise gauge
invariant emergent electrogravity theory.

From this standpoint, the only way for physical Lorentz violation to take place
would be if the above gauge invariance were slightly broken by near Planck scale
physics, presumably by quantum gravity or some other high dimensional theory.
This is in fact a place where the emergent vector and tensor field theories may
drastically differ from conventional QED, Yang-Mills and GR theories where gauge
symmetry breaking could hardly induce physical Lorentz violation. In contrast,
in emergent electrogravity such breaking could readily lead to many violation
effects including deformed dispersion relations for all matter fields involved.
Another basic distinction of emergent theories with non-exact gauge invariance is
a possible origin of a mass for graviton and other gauge fields (namely, for the non-
Abelian ones, see [18]), if they, in contrast to photon, are partially composed from
pseudo-Goldstone modes rather than from pure Goldstone ones. Indeed, these
PGM-s are no longer protected by gauge invariance and may properly acquire
tiny masses, which still do not contradict experiment. This may lead to a massive
gravity theory where the graviton mass emerges dynamically, thus avoiding the
notorious discontinuity problem [21].

So, while emergent theories with an exact local invariance are physically
indistinguishable from conventional gauge theories, there are some principal
distinctions when this local symmetry is slightly broken which could eventually
allow us to differentiate between the two types of theory in an observational way.
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Abstract. The implications of the discovery of a Higgs boson at the LHC with a mass of
125 GeV are summarised in the context of the Standard Model of particle physics and
in new physics scenarios beyond it, taking the example of the minimal supersymmetric
Standard Model extension, the MSSM. The perspectives for Higgs and new physics searches
at the next LHC upgrades as well as at future hadron and lepton colliders are then briefly
summarized.

Povzetek. Avtor povzame implikacijo odkritja higgsovega bozona z maso 125 GeV na
pospeševalniku LHC na standardni model osnovnih delcev ter na nekatere modele, ki
poskušajo narediti nov korak v fiziki osnovnih delcev. Kot primer omeni minimalno su-
persimetrično razširitev standardnega modela znano kot MSSM. Pregleda obete za iskanje
znakov nove fizike v naslednji nadgradnji LHC in na bodočih leptonskih in hadronskih
pospeševalnikih.

Keywords: Higgs boson, new physics scenarios, supersymmetry, MSSM

5.1 Introduction

The ATLAS and CMS historical discovery of a particle with a mass of 125 GeV [1]
and properties that are compatible with those of a scalar Higgs boson [2,3] has
far reaching consequences not only for the Standard Model (SM) but also for new
physics models beyond it. In the SM, electroweak symmetry breaking is achieved
spontaneously via the Brout–Englert–Higgs mechanism [2], wherein the neutral
component of an isodoublet scalar field acquires a non–zero vacuum expectation
value v. This gives rise to nonzero masses for the fermions and the electroweak
gauge bosons while preserving the SU(2)×U(1) gauge symmetry. One of the four
degrees of freedom of the original isodoublet field, corresponds to a physical
particle [3]: a scalar boson with JPC = 0++ quantum numbers under parity and
charge conjugation. The couplings of the Higgs boson to the fermions and gauge
bosons are related to the masses of these particles and are thus decided by the
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symmetry breaking mechanism. In contrast, the Higgs mass itselfMH, although
expected to be in the vicinity of the weak scale v≈250 GeV, is undetermined. Let
us summarise the known information on this parameter before the start of the
LHC.

A direct information was the lower limit MH
>
∼ 114 GeV at 95% confidence

level (CL) established at LEP2 [4]. Furthermore, a global fit of the electroweak
precision data to which the Higgs boson contributes, yields the valueMH = 92+34−26

GeV, corresponding to a 95% CL upper limit of MH
<
∼ 160 GeV [4]. From the

theoretical side, the presence of this new weakly coupled degree of freedom is
a crucial ingredient for a unitary electroweak theory. Indeed, the SM without
the Higgs particle leads to scattering amplitudes of the W/Z bosons that grow
with the square of the center of mass energy and perturbative unitarity would
be lost at energies above the TeV scale. In fact, even in the presence of a Higgs
boson, theW/Z bosons could interact very strongly with each other and, imposing
the unitarity requirement leads to the important mass boundMH

<
∼ 700 GeV [5],

implying that the particle is kinematically accessible at the LHC.
Another theoretical constraint emerges from the fact that the Higgs self–

coupling, λ ∝ M2
H, evolves with energy and at some stage, becomes very large

and even infinite and the theory completely looses its predictability. If the energy
scale up to which the couplings remains finite is of the order of MH itself, one
should have MH

<
∼ 650 GeV [6]. On the other hand, for small values of λ and

hence MH, the quantum corrections tend to drive the self–coupling to negative
values and completely destabilize the scalar Higgs potential to the point where the
minimum is not stable anymore [6]. Requiring λ ≥ 0, up to the TeV scale implies
thatMH

>
∼ 70 GeV. If the SM is to be extended to the Planck scale MP ∼ 1018 GeV,

the requirements on λ from finiteness and positivity constrain the Higgs mass to
lie in the range 130 GeV <∼ MH

<
∼ 180 GeV [6]. This narrow margin is close to the

one obtained from the direct and indirect experimental constraints.
The discovery of the Higgs particle with a mass of 125 GeV, a value that makes

the SM perturbative, unitary and extrapolable to the highest possible scales, is
therefore a consecration of the model and crowns its past success in describing all
experimental data available. In particular, the average mass value measured by
the ATLAS and CMS teams, MH=125.1± 0.24 GeV [7], is remarkably close to the
best–fit of the precision data which should be considered as a great achievement
and a triumph for the SM. In addition, a recent analysis that includes the state-of-
the-art quantum corrections [8] gives for the condition of absolute stability of the
electroweak vacuum, λ(MP) ≥ 0, the bound MH

>
∼ 129 GeV for the present value

of the top quark mass and the strong coupling constant,mexp
t = 173.2± 0.9 GeV

and αs(MZ) = 0.1184 ± 0.0007 [4]. Allowing for a 2σ variation of mexp
t , one

obtainsMH≥125.6 GeV that is close to the measuredMH value [7]. In fact, for an
unambiguous and well-defined determination of the top mass, one should rather
use the total cross section for top pair production at hadron colliders which can
unambiguously be defined theoretically; this mass has a larger error, ∆mt≈3 GeV,
which allows more easily absolute stability of the SM vacuum up toMP [9].

Nevertheless, the SM is far from being perfect in many respects. It does not
explain the proliferation of fermions and the large hierarchy in their mass spectra
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and does not say much about the small neutrino masses. The SM does not unify
in a satisfactory way the electromagnetic, weak and strong forces, as one has
three different symmetry groups with three coupling constants which shortly fail
to meet at a common value during their evolution with the energy scale; it also
ignores the fourth force, gravitation. Furthermore, it does not contain a particle
that could account for the cosmological dark matter and fails to explain the baryon
asymmetry in the Universe.

However, the main problem that calls for beyond the SM is related to the
special status of the Higgs boson which, contrary to fermions and gauge bosons
has a mass that cannot be protected against quantum corrections. Indeed, these
are quadratic in the new physics scale which serves as a cut–off and hence,
tend to drive MH to very large values, ultimately to MP, while we need MH =

O(100 GeV). Thus, the SM cannot be extrapolated beyond O(1 TeV) where some
new physics should emerge. This is the reason why we expect something new to
manifest itself at the LHC.

There are three avenues for the many new physics scenarios beyond the SM.
There are first theories with extra space–time dimensions that emerge at the TeV
scale (the cut–off is then not so high) and, second, composite models inspired from
strong interactions also at the TeV scale (and thus the Higgs is not a fundamental
spin–zero particle). Some versions of these scenarios do not incorporate any Higgs
particle in their spectrum and are thus ruled out by the Higgs discovery. However,
the option that emerges in the most natural way is Supersymmetry (SUSY) [10] as
it solves most of the SM problems discussed above. In particular, SUSY protects
MH as the quadratically divergent radiative corrections from standard particles
are exactly compensated by the contributions of their supersymmetric partners.
These new particles should not be much heavier than 1 TeV not to spoil this
compensation [11] and, thus, they should be produced at the LHC.

The Higgs discovery is very important for SUSY and, in particular, for its
simplest low energy manifestation, the minimal supersymmetric SM (MSSM) that
indeed predicts a light Higgs state. In the MSSM, two Higgs doublet fields Hu and
Hd are required, leading to an extended Higgs consisting of five Higgs bosons,
two CP–even h and H, a CP–odd A and two charged H± states [12]. Nevertheless,
only two parameters are needed to describe the Higgs sector at tree–level: one
Higgs mass, which is generally taken to be that of the pseudoscalar boson MA,
and the ratio of vacuum expectation values of the two Higgs fields, tanβ = vd/vu,
expected to lie in the range 1<∼ tanβ<∼ 60. The masses of the CP–even h,H and the
chargedH± states, as well as the mixing angle α in the CP–even sector are uniquely
defined in terms of these two inputs at tree-level, but this nice property is spoiled
at higher orders [13]. ForMA�MZ, one is in the so–called decoupling regime in
which the h state is light and has almost exactly the SM–Higgs couplings, while the
other CP–even H and the charged H± bosons become heavy, MH≈MH± ≈MA,
and decouple from the massive gauge bosons. In this regime, the MSSM Higgs
sector thus looks almost exactly as the one of the SM with its unique Higgs boson.

Nevertheless, contrary to the SM Higgs boson, the lightest MSSM CP–even h
mass is bounded from above and, depending on the SUSY parameters that enter
the important quantum corrections, is restricted to Mmax

h
<
∼ 130 GeV [13] if one
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assumes a SUSY breaking scale that is not too high, MS
<
∼O (1 TeV), in order to

avoid too much fine-tuning in the model. Hence, the requirement that the MSSM
h boson coincides with the one observed at the LHC, i.e. with Mh ≈ 125 GeV and
almost SM–like couplings as the LHC data seem to indicate, would place very
strong constraints on the MSSM parameters, in particular the SUSY–breaking scale
MS. This comes in addition to the LHC limits obtained from the search of the
heavier Higgs states and the superparticles.

In this talk, the implications of the discovery of the Higgs boson at the LHC
and the measurement of its properties will be summarised and the prospects for
the searches of new physics, in particular in the SUSY context, in the future will be
discussed.

5.2 Implications: Standard Model and beyond

In many respects, the Higgs particle was born under a very lucky star as the mass
value of ≈ 125 GeV allows to produce it at the LHC in many redundant channels
and to detect it in a variety of decay modes. This allows detailed studies of the
Higgs properties.

5.2.1 Higgs production and decay

We start by summarizing the production and decay at the LHC of a light SM–like
Higgs particle, which should correspond to the lightest MSSM h boson in the
decoupling regime. First, for MH ≈ 125 GeV, the Higgs mainly decays [14] into
bb̄ pairs but the decays into WW∗ and ZZ∗ final states, before allowing the gauge
bosons to decay leptonicallyW→`ν and Z→`` (`=e, µ), are also significant. The
H→τ+τ− channel (as well as the gg and cc̄ decays that are not detectable at the
LHC) is also of significance, while the clean loop induced H→ γγ mode can be
easily detected albeit its small rates. The very rare H→ Zγ and even H→ µ+µ−

channels should be accessible at the LHC but only with a much larger data sample.
On the other hand, many Higgs production processes have significant cross

sections [15–17]. While the by far dominant gluon fusion mechanism gg→ H (ggF)
has extremely large rates (≈20 pb at

√
s=7–8 TeV), the subleading channels, i.e.

the vector boson fusion (VBF) qq→ Hqq and the Higgs–strahlung (HV) qq̄→ HV

with V = W,Z mechanisms, have cross sections which should allow for Higgs
studies of the already at

√
s >∼ 7 TeV with the ≈ 25 fb−1 data collected by each

experiment. The associated process pp→ tt̄H (ttH) would require higher energy
and luminosity.

This pattern already allows the ATLAS and CMS experiments to observe
the Higgs boson in several channels and to measure some of its couplings in a
reasonably accurate way. The channels that have been searched are H→ZZ∗→
4`±, H→WW∗→2`2ν,H→γγ where the Higgs is mainly produced in ggF with
subleading contributions from Hjj in the VBF process, H→ ττ where the Higgs
is produced in association with one (in ggF) and two (in VBF) jets, and finally
H → bb̄ with the Higgs produced in the HV process. One can ignore for the
moment the low sensitivity H→µµ and H→Zγ channels.
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A convenient way to scrutinize the couplings of the produced H boson is to
look at their deviation from the SM expectation. One then considers for a given
search channel the signal strength modifier µwhich for the H→XX decay mode
measures the deviation compared to the SM expectation of the Higgs production
cross section times decay branching fraction µXX. ATLAS and CMS have provided
the signal strengths for the various final states with a luminosity of ≈ 5 fb−1 for
the 2011 run at

√
s = 7 TeV and ≈ 20 fb−1 for the 2012 run at

√
s = 8 TeV. The

constraints given by the two collaborations, when combined, lead to a global
signal strength µATLAS

tot = 1.18± 0.15 and µCMS
tot = 1.00± 0.14 [7]. The global value

being very close to unity implies that the observed Higgs is SM–like.
Hence, already with the rather limited statistics at hand, the accuracy of the

ATLAS and CMS measurements is reaching the 15% level. This is at the same
time impressive and worrisome. Indeed, the main Higgs production channel is
the top and bottom quark loop mediated gluon fusion mechanism and, at

√
s=7

or 8 TeV, the three other mechanisms contribute at a total level below 15%. The
majority of the signal events observed at LHC, in particular in the search channels
H→ γγ,H→ ZZ∗ → 4`,H→WW∗ → 2`2ν and to some extent H→ ττ, thus
come from the ggF mechanism which is known to be affected by large theoretical
uncertainties.

Indeed, although σ(gg → H) is known up next–to–next–to–leading order
(NNLO) in perturbative QCD (and at least at NLO for the electroweak interaction)
[15,16], there is a significant residual scale dependence which points to the possi-
bility that still higher order contributions cannot be totally excluded. In addition,
as the process is of O(α2s) at LO and is initiated by gluons, there are sizable uncer-
tainties due to the gluon parton distribution function (PDF) and the value of the
coupling αs. A third source of theoretical uncertainties, the use of an effective field
theory (EFT) approach to calculate the radiative corrections beyond NLO should
also be considered [15]. In addition, large uncertainties arise when σ(gg→H) is
broken into the jet categories H+0j,H+1j and H+2j [18]. In total, the combined
theoretical uncertainty is estimated to be ∆th ≈ ±15% [16] and would increase
to ∆th≈ ±20% if the EFT uncertainty is also included. The a priori cleaner VBF
process will be contaminated by the gg→H+2j mode making the total error in
the H+jj “VBF” sample also rather large [18].

Hence, the theoretical uncertainty is already at the level of the accuracy of the
cross section measured by the ATLAS and CMS collaborations. Another drawback
of the analyses is that they involve strong theoretical assumptions on the total
Higgs width since some contributing decay channels not accessible at the LHC are
assumed to be SM–like and possible invisible Higgs decays in scenarios beyond
the SM do not to occur.

In Ref. [17], following earlier work [19] it has been suggested to consider the
ratio Dp

XX = σp(pp → H → XX)/σp(pp → H → VV) for a specific production
process p and for a given decay channel H→ XXwhen the reference channel H→
VV is used. In these ratios, the cross sections and hence, their significant theoretical
uncertainties will cancel out, leaving out only the ratio of partial decay widths
which are better known. The total decay width which includes contributions from
channels not under control such as possible invisible Higgs decays, do not appear
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in the ratios Dp
XX. Some common experimental systematical uncertainties such

as the one from the luminosity measurement and the small uncertainties in the
Higgs decay branching ratios also cancel out. We are thus left with only with the
statistical and some (non common) systematical errors [17].

The ratiosDXX involve, up to kinematical factors and known radiative correc-
tions, only the ratios |cX|2/ |cV |2 of the Higgs reduced couplings to the particles
X and V compared to the SM expectation, cX ≡ gHXX/gSM

HXX. For the time being,
three independent ratios can be considered: Dγγ, Dττ and Dbb. In order to deter-
mine these ratios, the theoretical uncertainties have to be treated as a bias (and
not as if they were associated with a statistical distribution) and the fit has to be
performed for the two µ extremal values: µi|exp± δµi/µi|th with δµi/µi|th ≈ ±20%
[20].

A large number of analyses of the Higgs couplings from the LHC data have
been performed and in most cases, it is assumed that the couplings of the Higgs
boson to the massiveW,Z gauge bosons are equal to gHZZ = gHWW = cV and the
couplings to all fermions are also the same gHff = cf. However, as for instance
advocated in Ref. [21] to characterize the Higgs particle at the LHC, at least three
independent H couplings should be considered, namely ct, cb and cV . While the
couplings toW,Z, b, τ particles are derived by considering the decays of the Higgs
boson to these particles, the Htt̄ coupling is derived indirectly from σ(gg→H)
and BR(H→γγ), two processes that are generated by triangular loops involving
the top quarks in the SM. One can assume, in a first approximation, that cc = ct
and cτ = cb and possible invisible Higgs decays are absent. In Ref. [21], a three–
dimensional fit of the H couplings was performed in the space [ct, cb, cV ], when
the theory uncertainty is taken as a bias and not as a nuisance. The best-fit value
for the couplings, with the

√
s = 7+8 TeV ATLAS and CMS data turns out to be

ct = 0.89, cb = 1.01 and cV = 1.02, ie very close to the SM values.

5.2.2 Implications of the Higgs couplings measurement

The precise measurements of Higgs couplings allow to draw several important
conclusions.

i) A fourth generation fermions is excluded. Indeed, in addition to the direct LHC
searches that exclude heavier quarksmb ′ ,mt ′<∼ 600 GeV [23], strong constraints
can be also obtained from the loop induced Higgs–gluon and Higgs-photon
vertices in which any heavy particle coupling to the Higgs proportionally to
its mass will contribute. For instance the additional 4th generation t ′ and b ′

contributions increase σ(gg → H) by a factor of ≈ 9 at LO but large O(GFm2f ′)
electroweak corrections should be considered. It has been shown [23] that with a
fourth family, the Higgs signal would have not been observable and the obtained
Higgs results unambiguously rule out this possibility.

ii) The invisible Higgs decay width should be small. Invisible decays would affect
the properties of the observed Higgs boson and could be constrained if the total
decay width is determined. But for a 125 GeV Higgs, Γ tot

H = 4 MeV, is too small
to be resolved experimentally. Nevertheless, in pp → VV → 4f, a large fraction
of the Higgs cross section lies in the high–mass tail [24] allowing to to put loose
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constrains Γ tot
H /Γ

SM
H ≈ 5–10 [25]. The invisible Higgs decay width Γ inv

H can be better
constrained indirectly by a fit of the Higgs couplings and in particular with the
signal strength in the H→ZZ process: µZZ∝Γ(H→ZZ)/Γ tot

H with Γ tot
H =Γ inv

H +Γ SM
H ;

one obtains Γ inv
H /Γ SM

H
<
∼ 50% at 95% CL with the assumption cf = cV = 1 [20].

A more model independent approach would be to perform direct searches
for missing transverse energy. These have been conducted in pp → HV with
V→ jj, `` and in VBF, qq → qqET/. leading to BRinv <∼ 50% at 95%CL for SM–like
Higgs couplings [7]. A more promising search for invisible decays is the monojet
channel gg→Hj which has large rates [26]. While the most recent monojet ATLAS
and CMS searches are only sensitive to BRinv ∼ 1, more restrictive results can be
obtained in the future.

The Higgs invisible rate and the dark matter detection rate in direct astro-
physical searches are correlated in Higgs portal models and it turns out that LHC
constraints are competitive [27] with those derived from direct dark matter search
experiments [28].

iii) The spin–parity quantum numbers are those of a standard Higgs. One also needs
to establish that the observed Higgs state is indeed a CP even scalar and hence
with JPC = 0++ quantum numbers. For the spin, the observation of the H → γγ

decay rules out the spin–1 case [29]. The Higgs parity can be probed by studying
kinematical distributions in the H→ ZZ∗ → 4` decay channel and in the VH and
VBF production modes [30] and with the 25 fb−1 data collected so far, ATLAS
and CMS found that the observed Higgs is more compatible with a 0+ state and
the 0− possibility is excluded at the 98%CL [7]. Other useful diagnostics of the
Higgs CP nature that also rely on the tensorial structure of the HVV coupling can
be made in the VBF process [31]. Nevertheless, there is a caveat in the analyses
relying on the HVV couplings: a CP–odd state has no tree–level VV couplings [32].
In fact, a better way to measure the Higgs parity is to study the signal strength
in the H → VV channels and in Ref. [20] it was demonstrated that the observed
Higgs has indeed a large CP component, >∼ 50% at the 95%CL. In fact, the less
unambiguous way to probe the Higgs CP nature would be to look at final states in
which the particle decays hadronically, e.g. pp→ HZ→ bb̄`` [32]. These processes
are nevertheless extremely challenging even at the upgraded LHC.

5.2.3 Implications for Supersymmetry

We turn now to the implications of the LHC Higgs results for the MSSM Higgs
sector and first make a remark on the Higgs masses and couplings, which at tree–
level depend only onMA and tanβ, when the important radiative corrections are
included. In this case many parameters such as the masses of the third generation
squarksmt̃i ,mb̃i and their trilinear couplings At, Ab enterMh andMH through
quantum corrections. These are introduced by a general 2 × 2 matrix ∆M2

ij but
the leading one is controlled by the top Yukawa coupling and is proportional to
m4t , logMS with MS =

√
mt̃1mt̃2 the SUSY–breaking scale and the stop mixing

parameter Xt [13]. The maximal value Mmax
h is then obtained for a decoupling

regimeMA∼ O(TeV), large tanβ, largeMS that implies heavy stops and maximal
mixing Xt =

√
6MS [33]. If the parameters are optimized as above, the maximal

Mh value reaches the level of 130 GeV.
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It was pointed out in Refs. [34,35,21] that when the measured valueMh=125

GeV is taken into account, the MSSM Higgs sector with only the largely dominant
correction discussed above, can be again described with only the two parameters
tanβ andMA; in other words, the loop corrections are fixed by the value ofMh.
This observation leads to a rather simple but accurate parametrisation of the
MSSM Higgs sector, called hMSSM.

The reduced couplings of the CP–even h state (as is the case for the heavier
H) depend in principle only on the angles β and α (and hence tanβ and MA),
c0V =sin(β−α), c0t=cosα/ sinβ, c0b=−sinα/ cosβ, while the couplings of A and
H± (as well as H in the decoupling regime) to gauge boson are zero and those to
fermions depend only on β: for tanβ > 1, they are enhanced (∝ tanβ) for b, τ and
suppressed (∝ 1/ tanβ) for tops.

i) Implications from the Higgs mass value: In the so–called “phenomenological
MSSM” (pMSSM) [37] in which the model involves only 22 free parameters, a large
scan has been performed [36] using the RGE program Suspect [38] that calculates
the maximalMh value and the result confronted to the measured massMh ∼ 125

GeV. ForMS
<
∼ 1 TeV, only scenarios with Xt/MS values close to maximal mixing

Xt/MS ≈
√
6 survive. The no–mixing scenario Xt ≈ 0 is ruled out for MS

<
∼ 3

TeV, while the typical mixing scenario, Xt ≈MS, needs large MS and moderate
to large tanβ values. In constrained MSSM scenarios (cMSSM) such the minimal
supergravity (mSUGRA) model and the gauge and anomaly mediated SUSY–
breaking scenarios, GMSB and AMSB, only a few basic inputs are needed and
the mixing parameter cannot take arbitrary values. A scan in these models with
MS

<
∼ 3 TeV not to allow for too much fine-tuning [11] leadsMmax

h
<
∼ 122 GeV in

AMSB and GMSB thus disfavoring these scenarios while one has Mmax
h =128 GeV

in mSUGRA. In high–scale SUSY scenarios, MS � 1 TeV, the radiative corrections
are very large and need to be resumed [39]. For low tanβ values, large scales, at
leastMS

>
∼ 10

4 GeV, are required to obtainMh = 125GeV and even higher in most
cases

ii) Implications from the production rates of the observed state. Besides the correc-
tions to the Higgs masses and couplings discussed above, there are also direct
corrections to the Higgs couplings and the most ones are those affecting the hbb̄
vertex [40] and the stop loop contributions to the gg→h production and h→γγ
decay rates [41]. A fit of the ct, cb and cV couplings shows that the latter are small
[20]. In turn, ignoring the direct corrections and using the input Mh≈ 125 GeV,
one can make a fit in the plane [tanβ,MA]. The best-fit point is tanβ = 1 and
MA=550 GeV which implies a large SUSY scale,MS = O(100) TeV. In all, cases
one also hasMA

>
∼ 200–350 GeV.

iii) Implications from heavy Higgs boson searches. At high tanβ values, the strong
enhancement of the b, τ couplings makes that the Φ = H/A states decay domi-
nantly into τ+τ− and bb̄ pairs and are mainly produced in gg→Φ fusion with
the b–loop included and associated production with b–quarks, gg/qq̄→bb̄+Φ
[42]. The most powerful LHC search channel is thus pp→gg+bb̄→Φ→ τ+τ−.
For the charged Higgs, the dominant mode is H±→τνwith the H± light enough
to be produced in top decays t→H+b→τνb. In the low tanβ regime, tanβ <∼ 3,
the phenomenology of the A,H,H± states is richer [34]. For the production, only
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gg→ Φ process with the dominant t and sub-dominant b contributions provides
large rates. The H/A/H± decay pattern is in turn rather involved. Above the
tt̄ (tb) threshold H/A→ tt̄ and H+ → tb̄ are by far dominant. Below threshold,
the H→WW,ZZ decays are significant. For 2Mh

<
∼ MH

<
∼ 2mt (MA

>
∼ Mh +MZ),

H → hh (A → hZ) is the dominant H(A) decay mode. But the A → ττ channel
is still important with rates >

∼ 5%. In the case of H±, the channel H+ →Wh is
important forMH±

<
∼ 250 GeV, similarly to the A→hZ case.

In Ref. [34] an analysis of these channels has been performed using current
information given by ATLAS and CMS in the context of the SM, MSSM [43] or
other scenarios. The outcome is impressive. The ATLAS and CMS H/A→ τ+τ−

constraint is extremely restrictive andMA
<
∼ 250 GeV, it excludes almost the entire

intermediate and high tanβ regimes. The constraint is less effective for a heavierA
but even forMA ≈ 400GeV the high tanβ >∼ 10 region is excluded and one is even
sensitive toMA ≈ 800 GeV for tanβ >∼ 50. For H±, almost the entireMH±

<
∼ 160

GeV region is excluded by the process t → H+b with the decay H+ → τν. The
other channels, in particular H→ VV and H/A→ tt̄, are very constraining as they
cover the entire low tanβ area that was previously excluded by the LEP2 bound
up toMA ≈ 500 GeV. Even A→ hZ and H→ hhwould be visible at the current
LHC in small portions of the parameter space.

5.3 Perspectives for Higgs and New Physics

The last few years were extremely rich and exciting for particle physics. With
the historical discovery of a Higgs boson by the LHC collaborations ATLAS
and CMS, crowned by a Nobel prize in fall 2013, and the first probe of its basic
properties, they witnessed a giant step in the unraveling of the mechanism that
breaks the electroweak symmetry and generates the fundamental particle masses.
They promoted the SM as the appropriate theory, up to at least the Fermi energy
scale, to describe three of Nature’s interactions, the electromagnetic, weak and
strong forces. However, it is clear that these few years have also led to some
frustration as no signal of physics beyond the SM has emerged from the LHC
data. The hope of observing some signs of the new physics models that were
put forward to address the hierarchy problem, that is deeply rooted in the Higgs
mechanism, with Supersymmetric theories being the most attractive ones, did not
materialize.

The Higgs discovery and the non–observation of new particles has neverthe-
less far reaching consequences for supersymmetric theories and, in particular, for
their simplest low energy formulation, the MSSM. The mass of approximately
125 GeV of the observed Higgs boson implies that the scale of SUSY–breaking
is rather high, at least O(TeV). This is backed up by the limits on the masses of
strongly interacting SUSY particles set by the ATLAS and CMS searches, which in
most cases exceed the TeV range. This implies that if SUSY is indeed behind the
stabilization of the Higgs mass against very high scales that enter via quantum
corrections, it is either fine–tuned at the permille level at least or its low energy
manifestation is more complicated than expected.
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The production and decay rates of the observed Higgs particles, as well as
its spin and parity quantum numbers, as measured by ATLAS and CMS with the
≈ 25 fb−1 data collected at

√
s=7+8 TeV, indicate that its couplings to fermions

and gauge bosons are almost SM–like. In the context of the MSSM, this implies
that we are close to the decoupling regime and this particle is the lightest h boson,
while the other H/A/H± states must be heavier than approximately the Fermi
scale. This last feature is also backed up by LHC direct searches of these heavier
Higgs states.

This drives up to the question that is now very often asked: what to do next?
The answer is, for me, obvious: we are only in the beginning of a new era. Indeed,
it was expected since a long time that the probing of the electroweak symmetry
breaking mechanism will be at least a two chapters story. The first one is the
search and the observation of a Higgs–like particle that will confirm the scenario
of the SM and most of its extensions, that is, a spontaneous symmetry breaking
by a scalar field that develops a non–zero vev. This long chapter has just been
closed by the ATLAS and CMS collaborations with the spectacular observation of a
Higgs boson. This observation opens a second and equally important chapter: the
precise determination of the Higgs profile and the unraveling of the electroweak
symmetry breaking mechanism itself.

A more accurate measurement of the Higgs couplings to fermions and gauge
bosons will be mandatory to establish the exact nature of the mechanism and,
eventually, to pin down effects of new physics if additional ingredients beyond
those of the SM are involved. This is particularly true in weakly interacting theo-
ries such as SUSY in which the quantum effects are expected to be small. These
measurements could be performed at the upgraded LHC with an energy close to√
s=14 TeV, in particular if a very high luminosity, a few ab−1, is achieved [43,44].

At this upgrade, besides improving the measurements performed so far, rare
but important channels such as associated Higgs production with top quarks,
pp→tt̄H, and Higgs decays into µ+µ− and Zγ states could be probed. Above all,
a determination of the self–Higgs coupling could be made by searching for double
Higgs production e.g. in the gluon fusion channel gg→ HH [45]; this would be a
first step towards the reconstruction of the scalar potential that is responsible of
electroweak symmetry breaking. This measurement would be difficult at the LHC
even with high–luminosity but a proton collider with

√
s=30 to 100 TeV could do

the job [44].
In a less near future, a high–energy lepton collider, which is nowadays dis-

cussed in various options (ILC, TLEP, CLIC, µ–collider) would lead to a more
accurate probing of the Higgs properties [46], promoting the scalar sector to the
very high–precision level of the gauge and fermion sectors achieved by the LEP
and SLC colliders in the 1990s [4]. At electron-positron colliders, the process
e+e− → HZ, just looking at the recoiling Z boson allows to measure the Higgs
mass, the CP parity and the absolute HZZ coupling, allowing to derive the total
decay width Γ tot

H . One can then measure precisely, already at
√
s ≈ 250 GeV where

σ(e+e− → HZ) is maximal, the absolute Higgs couplings to gauge bosons and
light fermions from the decay branching ratios. The important couplings to top
quarks and the Higgs self–couplings can measured at the 10% level in the higher-
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order processes e+e− → tt̄H and e+e− → HHZ at energies of at least 500 GeV
with a high–luminosity.

Besides the high precision study of the already observed Higgs, one should
also continue to search for the heavy states that are predicted by SUSY, not only the
superparticles but also the heavier Higgs bosons. The energy upgrade to ≈14 TeV
(and eventually beyond) and the planed order of magnitude (or more) increase
in luminosity will allow to probe much higher mass scales than presently. In fact,
more generally, one should continue to search for any sign of new physics or
new particles, new gauge bosons and fermions, as predicted in most of the SM
extensions.

In conclusion, it is not yet time to give up on SUSY and more generally on
New Physics but, rather, to work harder to be fully prepared for the more precise
and larger data set that will be delivered by the upgraded LHC. It will be soon
enough to “philosophize” then as the physics landscape will become more clear.
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Abstract. The spin-charge-family theory [1–7,9–12,15–17,19–24] predicts the existence of
the fourth family to the observed three. The 4 × 4 mass matrices — determined by the
nonzero vacuum expectation values and the dynamical parts of the two scalar triplets,
the gauge fields of the two groups of S̃U(2) determining family quantum numbers, as
well as of the three scalar singlets with the family members quantum numbers (τα =

(Q,Q ′, Y ′)), — manifest the symmetry S̃U(2)× S̃U(2)×U(1). All scalars carry the weak and
the hyper charge of the standard model higgs field (± 1

2
,∓ 1

2
, respectively). It is demonstrated,

using the massless spinor basis, that the symmetry of the 4 × 4 mass matrices remains
SU(2)× SU(2)×U(1) in all loop corrections, and it is discussed under which conditions
this symmetry is kept under all corrections, that is with the corrections induced by the
repetition of the nonzero vacuum expectation values included.

Povzetek. Teorija spinov-nabojev-družin [1–7,9–12,15–17,19–24] napove četrto družino k
doslej opaženim trem. Masne matrike 4 × 4 — določajo jih dva skalarna tripleta, ki sta
umeritveni polji dveh grup S̃U(2) (tripleti določajo družinska kvantna števila), ter trije
skalarni singleti s kvantnimi števili družinskih čanov τα = (Q,Q ′, Y ′) vsak s svojimi
neničelnimi vakuumskimi pričakovanimi vrednostmi ter kot dinamična polja — imajo
simetrijo S̃U(2) × S̃U(2) × U(1). Vsi skalarji — oba tripleta in vsi trije singleti — imajo
enake šibke in hipernaboje kot higgsova polja v standardnem modelu (± 1

2
,∓ 1

2
). Avtorja

pokažeta, da ostane simetrija masnih matrik 4 × 4 enaka SU(2) × SU(2) × U(1) v vseh
redih popravkov, ki jih določajo dinamična polja. Obravnavata pa tudi vključitev ponovitve
neničelnih vakuumskih pričakovanih vrednosti v vseh redih in spremembo simetrije, ki jo
te ponovitve povzročijo.

Keywords:Unifying theories, Beyond the standard model, Origin of families, Ori-
gin of mass matrices of leptons and quarks, Properties of scalar fields, The fourth

? This is the part of the talk presented by N.S. Mankoč Borštnik at the 21st Workshop
”What Comes Beyond the Standard Models”, Bled, 23 of June to 1 of July, 2018.
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family, Origin and properties of gauge bosons, Flavour symmetry, Kaluza-Klein-
like theories
PACS:12.15.Ff 12.60.-i 12.90.+b 11.10.Kk 11.30.Hv 12.15.-y 12.10.-g 11.30.-j 14.80.-j

6.1 Introduction

The spin-charge-family theory [1–12,15–17,19–24] predicts before the electroweak
break four - rather than the observed three — coupled massless families of quarks
and leptons.

The 4× 4mass matrices of all the family members demonstrate in this theory
the same symmetry [1,5,4,21,22], determined by the scalar fields originating in
d > (3 + 1): the two triplets — the gauge fields of the two S̃U(2) family groups
with the generators ~̃NL, ~̃τ1, operating among families — and the three singlets —
the gauge fields of the three charges (τα = (Q,Q ′, Y ′))) — distinguishing among
family members. All these scalar fields carry the weak and the hyper charge as
does the scalar higgs of the standard model: (±1

2
and ∓1

2
, respectively) [1,4,24].

The loop corrections alone, as well as corrections including the repetition of the
nonzero vacuum expectation values in all orders, make each matrix element of
mass matrices dependent on the quantum numbers of each of the family members.

Since there is no direct observations of the fourth family quarks with masses
below 1 TeV, while the fourth family quarks with masses above 1 TeV would
contribute according to the standard model (the standard model Yukawa couplings
of the quarks with the scalar higgs is proportional to mα4

v
, wheremα4 is the fourth

family member (α = u, d) mass and v the vacuum expectation value of the scalar
higgs) to either the quark-gluon fusion production of the scalar field (the higgs)
or to the scalar field decay too much in comparison with the observations, the
high energy physicists do not expect the existence of the fourth family members at
all [25,26].

One of the authors (N.S.M.B) discusses in Refs. ([1], Sect. 4.2.) that the standard
model estimation with one higgs scalar might not be the right way to evaluate
whether the fourth family, coupled to the observed three, does exist or not. The
ui-quarks and di-quarks of an ith family, namely, if they couple with the opposite
sign to the scalar fields carrying the family (Ã, i) quantum numbers and have
the same masses, do not contribute to either the quark-gluon fusion production
of the scalar fields with the family quantum numbers or to the decay of these
scalars into two photons. The strong influence of the scalar fields carrying the
family members quantum numbers to the masses of the lower (observed) three
families manifests in the huge differences in the masses of the family members, let
say ui and di, i = (1, 2, 3), and families (i). For the fourth family quarks, which
are more and more decoupled from the observed three families the higher are
their masses [22,21], the influence of the scalar fields carrying the family members
quantum numbers on their masses is in the spin-charge-family theory expected to
be much weaker. Correspondingly the u4 and d4 masses become closer to each
other the higher are their masses and the weaker are their couplings (the mixing
matrix elements) to the lower three families. For u4-quarks and d4-quarks with
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the similar masses the observations might consequently not be in contradiction
with the spin-charge-family theory prediction that there exists the fourth family
coupled to the observed three ([28], which is in preparation).

But three singlet and two treplet scalar fields offer also other explanations.
We demonstrate in the main Sect. 6.2 that the symmetry S̃U(2) × S̃U(2) × U(1),

which the mass matrices demonstrate on the tree level, after the gauge scalar fields of the
two S̃U(2) family groups triplets gain nonzero vacuum expectation values, keeps the same
in all loop corrections. We discuss also the symmetry of mass matrices if all the scalar
fields, contributing to mass matrices, have nonzero vacuum expectation values. We use
the massless basis.

In Sect. 6.4 we present shortly the spin-charge-family theory and its achieve-
ments so far. All the mathematical support appears in appendices.

Let be in this introduction stressed what supports the spin-charge-family theory
to be the right next step beyond the standard model. This theory can not only explain
— while starting from a very simple action in d ≥ (13+ 1), Eqs. (6.35) in App. 6.4,
with massless fermions (with the spin of the two kinds, γa and γ̃a, one kind
taking care of the spin and of all the charges of the family members (Eq. (6.4)), the
second kind taking care of families (Eqs. (6.34, 6.50))) coupled only to the gravity
(through the vielbeins and the two kinds of the spin connections fieldsωabαfαc
and ω̃abαfαc, the gauge fields of Sab and S̃ab (Eqs. (6.35)), respectively — all
the assumptions of the standard model, but also answers several open questions
beyond the standard model. It offers the explanation for [4–6,1,7,9–12,15–17,19–24]:
a. The appearance of all the charges of the left and right handed family members
and for their families and their properties.
b. The appearance of all the corresponding vector and scalar gauge fields and their
properties (explaining the appearance of higgs and the Yukawa couplings).
c. The appearance and properties of the dark matter.
d. The appearance of the matter/antimatter asymmetry in the universe.

This theory predicts for the low energy regime:
i. The existence of the fourth family to the observed three.
ii. The existence of twice two triplets and three singlets of scalars, all with the
properties of the higgs with respect to the weak and hyper charges, what explains
the origin of the Yukawa couplings.
iii. There are several other predictions, not directly connected with the topic of
this paper.

The fact that the fourth family quarks have not yet been observed — directly
or indirectly — pushes the fourth family quarks masses to values higher than 1
TeV.

Since the experimental accuracy of the 3 × 3 submatrix of the 4 × 4 mixing
matrices is not yet high enough [32], it is not yet possible to calculate the mixing
matrix elements among the fourth family and the observed three 1. Correspond-
ingly it is not possible yet to estimate masses of the fourth family members by

1 The 3× 3 submatrix, if accurate, determines the 4× 4 unitary matrix uniquely.
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fitting the experimental data to the free parameters of mass matrices, the num-
ber of which is limited by the symmetry S̃U(2)× S̃U(2)×U(1), predicted by the
spin-charge-family [22,21].

If we assume the masses of the fourth family members, the matrix elements
can be estimated from the measured 3 × 3 submatrix elements of the 4 × 4 ma-
trix [22,21] 2.

The more effort and work is put into the spin-charge-family theory, the more
explanations of the observed phenomena and the more predictions for the future
observations follow out of it. Offering the explanation for so many observed phe-
nomena — keeping in mind that all the explanations for the observed phenomena
originate in a simple starting action — qualifies the spin-charge-family theory as the
candidate for the next step beyond the standard model.

The reader is kindly asked to learn more about the spin-charge-family theory
in Refs. [2–4,1,5,6] and the references therein. We shall point out sections in these
references, which might be of particular help, when needed.

6.2 The symmetry of the family members mass matrices

The mass term
∑
s=7,8 ψ̄γ

sp0s ψ, Eq. (6.3), of the starting action, Eq. (6.35), mani-
fests in the spin-charge-family theory [4,1,5,6] the S̃U(2)× S̃U(2) ×U(1) symmetry.
The infinitesimal generators of the two family groups namely commute among
themselves, { ~̃NL, ~̃τ1̃}− = 0, Eq. (6.8), and with all the infinitesimal generators of
the family members groups, {τ̃Ai, τα}− = 0, (τα = (Q,Q ′, Y ′)), Eq. (6.9). After the
scalar gauge fields, carrying the space index (7, 8), of the generators ~̃NL and ~̃τ1̃ of
the two S̃U(2) groups gain nonzero vacuum expectation values, spinors (quarks
and leptons), which interact with these scalar gauge fields, become massive. There
are the scalar gauge fields, carrying the space index (7, 8), of the group U(1) with
the infinitesimal generators τα (=(Q,Q ′, Y ′)), which are responsible for the dif-
ferences in mass matrices among the family members (ui, νi, di, ei, i(1, 2, 3, 4), i
determines four families). Their couplings to the family members depends strongly
on the quantum numbers (Q,Q ′, Y ′).

It is shown in this main section that the mass matrix elements of any family
member keep the S̃U(2)×S̃U(2)×U(1) symmetry of the tree level in all corrections
(the loops one and the repetition of the nonzero vacuum expectation values),
provided that the scalar gauge fields of the U(1) group have no nonzero vacuum
expectation values. In the case that the scalar gauge fields of the U(1) group have
nonzero vacuum expectation values, the symmetry is changed, unless some of the
scalar fields with the family quantum numbers have nonzero vacuum expectation
values. We comment on all these cases in what follows.

Let us first present the symmetry of the mass term in the starting action,
Eq. (6.35).

2 While the fitting procedure is not influenced considerably by the accuracy of the measured
masses of the lower three families, the accuracy of the measured values of the mixing
matrices do influence, as expected, the fitting results very much.
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We point out that the symmetry S̃U(2)× S̃U(2) belongs to the two S̃O(4)
groups — to S̃O(4)

S̃O(3,1)
and to S̃O(4)

S̃O(4)
. The infinitesimal operators of the

first and the second S̃O(4) groups are, Eqs. (6.40, 6.41),

~̃N+(=
~̃NL) : =

1

2
(S̃23 + iS̃01, S̃31 + iS̃02, S̃12 + iS̃03) ,

~̃τ1 : =
1

2
(S̃58 − S̃67, S̃57 + S̃68, S̃56 − S̃78) , (6.1)

respectively. U(1) contains the subgroup of the subgroup SO(6) as well as the
subgroup of SO(4) (SO(6) and SO(4) are together with SO(3, 1) the subgroups of
the group SO(13, 1)) with the infinitesimal operators equal to, Eq. (6.42),

τ4 = −
1

3
(S9 10 + S11 12 + S13 14) ,

~τ1 =
1

2
(S58 − S67, S57 + S68, S56 − S78) ,

~τ2 =
1

2
(S58 + S67, S57 − S68, S56 + S78) . (6.2)

There are additional subgroups S̃U(2)× S̃U(2), which belong to S̃O(4)
S̃O(3,1)

and

S̃O(4)
S̃O(4)

, Eqs. (6.40, 6.41), the scalar gauge fields of which do not influence the
masses of the four families to which the three observed families belong according
to the predictions of the spin-charge-family theory 3.

All the degrees of freedom and properties of spinors (of quarks and leptons)
and of gauge fields, demonstrated below, follow from the simple starting action,
Eq. (6.35), after breaking the starting symmetry.

Let us rewrite formally the fermion part of the starting action, Eq. (6.35), in the
way that it manifests, Eq. (6.3), the kinetic and the interaction term in d = (3+ 1)

(the first line, m = (0, 1, 2, 3)), the mass term (the second line, s = (7, 8)) and the
rest (the third line, t = (5, 6, 9, 10, · · · , 14)).

Lf = ψ̄γm(pm −
∑
A,i

gAiτAiAAim )ψ+

{
∑
s=7,8

ψ̄γsp0s ψ}+

{
∑

t=5,6,9,...,14

ψ̄γtp0t ψ} , (6.3)

where p0s = ps− 1
2
Ss
′s"ωs ′s"s−

1
2
S̃abω̃abs, p0t = pt− 1

2
St
′t"ωt ′t"t−

1
2
S̃abω̃abt

4,
with m ∈ (0, 1, 2, 3), s ∈ (7, 8), (s ′, s") ∈ (5, 6, 7, 8), (a, b) (appearing in S̃ab)

3 The gauge scalar fields of these additional subgroups S̃U(2)× S̃U(2) influence the masses
of the upper four families, the stable one of which contribute to the dark matter.

4 If there are no fermions present, then either ωabc or ω̃abc are expressible by vielbeins
fαa [[2,5], and the references therein]. We assume that there are spinor fields which
determine spin connection fields – ωabc and ω̃abc. In general one would have [6]:
p0a = fαap0α + 1

2E
{pα, Ef

α
a}−, p0α = pα − 1

2
Ss
′s"ωs ′s"α − 1

2
S̃abω̃abα. Since the term

1
2E

{pα, Ef
α
a}− does not influece the symmetry of mass matrices, we do not treat it in this

paper.
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run within either (0, 1, 2, 3) or (5, 6, 7, 8), t runs ∈ (5, . . . , 14), (t ′, t") run either
∈ (5, 6, 7, 8) or ∈ (9, 10, . . . , 14) 5. The spinor function ψ represents all family mem-
bers, presented on Table 6.3, of all the 2

7+1
2

−1 = 8 families, presented on Table 6.4.
In this paper we pay attention on the lower four families.

The first line of Eq. (6.3) determines in d = (3+1) the kinematics and dynamics
of spinor (fermion) fields, coupled to the vector gauge fields. The generators τAi of
the charge groups are expressible in terms of Sab through the complex coefficients
cAiab (the coefficients cAiab of τAi can be found in Eqs. (6.38, 6.2) 6,

τAi =
∑
a,b

cAiab S
ab , (6.4)

fulfilling the commutation relations

{τAi, τBj}− = iδABfAijkτAk . (6.5)

They represent the colour (τ3i), the weak (τ1i) and the hyper (Y) charges 7. The
corresponding vector gauge fields AAim are expressible with the spin connection
fieldsωstm, Eq. (6.44) 8

AAim =
∑
s,t

cAist ω
st
m . (6.6)

The second line of Eq. (6.3) determines masses of each family member (ui, di, νi, ei).
The scalar gauge fields of the charges — those of the family members, determined
by Sab and those of the families, determined by S̃ab — carry space index (7, 8).
Correspondingly the operators γ0γs, appearing in the mass term, transform the
left handed members of any family into the right handed members of the same
family, what can easily be seen in Table 6.3. Operators Sab transform one family
member of a particular family into the same family member of another family.

Each scalar gauge fields (they are the gauge fields with space index s ≥ 5) are
as well expressible with the spin connections and vielbeins, Eq. (6.45) [2].

The groups SO(3, 1), SU(3), SU(2)I, SU(2)II and U(1)II (all embedded into
SO(13 + 1)) determine spin and charges of spinors, the groups S̃U(2)

S̃O(3,1)
,

5 We use units ~ = 1 = c
6 Before the electroweak break there are the conserved (weak) charges ~τ1 (Eq. (6.38)),
~τ3(Eq. (6.2) and Y := τ4 + τ23 (Eqs. (6.38, 6.2) and the non conserved charge Y ′ :=
−τ4 tan2 ϑ2 + τ23 , where ϑ2 is the angle of the break of SU(2)II from SU(2)I × SU(2)II×
U(1)II to SU(2)I ×U(1)I. After the electroweak break the conserved charges are ~τ3 and
Q := Y + τ13, the non conserved charge is Q ′ := −Y tan2 ϑ1 + τ13, where ϑ1 is the
electroweak angle.

7 There are as well the SU(2)II (τ2i, Eq. (6.38)) and U(1)II (τ4, Eq. (6.2)) charges, the vector
gauge fields of these last two groups gain masses when interacting with the condensate,
Table 6.5 ([1,4,5] and the references therein). The condensate leaves massless, besides the
colour and gravity gauge fields in d = (3 + 1), the weak and the hyper charge vector
gauge fields.

8 Both fields, AAim and ÃÃim , are expressible with only the vielbeins, if there are no spinor
fields present [2].
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Eqs (6.1), S̃U(2)
S̃O(4)

, Eqs. (6.1), (embedded into S̃O(13 + 1)) determine family
quantum numbers 9.

The generators of these latter groups are expressible by S̃ab

τ̃Ai =
∑
a,b

cAiab S̃
ab , (6.7)

fulfilling again the commutation relations

{τ̃Ai, τ̃Bj}− = iδABfAijkτ̃Ak , (6.8)

while

{τAi, τ̃Bj}− = 0 . (6.9)

The scalar gauge fields of the groups S̃U(2)I (= S̃U(2)
S̃O(3,1)

with generators
~̃NL, Eq. (6.40)), S̃U(2)I (= S̃U(2)

S̃O(4)
, with generators ~̃τ1, Eq. (6.41)) and U(1)

(with generators (Q,Q ′, Y ′), Eq. (6.43)) are presented in Eq. (6.45) 10. The appli-
cation of the generators ~̃τ1, Eq. (6.41), ~̃NL, Eq. (6.40), which distinguish among
families and are the same for all the family members, is presented in Eqs. (6.49,
6.51, 6.13).

The application of the family members generators (Q,Q ′, Y ′) on the family
members of any family is presented on Table 6.1. The contribution of the scalar
gauge fields to masses of different family members strongly depends on the
quantum numbersQ,Q ′ and Y ′ as one can read from Table 6.1. In loop corrections
the contribution of the scalar gauge fields of (Q,Q ′, Y ′) is proportional to the even
power of these quantum numbers, while the nonzero vacuum expectation values
of these scalar fields contribute in odd powers.

R QL,R Y τ4
L,R

τ23 Y ′ Q ′ L Y τ13 Y ′ Q ′

ui
R

2
3

2
3

1
6

1
2

1
2

(1− 1
3

tan2 ϑ2) − 2
3

tan2 ϑ1 u
i
L

1
6

1
2

− 1
6

tan2 ϑ2
1
2

(1− 1
3

tan2 ϑ1)

di
R

− 1
3

− 1
3

1
6

− 1
2

− 1
2

(1+ 1
3

tan2 ϑ2)
1
3

tan2 ϑ1 d
i
L

1
6

− 1
2

− 1
6

tan2 ϑ2 − 1
2

(1+ 1
3

tan2 ϑ1)

νi
R

0 0 − 1
2

1
2

1
2

(1+ tan2 ϑ2) 0 νi
L

− 1
2

1
2

1
2

tan2 ϑ2
1
2

(1+ tan2 ϑ1)

eR −1 −1 − 1
2

− 1
2

1
2

(−1+ tan2 ϑ2) tan2 ϑ1 eL − 1
2

− 1
2

1
2

tan2 ϑ2 − 1
2

(1− tan2 ϑ1)

Table 6.1. The quantum numbersQ, Y, τ4, Y ′, Q ′, τ23, τ13, Eq. (6.43), of the family members
uiL,R, ν

i
L,R of one family (any one) [6] are presented. The left and right handed members of

any family have the same Q and τ4, the right handed members have τ13 = 0, and τ23 = 1
2

for (uiR, ν
i
R) and − 1

2
for (diR, e

i
R), while the left handed members have τ23 = 0 and τ13 = 1

2

for (uiL, ν
i
L) and − 1

2
for (diL, e

i
L). ν

i
R couples only to AY

′
s as seen from the table.

9 S̃U(3) do not contribute to the families at low energies. We studied such possibilities in a
toy model, Ref. [18].

10 All the scalar gauge fields, presented in Eq. (6.45), are expressible with the vielbeins and
spin connections with the space index a ≥ 5, Ref. [2].
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There are in the spin-charge-family theory 2
(1+7)
2

−1 = 8 families 11, which split
in two groups of four families, due to the break of the symmetry from S̃O(7, 1) into
S̃O(3, 1) ×S̃O(4). Each of these two groups manifests S̃U(2)

S̃O(3,1)
×S̃U(2)

S̃O(4)

symmetry [6]. These decoupled twice four families are presented in Table 6.4.
The lowest of the upper four families, forming neutral clusters with respect

to the electromagnetic and colour charges, is the candidate to form the dark
matter [20].

We discuss in this paper symmetry properties of the lower four families,
presented in Table 6.4 in the first four lines. We present in Table 6.2 the representa-
tion and the family quantum numbers of the left and right handed members of
the lower four families. Since any of the family members (uiL,R, diL,R, νiL,R, eiL,R)
behave equivalently with respect to all the operators concerning the family groups
S̃U(2)

S̃O(1,3)
× S̃U(2)

S̃O(4)
, the last five columns are the same for all the family

members.
We rewrite the interaction, which is in the spin-charge-family theory responsible

for the appearance of masses of fermions, presented in Eq. (6.3) in the second

line, in a slightly different way, expressing γ7 = (
78

(+) +
78

(−)) and correspondingly

γ8 = −i(
78

(+) −
78

(−)).

Lmass =
1

2

∑
+,−

{ψ†Lγ
0
78

(±) (−
∑
A

ταAα± −
∑
Ãi

τ̃Ai ÃÃi± )ψR}+ h.c. ,

τα = (Q,Q ′, Y ′) , τ̃Ãi = ( ~̃NL, ~̃τ
1̃) ,

γ0
78

(±) = γ0 1
2
(γ7 ± i γ8) ,

Aα± =
∑
st

cαstω
st
± , ωst± = ωst7 ∓ iωst8 ,

~̃AÃ± =
∑
ab

cAab ω̃
ab
± , ω̃ab± = ω̃ab7 ∓ i ω̃ab8 . (6.10)

In Eq. (6.10) the term ps is left out since at low energies its contribution is neg-
ligible, A determines operators, which distinguish among family members —
(Q,Q ′, Y ′) 12, their eigenvalues on basic states are presented on Table 6.1 — (Ã, i)
represent the family operators, determined in Eqs. (6.40, 6.41, 6.42). The detailed
explanation can be found in Refs. [4,5,1].

Operators τAi are Hermitian ((τAi)† = τAi), while (γ0
78

(±))† = γ0
78

(∓). If the
scalar fields AAis are real it follows that (AAi± )† = AAi∓ .

11 In the break from SO(13, 1) to SO(7, 1)×SO(6) only eight families remain massless, those
for which the symmetry S̃O(7, 1) remains. In Ref. [18] such kinds of breaks are discussed
for a toy model.

12 (Q,Q ′, Y ′) are expressible in terms of (τ13, τ23, τ4) as explained in Eq. (6.43). The corre-
sponding superposition ofωss

′
± fields can be found by taking into account Eqs. (6.38,

6.2).
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While the family operators τ̃1i and ÑiL commute with γ0
78

(±), {Sab, S̃cd}− =0
for all (a, b, c, d), the family members operators (τ13, τ23) do not, since S78 does

not (S78γ0
78

(∓) = −γ0
78

(∓) S78). However [ψk†L γ
0
78

(∓) (Q,Q ′, Y ′)A(Q,Q ′,Y ′)
∓ ψlR]

† =

ψl†R (Q,Q ′, Y ′)A
(Q,Q ′,Y ′)†
± γ0

78

(±) ψkL δk,l = ψl†R (QkR, Q
′k
R , Y

′k
R )A

(Q,Q ′,Y ′)
± ψkR δk,l,

where (QkR, Q
′k
R , Y

′k
R ) denote the eigenvalues of the corresponding operators on

the spinor state ψkR. This means that we evaluate in both cases quantum numbers
of the right handed partners.

But, let us evaluate 1√
2
< uiL+u

i
R|Ô

α|uiL+u
i
R >

1√
2

, with Ôα =
∑

+,− γ
0
78

(±)
(τ4A4

78

(±)
+τ23A23

78

(±)
+τ13A13

78

(±)
). One obtains 1√

2
{1
6
(A4−+A

4
+)+A

23
− +A13+ }. Equivalent

evaluations for |diL + d
i
R > would give 1√

2
{1
6
(A4− + A4+) − A

23
− − A13+ }, while for

neutrinos we would obtain 1√
2
{−1
2
(A4− +A4+) +A

23
− +A13+ } and for ei we would

obtain 1√
2
{−1
2
(A4− +A4+)−A

23
− −A13+ }. Let us point out that the fields include also

coupling constants, which change when the symmetry is broken. This means that
we must carefully evaluate expectation values of all the operators on each state of
broken symmetries. We have here much easier work: To see how does the starting
symmetry of the mass matrices behave under all possible corrections up to∞ we
only have to compare how do matrix elements, which are equal on the tree level,
change in any order of corrections.

In Table 6.2 four families of spinors, belonging to the group with the nonzero
values of ~̃NL and ~̃τ1, are presented. These are the lower four families, presented
also in Table 6.4 together with the upper four families 13. There are indeed the four
families of ψiuR and ψiuL presented in this table. All the 2

13+1
2

−1 members of the
first family are represented in Table 6.3.

The three singlet scalar fields (AQ∓ , AQ
′

∓ , AY
′

∓ ) of Eq. (6.10) contribute on the

tree level the ”diagonal” values to the mass term — γ0
78

(∓) QAQ∓ +γ0
78

(∓) Q ′AQ
′

∓

+γ0
78

(∓) Y ′AY ′∓ — transforming a right handed member of one family into the left
handed member of the same family, or a left handed member of one family into
the right handed member of the same family. These terms are different for different
family members but the same for all the families.

Since Q = (τ13 + τ23 + τ4) = (S56 + τ4), Y ′ = (−τ4 tan2 ϑ2 + τ23) and
Q ′ = (−(τ4 + τ23) tan2 ϑ1 + τ13) — ϑ1 is the standard model angle and ϑ2 is the
corresponding angle when the second SU(2) symmetry breaks — we could use

instead of the operators (γ0
78

(∓) QAQ∓ +γ0
78

(∓) Q ′AQ
′

∓ +γ0
78

(∓) Y ′AY ′∓ ) as well

the operators (γ0
78

(±) τ4A4±, γ0
78

(±) τ23A23± , γ0
78

(±) τ13A13± ), if the fact that the
coupling constants of all the fields, also of ωabs and ω̃abs, change with the break
of symmetry is taken into account.

13 The upper four families have the nonzero values of ~̃NR and ~̃τ2. The stable members of
the upper four families offer the explanation for the existence the dark matter [20].
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Let us denote by −aα the nonzero vacuum expectation values of the three
singlets for a family member α = (ui, νi, di, ei), divided by the energy scale (let
say TeV), when (if) these scalars have nonzero vacuum expectation values and we
use the basis 1

2
|ψiαL +ψiαR >:

aα = −{
1

2
< ψiαL +ψiαR |∑

+,−

γ0
78

(±) [Q < AQ± > +Q ′ < AQ
′

± > +Y ′ < AY
′

± >]|ψjαL +ψjαR >
1

2
}δij + h.c.,

(6.11)

Each family member has a different value for aα. All the scalar gauge fields
AQ
78

(±)
, AQ

′

78

(±)
, AY

′

78

(±)
have the weak and the hypercharge as higgs scalars: (±1

2
,∓1

2
,

respectively).

τ̃13 τ̃23 Ñ3L Ñ
3
R τ̃4

ψ1
uci
R

03

(+i)
12

[+] |
56

[+]
78

(+) || · · · ψ1
uci
L

03

[−i]
12

[+] |
56

[+]
78

[−] || · · · − 1
2

0 − 1
2

0 − 1
2

ψ2
uci
R

03

[+i]
12

(+) |
56

[+]
78

(+) || . . . ψ2
uci
L

03

(−i)
12

(+) |
56

[+]
78

[−] || · · · − 1
2

0 1
2

0 − 1
2

ψ3
uci
R

03

(+i)
12

[+] |
56

(+)
78

[+] || · · · ψ3
uci
L

03

[−i]
12

[+] |
56

(+)
78

(−) || · · · 1
2

0 − 1
2

0 − 1
2

ψ4
uci
R

03

[+i]
12

(+) |
56

(+)
78

[+] || · · · ψ4
uci
L

03

(−i)
12

(+) |
56

(+)
78

(−) || · · · 1
2

0 1
2

0 − 1
2

Table 6.2. Four families of the right handed uc1R with the weak and the hyper charge
(τ13 = 0, Y = 2

3
) and of the left handed uc1L quarks with (τ13 = 1

2
, Y = 1

6
), both with spin 1

2

and colour (τ33, τ38) = [(1/2, 1/(2
√
3), (−1/2, 1/(2

√
3), (0,−1/(

√
3)] charges are presented.

They represent two of the family members from Table 6.3 — u
c1
R and uc1L — appearing

on 1st and 7th line of Table 6.3. Spins and charges commute with ÑiL, τ̃1i and τ̃4, and are
correspondingly the same for all the families.

Transitions among families for any family member are caused by (ÑiL Ã
ÑL±

and τ̃1i Ã1̃±), what manifests the symmetry S̃UNL(2)× S̃Uτ1(2). There are correc-
tions in all orders, which make all the matrix elements of the mass matrix for any
of the family members α dependent on the three singlets (τ4A4±, τ23A23± , τ13A13± ),
Eq. (6.11).
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i |aψi > Γ(3,1) S12 τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet, Γ(7,1) = (−1) 1 , Γ(6) = (1) − 1

of (anti)quarks and (anti)leptons

1 uc1
R

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] 1 1

2
0 1

2
1
2

1
2
√
3

1
6

2
3

2
3

2 uc1
R

03
[−i]

12
(−) |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] 1 − 1

2
0 1

2
1
2

1
2
√
3

1
6

2
3

2
3

3 dc1
R

03
(+i)

12
[+] |

56
(−)

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] 1 1

2
0 − 1

2
1
2

1
2
√
3

1
6

− 1
3

− 1
3

4 dc1
R

03
[−i]

12
(−) |

56
(−)

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] 1 − 1

2
0 − 1

2
1
2

1
2
√
3

1
6

− 1
3

− 1
3

5 dc1
L

03
[−i]

12
[+] |

56
(−)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] -1 1

2
− 1
2

0 1
2

1
2
√
3

1
6

1
6

− 1
3

6 dc1
L

03
(+i)

12
(−) |

56
(−)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] -1 − 1

2
− 1
2

0 1
2

1
2
√
3

1
6

1
6

− 1
3

7 uc1
L

03
[−i]

12
[+] |

56
[+]

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] -1 1

2
1
2

0 1
2

1
2
√
3

1
6

1
6

2
3

8 uc1
L

03
(+i)

12
(−) |

56
[+]

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] -1 − 1

2
1
2

0 1
2

1
2
√
3

1
6

1
6

2
3

9 uc2
R

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] 1 1

2
0 1

2
− 1
2

1
2
√
3

1
6

2
3

2
3

10 uc2
R

03
[−i]

12
(−) |

56
[+]

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] 1 − 1

2
0 1

2
− 1
2

1
2
√
3

1
6

2
3

2
3

11 dc2
R

03
(+i)

12
[+] |

56
(−)

78
[−] ||

9 10
[−]

11 12
(+)

13 14
[−] 1 1

2
0 − 1

2
− 1
2

1
2
√
3

1
6

− 1
3

− 1
3

12 dc2
R

03
[−i]

12
(−) |

56
(−)

78
[−] ||

9 10
[−]

11 12
(+)

13 14
[−] 1 − 1

2
0 − 1

2
− 1
2

1
2
√
3

1
6

− 1
3

− 1
3

13 dc2
L

03
[−i]

12
[+] |

56
(−)

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] -1 1

2
− 1
2

0 − 1
2

1
2
√
3

1
6

1
6

− 1
3

14 dc2
L

03
(+i)

12
(−) |

56
(−)

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] -1 − 1

2
− 1
2

0 − 1
2

1
2
√
3

1
6

1
6

− 1
3

15 uc2
L

03
[−i]

12
[+] |

56
[+]

78
[−] ||

9 10
[−]

11 12
(+)

13 14
[−] -1 1

2
1
2

0 − 1
2

1
2
√
3

1
6

1
6

2
3

16 uc2
L

03
(+i)

12
(−) |

56
[+]

78
[−] ||

9 10
[−]

11 12
(+)

13 14
[−] -1 − 1

2
1
2

0 − 1
2

1
2
√
3

1
6

1
6

2
3

17 uc3
R

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
[−]

11 12
[−]

13 14
(+) 1 1

2
0 1

2
0 − 1√

3
1
6

2
3

2
3

18 uc3
R

03
[−i]

12
(−) |

56
[+]

78
(+) ||

9 10
[−]

11 12
[−]

13 14
(+) 1 − 1

2
0 1

2
0 − 1√

3
1
6

2
3

2
3

19 dc3
R

03
(+i)

12
[+] |

56
(−)

78
[−] ||

9 10
[−]

11 12
[−]

13 14
(+) 1 1

2
0 − 1

2
0 − 1√

3
1
6

− 1
3

− 1
3

20 dc3
R

03
[−i]

12
(−) |

56
(−)

78
[−] ||

9 10
[−]

11 12
[−]

13 14
(+) 1 − 1

2
0 − 1

2
0 − 1√

3
1
6

− 1
3

− 1
3

21 dc3
L

03
[−i]

12
[+] |

56
(−)

78
(+) ||

9 10
[−]

11 12
[−]

13 14
(+) -1 1

2
− 1
2

0 0 − 1√
3

1
6

1
6

− 1
3

22 dc3
L

03
(+i)

12
(−) |

56
(−)

78
(+) ||

9 10
[−]

11 12
[−]

13 14
(+) -1 − 1

2
− 1
2

0 0 − 1√
3

1
6

1
6

− 1
3

23 uc3
L

03
[−i]

12
[+] |

56
[+]

78
[−] ||

9 10
[−]

11 12
[−]

13 14
(+) -1 1

2
1
2

0 0 − 1√
3

1
6

1
6

2
3

24 uc3
L

03
(+i)

12
(−) |

56
[+]

78
[−] ||

9 10
[−]

11 12
[−]

13 14
(+) -1 − 1

2
1
2

0 0 − 1√
3

1
6

1
6

2
3

25 νR

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) 1 1

2
0 1

2
0 0 − 1

2
0 0

26 νR

03
[−i]

12
(−) |

56
[+]

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) 1 − 1

2
0 1

2
0 0 − 1

2
0 0

27 eR

03
(+i)

12
[+] |

56
(−)

78
[−] ||

9 10
(+)

11 12
(+)

13 14
(+) 1 1

2
0 − 1

2
0 0 − 1

2
−1 −1

28 eR

03
[−i]

12
(−) |

56
(−)

78
[−] ||

9 10
(+)

11 12
(+)

13 14
(+) 1 − 1

2
0 − 1

2
0 0 − 1

2
−1 −1

29 eL

03
[−i]

12
[+] |

56
(−)

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) -1 1

2
− 1
2

0 0 0 − 1
2

− 1
2

−1

30 eL

03
(+i)

12
(−) |

56
(−)

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) -1 − 1

2
− 1
2

0 0 0 − 1
2

− 1
2

−1

31 νL

03
[−i]

12
[+] |

56
[+]

78
[−] ||

9 10
(+)

11 12
(+)

13 14
(+) -1 1

2
1
2

0 0 0 − 1
2

− 1
2

0

32 νL

03
(+i)

12
(−) |

56
[+]

78
[−] ||

9 10
(+)

11 12
(+)

13 14
(+) -1 − 1

2
1
2

0 0 0 − 1
2

− 1
2

0

33 d̄c̄1
L

03
[−i]

12
[+] |

56
[+]

78
(+) ||

9 10
[−]

11 12
(+)

13 14
(+) -1 1

2
0 1

2
− 1
2

− 1
2
√
3

− 1
6

1
3

1
3

34 d̄c̄1
L

03
(+i)

12
(−) |

56
[+]

78
(+) ||

9 10
[−]

11 12
(+)

13 14
(+) -1 − 1

2
0 1

2
− 1
2

− 1
2
√
3

− 1
6

1
3

1
3

35 ūc̄1
L

03
[−i]

12
[+] |

56
(−)

78
[−] ||

9 10
[−]

11 12
(+)

13 14
(+) -1 1

2
0 − 1

2
− 1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

36 ūc̄1
L

03
(+i)

12
(−) |

56
(−)

78
[−] ||

9 10
[−]

11 12
(+)

13 14
(+) -1 − 1

2
0 − 1

2
− 1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

37 d̄c̄1
R

03
(+i)

12
[+] |

56
[+]

78
[−] ||

9 10
[−]

11 12
(+)

13 14
(+) 1 1

2
1
2

0 − 1
2

− 1
2
√
3

− 1
6

− 1
6

1
3

38 d̄c̄1
R

03
[−i]

12
(−) |

56
[+]

78
[−] ||

9 10
[−]

11 12
(+)

13 14
(+) 1 − 1

2
1
2

0 − 1
2

− 1
2
√
3

− 1
6

− 1
6

1
3

39 ūc̄1
R

03
(+i)

12
[+] |

56
(−)

78
(+) ||

9 10
[−]

11 12
(+)

13 14
(+) 1 1

2
− 1
2

0 − 1
2

− 1
2
√
3

− 1
6

− 1
6

− 2
3

Continued on next page
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i |aψi > Γ(3,1) S12 τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet, Γ(7,1) = (−1) 1 , Γ(6) = (1) − 1

of (anti)quarks and (anti)leptons

40 ūc̄1
R

03
[−i]

12
(−) |

56
(−)

78
(+) ||

9 10
[−]

11 12
(+)

13 14
(+) 1 − 1

2
− 1
2

0 − 1
2

− 1
2
√
3

− 1
6

− 1
6

− 2
3

41 d̄c̄2
L

03
[−i]

12
[+] |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
(+) -1 1

2
0 1

2
1
2

− 1
2
√
3

− 1
6

1
3

1
3

42 d̄c̄2
L

03
(+i)

12
(−) |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
(+) -1 − 1

2
0 1

2
1
2

− 1
2
√
3

− 1
6

1
3

1
3

43 ūc̄2
L

03
[−i]

12
[+] |

56
(−)

78
[−] ||

9 10
(+)

11 12
[−]

13 14
(+) -1 1

2
0 − 1

2
1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

44 ūc̄2
L

03
(+i)

12
(−) |

56
(−)

78
[−] ||

9 10
(+)

11 12
[−]

13 14
(+) -1 − 1

2
0 − 1

2
1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

45 d̄c̄2
R

03
(+i)

12
[+] |

56
[+]

78
[−] ||

9 10
(+)

11 12
[−]

13 14
(+) 1 1

2
1
2

0 1
2

− 1
2
√
3

− 1
6

− 1
6

1
3

46 d̄c̄2
R

03
[−i]

12
(−) |

56
[+]

78
[−] ||

9 10
(+)

11 12
[−]

13 14
(+) 1 − 1

2
1
2

0 1
2

− 1
2
√
3

− 1
6

− 1
6

1
3

47 ūc̄2
R

03
(+i)

12
[+] |

56
(−)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
(+) 1 1

2
− 1
2

0 1
2

− 1
2
√
3

− 1
6

− 1
6

− 2
3

48 ūc̄2
R

03
[−i]

12
(−) |

56
(−)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
(+) 1 − 1

2
− 1
2

0 1
2

− 1
2
√
3

− 1
6

− 1
6

− 2
3

49 d̄c̄3
L

03
[−i]

12
[+] |

56
[+]

78
(+) ||

9 10
(+)

11 12
(+)

13 14
[−] -1 1

2
0 1

2
0 1√

3
− 1
6

1
3

1
3

50 d̄c̄3
L

03
(+i)

12
(−) |

56
[+]

78
(+) ||

9 10
(+)

11 12
(+)

13 14
[−] -1 − 1

2
0 1

2
0 1√

3
− 1
6

1
3

1
3

51 ūc̄3
L

03
[−i]

12
[+] |

56
(−)

78
[−] ||

9 10
(+)

11 12
(+)

13 14
[−] -1 1

2
0 − 1

2
0 1√

3
− 1
6

− 2
3

− 2
3

52 ūc̄3
L

03
(+i)

12
(−) |

56
(−)

78
[−] ||

9 10
(+)

11 12
(+)

13 14
[−] -1 − 1

2
0 − 1

2
0 1√

3
− 1
6

− 2
3

− 2
3

53 d̄c̄3
R

03
(+i)

12
[+] |

56
[+]

78
[−] ||

9 10
(+)

11 12
(+)

13 14
[−] 1 1

2
1
2

0 0 1√
3

− 1
6

− 1
6

1
3

54 d̄c̄3
R

03
[−i]

12
(−) |

56
[+]

78
[−] ||

9 10
(+)

11 12
(+)

13 14
[−] 1 − 1

2
1
2

0 0 1√
3

− 1
6

− 1
6

1
3

55 ūc̄3
R

03
(+i)

12
[+] |

56
(−)

78
(+) ||

9 10
(+)

11 12
(+)

13 14
[−] 1 1

2
− 1
2

0 0 1√
3

− 1
6

− 1
6

− 2
3

56 ūc̄3
R

03
[−i]

12
(−) |

56
(−)

78
(+) ||

9 10
(+)

11 12
(+)

13 14
[−] 1 − 1

2
− 1
2

0 0 1√
3

− 1
6

− 1
6

− 2
3

57 ēL

03
[−i]

12
[+] |

56
[+]

78
(+) ||

9 10
[−]

11 12
[−]

13 14
[−] -1 1

2
0 1

2
0 0 1

2
1 1

58 ēL

03
(+i)

12
(−) |

56
[+]

78
(+) ||

9 10
[−]

11 12
[−]

13 14
[−] -1 − 1

2
0 1

2
0 0 1

2
1 1

59 ν̄L

03
[−i]

12
[+] |

56
(−)

78
[−] ||

9 10
[−]

11 12
[−]

13 14
[−] -1 1

2
0 − 1

2
0 0 1

2
0 0

60 ν̄L

03
(+i)

12
(−) |

56
(−)

78
[−] ||

9 10
[−]

11 12
[−]

13 14
[−] -1 − 1

2
0 − 1

2
0 0 1

2
0 0

61 ν̄R

03
(+i)

12
[+] |

56
(−)

78
(+) ||

9 10
[−]

11 12
[−]

13 14
[−] 1 1

2
− 1
2

0 0 0 1
2

1
2

0

62 ν̄R

03
[−i]

12
(−) |

56
(−)

78
(+) ||

9 10
[−]

11 12
[−]

13 14
[−] 1 − 1

2
− 1
2

0 0 0 1
2

1
2

0

63 ēR

03
(+i)

12
[+] |

56
[+]

78
[−] ||

9 10
[−]

11 12
[−]

13 14
[−] 1 1

2
1
2

0 0 0 1
2

1
2

1

64 ēR

03
[−i]

12
(−) |

56
[+]

78
[−] ||

9 10
[−]

11 12
[−]

13 14
[−] 1 − 1

2
1
2

0 0 0 1
2

1
2

1

Table 6.3. The left handed (Γ(13,1) = −1, Eq. (6.53)) multiplet of spinors — the members of the fundamental representation of the SO(13, 1)

group, manifesting the subgroup SO(7, 1) of the colour charged quarks and anti-quarks and the colourless leptons and anti-leptons — is presented in the

massless basis using the technique presented in App. 6.5. It contains the left handed (Γ(3,1) = −1, App. 6.5) weak (SU(2)I) charged (τ13 = ± 1
2

,

Eq. (6.38)), and SU(2)II chargeless (τ23 = 0, Eq. (6.38)) quarks and leptons and the right handed (Γ(3,1) = 1, weak (SU(2)I ) chargeless and

SU(2)II charged (τ23 = ± 1
2

) quarks and leptons, both with the spin S12 up and down (± 1
2

, respectively). Quarks distinguish from leptons only

in the SU(3) × U(1) part: Quarks are triplets of three colours (ci = (τ33, τ38) = [( 1
2
, 1
2
√
3

), (− 1
2
, 1
2
√
3

), (0,− 1√
3

)], Eq. (6.2))

carrying the ”fermion charge” (τ4 = 1
6

, Eq. (6.2)). The colourless leptons carry the ”fermion charge” (τ4 = − 1
2

). The same multiplet contains also the left
handed weak (SU(2)I) chargeless and SU(2)II charged anti-quarks and anti-leptons and the right handed weak (SU(2)I ) charged and SU(2)II
chargeless anti-quarks and anti-leptons. Anti-quarks distinguish from anti-leptons again only in theSU(3)×U(1) part: Anti-quarks are anti-triplets, carrying

the ”fermion charge” (τ4 = − 1
6

). The anti-colourless anti-leptons carry the ”fermion charge” (τ4 = 1
2

). Y = (τ23 + τ4) is the hyper charge, the

electromagnetic charge isQ = (τ13 + Y). The states of opposite charges (anti-particle states) are reachable from the particle states besides bySab also by
the application of the discrete symmetry operator CN PN , presented in Refs. [43,44]. The vacuum state, on which the nilpotents and projectors operate, is not
shown. The reader can find this Weyl representation also in Refs. [5,15,16,4] and in the references therein.

Taking into account Table 6.3 and Eqs. (6.49, 6.58) one easily finds what do

operators γ0
78

(±) do on the left handed and the right handed members of any
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family i = (1, 2, 3, 4).

γ0
78

(−) |ψiuR,νR > = |ψiuL,νL > ,

γ0
78

(+) |ψiuL,νL > = |ψiuR,νR > ,

γ0
78

(+) |ψidR,eR > = |ψidL,eL > ,

γ0
78

(−) |ψidL,eL > = |ψidR,eR > . (6.12)

We need to know also what do operators (τ̃1± = τ̃11 ± i τ̃12, τ̃13) and (Ñ±L =

Ñ1L ± i Ñ2L, Ñ3L) do when operating on any member (uL,R, νL,R, dL,R, eL,R) of a
particular family ψi, i = (1, 2, 3, 4).

Taking into account, Eqs. (6.47, 6.48, 6.58, 6.60, 6.51, 6.40, 6.41),

Ñ±L = −

03

(̃∓i)
12

(̃±) , τ̃1± = (∓)
56

(̃±)
78

(̃∓) ,

Ñ3L =
1

2
(S̃12 + i S̃03) , τ̃13 =

1

2
(S̃56 − S̃78) ,

ab

(̃−k)
ab

(k) = −i ηaa
ab

[k] ,

ab

(̃k)
ab

(k)= 0 ,

ab

(̃k)
ab

[k] = i
ab

(k) ,

ab

(̃k)
ab

[−k]= 0 ,

ab

(̃k) =
1

2
(γ̃a +

ηaa

ik
γ̃b) ,

ab

[̃k] =
1

2
(1+

i

k
γ̃aγ̃b) , (6.13)

one finds

Ñ+
L |ψ1 > = |ψ2 > , Ñ+

L |ψ2 >= 0 ,

Ñ−
L |ψ2 > = |ψ1 > , Ñ−

L |ψ1 >= 0 ,

Ñ+
L |ψ3 > = |ψ4 > , Ñ+

L |ψ4 >= 0 ,

Ñ−
L |ψ4 > = |ψ3 > , Ñ−

L |ψ3 >= 0 ,

τ̃1+ |ψ1 > = |ψ3 > , τ̃1+ |ψ3 >= 0 ,

τ̃1− |ψ3 > = |ψ1 > , τ̃1− |ψ1 >= 0 ,

τ̃1− |ψ4 > = |ψ2 > , τ̃1− |ψ2 >= 0 ,

τ̃1+ |ψ2 > = |ψ4 > , τ̃1+ |ψ4 >= 0 ,

Ñ3L |ψ
1 > = −

1

2
|ψ1 > , Ñ3L |ψ

2 >= +
1

2
|ψ2 > ,

Ñ3L |ψ
3 > = −

1

2
|ψ3 > , Ñ3L |ψ

4 >= +
1

2
|ψ4 > ,

τ̃13 |ψ1 > = −
1

2
|ψ1 > , τ̃13 |ψ2 >= −

1

2
|ψ2 > ,

τ̃13 |ψ3 > = +
1

2
|ψ3 > , τ̃13 |ψ4 >= +

1

2
|ψ4 > , (6.14)

independent of the family member α = (u, d, ν, e).
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The dependence of the mass matrix on the family quantum numbers can

easily be understood through Table 6.2, where we notice that the operator Ñ
±
L

transforms the first family into the second (or the second family into the first)
and the third family to the fourth (or the fourth family into the third), while the

operator τ̃1̃± transforms the first family into the third (or the third family into the
first) and the second family into the fourth (or the fourth family into the second).

The application of these two operators, Ñ
±
L and τ̃1̃±, is presented in Eq. (6.14) and

demonstrated in the diagram

Ñ
±

L↔(
ψ1 ψ2

ψ3 ψ4

)l τ̃1̃± . (6.15)

The operators Ñ3L and τ̃1̃3 are diagonal, with the eigenvalues presented in
Eq. (6.14): Ñ3L has the eigenvalue −1

2
on |ψ1 > and |ψ3 > and +1

2
on |ψ2 > and

|ψ4 >, while τ̃1̃3 has the eigenvalue −1
2

on |ψ1 > and |ψ2 > and +1
2

on |ψ3 > and
|ψ4 >. If we count 1

2
as a part of these diagonal fields, then the eigenvalues of both

operators on families differ only in the sign.
The sign and the values of Q,Q ′ and Y ′ depend on the family members

properties and are the same for all the families.

Let the scalars (Ã
NL±
78

(±)
, ÃNL3

78

(±)
, Ã
1±
78

(±)
, Ã13

78

(±)
) be scalar gauge fields of the opera-

tors (Ñ±L , Ñ3L, τ̃1±, τ̃13), respectively. Here Ã 78

(±)
= Ã7∓i Ã8 for all the scalar gauge

fields, while Ã
NL±
78

(±)
= 1
2
(ÃNL1

78

(±)
∓i ÃNL2

78

(±)
), respectively, and Ã

1±
78

(±)
= 1
2
(Ã11

78

(±)
∓i Ã12

78

(±)
),

respectively. All these fields can be expressed by ω̃abc, as presented in Eq. (6.45),
provided that the coupling constants are the same for all the spin connection fields
of both kinds, that is if no spontaneous symmetry breaking happens up to the
weak scale.

We shall from now on use the notationAAi± instead ofAAi
78

(±)
for all the operators

with the space index (7, 8).
In what follows we prove that the symmetry of the mass matrix of any family

member α remains the same in all orders of loop corrections, while the symmetry in all
orders of corrections (which includes besides the loop corrections also the repetition of
nonzero vacuum expectation values of the scalar fields) remains unchanged only under
certain conditions. In general case the break of symmetry can still be evaluated for small
absolute values of aα, Eq. (6.11). We shall work in the massless basis.
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Let us introduce the notation Ô for the operator, which in Eq. (6.10) determines
the mass matrices of quarks and leptons. The operator Ô is equal to, Eq. (6.10),

Ô =
∑
+,−

γ0
78

(±) (−
∑
α

ταAα± −
∑
Ãi

τ̃Ãi ÃÃi± ) ,

ταAα± = (QAQ± , Q
′AQ

′

± , Y
′AY

′

± ) ,

τ̃Ãi ÃÃi± = (τ̃1̃i Ã1̃i± , Ñ
i
L Ã

ÑLi
± ) ,

{τα, τβ}− = 0 , {τ̃Ãi, τ̃B̃j}− = i δÃB̃ fijk τ̃Ãk , {τα, τ̃B̃j}− = 0 . (6.16)

Each of the fields in Eq. (6.16) consists in general of the nonzero vacuum expecta-
tion value and the dynamical part: ÃÃi± = (< Ã1̃i± > +Ã1̃i± (x),< Ã

ÑLi
± > +ÃÑLi± (x),

< Aα± > +Aα±(x)), where a common notation for all three singlets is used, since
their eigenvalues depend only on the family members (α = (u, d, ν, e)) quantum
numbers and are the same for all the families.

We further find that

{γ0
78

(±), τ4}− = 0 , {γ0
78

(±), ~̃τ1̃}− = 0 , {γ0
78

(±), ~̃NL}− = 0 ,

{γ0
78

(±), τ13}− = −2 γ0
78

(±) S78 , {γ0
78

(±), τ23}− = +2 γ0
78

(±) S78 . (6.17)

To calculate the mass matrices of family members α = (u, d, ν, e) the operator
Ô must be taken into account in all orders. Since for our proof the dependence
of the operator Ô on the time and space does not play any role (it is the same for
all the operators), we introduce the dimensionless operator Ô, in which all the
degrees of freedom, except the internal ones determined by the family and family
members quantum numbers, are integrated away 14.

Then the change of the massless state of the ith family of the family member
α of the left or right handedness (L,R), |ψα iL,R >, changes in all orders of corrections
as follows

Û |ψα iL,R > = i

∞∑
n=0

(−1)n Ô2n+1

(2n+ 1)!
|ψα iL,R > . (6.18)

In Eq. (6.18) |ψα i(L,R) > represents the internal degrees of freedom of the ith, i =
(1, 2, 3, 4), family state for a particular family member α in the massless basis.
The mass matrix element in all orders of corrections between the left handed
αth family member of the ith family < ψα iL | and the right handed αth family
member of the jth family |ψα jR >, both in the massless basis, is then equal to
< ψα iL | Û |ψα iR >. Only an odd number of operators Ô2n+1 contribute to the mass
matrix elements, transforming |ψα iR > into |ψα jL > or opposite. The product of an
even number of operators Ô2n does not change the handedness and consequently

14 Ô is measured in TeV units (as all the scalar and vector gauge fields). If the time evolution
is concerned then Ô = Ô · (t − t0)/TeV is in units ~ = 1 = c dimensionless quantity. We
assume that also the integration over space coordinates is in < ψα iR |Ô|ψα iR > already
taken into account, only the integration over the family and family members is left to be
evaluated.
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contributes nothing. Correspondingly without the nonzero vacuum expectation
values of scalar fields all the matrix elements would remain zero, since only
nonzero vacuum expectation values may appear in an odd orders, while the
contribution of the loop corrections always contribute to the mass matrix elements
an even contribution (see Fig. (6.1)).

Our purpose is to show how do the matrix elements behave in all orders of
corrections

< ψα jL |Û |ψα iR > = i

∞∑
n=0

(−1)n

(2n+ 1)!
< ψα iL |

4∑
k1=1

Ô|ψαk1R >< ψαk1R |

4∑
k2=1

Ô|ψαk2L > · · ·

< ψαknL |

4∑
ki=1

Ô|ψαkiR > . (6.19)

Let be repeated again that all the matrix elements

< ψαk1R |Ô|ψαk2L >

or

< ψαk1L |

4∑
k2=1

Ô|ψαk2R >

only evaluate the internal degrees of freedom, that is the family and family mem-
bers ones, while all the rest are assumed to be already evaluated. Since the mass
matrix is in this notation the dimensionless object, also all the scalar fields are
already divided by the energy unit (let say 1 TeV). We correspondingly introduce
the dimensionless scalars (AQ± ,A

Q ′

± ,AY
′

± ), ~̃A1̃±,
~̃AÑL± .

The only operators τα, distinguishing among family members, are (τ4, τ13, τ23),
included in Q = (τ13 + Y), Y = (τ23 + τ4), Q ′ = (τ13 − Y tan2 ϑ1) and in
Y ′ = (τ23 − τ4 tan2 ϑ2). All the operators contributing to the mass matrices of

each family member α have a factor γ0
78

(±), which transforms the right handed
family member to the corresponding left handed family member and opposite.

When taking into account Ô2n+1 in all orders, the operators ταAα±, τα =

(Q,Q ′, Y ′), contribute to all the matrix elements, the diagonal and the off diagonal
ones.
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To simplify the discussions let us introduce a bit more detailed notation

Ô =
∑
i

Ôi = Ôα + ˆ̃O1̃3 + ˆ̃OÑL3 + ˆ̃O1̃± + ˆ̃OÑL±

Ôα = −
∑
+,−

γ0
78

(±) (QAQ± , Q
′AQ

′

± , Y
′AY

′

± ) ,

ˆ̃O1̃3 = −
∑
+,−

γ0
78

(±) τ̃1̃3 Ã1̃3± ,

ˆ̃OÑL3 = −
∑
+,−

γ0
78

(±) Ñ3L ÃÑL3± ,

ˆ̃O1̃± = −
∑
+,−

γ0
78

(±) τ̃1̃± Ã
1̃±
± ,

ˆ̃OÑL± = −
∑
+,−

γ0
78

(±) Ñ±L Ã
ÑL±
± . (6.20)

We shall use the notation for the expectation values among the states < ψiL| =<
i|, |ψjR >= |j > for the zero vacuum expectation values and the dynamical parts as
follows:

i. < i|Ôα|j > =< i|
∑

+,− γ
0
78

(±) τα(< Aα± > +Aα±(x))|j >.

ii. < i| ˆ̃O
1̃3

|j > =< i|−
∑

+,− γ
0
78

(±) τ̃1̃3(< Ã1̃3± > +Ã1̃3± (x))|j >.

iii. < i| ˆ̃O
ÑL3

|j >=< i|−
∑

+,− γ
0
78

(±) Ñ3L(< ÃÑL3± > +ÃÑL3± (x))|j >.

iv. < i| ˆ̃O
1̃±

|j > =< i|−
∑

+,− γ
0
78

(±) τ̃1̃±(< Ã
1̃±
± > +Ã

1̃±
± (x))|j >.

v. < i| ˆ̃O
ÑL±

|j >=< i|−
∑

+,− γ
0
78

(±) Ñ±L (< Ã
ÑL±
± > +Ã

ÑL±
± (x))|j >.

vi. < i| ˆ̃O
α

dia|i >=< i|
∑

+,− γ
0

78

(±) {τα(< Aα± > +Aα± (x))− τ̃1̃3(< Ã1̃3± >

+Ã1̃3± (x)) − Ñ3L(< ÃÑL3± > +ÃÑL3± (x))}|i >.

(< Aα± >,< Ã1̃3± >,< ÃÑL3± >,< Ã
1̃±
± >,< Ã

ÑL±
± >) represent nonzero

vacuum expectation values and (Aα±(x), Ã1̃3± (x), ÃÑL3± (x), Ã
1̃±
± (x), Ã

ÑL±
± (x)) the

corresponding dynamical fields.
In the case i. < Aα± > represent the sum of the vacuum expectation val-

ues of (QαAQ(±), Q
′αAQ ′

(±), Y ′αAY
′

(±)) of a particular family member α, where
(Qα, Q ′α, Y ′α) are the corresponding quantum numbers of a family member α.
Aα±(x) represent the corresponding dynamical fields.

In the case vi. we correspondingly have for the four diagonal terms on the
tree level, that is for n = 0 in Eq. (6.19) (after taking into account Eq. (6.14):
< 1 |Õαdia|1 > = aα − (ã1 + ã2), < 2|Õαdia|1 > |2 >= aα − (ã1 − ã2), < 3|Õαdia|3 >=

aα + (ã1 − ã2) and < 4|Õαdia|4 >= aα + (ã1 + ã2), where (ã1, ã2, aα) represent the
nonzero vacuum expectation values of 1

2
1√
2
(< Ã1̃3(+) > + < Ã1̃3(−) >),

1
2
1√
2
(<

ÃÑL3(+) > + < ÃÑL3(−) >),
1
2
1√
2
(< Aα(+) > + < Aα(−) >), all in dimensionless units.
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We are now prepared to show under which conditions the mass matrix elements for
any of the family members keep the symmetry S̃U(2) × S̃U(2) × U(1) at each step of
corrections, what means that the values of the matrix elements obtained in each
correction respect the symmetry of mass matrices on the tree level.

We use the massless basis |ψiL,R >, making for the basis the choice 1√
2
(|ψiL >

+ |ψiR >).
The diagrams for the tree level, one loop and three loop contributions of the

operator Ô, determining the masses of quarks and leptons, Eqs. (6.16, 6.20), are
presented in Fig. (6.1).

ψαi
L ψαj

R

Ô

ψαi
L ψαk

R ψαl
L ψαj

R

+
Ô Ô

ψαi
L ψαk

R ψαl
L

ψαm
R ψαn

L ψαp
R ψαq

L ψαj
R

+
Ô Ô Ô Ô

Fig. 6.1. The tree level contributions, one loop contributions (not all possibilities are drawn,
the tree level contributions occurs namely also to the left or to the right of the loop, while
to Ô three singlets and two triplets, presented in Eq. (6.16), contribute) and two loop
contributions are drawn (again not all the possibilities are shown up). Each (i, j, k, l,m . . . )

determines a family quantum number (running within the four families — (1, 2, 3, 4)), α
denotes one of the family members (α = (u, ν, d, e)) quantum numbers, all in the massless
basis ψiα(R,L). Dynamical fields start and end with dots •, while x with the vertical slashed
line represents the interaction of the fermion fields with the nonzero vacuum expectation
values of the scalar fields.

6.2.1 Mass matrices on the tree level

Let us first present the mass matrix on the tree level for an αth family member,
that is for n = 0 in Eq. (6.19).

Taking into account Eq. (6.14) one obtains for the diagonal matrix elements
on the tree level (for n = 0 in Eq. (6.19)) [aα − (ã1 + ã2), aα − (ã1 − ã2), aα + (ã1 −
ã2), aα + (ã1 + ã2)], respectively. The corresponding diagrams are presented in
Fig. (6.2).
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ψα1
L ψα1

R

−ã1 − ã2 + aα

ψα2
L ψα2

R

−ã1 + ã2 + aα

ψα3
L ψα3

R

ã1 − ã2 + aα

ψα4
L ψα4

R

ã1 + ã2 + aα

Fig. 6.2. The tree level contributions to the diagonal matrix elements of the operator Ôαdia,
Eq. (6.20). The eigenvalues of the operators Ñ3L and τ̃1̃3 on a family state i can be read in
Eq. (6.14).

Taking into account Eq. (6.14) one finds for the off diagonal elements on the
tree level:

< ψ1|..|ψ2 > =< ψ3|..|ψ4 > =< ψ2|..|ψ1 >†= < ψ4|..|ψ3 >† =< ÃÑL� >,
< ψ1|..|ψ3 > =< ψ2|..|ψ4 > =< ψ3|..|ψ1 >†= < ψ4|..|ψ2 >† =< Ã1̃� >.
The corresponding diagrams for < ψ1|..|ψ2 >, < ψ2|..|ψ1 >, < ψ2|..|ψ3 >

and < ψ3|..|ψ2 > are presented in Fig. (6.3). The vacuum expectation values of this
matrix elements on the tree level are presented in the mass matrix of Eq.(6.22).

ψα1
L (ψα3

L ) ψα2
R (ψα4

R )

ˆ̃OÑL+

ψα2
L (ψα1

L ) ψα4
R (ψα3

R )

ˆ̃O1̃+

ψα2
L (ψα4

L ) ψα1
R (ψα3

R )

ˆ̃OÑL−

ψα4
L (ψα3

L ) ψα2
R (ψα1

R )

ˆ̃O1̃−

Fig. 6.3. The tree level contributions to the off diagonal matrix elements of the operators

^̃O
1̃± and ^̃O

ÑL±, Eq. (6.20) are presented. The application of the operators Ñ
±
L and τ̃1̃± on a

family state i can be read in Eq. (6.14).

The contributions to the off diagonal matrix elements< ψ1|..|ψ4 >,< ψ2|..|ψ3 >,
< ψ3|..|ψ2 > and < ψ4|..|ψ1 > are nonzero only, if one makes three steps (not two,
due to the left right jumps in each step), that is indeed in the third order of cor-
rection. For < ψ1|..|ψ4 >we have (in the basis 1√

2
(|ψiL > + |ψiR >) and with the

notation < ÃÑL± >= 1√
2
(< Ã

ÑL±
(+) > + < Ã

ÑL±
(−) >) after we take intoaccount that

γ0
78

(±) transform the right handed family members into the left handed ones and
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opposite):< ψ1|
∑

+,− τ̃
1̃±
< Ã1̃± >

∑
k |ψ

k >< ψk|
∑

+,− Ñ
±
L < ÃÑL± > |ψ4 >

< ψ4| (ã1 + ã2 + aα)|ψ4 >. There are all together six such terms, presented in
Fig. (6.4), since the diagonal term appears also at the beginning as (−ã1 − ã2 + aα)

and in the middle as (ã1 − ã2 + aα), and since the operators
∑

+,− τ̃
1̃±
< Ã1̃± >

and
∑

+,− Ñ
±
L < ÃÑL± > appear in the opposite order as well. We simplify the

notation from |ψk > to |k >. Summing all these six terms for each of four matrix
elements (< 1|..|4 >, < 2|..|3 >, < 3|..|2 >, < 4|..|1 >) one gets (taking into account
Eqs. (6.19, 6.14)):

< 1|..|4 > = aα < Ã1̃� >< ÃÑL� > ,

< 2|..|3 > = aα < Ã1̃� >< ÃÑL� > ,

< 3|..|2 > = aα < Ã1̃� >< ÃÑL� > ,

< 4|..|1 > = aα < Ã1̃� >< ÃÑL� > . (6.21)

Each matrix element is in Eq. (6.21) divided by 3!, since it is the contribution in
the third order! One notices that < 4|..|1 >†=< 1|..|4 > and < 3|..|2 >†=< 2|..|3 >.
These matrix elements are included into the mass matrix, Eq. (6.22).

To show up the symmetry of the mass matrix on the lowest level we put all
the matrix elements in Eq. (6.22).

αM(o) = −ã1−ã2+aα <ÃÑL�> <Ã1̃�> aα<Ã1̃�><ÃÑL�>

<ÃÑL�> −ã1+ã2+aα aα<Ã1̃�><ÃÑL�> <Ã1̃�>
<Ã1̃�> aα<Ã1̃�><ÃÑL�> ã1−ã2+aα <ÃÑL�>

aα<Ã1̃�><ÃÑL�> <Ã1̃�> <ÃÑL�> ã1+ã2+aα


(6.22)

Mass matrix is dimensionless. One notices that the diagonal terms have on the
tree level the symmetry < ψ1|..|ψ1 > + < ψ4|..|ψ4 >= 2 aα = < ψ2|..|ψ2 >

+ < ψ3|..|ψ3 >, and that in the off diagonal elements with ”three steps needed”
the contribution of the fields, which depend on particular family member α =

(u, d, ν, e), enters.
We also notice that< ψi|..|ψj >†=< ψj|..|ψi >. We see that< 1|..|3 >=< 2|..|4 >

=< 3|..|1 >†=< 4|..|2 >†, that < 1|..|2 >=< 3|..|4 >=< 2|..|1 >†=< 4|..|3 >† and
that < 4|..|1 >†=< 1|..|4 > and < 3|..|2 >†=< 2|..|3 >, what is already written
below Eq. (6.21), < i|..|j > denotes < ψi|..|ψj >.

In the case that a =< Ã1̃� >=< Ã1̃� >= e and < ÃÑL� >=< ÃÑL� >= d,
which would mean that all the matrix elements are real, the mass matrix simplifies
to

Mα
(o) =


−ã1 − ã2 + a

α d e b

d −ã1 + ã2 + a
α b e

e b ã1 − ã2 + a
α d

b e d ã1 + ã2 + a
α

 , (6.23)

with b = aαed.
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ψα1
L ψα1

R ψα3
L ψα4

R

Ôα
diag ˆ̃O1̃− ˆ̃OÑL−

ψα1
L ψα3

R ψα3
L ψα4

R

ˆ̃O1̃− Ôα
diag ˆ̃OÑL−

ψα1
L ψα3

R ψα4
L ψα4

R

ˆ̃O1̃− ˆ̃OÑL− Ôα
diag

ψα1
L ψα1

R ψα2
L ψα4

R

Ôα
diag ˆ̃OÑL− ˆ̃O1̃−

ψα1
L ψα2

R ψα2
L ψα4

R

ˆ̃OÑL− Ôα
diag ˆ̃O1̃−

ψα1
L ψα2

R ψα4
L ψα4

R

ˆ̃OÑL− ˆ̃O1̃− Ôα
diag

Fig. 6.4. The tree level contribution to the matrix element < ψ1|b|ψ4 > is presented.

One comes from < ψ1| to |ψ4 > in three steps: < ψ1|
∑

+,− τ̃
1̃±

< Ã1̃± >
∑
k |ψ

k ><

ψk|
∑

+,− Ñ
±
L < ÃÑL± > |ψ4 > < ψ4| (ã1 + ã2 + aα)|ψ4 >. There are all together six

such terms, since the diagonal term appears also at the beginning as (−ã1 − ã2 + aα)

and in the middle as (ã1 − ã2 + aα), and since the operators
∑

+,− τ̃
1̃±

< Ã1̃± > and∑
+,− Ñ

±
L < ÃÑL± > appear in the opposite order as well.

6.2.2 Mass matrices beyond the tree level

We discuss in this subsection the matrix elements of the mass matrix in all orders
of corrections, Eq. (6.19), the tree level, n = 0, of which is presented in Eq. (6.22).
The tree level mass matrix manifests the S̃U(2)× S̃U(2)×U(1) symmetry as seen
in Eq. (6.22), with (< 1|x|1 > + < 4|x|4 >) − (< 2|x|2 > + < 3|x|3 >) = 0 and
< 1|x|3 >=< 2|x|4 >=< 3|x|1 >†=< 4|x|1 >† and with (< 1|xxx|4 >, < 2|xxx|3 >,

< 3|xxx|2 >, < 4|xxx|1 >) related so that all are equal if < Ã1̃± > and < ÃÑL± >
are real.

Let us repeat that the generators of the two groups which operate among
families commute: {τ̃1̃i, ÑjL}− = 0 , and that these generators commute also with
generators which distinguish among family members: {τ̃1̃i, τα}− = 0 , {τα, ÑjL}− =

0 , where τα represents (Q,Q ′, Y ′) (or τ4, τ23, τ13).
To study the symmetry S̃U(2)× S̃U(2)×U(1) of the mass matrix, Eq. (6.22), in

all orders of loop corrections, of repetition of nonzero vacuum expectation values
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and of both together — loop corrections and nonzero vacuum expectation values
— we just have to calculate at each order of corrections the difference between
each pair of the matrix elements which are equal on the three level, as well as the
Hermitian conjugated difference of such a pair.

Since the dependence of all the scalar fields on ordinary coordinates are in all
cases the same, we only have to evaluate the application of the operators to the
internal space of basic state, that is on the space of family and family members
degrees of freedom. Correspondingly we pay attention only on this internal part
— on the interaction of scalar fields with the space index (7, 8) with any family
member of any of four families separately with respect to their internal space. The
dependence of the mass matrix elements on the family member quantum numbers
appears through the nonzero vacuum expectation value aα, Eq. (6.22), as well as
through the dynamical part of Ôα, Eq. (6.20).

We demonstrate in this subsection how does the repetition of the nonzero
vacuum expectation values of the scalar fields and loop corrections in all orders
influence matrix elements, presented on the tree level in Eq. (6.22).

In the case that aα = 0 (that is for < AQ >= 0, < AQ
′
>= 0 and < AY

′
>= 0)

the symmetry in all corrections, that is in all loop corrections and all the repetition
of nonzero vacuum expectation values of the scalar fields, and of both — the loop
corrections and the repetitions of nonzero vacuum expectation values nonzero of
all the scalar fields except aα — keep the symmetry of the tree level, presented in
Eq. (6.22).

We prove in this subsection that in the case that < AQ >= 0, < AQ
′
>= 0 and

< AY
′
>= 0, that is for aα = 0, the symmetry of mass matrices remains unchanged

in all orders of corrections: the loop ones of dynamical fields — AQ, AQ
′
, AY

′
,

~̃AÑL , ~̃A1̃ — in the repetition of nonzero vacuum expectation values of the scalar
fields carrying the family quantum numbers — < ~̃AÑL > and < ~̃A1̃ >— and of all
together. The symmetry of mass matrices remains in all orders of corrections the
one of the tree level also if aα 6= 0while ã1 = 0 and ã2 = 0. The symmetry changes
if the nonzero vacuum expectation values of all the scalar fields are nonzero.

In the case, however, that aα = 0, the matrix elements, which are in the lowest
order proportional to aα in Eq. (6.22), remain zero in all orders of corrections, while
the nonzero matrix elements become dependent on family members quantum
numbers due to the participations in loop corrections in all orders of the dynamical
fields AQ, AQ

′
and AY

′
.

We study in what follows first the symmetry of mass matrices in all orders of
corrections in the case that aα = 0, and then the symmetry of the mass matrices,
again in all orders of corrections, when aα 6= 0. We also comment that the symme-
try of the tree level remain the same in all orders of corrections, if aα 6= 0, while
ã1 = 0 = ã2.

Mass matrices beyond the tree level, if aα = 0 We study corrections to which the
scalar fields which distinguish among families, contribute — with their nonzero
vacuum expectation values < ~̃AÑL > and < ~̃A1̃ > and their dynamical parts ~̃AÑL

and ~̃A1̃ — while we assume aα = 0 (aα denotes the vacuum expectation values to
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which the tree singlet fields, distinguishing among family members, contribute,
that is (< AQ >, < AQ

′
>, < AY

′
>), taking into account the loop corrections of

the corresponding dynamical parts (AQ, AQ
′
, AY

′
) in all orders.

We show that in such a case — that is in the case that aα = 0while all the other
scalar fields determining mass matrices have nonzero vacuum expectation values

(ã1 6= 0, ã2 6= 0, < ÃÑL± > 6= 0, < Ã1̃± > 6= 0) — the matrix elements, evaluated in
all orders of corrections, keep the symmetry of the tree level.

We also show, that in this case the off diagonal matrix elements, represented
in Eq. (6.22) as (aα < Ã1̃� >< ÃÑL� >, aα < Ã1̃� >< ÃÑL� >, aα < Ã1̃� ><
ÃÑL� >, aα < Ã1̃� >< ÃÑL� >), remain zero in all orders of corrections.

Let us look how the corrections in all orders manifest for each matrix element
separately.

i. We start with diagonal terms: < ψi|.....|ψi >, i = (1, 2, 3, 4).
On the tree level the symmetry is:
{< ψ1| < Ôαdia > |ψ1 > + < ψ4| < Ôαdia > |ψ4 >} − {< ψ2| < Ôαdia > |ψ2 >

+{< ψ3| < Ôαdia > |ψ3 >} = 0.
i.a. It is easy to see that the tree level symmetry, {< ψ1| < Ôαdia > |ψ1 >

+ < ψ4| < Ôαdia > |ψ4 >} − {< ψ2| < Ôαdia > |ψ2 > + < ψ3| < Ôαdia > |ψ3 >} = 0,
remains in all orders of corrections, if only the nonzero vacuum expectation values

of < Ã1̃3 >= ã1 and < ÃÑL3 >= ã2 contribute in operators γ0
78

(±) τ̃1̃3 < Ã1̃3 >

and γ0
78

(±) Ñ3L < ÃÑL3 >. At, let say, (2k+ 1)st order of corrections we namely
have {(−(ã1+ã2))(2k+1)+(ã1+ã2)(2k+1)}−{(−(ã1−ã2))(2k+1)+(ã1−ã2)(2k+1)} =
0.

i.b. The contributions of the dynamical terms, either (AQ, AQ
′
, AY

′
) or

(Ã1̃3, ÃÑL3) do not break the three level symmetry. Each of them namely always
appears in an even power, Fig. (6.1), changing the order of corrections by a factor of
two or 2n (|Aα|2(n−k−l), |Ã1̃3|2k, |ÃÑL3|2l), where (n− k− l, k, l) are nonnegative
integers, while τAα represents (Qα, Q ′α, Y ′α). The contribution to |Aα|2m,m =

(n− k− l), origins in the product of |AQ|2(m−p−r) · |AQ ′ |2p · |AY ′ |2r. Again (m−

p− r, p, r) are nonnegative integers.
i.c. There are also other contributions, either those with only nonzero vac-

uum expectation values or with dynamical fields in addition to nonzero vacuum

expectation values of scalars, in which ^̃O1̃± and ^̃OÑL± together with all kinds of

diagonal terms contribute. Let us repeat again what do the operators ^̃O
1̃± and

^̃O
ÑL±, Eq. (6.20), do when they apply on ψi. The operators ^̃O1̃� transforms ψ1

into ψ3 and ψ2 into ψ4. Correspondingly the states ψ1 and ψ4 take under the
application of ^̃O1̃� the role of ψ2 and ψ3, while ψ2 and ψ3 take the role of ψ1 and
ψ4, all carrying the correspondingly changed eigenvalues of τ̃1̃3. The operator
^̃OÑL� transforms ψ1 into ψ2 and ψ3 into ψ4. Correspondingly the states ψ1 and
ψ2 take under the application of ^̃OÑL� the role of ψ3 and ψ4, while ψ3 and ψ4

take the role of ψ1 and ψ2, carrying the correspondingly changed eigenvalues of
ÑL

3
. Either the dynamical fields or the nonzero vacuum expectation values of

these scalar fields, ^̃O1̃± and ^̃O
ÑL±, must in diagonal terms appear in the second
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power or in n× the second power. We easily see that also in such cases the tree
level symmetry remains in all orders.

i.c.1. To better understand the contributions in all orders to the diagonal
terms, discussing here, let us calculate the contribution of the third order correc-
tions either from the loop or from the nonzero vacuum expectation values to the
diagonal matrix elements < ψi|...|ψi > under the assumption that aα = 0. Let

us evaluate the contributions of the operators < ^̃O1̃3 >, ^̃OÑL3, ^̃O1̃± and ^̃OÑL±

in the third order. We see that τ̃1̃� transforms ψ3 into ψ1 and ψ4 into ψ2, while
τ̃1̃� transforms ψ2 into ψ4 and ψ1 into ψ3. We see that Ñ�

L transforms ψ2 into ψ1

and ψ4 into ψ3, while Ñ�
L transforms ψ1 into ψ2 and ψ3 into ψ4. It then follows

that {< ψ1|xxx|ψ1 > + < ψ4|xxx|ψ4 >} − {< ψ2|xxx|ψ2 > + < ψ3|xxx|ψ3 >} = 0,

where xxx represent all possible acceptable combination of < ^̃O1̃± >, < ^̃OÑL± >
and the diagonal terms < ^̃O1̃3 > and < ^̃OÑL3 >. One namely obtains that the
contribution of {< ψ1|xxx|ψ1 > + < ψ4|xxx|ψ4 >} = {| < Ã1̃� > |2[−2(ã1 + ã2) +
(ã1 − ã2)] + | < ÃÑL� > |2[−2(ã1 + ã2) − (ã1 − ã2)] + (−(ã1 + ã2)3) + | < Ã1̃� >
|2[+2(ã1+ ã2)−(ã1− ã2)]+ | < ÃÑL− > |2[+2(ã1+ ã2)+(ã1− ã2)]+(ã1+ ã2)3} = 0,
and for {< ψ2|xxx|ψ2 > + < ψ3|xxx|ψ3 >} one obtains = {| < Ã1̃� > |2[−2(ã1 −
ã2) + (ã1 + ã2)] + | < ÃÑL� > |2[−2(ã1 − ã2) − (ã1 + ã2)] + (−(ã1 − ã2)3) + | <

Ã1̃� > |2[+2(ã1 − ã2) − (ã1 + ã2)] + | < ÃÑL− > |2[+2(ã1 − ã2) + (ã1 + ã2)] +
(ã1 − ã2)3} = 0. Also the dynamical fields keep the tree level symmetry of mass
matrices. To prove one only must replace in the above calculation | < Ã1̃� > |2 by
|Ã1̃�|2 and | < ÃÑL� > |2 by |ÃÑL�|2.

To the diagonal terms the three singlets contribute in absolute squared values
(|AQ|2, |AQ

′
|2, |AY

′
|2, each on a power, which depend on the order of corrections.

This makes all the diagonal matrix elements, < ψ1|.....|ψ1 >, < ψ2|.....|ψ2 >,
< ψ3|.....|ψ3 > and < ψ4|.....|ψ4 >, dependent on the family member quantum
numbers.

Such behaviour of matrix elements remains unchanged in all orders of cor-
rections, either due to loops of dynamical fields or due to repetitions of nonzero

vacuum expectation values. The reason is in the fact that the operators < ^̃O1̃± >

and < ^̃OÑL± > exchange the role of the states in the way that the odd power of
diagonal contributions to the diagonal matrix elements always keep the symmetry
{< ψ1|Û|ψ1 > + < ψ4|Û|ψ4 >}− {< ψ2|Û|ψ2 > + < ψ3|Û|ψ3 >} = 0.

These proves the statement that corrections in all orders keep the symmetry of the
tree level diagonal terms in the case that aα = 0.

ii. Let us look at matrix element < ψ1|.....|ψ3 > and < ψ2|.....|ψ4 > in
Eq. (6.22), where we have on the tree level < 1|x|3 >=< 2|x|4 > and < 3|x|1 >=<
4|x|2 >=< 1|x|3 >†. We again simplify the notation < ψi|.....|ψj > into < i|...|j >.
The two matrix elements — < 1|x|3 >,< 2|x|4 > — are on the tree level denoted
by < Ã1̃� >, while < 3|x|1 > and < 4|x|2 > are denoted by < Ã1̃� >.

We have to prove that corrections, either of the loops kind or of the repetitions
of the nonzero vacuum expectation values or of both kinds in any order keeps the
symmetry of the tree level.
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ii.a. Let us start with the corrections in which besides < Ã1̃� > in the first
power only < Ã1̃3 >= ã1 and < ÃÑL3 >= ã2 contribute, the last two together
appear in an even power so that all three together contribute in an odd power.

The contribution of (< 1|x|1 >)2k+1 = (−(ã1+ ã2))2k+1 in the (2k+1)th order
is up to a sign equal to (< 4|x|4 >)2k+1 = (ã1 + ã2)2k+1, where k is a nonnegative
integer, while the contribution of (< 2|x|2 >)2k+1 = (−(ã1 − ã2))2k+1 is up to a
sign equal to (< 3|x|3 >)2k+1 = (ã1 − ã2)2k+1. In each of the matrix elements,
either < 1|.....|3 > or < 2|.....|4 >, both factors together, (−(ã1 + ã2))m (ã1 − ã2)n

in the case < 1|.....|3 > and (−(ã1 − ã2))m (ã1 + ã2)n in the case < 2|.....|4 >, with
(m+ n) an even nonnegative integer (since together with < Ã1̃� >must be of an
odd integer corrections to take care of the left/right nature of matrix elements)
one must make the sum over all the terms contributing to corrections of the order
(m + n + 1). It is not difficult to see that the contribution to < 1|.....|3 > is in any
order of corrections equal to the contributions to the same order of corrections to
< 2|.....|4 >.

ii.a.1. To illustrate the same contribution in each order of corrections to
< 1|.....|3 > and to < 2|.....|4 > let us calculate, let say, the third order corrections.
The contribution of the third order to < 1|xxx|3 > is − 1

3! < Ã1̃� > {(ã1 + ã2)2 +
(ã1−ã2)2−(ã1−ã2)(ã1+ã2)} and the contribution of the third order to< 2|xxx|4 >
is − 1

3! < Ã1̃� > {(ã1−ã2)2+(ã1+ã2)2−(ã1+ã2)(ã1−ã2)}, that is the contributions
in the third order of < 1|xxx|3 > and < 2|xxx|4 > are the same.

ii.b. One can repeat the calculations with < Ã1̃� > and the dynamical fields
Ã1̃� and Ã1̃�, with or without the diagonal nonzero vacuum expectation values. In
all cases all the contributions keep the symmetry on the tree level due to the above
discussed properties of the diagonal terms. All the dynamical terms must namely
appear in absolute values squared in order to contribute to the mass matrices, as
shown in Fig. 6.1. To the diagonal terms the three singlets contribute in absolute
squared values (|AQ|2, |AQ

′
|2, |AY

′
|2), each on some power, depending on the

order of corrections. This makes the matrix element < 1|.....|3 > and < 2|.....|4 >,
< 3|.....|1 > and < 4|.....|2 >, dependent on the family members quantum numbers.

In all cases all the contributions keep the symmetry on the tree level.
ii.c. The Hermitian conjugate values < 1|.....|3 >†=< 2|.....|4 >† have the

transformed value of < Ã1̃� >, that means that the value is < Ã1̃� >, provided
that the diagonal matrix elements of the mass matrix are real, keeping the symme-
try of the matrix elements < 1|.....|3 >†=< 2|.....|4 >† in all orders of corrections.

These proves the statement that corrections in all orders keep the symmetry of the
tree level of the off-diagonal terms < 1|.....|3 > and < 2|.....|4 > and of their Hermitian
conjugated matrix elements in the case that aα = 0.

iii. Let us look at matrix element < 1|.....|2 > and < 3|.....|4 > in Eq. (6.22),
where we have on the tree level < 1|x|2 >=< 3|x|4 >. These two matrix elements
are on the tree level denoted by < ÃÑL� >. We have to prove that corrections,
either the loop corrections or the repetitions of the nonzero vacuum expectation
values or both kinds of corrections, in any order, keep the S̃U(2) ×S̃U(2)×U(1)
symmetry of the tree level.

The proof for the symmetry of these matrix elements is carried out in equiva-
lent way to the proof under ii. .
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iii.a. Let us start with the corrections in which besides < ÃÑL� > in the first
power also only < Ã1̃3 >= ã1 and < ÃÑL3 >= ã2 contribute. The sum of powers
of the last two a must be even, so that a correction would be of an odd power due
to the left/right transitions.

Again the contributions of both diagonal terms, < 1|x|1 > and < 4|x|4 >,
in any power — (< 1|x|1 >)2k+1 = (−(ã1 + ã2))2k+1 and (< 4|x|4 >)2k+1 =

(ã1 + ã2)2k+1, where k is a nonnegative integer — differ only up to a sign when
they appear in an odd power and are equal when they appear in an even power.
These is true also for the contributions of < 2|x|2 > and < 3|x|3 > since (< 2|x|2 >

)2k+1 = (−(ã1 − ã2))2k+1 is up to a sign equal to (< 3|x|3 >)2k+1 = (ã1 − ã2)2k+1.
If they appear with an even power, they are equal. In each of the (m + n + 1)th

order corrections to the matrix elements, either < 1|.....|2 > or < 3|.....|4 >, where
(−(ã1 + ã2))m (−(ã1 − ã2))n contribute to < 1|.....|2 > and (ã1 − ã2)m (ã1 + ã2)n

contribute to < 3|.....|4 >, the two contributions are again equal, since bothm and
n are even nonnegative integers.

iii.a.1. Let us, as an example, calculate the fifth order corrections to the tree
level contributions of < 1|x|2 > =< ÃÑL� >. The contribution of the fifth order
< 1|xxxxx|2 > to< 1|x|2 > is 1

5! < ÃÑL� > {(−(ã1−ã2))4+(−(ã1+ã2))4+3(−(ã1+
ã2))(−(ã1− ã2))3+6(−(ã1+ ã2))2(−(ã1− ã2))2+3(−(ã1+ ã2))3(−(ã1− ã2))}, and
the contribution of the fifth order< 3|xxxxx|4 > to< 3|x|4 > is 1

5! < ÃÑL� > {(ã1+
ã2)4+(ã1− ã2)4+3(ã1− ã2)(ã1+ ã2)3+6(ã1− ã2)2(ã1+ ã2)2+3(ã1− ã2)3(ã1+ ã2)},
which is equal to the contribution of the fifth order in the case of < 1|xxxxx|2 >.

iii.b. One can repeat the calculations with dynamical fields (ÃÑL�, ÃÑL�) in
all orders and with < Ã1̃� > and with the diagonal nonzero vacuum expectation
values and with the diagonal dynamical terms, paying attention that the dynamical
fields contribute to masses of any of the family members only if they appear in
pairs.

To the diagonal terms the three singlets (AQ, AQ
′
, AY

′
) contribute in the

absolute squared values (|AQ|2, |AQ
′
|2, |AY

′
|2), each on a power, which depends

on the order of corrections.
In all cases all the contributions keep the symmetry on the tree level.
iii.c. The proof is valid also for< 2|.....|1 >= (< 1|.....|2 >)† and< 4|.....|3 >=

(< 3|.....|4 >)† in any order of corrections. Namely, if diagonal mass matrix el-
ements are real then in the matrix elements < 2|.....|1 > only < ÃÑL� > of the
matrix element < 1|.....|2 >must be replaced by < ÃÑL� >.

These proves the statement that corrections in all orders keep the symmetry of the
tree level off-diagonal terms < 1|.....|2 > and < 3|.....|4 > in the case that aα = 0.

iv. It remains to check the matrix elements < 1|.....|4 >, < 2|.....|3 >, <
3|.....|2 > and < 4|.....|1 > in all orders of corrections. The matrix elements on the
third power, (< 1|xxx|4 >, < 2|xxx|3 >, < 3|xxx|2 >, < 4|xxx|1 >), appearing in
Eqs. (6.21, 6.22), are for aα = 0 all equal to zero. It is not difficult to prove that
these four matrix elements remain zero in all order of loop corrections. The reason
is the same as in the above three cases, i., ii., iii..

The proof that the symmetry ˜SU(2) × ˜SU(2) × U(1) of the tree level remains un-
changed in all orders of corrections, provided that aα = 0, is completed.
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There are in all these cases the dynamical singlets contributing in the absolute
squared values (|AQ|2, |AQ

′
|2, |AY

′
|2 — each on a power, which depend on the

order of corrections — which make that all the matrix elements of a mass matrix,
except the (< 1|.....|4 >, < 2|.....|3 >, < 3|.....|2 >, < 4|.....|1 >) which remain zero
in all orders of corrections, depend on a particular family member.

Mass matrices beyond the tree level if aα 6= 0 We demonstrated that for aα = 0

the symmetry of the tree level remains in all orders of corrections, the loops
corrections and the repetitions of nonzero vacuum expectation values of all the
scalar fields contributing to mass terms, the same as on the tree level, that is
S̃U(2)× S̃U(2)×U(1).

Let us denote all corrections to the diagonal terms in all orders, in which the
nonzero vacuum expectation values in all orders as well as their dynamical fields
in all orders contribute when aα = 0 as:

−(ã1 + ã2) :=< ψ
α1
L |....|ψα1R >, −(ã1 − ã2) :=< ψ

α2
L |....|ψα2R >,

(ã1 − ã2) :=< ψ
α3
L |....|ψα3R >, (ã1 + ã2) :=< ψ

α4
L |....|ψα4R >.

We study for aα 6= 0 how does the symmetry of the diagonal and the off
diagonal matrix elements of the family members mass matrices change with
respect to the symmetry on the tree level, presented in Eq. (6.22), in particular for
small values of |aα| in comparison with the contributions of all the rest of nonzero
vacuum expectation values or of dynamical fields.

We discuss diagonal and off diagonal matrix elements separately. The sym-
metry of all depends on aα.

i. Let us start with diagonal terms: < ψi|.....|ψi >.
On the tree level the symmetry is for aα 6= 0: {< ψ1| < Ôαdia > |ψ1 > + <

ψ4| < Ôαdia > |ψ4 > }− { < ψ2| < Ôαdia > |ψ2 > +{< ψ3| < Ôαdia > |ψ3 >} = 0.
i.a. Let us evaluate the matrix elements < ψαiL |....|ψαiR >. Let us denote for a

while, just to simplify the derivations, n1 = aα − (ã1 + ã2), n2 = aα − (ã1 − ã2)
n3 = aα + (ã1 − ã2) n4 = aα + (ã1 + ã2). One finds

< ψα1L |....|ψα1R >= [aα − (ã1 + ã2)]

−
1

3!
[(aα)3 − 3(aα)2(ã1 + ã2) + 3(a

α)(ã1 + ã2)
2]

+
1

5!
[(aα)5 − 5(aα)4(ã1 + ã2) + 10(a

α)3(ã1 + ã2)
2 − 10(aα)2(ã1 + ã2)

3

+5(aα)(ã1 + ã2)
4] − · · · . (6.24)

Assuming that |aα| << (|(ã1|, |(ã2|) it follows

< ψα1L |....|ψα1R >= −(ã1 + ã2) + aα{1−
3

3!
(ã1 + ã2)

2 +
5

5!
(ã1 + ã2)

4

−
7

7!
(ã1 + ã2)

6 + · · · }. (6.25)

Correspondingly we obtain for < ψα4L |....|ψα4R > in the limit that |aα| << (ã1|, |ã2|)

< ψα4L |....|ψα4R >= +(ã1 + ã2) + aα{1−
3

3!
(ã1 + ã2)

2 +
5

5!
(ã1 + ã2)

4

−
7

7!
(ã1 + ã2)

6 + · · · } . (6.26)
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For < ψα2L |....|ψα2R > one obtains in the limit that |aα| << (|(ã1|, |ã2|)

< ψα2L |....|ψα2R >= −(ã1 − ã2) + aα{1−
3

3!
(ã1 − ã2)

2 +
5

5!
(ã1 − ã2)

4

−
7

7!
(ã1 − ã2)

6 + · · · (6.27)

And for < ψα2L |....|ψα2R > one obtains in the limit that |aα| << (|(ã1|, |(ã2|) the
expression

< ψα3L |....|ψα3R >= −(ã1 − ã2) + aα{1−
3

3!
(ã1 − ã2)

2 +
5

5!
(ã1 − ã2)

4

−
7

7!
(ã1 − ã2)

6 + · · · } . (6.28)

Finally we obtain

(< ψα1L | . . . |ψα1R > + < ψα4L | . . . |ψα4R >)−

(< ψα2L | . . . |ψα2R > + < ψα3L | . . . |ψα3R >) =

4 aαã1 ã2 {1−
1

12
[(ã1)

2 + (ã2)
2]}+ · · · . (6.29)

The term with (aα)2 drops away. For small |aα| the term (aα)3 might be negligible.
It is obvious that for aα 6= 0 the diagonal matrix elements do not keep the tree

level symmetry of mass matrices (which is (< ψα1L | . . . |ψα1R > + < ψα4L | . . . |ψα4R >

) − (< ψα2L | . . . |ψα2R > + < ψα3L | . . . |ψα3R >) = 0). But one sees as well that the
contributions of higher terms to asymmetry are getting smaller and smaller and
for |aα| << (|ã1|, |ã2|) and for (|ã1|, |ã2|) < 1, the first term is dominant and the non
symmetry can be evaluated.

ii. Let us look at the matrix element < 1|.....|3 > and < 2|.....|4 > in all
orders of corrections in the case that aα = 0 (on the tree level, Eq. (6.22), < 1|x|3 >

=< 2|x|4 >=< 3|x|1 >†=< 4|x|2 >†) and let in this case < Ã1̃� > represent
the matrix elements i< 1|.....|3 > and < 2|.....|4 > in both cases in all orders of
corrections. We namely showed that in this case the matrix element < 1|.....|3 > is

equal to < 2|.....|4 >= < Ã1̃� >.
We now allow aα 6= 0.
Taking into account that in the case that aα is zero < Ã1̃� > includes all the

corrections in all orders and that also ã2 includes the corrections in all orders, we
find

(< ψα1L | . . . |ψα3R > − < ψα2L | . . . |ψα4R >) =

< Ã1̃� > (1+
8

3
aαã2{1−

2

5
(ã2)

2 + · · · } . (6.30)

It is obvious that for aα 6= 0 also the non diagonal matrix elements do not keep the
tree level symmetry of mass matrices (< ψα1L | . . . |ψα3R > − < ψα2L | . . . |ψα4R >) = 0,
which is not zero any longer). But one sees as well that the contributions of
higher terms to asymmetry are getting smaller and smaller and for |aα| << |ã2|,
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for |ã2| < 1, the first term in corrections is dominant. One can correspondingly
evaluate the amount of non symmetry.

iii. Let us look also at the matrix element < 1|.....|2 > and < 3|.....|4 >, first
in all orders of corrections in the case that aα = 0 (on the tree level, Eq. (6.22),

< 1|x|2 > =< 3|x|4 >=< 2|x|1 >†=< 4|x|3 >†) and let in this case < ÃÑL� > repre-
sent the matrix elements < 1|.....|2 > and < 3|.....|4 > in all orders of corrections.
We namely showed that in the case that aα = 0 the matrix element < 1|.....|2 > is

equal to < 3|.....|4 >= < Ã1̃� >.
We now allow aα 6= 0.
Taking into account that for aα = 0 the matrix element < ÃÑL� > includes

corrections in all orders and that also ã2 includes in this case corrections in all
orders, one finds

(< ψα1L | . . . |ψα2R > − < ψα3L | . . . |ψα4R >) =

< ÃÑL� > (1+
8

3
aαã1{1−

2

5
(ã1)

2 + · · · ) . (6.31)

It is obvious that for aα 6= 0 also these non diagonal matrix elements do not keep
the tree level symmetry of mass matrices (< ψα1L | . . . |ψα3R > − < ψα2L | . . . |ψα4R >=

0 is no longer the case). But one sees as well that the contributions of higher terms
to asymmetry are getting smaller and smaller and for |aα| << |ã1| and for |ã1| < 1,
the first term in corrections is dominant and the non symmetry, the difference
< ψα1L | . . . |ψα3R > − < ψα2L | . . . |ψα4R > can be evaluated.

iv. It remains to check the matrix elements < 1|.....|4 >, < 2|.....|3 >, <
3|.....|2 > and < 4|.....|1 >. The matrix elements which are nonzero only in the
third order of corrections, (< 1|x|4 >= 0 =< 2|x|3 >= 0 =< 3|x|2 >=< 4|x|1 >,
the first nonzero terms are < 1|xxx|4 >, < 2|xxx|3 >, < 3|xxx|2 >, < 4|xxx|1 >),
appearing in Eqs. (6.21, 6.22), which are for aα = 0 all equal to zero in all orders of
corrections.

We again take into account that for aα = 0 the matrix element < Ã1̃± > and

< ÃÑL± > include the corrections in all orders and that also ã1 and ã2 include the
corrections in all orders. We find when aα 6= 0

< ψα1L | . . . |ψα4R >

< Ã1̃� >< ÃÑL� >
=

< ψα2L | . . . |ψα3R >

< Ã1̃� >< ÃÑL� >
=

< ψα4L | . . . |ψα1R >

< Ã1̃� >< ÃÑL� >
=

< ψα3L | . . . |ψα2R >

< Ã1̃� >< ÃÑL� >
=

−aα{1−
3

10
[(ã1)

2 + (ã2)
2] + · · · } . (6.32)

One sees that these off diagonal matrix elements keep the relations from Eq. (6.22)
at least in the lowest corrections.

We demonstrated that the matrix elements of the mass matrix of Eq. (6.22) do
not keep the symmetry of the tree level in all orders of corrections if aα 6= 0, but
the changes can in the case that (|aα|, |ã1|, |ã2|) are small in comparison with unity
be estimated.
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Mass matrices beyond the tree level if aα 6= 0, while ã1 = 0 = ã2 One can
easily see that the mass matrix of Eq. (6.22) keeps the symmetry in all orders of
corrections also if aα 6= 0 and ã1 = 0 = ã2.

One obtains in this case for the diagonal terms < ψαiL |Û|ψαiR >, for each of
four families (i = (1, 2, 3, 4)) the expression

< ψαiL |Û|ψαiR >= aα −

1

3!
{(aα)3 + aα(| < Ã1̃� > |2 + | < ÃÑL� > |2 + |Aα|2 + |Ã1̃3|2 + |Ã1̃�|2 +

|ÃÑL3|2 + |ÃÑL�|2)}+
1

5!
{(aα)5 + (aα)3(| < Ã1̃� > |2 + | < ÃÑL� > |2 + |Aα|2 + |Ã1̃3|2 + |Ã1̃�|2 +

|ÃÑL3|2 + |ÃÑL�|2) +

aα(| < Ã1̃� > |4 + | < ÃÑL� > |4 + |Aα|4 +

|Ã1̃3|4 + |Ã1̃�|4 + |ÃÑL3|4 + |ÃÑL�|4 + · · ·+
| < Ã1̃� > |2| < ÃÑL� > |2 + · · · ) + · · · }−
1

7!
{(aα)7 + (aα)5(| < Ã1̃� > |2 + · · · ) + · · · }+ · · · . (6.33)

Let us denote the above expression for the diagonal terms < ψαiL |Û|ψαiR >, which
takes into account corrections in all orders while assuming ã1 = 0 = ã2, with aα.
(The definition of the scalar fields is presented in Eq. (6.20)).

Let us add that the choice that the third components of the scalar fields ~̃A1̃ and
~̃AÑL have no vacuum expectation values —< Ã1̃3 >= ã1 = 0,< Ã

ÑL3 >= ã2 = 0

— does not seem a meaningful choice. Namely, if all the components of the two
triplets, ~̃A1̃ and ~̃AÑL , influencing the family quantum numbers of the four families,
would have no vacuum expectation values, all the families would have the same
mass, determined by aα and the contributions in all orders of corrections of the
dynamical scalar fields, ~̃A1̃, ~̃AÑL and aα =< Aα > and the dynamical part of Aα.

Let be added, however, that the choice < Ã1̃± > 6= 0, < ÃÑL± > 6= 0 and aα 6= 0,
while ã1 = 0 = ã2, makes all the matrix elements of the mass matrix, Eq. (6.22),
different from zero.

6.3 Conclusions

In the spin-charge-family theory to the 4×4mass matrix of any family member (that
is of quarks and leptons — the observed three families namely form in the spin-
charge-family theory the 3× 3 submatrices of these predicted 4× 4mass matrices)
the two scalar triplets (~̃A1̃s , ~̃AÑLs ) and the three scalar singlets (AQs , AQ

′

s , AY
′

s ),
s = (7, 8), contribute, all with the weak and the hyper charge of the standard model
higgs (±1

2
,∓1

2
, respectively). The first two triplets influence the family quantum

numbers, while the last three singlets influence the family members quantum
numbers.
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The only dependence of the mass matrix on the family member (α = (u, d, ν, e))

quantum numbers is due to the operators γ0
78

(±) QAQ± , γ0
78

(±) Q ′AQ
′

± and

γ0
78

(±) Y ′AY ′± . The operator γ0
78

(±), appearing at the contribution of the two
triplet scalar fields as well as at the three singlet scalar fields, transforms the right
handed members into the left handed ones, or opposite, while the family operators
transform a family member of one family into the same family member of another
family.

We demonstrate in this paper that the matrix elements of mass matrices
4 × 4, predicted by the spin-charge-family theory for each family member α =

(u, d, ν, e), keep the symmetry S̃U(2)
S̃O(4)1+3

× S̃U(2)
S̃O(4)"weak"

× U(1) in all
orders of corrections under the assumption that either the vacuum expectation
values of three singlets< Aα >= aα are equal to zero, Subsect. 6.2.2, aα = 0, while
all the other scalar fields — ~̃A1̃, ~̃AÑL — can have for all the components nonzero
vacuum expectation values, or that aα does not need to be zero, aα 6= 0, but then
the two third components of the two scalar triplets, < Ã1̃3 >= ã1, < ÃÑL3 >= ã2,
Subsect. 6.2.2, must be zero, ã1 = 0, ã2 = 0.

For the case that the two triplets and the three singlets have for all components
nonzero vacuum expectation values we represent the symmetries of the mass
matrices in dependence of the order of corrections, Subsect. 6.2.2.

In the first case, when aα = 0, to any order of corrections all the components of
the two triplet scalar fields contribute, either with the nonzero vacuum expectation
values or as dynamical fields or as both in all orders of corrections, while the three
singlet scalar fields contribute only as dynamical fields. In this case the corrections
keep the symmetry of the three level in all orders of corrections.

The contributions of the dynamical fields of the three singlets in all orders
of loop corrections — together with the contributions of the two triplets which
interact with spinors through the family quantum numbers either with the nonzero
vacuum expectation values or as dynamical fields — make all the matrix elements
dependent on the particular family member quantum numbers. Correspondingly
all the mass matrices bring different masses to any of the family members and
correspondingly also different mixing matrices to quarks and leptons. However,
the choice aα = 0 keeps the four off diagonal terms, which are proportional to aα

in Eq.(6.22), equal to zero in all orders of correction.
In the second case, when ã1 = 0, ã2 = 0, in any order of corrections the three

singlet scalar fields contribute either with nonzero vacuum expectation values or
as dynamical fields, while the two triplets scalar fields contribute with the nonzero
vacuum expectation values and the dynamical fields, except the two of the triplet
components — Ã1̃3 and ÃÑL3 — which contribute only as dynamical fields. The
symmetry of the tree level is kept in all order of corrections, this choice makes,
however, all the diagonal terms to remain equal in all orders of corrections.

When all the singlets and the triplets have for all the components nonzero

vacuum expectation values (aα 6= 0, ã1 6= 0, ã2 6= 0, < ÃÑL± 6= 0 > < Ã
1̃±
> 6=

0) the symmetry of the tree level changes, but we are still able to determine
the symmetry of mass in all orders of corrections, that is of the loop ones and
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the repetition of the nonzero vacuum expectation values, expressing the matrix
elements of mass matrices with a few parameters only, due to the fact that the
symmetry of the mass matrices limit the number of free parameters. In the case
that |aα| is small (in comparison with |ã1| and |ã2|), the higher order corrections
drop away very quickly. When fitting the free parameters of mass matrices to
the observed masses of quarks and leptons and their 3 × 3 submatrices of the
predicted 4× 4 mixing matrices, we are able to predict the masses of the fourth
family members as well as the matrix elements of the fourth components to the
observed free families, provided that the mixing 3×3 submatrices of the predicted
4 × 4 mass matrices of quarks and leptons are measured accurately enough —
since the (accurate) 3 × 3 submatrix of a 4 × 4 matrix determines 4 × 4 matrix
uniquely [21,22].

This means that although we are so far only in principle able to calculate
directly the mass matrix elements of the 4 × 4 mass matrices, predicted by the
spin-charge-family, yet the symmetry of mass matrices, discussed in this paper,
enables us — due to the limited number of free parameters — to predict properties
of the four family of quarks and lepton to the observed three families, that is the
masses of the fourth families and the corresponding mixing matrices [21,22]. We
only have to wait for accurate enough data for the 3× 3 mixing (sub)matrices of quarks
and leptons.

Let us add that the right handed neutrino, which is a regular member of the
four families, Table 6.3, has the nonzero value of the operator Y ′AY

′

s only.

6.4 Appendix: Short presentation of the spin-charge-family theory

This section follows similar sections in Refs. [1,4–7].
The spin-charge-family theory [1–7,9–12,15–17,19–24] assumes:

a. A simple action (Eq. (6.35)) in an even dimensional space (d = 2n, d > 5), d is
chosen to be (13+ 1). This choice makes that the action manifests in d = (3+ 1)

in the low energy regime all the observed degrees of freedom, explaining all the
assumptions of the standard model, as well as other observed phenomena.

There are two kinds of the Clifford algebra objects, γa’s and γ̃a’s in this theory
with the properties.

{γa, γb}+ = 2ηab , {γ̃a, γ̃b}+ = 2ηab , {γa, γ̃b}+ = 0 . (6.34)

Fermions interact with the vielbeins fαa and the two kinds of the spin-connection
fields — ωabα and ω̃abα — the gauge fields of Sab = i

4
(γa γb − γb γa) and

S̃ab = i
4
(γ̃a γ̃b − γ̃b γ̃a), respectively.

The action

A =

∫
ddx E

1

2
(ψ̄ γap0aψ) + h.c.+∫

ddx E (αR+ α̃ R̃) , (6.35)
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in which p0a = fαa p0α + 1
2E

{pα, Ef
α
a}−, p0α = pα − 1

2
Sabωabα − 1

2
S̃ab ω̃abα,

and
R =

1

2
{fα[afβb] (ωabα,β −ωcaαω

c
bβ)}+ h.c.,

R̃ =
1

2
{fα[afβb] (ω̃abα,β − ω̃caα ω̃

c
bβ)}+ h.c.

15, introduces two kinds of the Clifford algebra objects, γa and γ̃a, {γa, γb}+ =

2ηab = {γ̃a, γ̃b}+. fαa are vielbeins inverted to eaα, Latin letters (a, b, ..) denote
flat indices, Greek letters (α,β, ..) are Einstein indices, (m,n, ..) and (µ, ν, ..) de-
note the corresponding indices in (0, 1, 2, 3), while (s, t, ..) and (σ, τ, ..) denote the
corresponding indices in d ≥ 5:

eaαf
β
a = δβα , eaαf

α
b = δab , (6.36)

E = det(eaα).
b. The spin-charge-family theory assumes in addition that the manifoldM(13+1)

breaks first into M(7+1) × M(6) (which manifests as SO(7, 1) ×SU(3) ×U(1)),
affecting both internal degrees of freedom — the one represented by γa and the
one represented by γ̃a. Since the left handed (with respect to M(7+1)) spinors
couple differently to scalar (with respect toM(7+1)) fields than the right handed
ones, the break can leave massless and mass protected 2((7+1)/2−1) families [36].
The rest of families get heavy masses 16.
c. There is additional breaking of symmetry: The manifoldM(7+1) breaks further
intoM(3+1)×M(4).
d. There is a scalar condensate (Table 6.5) of two right handed neutrinos with
the family quantum numbers of the upper four families, bringing masses of the
scale ∝ 1016 GeV or higher to all the vector and scalar gauge fields, which interact
with the condensate [5].
e. There are the scalar fields with the space index (7, 8) carrying the weak (τ1i)
and the hyper charges (Y = τ23+τ4, τ1i and τ2i are generators of the subgroups of
SO(4), τ4 and τ3i are the generators of U(1)II and SU(3), respectively, which are
subgroups of SO(6)), which with their nonzero vacuum expectation values change
the properties of the vacuum and break the weak charge and the hyper charge.
Interacting with fermions and with the weak and hyper bosons, they bring masses
to heavy bosons and to twice four groups of families. Carrying no electromagnetic
(Q = τ13 + Y) and colour (τ3i) charges and no SO(3, 1) spin, the scalar fields leave
the electromagnetic, colour and gravity fields in d = (3+ 1) massless.

The assumed action A and the assumptions offer:
o. the explanation for the origin and all the properties of the observed fermions:

15 Whenever two indexes are equal the summation over these two is meant.
16 A toy model [36,37] was studied in d = (5 + 1) with the same action as in Eq. (6.35).

The break from d = (5 + 1) to d = (3 + 1)× an almost S2 was studied. For a particular
choice of vielbeins and for a class of spin connection fields the manifoldM(5+1) breaks
into M(3+1) times an almost S2, while 2((3+1)/2−1) families remain massless and mass
protected. Equivalent assumption, although not yet proved how does it really work, is
made in the d = (13 + 1) case. This study is in progress.
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o.i. of the family members, on Table 6.3 the family members belonging to one
Weyl (fundamental) representation of massless spinors of the group SO(13, 1) are
presented in the ”technique” [10–12,15–17,13,14] and analyzed with respect to the
subgroups SO(3, 1), SU(2)I, SU(2)II, SU(3), U(1)II), Eqs. (6.37, 6.38, 6.2) with the
generators τAi =

∑
s,t c

Ai
st S

st,
o.ii. of the families analyzed with respect to the subgroups (S̃O(3, 1), S̃U(2)I,

S̃U(2)II, Ũ(1)II) with the generators τ̃Ai =
∑
ab c

Ai
ab S̃

st, Eqs. (6.40, 6.41, 6.42)
— they are presented on Table 6.4 — all the families are singlets with respect to
S̃U(3),

oo.i. of the observed vector gauge fields of the charges (SU(2)I, SU(2)II,
SU(3), U(1)II) discussed in Refs. ([1,4,2], and the references therein), all the vector
gauge fields are the superposition ofωstm, AAim =

∑
s,t c

Ai
stωstm, Eq. (6.44),

oo.ii. of the Higgs’s scalar and of the Yukawa couplings, explainable with the
scalar fields with the space index (7, 8), there are two groups of two triplets, which
are scalar gauge fields of the charges τ̃Ai, expressible with the superposition of
ω̃abs, AAis =

∑
a,b c

Ai
abωabs, Eq. (6.45), and three singlets, the gauge fields of

Q,Q ′, Y ′, Eqs. (6.43, 6.45), all with the weak and the hyper charges as assumed by
the standard model for the Higgs’s scalars,

oo.iii. of the scalar fields explaining the origin of the matter-antimatter asym-
metry, Ref. [5],

oo.iv. of the appearance of the dark matter, there are two decoupled groups
of four families, carrying family charges ( ~̃NL, ~̃τ1) and ( ~̃NR, ~̃τ2), Eqs. (6.40, 6.41),
both groups carry also the family members charges (Q,Q ′, Y ′), Eq. (6.43).

The standard model groups of spins and charges are the subgroups of the
SO(13, 1) group with the generator of the infinitesimal transformations expressible
with Sab (= i

2
(γaγb − γbγa), {Sab, Scd}− = −i(ηadSbc + ηbcSad − ηacSbd −

ηbdSac)) for the spin

~N±(= ~N(L,R)) : =
1

2
(S23 ± iS01, S31 ± iS02, S12 ± iS03) , (6.37)

for the weak charge, SU(2)I, and the second SU(2)II, these two groups are the
invariant subgroups of SO(4),

~τ1 : =
1

2
(S58 − S67, S57 + S68, S56 − S78) ,

~τ2 : =
1

2
(S58 + S67, S57 − S68, S56 + S78) , (6.38)

for the colour charge SU(3) and for the ”fermion charge” U(1)II, these two groups
are subgroups of SO(6),

~τ3 :=
1

2
{S9 12 − S10 11 , S9 11 + S10 12, S9 10 − S11 12,

S9 14 − S10 13, S9 13 + S10 14 , S11 14 − S12 13 ,

S11 13 + S12 14,
1√
3
(S9 10 + S11 12 − 2S13 14)} ,

τ4 := −
1

3
(S9 10 + S11 12 + S13 14) , (6.39)



i
i

“proc18” — 2018/12/10 — 11:44 — page 136 — #152 i
i

i
i

i
i

136 A. Hernandez-Galeana and N.S. Mankoč Borštnik

τ4 is the ”fermion charge”, while the hyper charge Y = τ23 + τ4.
The generators of the family quantum numbers are the superposition of

the generators S̃ab (S̃ab = i
4
{γ̃a, γ̃b}−, {S̃ab, S̃cd}− = −i(ηadS̃bc + ηbcS̃ad −

ηacS̃bd − ηbdS̃ac), {S̃ab, Scd}− = 0). One correspondingly finds the generators of
the subgroups of S̃O(7, 1),

~̃NL,R : =
1

2
(S̃23 ± iS̃01, S̃31 ± iS̃02, S̃12 ± iS̃03) , (6.40)

which determine representations of the two S̃U(2) invariant subgroups of S̃O(3, 1),
while

~̃τ1 : =
1

2
(S̃58 − S̃67, S̃57 + S̃68, S̃56 − S̃78) ,

~̃τ2 : =
1

2
(S̃58 + S̃67, S̃57 − S̃68, S̃56 + S̃78) , (6.41)

determine representations of S̃U(2)I× S̃U(2)II of S̃O(4). Both, S̃O(3, 1) and S̃O(4),
are the subgroups of S̃O(7, 1). One finds for the infinitesimal generator τ̃4 of Ũ(1),
originating in S̃O(6), the expression

τ̃4 := −
1

3
(S̃9 10 + S̃11 12 + S̃13 14) . (6.42)

The operators for the charges Y and Q of the standard model, together with Q ′

and Y ′, and the corresponding operators of the family charges Ỹ, Ỹ ′, Q̃, Q̃ ′, are
defined as follows:

Y = τ4 + τ23 , Y ′ = −τ4 tan2 ϑ2 + τ23 , Q = τ13 + Y , Q ′ = −Y tan2 ϑ1 + τ13 ,

Ỹ = τ̃4 + τ̃23 , Ỹ ′ = −τ̃4 tan2 ϑ2 + τ̃23 , Q̃ = Ỹ + τ̃13 Q̃ ′ = −Ỹ tan2 ϑ1 + τ̃13

(6.43)

Families split into two groups of four families, each manifesting the S̃U(2)×S̃U(2)×
U(1), with the generators of the infinitesimal transformations ( ~̃NL, ~̃τ1, Q,Q ′, Y ′)
and ( ~̃NR, ~̃τ2, Q,Q ′, Y ′), respectively. The generators of U(1) group (Q,Q ′, Y ′),
Eq. 6.43, distinguish among family members and are the same for both groups of
four families, presented on Table 6.4, taken from Ref. [4].

The vector gauge fields of the charges ~τ1, ~τ2, ~τ3 and τ4 follow from the
requirement

∑
Ai τ

AiAAim =
∑
s,t

1
2
Sstωstm and the requirement that τAi =∑

a,b cAiab S
ab, Eq. (6.4), fulfilling the commutation relations {τAi, τBj}− =

iδABfAijkτAk, Eq. (6.5). Correspondingly we find AAim =
∑
s,t cAist ω

st
m,

Eq. (6.6), with (s, t) either in (5, 6, 7, 8) or in (9, . . . , 14).
The explicit expressions for these vector gauge fields in terms of ωstm [[4],

Eq. (22)], [5]] are presented in the case that the electroweak ϑ1 = ϑW is zero and
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so is ϑ2 and in the case that the two angles, (ϑ1, ϑ2), are not zero.
~A1m = (ω58m −ω67m,ω57m +ω68m,ω56m −ω78m) ,

~A2m = (ω58m +ω67m,ω57m −ω68m,ω56m +ω78m) ,

AQm = ω56m − (ω9 10m +ω11 12m +ω13 14m) ,

AYm = (ω56m +ω78m) − (ω9 10m +ω11 12m +ω13 14m) ,

~A3m = (ω9 12m −ω10 11m,ω9 11m +ω10 12m,ω9 10m −ω11 12m,

ω9 14m −ω10 13m,ω9 13m +ω10 14m,ω11 14m −ω12 13m,

ω11 13m +ω12 14m,
1√
3
(ω9 10m +ω11 12m − 2ω13 14m)) ,

A4m = (ω9 10m +ω11 12m +ω13 14m) ,

AQm = sin ϑ1A13m + cos ϑ1AYm ,

AQ
′

m = cos ϑ1A13m − sin ϑ1AYm ,

AY
′

m = cos ϑ2A23m − sin ϑ2A4m ,

(m ∈ (0, 1, 2, 3)) . (6.44)

Allωstm vector gauge fields are real fields. Here the fields contain in general the
coupling constants which are not necessarily the same for all of them. The angle ϑ1
is the angle of the electroweak break, while ϑ2 is the angle of breaking the SU(2)II
and U(1)II at much higher scale [[5,4] and references therein].

One obtains in a similar way the scalar gauge fields, which determine mass
matrices of family members. They carry the space index s = (7, 8). The scalar
fields contain in general the coupling constants. Before the electroweak break the
electroweak angle ϑ1 = ϑW is zero, while ϑ2 is the angle determined by the break
of symmetry at much higher scale.

~̃A1s = (ω̃58s − ω̃67s, ω̃57s + ω̃68s, ω̃56s − ω̃78s) ,

~̃A2s = (ω̃58s + ω̃67s, ω̃57s − ω̃68s, ω̃56s + ω̃78s) ,

~̃ANLs = (ω̃23s + iω̃01s, ω̃31s + iω̃02s, ω̃12s + iω̃03s) ,

~̃ANRs = (ω̃23s − iω̃01s, ω̃31s − iω̃02s, ω̃12s − iω̃03s) ,

AQs = ω56s − (ω9 10s +ω11 12s +ω13 14s) ,

AYs = (ω56s +ω78s) − (ω9 10s +ω11 12s +ω13 14s)

A4s = −(ω9 10s +ω11 12s +ω13 14s) ,

AQs = sin ϑ1A13s + cos ϑ1AYs , AQ
′

s = cos ϑ1A13s − sin ϑ1AYs ,

AY
′

s = cos ϑ2A23s − sin ϑ2A4s ,

(s ∈ (7, 8)) . (6.45)

All ωsts ′ , ω̃sts ′ , (s, t, s ′) = (5, . . . , 14), ω̃i,j,s ′ and i ω̃0,s ′ , (i, j) = (1, 2, 3) scalar
gauge fields are real fields.

The theory predicts, due to commutation relations of generators of the in-
finitesimal transformations of the family groups, S̃U(2)I ×S̃U(2)I and S̃U(2)II
×S̃U(2)II, the first one with the generators ~̃NL and ~̃τ1, and the second one with
the generators ~̃NR and ~̃τ2, Eqs. (6.40,6.41), two groups of four families.
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The theory offers (so far) several predictions:
i. several new scalars, those coupled to the lower group of four families —

two triplets and three singlets, the superposition of (~̃A1s , ~̃ANLs and AQs , AYs , A4s ,
Eq. (6.45)) — some of them to be observed at the LHC ([1,5,4]),

ii. the fourth family to the observed three to be observed at the LHC ([1,5,4]
and the references therein),

iii. new nuclear force among nucleons among quarks of the upper four fami-
lies.

The theory offers also the explanation for several phenomena, like it is the
”miraculous” cancellation of the standard model triangle anomalies [3].

The breaks of the symmetries, manifesting in Eqs. (6.37, 6.40, 6.38, 6.41, 6.2,
6.42), are in the spin-charge-family theory caused by the scalar condensate of the
two right handed neutrinos belonging to one group of four families, Table 6.5, and
by the nonzero vacuum expectation values of the scalar fields carrying the space
index (7, 8) (Refs. [4,1] and the references therein). The space breaks first to SO(7, 1)
×SU(3)×U(1)II and then further to SO(3, 1)× SU(2)I ×U(1)I ×SU(3)×U(1)II,
what explains the connections between the weak and the hyper charges and the
handedness of spinors [3].

state S03 S12 τ13 τ23 τ4 Y Q τ̃13 τ̃23 τ̃4 Ỹ Q̃ Ñ3L Ñ
3
R

(|νVIII
1R >1 |νVIII

2R >2) 0 0 0 1 −1 0 0 0 1 −1 0 0 0 1

(|νVIII1R >1 |e
VIII
2R >2) 0 0 0 0 −1 −1 −1 0 1 −1 0 0 0 1

(|eVIII1R >1 |e
VIII
2R >2) 0 0 0 −1 −1 −2 −2 0 1 −1 0 0 0 1

Table 6.5. This table is taken from [5]. The condensate of the two right handed neutrinos νR,
with the VIIIth family quantum numbers, coupled to spin zero and belonging to a triplet
with respect to the generators τ2i, is presented together with its two partners. The right
handed neutrino has Q = 0 = Y. The triplet carries τ4 = −1, τ̃23 = 1, τ̃4 = −1, Ñ3R = 1,
Ñ3L = 0, Ỹ = 0, Q̃ = 0, τ̃31 = 0. The family quantum numbers are presented in Table 6.4.

The stable of the upper four families is the candidate for the dark matter, the
fourth of the lower four families is predicted to be measured at the LHC.

6.5 Appendix: Short presentation of spinor
technique [1,4,11,13,14]

This appendix is a short review (taken from [4]) of the technique [11,42,13,14],
initiated and developed in Ref. [11] by one of the authors (N.S.M.B.), while propos-
ing the spin-charge-family theory [2,4,5,7,9,1,15,16,10–12,17,19–24]. All the internal
degrees of freedom of spinors, with family quantum numbers included, are de-
scribable with two kinds of the Clifford algebra objects, besides with γa’s, used in
this theory to describe spins and all the charges of fermions, also with γ̃a’s, used
in this theory to describe families of spinors:

{γa, γb}+ = 2ηab , {γ̃a, γ̃b}+ = 2ηab , {γa, γ̃b}+ = 0 . (6.46)
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We assume the “Hermiticity” property for γa’s (and γ̃a’s) γa† = ηaaγa (and
γ̃a† = ηaaγ̃a), in order that γa (and γ̃a) are compatible with (6.34) and formally
unitary, i.e. γa † γa = I (and γ̃a †γ̃a = I). One correspondingly finds that (Sab)† =
ηaaηbbSab (and (S̃ab)† = ηaaηbbS̃ab).

Spinor states are represented as products of nilpotents and projectors, formed
as odd and even objects of γa’s, respectively, chosen to be the eigenstates of a
Cartan subalgebra of the Lorentz groups defined by γa’s

ab

(k): =
1

2
(γa +

ηaa

ik
γb) ,

ab

[k]:=
1

2
(1+

i

k
γaγb) , (6.47)

where k2 = ηaaηbb. We further have [4]

γa
ab

(k): =
1

2
(γaγa +

ηaa

ik
γaγb) = ηaa

ab

[−k], γa
ab

[k]:=
1

2
(γa +

i

k
γaγaγb) =

ab

(−k),

γ̃a
ab

(k): = −i
1

2
(γa +

ηaa

ik
γb)γa = −iηaa

ab

[k], γ̃a
ab

[k]:= i
1

2
(1+

i

k
γaγb)γa = −i

ab

(k),

(6.48)

where we assume that all the operators apply on the vacuum state |ψ0〉. We define

a vacuum state |ψ0 > so that one finds <
ab

(k)

†
ab

(k) >= 1 , <
ab

[k]

†
ab

[k] >= 1.

We recognize that γa transform
ab

(k) into
ab

[−k], never to
ab

[k], while γ̃a transform
ab

(k) into
ab

[k], never to
ab

[−k]

γa
ab

(k)= ηaa
ab

[−k], γb
ab

(k)= −ik
ab

[−k], γa
ab

[k]=
ab

(−k), γb
ab

[k]= −ikηaa
ab

(−k) ,

γ̃a
ab

(k)= −iηaa
ab

[k], γ̃b
ab

(k)= −k
ab

[k], γ̃a
ab

[k]= i
ab

(k), γ̃b
ab

[k]= −kηaa
ab

(k) .(6.49)

The Clifford algebra objects Sab and S̃ab close the algebra of the Lorentz
group

Sab : = (i/4)(γaγb − γbγa) ,

S̃ab : = (i/4)(γ̃aγ̃b − γ̃bγ̃a) , (6.50)

{Sab, S̃cd}− = 0 , {Sab, Scd}− = i(ηadSbc+ηbcSad−ηacSbd−ηbdSac) , {S̃ab, S̃cd}−
= i(ηadS̃bc + ηbcS̃ad − ηacS̃bd − ηbdS̃ac) .

One can easily check that the nilpotent
ab

(k) and the projector
ab

[k] are ”eigen-
states” of Sab and S̃ab

Sab
ab

(k)=
1

2
k
ab

(k) , Sab
ab

[k]=
1

2
k
ab

[k] ,

S̃ab
ab

(k)=
1

2
k
ab

(k) , S̃ab
ab

[k]= −
1

2
k
ab

[k] , (6.51)

where the vacuum state |ψ0〉 is meant to stay on the right hand sides of projectors

and nilpotents. This means that multiplication of nilpotents
ab

(k) and projectors
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ab

[k] by Sab get the same objects back multiplied by the constant 1
2
k, while S̃ab

multiply
ab

(k) by k
2

and
ab

[k] by (−k
2
) (rather than by k

2
). This also means that when

ab

(k) and
ab

[k] act from the left hand side on a vacuum state |ψ0〉 the obtained states
are the eigenvectors of Sab.

The technique can be used to construct a spinor basis for any dimension d
and any signature in an easy and transparent way. Equipped with nilpotents and
projectors of Eq. (6.47), the technique offers an elegant way to see all the quantum
numbers of states with respect to the two Lorentz groups, as well as transformation
properties of the states under the application of any Clifford algebra object.

Recognizing from Eq.(6.50) that the two Clifford algebra objects (Sab, Scd)
with all indexes different commute (and equivalently for (S̃ab, S̃cd)), we select
the Cartan subalgebra of the algebra of the two groups, which form equivalent
representations with respect to one another

S03, S12, S56, · · · , Sd−1 d, if d = 2n ≥ 4,
S̃03, S̃12, S̃56, · · · , S̃d−1 d, if d = 2n ≥ 4 . (6.52)

The choice of the Cartan subalgebra in d < 4 is straightforward. It is useful to
define one of the Casimirs of the Lorentz group — the handedness Γ ({Γ, Sab}− = 0)
(as well as Γ̃ ) in any d = 2n

Γ (d) : = (i)d/2
∏
a

(
√
ηaaγa), if d = 2n,

Γ̃ (d) : = (i)(d−1)/2
∏
a

(
√
ηaaγ̃a), if d = 2n . (6.53)

We understand the product of γa’s in the ascending order with respect to the index
a: γ0γ1 · · ·γd. It follows from the Hermiticity properties of γa for any choice of
the signature ηaa that Γ † = Γ, Γ2 = I.( Equivalent relations are valid for Γ̃ .) We
also find that for d even the handedness anticommutes with the Clifford algebra
objects γa ({γa, Γ }+ = 0) (while for d odd it commutes with γa ({γa, Γ }− = 0)).

Taking into account the above equations it is easy to find a Weyl spinor
irreducible representation for d-dimensional space, with d even or odd 17. For d
even we simply make a starting state as a product of d/2, let us say, only nilpotents
ab

(k), one for each Sab of the Cartan subalgebra elements (Eqs.(6.52, 6.50)), applying
it on an (unimportant) vacuum state. Then the generators Sab, which do not
belong to the Cartan subalgebra, being applied on the starting state from the left

17 For d odd the basic states are products of (d − 1)/2 nilpotents and a factor (1± Γ).
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hand side, generate all the members of one Weyl spinor.

0d

(k0d)
12

(k12)
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >
0d

[−k0d]
12

[−k12]
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >
0d

[−k0d]
12

(k12)
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >

...
0d

[−k0d]
12

(k12)
35

(k35) · · ·
d−1 d−2

[−kd−1 d−2] |ψ0 >
od

(k0d)
12

[−k12]
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >

... (6.54)

All the states have the same handedness Γ , since {Γ, Sab}− = 0. States, belonging
to one multiplet with respect to the group SO(q, d− q), that is to one irreducible
representation of spinors (one Weyl spinor), can have any phase. We could make
a choice of the simplest one, taking all phases equal to one. (In order to have the
usual transformation properties for spinors under the rotation of spin and under
CN PN ,some of the states must be multiplied by (−1).)

The above representation demonstrates that for d even all the states of one
irreducible Weyl representation of a definite handedness follow from a starting

state, which is, for example, a product of nilpotents
ab

(kab), by transforming all

possible pairs of
ab

(kab)
mn

(kmn) into
ab

[−kab]
mn

[−kmn]. There are Sam, San, Sbm, Sbn,
which do this. The procedure gives 2(d/2−1) states. A Clifford algebra object γa

being applied from the left hand side, transforms a Weyl spinor of one handedness
into a Weyl spinor of the opposite handedness.

We shall speak about left handedness when Γ = −1 and about right handed-
ness when Γ = 1.

While Sab, which do not belong to the Cartan subalgebra (Eq. (6.52)), gener-
ate all the states of one representation, S̃ab, which do not belong to the Cartan
subalgebra (Eq. (6.52)), generate the states of 2d/2−1 equivalent representations.

Making a choice of the Cartan subalgebra set (Eq. (6.52)) of the algebra Sab and
S̃ab: (S03, S12, S56, S78, S9 10, S11 12, S13 14 ), (S̃03, S̃12, S̃56, S̃78, S̃9 10, S̃11 12, S̃13 14 ),
a left handed (Γ (13,1) = −1) eigenstate of all the members of the Cartan subalgebra,
representing a weak chargeless uR-quark with spin up, hyper charge (2/3) and
colour (1/2 , 1/(2

√
3)), for example, can be written as

03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

[−]
13 14

[−] |ψ0〉 =
1

27
(γ0 − γ3)(γ1 + iγ2)|(γ5 + iγ6)(γ7 + iγ8)||

(γ9 + iγ10)(1− iγ11γ12)(1− iγ13γ14)|ψ0〉 . (6.55)

This state is an eigenstate of all Sab and S̃ab which are members of the Cartan
subalgebra (Eq. (6.52)).
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The operators S̃ab, which do not belong to the Cartan subalgebra (Eq. (6.52)),
generate families from the starting uR quark, transforming the uR quark from
Eq. (6.55) to the uR of another family, keeping all of the properties with respect
to Sab unchanged. In particular, S̃01 applied on a right handed uR-quark from
Eq. (6.55) generates a state which is again a right handed uR-quark, weak charge-
less, with spin up, hyper charge (2/3) and the colour charge (1/2 , 1/(2

√
3))

S̃01
03

(+i)
12

(+) |
56

(+)
78

(+) ||
910

(+)
1112

[−]
1314

[−] = −
i

2

03

[ +i]
12

[ + ] |
56

(+)
78

(+) ||
910

(+)
1112

[−]
1314

[−] .(6.56)

One can find both states in Table 6.4, the first uR as uR8 in the eighth line of this
table, the second one as uR7 in the seventh line of this table.

Below some useful relations follow. From Eq.(6.49) one has

Sac
ab

(k)
cd

(k) = −
i

2
ηaaηcc

ab

[−k]
cd

[−k] , S̃ac
ab

(k)
cd

(k)=
i

2
ηaaηcc

ab

[k]
cd

[k] ,

Sac
ab

[k]
cd

[k] =
i

2

ab

(−k)
cd

(−k) , S̃ac
ab

[k]
cd

[k]= −
i

2

ab

(k)
cd

(k) ,

Sac
ab

(k)
cd

[k] = −
i

2
ηaa

ab

[−k]
cd

(−k) , S̃ac
ab

(k)
cd

[k]= −
i

2
ηaa

ab

[k]
cd

(k) ,

Sac
ab

[k]
cd

(k) =
i

2
ηcc

ab

(−k)
cd

[−k] , S̃ac
ab

[k]
cd

(k)=
i

2
ηcc

ab

(k)
cd

[k] . (6.57)

We conclude from the above equation that S̃ab generate the equivalent representa-
tions with respect to Sab and opposite.

We recognize in Eq. (6.58) the demonstration of the nilpotent and the projector

character of the Clifford algebra objects
ab

(k) and
ab

[k], respectively.

ab

(k)
ab

(k) = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k] ,
ab

(−k)
ab

(k)= ηaa
ab

[−k] ,
ab

(−k)
ab

(−k)= 0 ,
ab

[k]
ab

[k] =
ab

[k] ,
ab

[k]
ab

[−k]= 0 ,
ab

[−k]
ab

[k]= 0 ,
ab

[−k]
ab

[−k]=
ab

[−k] ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(−k)
ab

[k]=
ab

(−k) ,
ab

(−k)
ab

[−k]= 0 ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

[k]
ab

(−k)= 0,
ab

[−k]
ab

(k)= 0 ,
ab

[−k]
ab

(−k)=
ab

(−k) .

(6.58)

Defining

ab
˜(±i)= 1

2
(γ̃a ∓ γ̃b),

ab
˜(±1)= 1

2
(γ̃a ± iγ̃b),

ab
˜[±i]= 1

2
(1± γ̃aγ̃b),

ab
˜[±1]= 1

2
(1± iγ̃aγ̃b).

one recognizes that

ab
˜(k)
ab

(k) = 0,
ab
˜(−k)

ab

(k)= −iηaa
ab

[k] ,
ab
˜(k)
ab

[k]= i
ab

(k) ,
ab
˜(k)

ab

[−k]= 0 . (6.59)
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Below some more useful relations [15] are presented:

N±+ = N1+ ± iN2+ = −
03

(∓i)
12

(±) , N±− = N1− ± iN2− =
03

(±i)
12

(±) ,

Ñ±+ = −
03
˜(∓i)

12
˜(±) , Ñ±− =

03
˜(±i)

12
˜(±) ,

τ1± = (∓)
56

(±)
78

(∓) , τ2∓ = (∓)
56

(∓)
78

(∓) ,

τ̃1± = (∓)
56
˜(±)

78
˜(∓) , τ̃2∓ = (∓)

56
˜(∓)

78
˜(∓) . (6.60)

In Table 6.4 [4] the eight families of the first member in Table 6.3 (member
number 1) of the eight-plet of quarks and the 25th member in Table 6.3 of the
eight-plet of leptons are presented as an example. The eight families of the right
handed u1R quark are presented in the left column of Table 6.4 [4]. In the right
column of the same table the equivalent eight-plet of the right handed neutrinos
ν1R are presented. All the other members of any of the eight families of quarks or
leptons follow from any member of a particular family by the application of the
operators N±R,L and τ(2,1)±, Eq. (6.60), on this particular member.

The eight-plets separate into two group of four families: One group contains
doublets with respect to ~̃NR and ~̃τ2, these families are singlets with respect to ~̃NL

and ~̃τ1. Another group of families contains doublets with respect to ~̃NL and ~̃τ1,
these families are singlets with respect to ~̃NR and ~̃τ2.

The scalar fields which are the gauge scalars of ~̃NR and ~̃τ2 couple only to the
four families which are doublets with respect to these two groups. The scalar fields
which are the gauge scalars of ~̃NL and ~̃τ1 couple only to the four families which
are doublets with respect to these last two groups.

After the electroweak phase transition, caused by the scalar fields with the
space index (7, 8), the two groups of four families become massive. The lowest
of the two groups of four families contains the observed three, while the fourth
remains to be measured. The lowest of the upper four families is the candidate for
the dark matter [1].
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9. N.S. Mankoč Borštnik, ”Do we have the explanation for the Higgs and
Yukawa couplings of the standard model”, http://arxiv.org/abs/1212.3184v2,
(http://arxiv.org/abs/1207.6233), in Proceedings to the 15 th Workshop ”What comes be-
yond the standard models”, Bled, 9-19 of July, 2012, Ed. N.S. Mankoč Borštnik,H.B. Nielsen,
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Abstract. We review some recent trends in the inflationary model building, the super-
symmetry (SUSY) breaking, the gravitino Dark Matter (DM) and the Primordial Black
Holes (PBHs) production in supergravity. The Starobinsky inflation can be embedded
into supergravity when the inflaton belongs to the massive vector multiplet associated
with a (spontaneously broken) U(1) gauge symmetry. The SUSY and R-symmetry can be
also spontaneously broken after inflation by the (standard) Polonyi mechanism. Polonyi
particles and gravitinos are super heavy and can be copiously produced during inflation
via the Schwinger mechanism sourced by the Universe expansion. The overproduction and
instability problems can be avoided, and the positive cosmological constant (dark energy)
can also be introduced. The observed abundance of the Cold Dark Matter (CDM) composed
of gravitinos can be achieved in our supergravity model too, thus providing the unifying
framework for inflation, supersymmetry breaking, dark energy and dark matter genesis.
Our supergravity approach may also lead to a formation of primordial non-linear structures
like stellar-mass-type black holes, and may include the SUSY GUTs inspired by heterotic
string compactifications, unifying particle physics with quantum gravity.

Povzetek. Avtorja obravnavata nekaj novejših modelov inflacije, zlomitve supersimetrije,
temne snovi, ki jo sestavljajo gravitini in nastajanja prvotnih črnih lukenj v supergravitaciji.
Inflacija Starobinskega se pojavi v supergravitaciji , če je inflaton del masivnega vektorskga
multipleta, ki spontano zlomi umeritveno simetrijo U(1). Supersimetrijo in simetrijo R
lahko po inflaciji spontano zlomi tudi mehanizem Polonyija. Izredno masivni delci Polony-
ija in gravitini, lahko nastanejov dovolj velikih koločinah med inflacijo z mehanizmom
Schwingerja. S tem se avtorja izogneta problemu prevelike produkcije težkih delcev in
nestabilnosti ter pojasnita tudi pozitivno kozmološko konstanto (temno energijo). Njun
model s supergravitacijo razloži opaženo pogostost hladne temne snovi (CDM), če jo ses-
tavljajo gravitini in ponudi razlago za nastanek in potek inflacije, zlomitev supersimetrije,
temno energijo in temno snov. Njun model lahko pojasni tudi nastanek prvotnih nelin-
eranih struktur, kot so črne luknje, ki imajo maso enake masi običajnih zvezd, in morda
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vključuje supersimetrične teorije velikega poenotenja (GUT), izvirajoče iz kompaktifikacije
heterotskih strun, kar bi poenotilo fiziko delcev in kvantno gravitacijo.

Keywords: inflation, modified gravity, supergravity, cold dark matter,
dark energy, supersymmetry breaking, primordial black holes

7.1 Introduction

The Cosmic Microwave Background (CMB) data collected by the Planck collab-
oration [1–3] favours the slow-roll single-field inflationary scenarios, with an
approximately flat scalar potential. The celebrated Starobinsky model [4] does
provide such scenario, and relates its inflaton (called scalaron in this context) to the
particular extension of Einstein-Hilbert gravity with the extra higher derivative
term given by the scalar curvature squared, R2. However, a theoretical explanation
of fundamental origin of the Starobinsky model is still missing. The viable infla-
tionary dynamics is driven by the R2 term dominating over the (Einstein-Hilbert) R
term. This is related to a missing UV completion of the non-renormalizable (R+R2)
gravity. The interesting and ambitious project for string phenomenology would be
to provide a derivation of the Starobinsky model from the first principles. A first
step towards this is an embedding of the Starobinsky model into four-dimensional
N = 1 supergravity. In the supergravity framework, the inflaton (scalaron) can mix
with other scalars, and this mixing may ruin any initially successful inflationary
mechanism.

The inflationary model building based on supergravity in the literature usu-
ally assumes that inflaton belongs to a chiral (scalar) supermultiplet [5–7]. How-
ever, there is the alternative to this assumption: inflaton can also belong to a
massive N = 1 vector multiplet. The vector multiplet-based approach avoids
stabilization problems related to the inflaton (scalar) superpartner, as the way-out
of the standard η-problem. The scalar potential of a vector multiplet is given by
the D-term instead of the F-term. The minimal supergravity models, with inflaton
belonging to a massive vector multiplet, were proposed in Refs. [8,9]. Then any
desired values of the CMB observables (the scalar perturbations tilt ns and the
tensor-to-scalar perturbations ratio r) can be recast from the single-field (inflaton)
scalar potential proportional to the derivative squared of arbitrary real function J.
However, in these models, the vacuum energy is vanishing after inflation, thus
restoring supersymmetry, and only a Minkowski vacuum is allowed. The way-out
of this problem was proposed in [10,11] by adding a Polonyi (chiral) superfield
with a linear superpotential [12], leading to a spontaneous SUSY breaking and
allowing a de-Sitter vacuum after inflation.

A successful model of inflation in supergravity should also be consistent with
the Cold Dark Matter (CDM) constraints and the Big Bang Nucleosynthesis (BBN).
For example, many supergravity scenarios are plagued by the so-called gravitino
problem. Gravitinos can decay, injecting hadrons and photons during the BBN
epoch, which may jeopardize the good Standard Model prediction of nuclei ratios
[13–16]. In very much the same way, the Polonyi (overproduction) problem and
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its relation to the BBN results were extensively discussed in the literature [17–22].
In addressing these issues, the mass spectrum and the soft SUSY parameters are
important. The leading (WIMP-like) dark matter production mechanisms and
decay channels are selected from the mass pattern, and have either thermal or
non-thermal origin.

In this paper, we review a class of the minimalistic Polonyi-Starobinsky (PS)
N = 1 supergravity models for inflation, with the inflaton belonging to a (massive)
vector multiplet. These models can avoid the overproduction and BBN problems,
while accounting for the right amount of CDM composed of gravitinos. In our
analysis, we assume that the Polonyi field, inducing a spontaneous SUSY breaking
at a high energy scale, and the gravitino, as the Dark Matter (DM) particle, are both
super-heavy. The main mechanism producing DM is given by the Schwinger-type
production sourced by inflationary expansion. After inflation, Polonyi particles
rapidly decay into gravitinos. We find that gravitinos produced directly from
Schwinger’s production and from Polonyi particles decays, can account for the
correct abundance of Cold Dark Matter.

Another aspect is an inclusion of the (mini) Primordial Black Holes (PBHs)
that may have been copiously produced in the early Universe, and later may have
evaporated into gravitinos and other Standard Model particles [23–27]. A large
amount of mini PBHs cannot be produced in our model when the other scalar
and pseudo-scalar partners of inflaton are not participating in the inflationary
dynamics. The Starobinsky inflaton entails a scalar potential shape that cannot lead
to a large number of PBHs, because it does not allow for amplifying instabilities
and has no exit out of inflation with a first order phase transition. It is still possible
that dynamics of other scalar fields changes this picture. In this case, the extra
moduli can exit from inflation via ending in false minima. The tunneling process
from a false minimum to the true one sources the production of bubbles related to
the first order phase transition.

As regards the (solar mass type) PBHs, their production in the early Uni-
verse is possible in our supergravity approach after a certain deformation of the
Starobinsky scalar potential. We envisage a unification of the inflaton in a vector
multiplet and the Supersymmetric Grand Unified Theories (SUSY GUTs), whose
gauge group has at least one abelian factor, such as the flipped SU(5)×U(1) model
arising from the compactified heterotic superstrings or the intersecting D-branes.

7.2 Starobinsky model of (R+ R2) gravity

Starobinsky model of inflation is defined by the action [4]

SStar. =
M2

Pl

2

∫
d4x
√
−g

(
R+

1

6m2
R2
)
, (7.1)

where we have introduced the reduced Planck mass MPl = 1/
√
8πGN ≈ 2.4 ×

1018 GeV, and the scalaron (inflaton) mass m as the only parameter. We use
the spacetime signature (−,+,+,+, ). The (R + R2) gravity model (7.1) can be
considered as the simplest extension of the standard Einstein-Hilbert action in the
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context of (modified) F(R) gravity theories with an action

SF =
M2

Pl

2

∫
d4x
√
−g F(R) , (7.2)

in terms of the function F(R) of the scalar curvature R.
The F(R) gravity action (7.2) is classically equivalent to

S[gµν, χ] =
M2

Pl

2

∫
d4x
√
−g [F ′(χ)(R− χ) + F(χ)] (7.3)

with the real scalar field χ, provided that F ′′ 6= 0 that we always assume. Here the
primes denote the derivatives with respect to the argument. The equivalence is
easy to verify because the χ-field equation implies χ = R. In turn, the factor F ′ in
front of the R in (7.3) can be (generically) eliminated by a Weyl transformation
of metric gµν, that transforms the action (7.3) into the action of the scalar field χ
minimally coupled to Einstein gravity and having the scalar potential

V =

(
M2

Pl

2

)
χF ′(χ) − F(χ)

F ′(χ)2
. (7.4)

Differentiating this scalar potential yields

dV

dχ
=

(
M2

Pl

2

)
F ′′(χ) [2F(χ) − χF ′(χ)]

(F ′(χ))3
. (7.5)

The kinetic term of χ becomes canonically normalized after the field redefini-
tion χ(ϕ) as

F ′(χ) = exp

(√
2

3
ϕ/MPl

)
, ϕ =

√
3MPl√
2

ln F ′(χ) , (7.6)

in terms of the canonical inflaton field ϕ, with the total acton

Squintessence[gµν, ϕ] =
M2

Pl

2

∫
d4x
√
−gR−

∫
d4x
√
−g

[
1

2
gµν∂µϕ∂νϕ+ V(ϕ)

]
.

(7.7)
The classical and quantum stability conditions of F(R) gravity theory are

given by [5]
F ′(R) > 0 and F ′′(R) > 0 , (7.8)

and they are obviously satisfied for Starobinsky model (7.1) for R > 0.
Differentiating the scalar potential V in Eq. (7.4) with respect to ϕ yields

dV

dϕ
=
dV

dχ

dχ

dϕ
=
M2

Pl

2

[
χF ′′ + F ′ − F ′

F ′2
− 2

χF ′ − F

F ′3
F ′′
]
dχ

dϕ
, (7.9)

where we have

dχ

dϕ
=
dχ

dF ′
dF ′

dϕ
=
dF ′

dϕ

/
dF ′

dχ
=

√
2√

3MPl

F ′

F ′′
. (7.10)
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This implies
dV

dϕ
=MPl

2F− χF ′√
6F ′2

. (7.11)

Combining Eqs. (7.4) and (7.11) yields R and F in terms of the scalar potential V ,

R =

[ √
6

MPl

dV

dϕ
+
4V

M2
Pl

]
exp

(√
2

3
ϕ/MPl

)
, (7.12)

F =

[ √
6

MPl

dV

dϕ
+
2V

M2
Pl

]
exp

(
2

√
2

3
ϕ/MPl

)
. (7.13)

These equations define the function F(R) in the parametric form, in terms of a
scalar potential V(ϕ), i.e. the inverse transformation to (7.4). This is known [28] as
the classical equivalence (duality) between the F(R) gravity theories (7.2) and the
scalar-tensor (quintessence) theories of gravity (7.7).

In the case of Starobinsky model (7.1), one gets the famous potential

V(ϕ) =
3

4
M2

Plm
2

[
1− exp

(
−

√
2

3
ϕ/MPl

)]2
. (7.14)

This scalar potential is bounded from below (non-negative and stable), and it
has the absolute minimum at ϕ = 0 corresponding to a Minkowski vacuum. The
scalar potential (7.14) also has a plateau of positive height (related to inflationary
energy density), that gives rise to slow roll of inflaton in the inflationary era. The
Starobinsky model (7.1) is the particular case of the so-called α-attractor inflation-
ary models [29], and is also a member of the close family of viable inflationary
models of F(R) gravity, originating from higher dimensions [30].

A duration of inflation is measured in the slow roll approximation by the
e-foldings number

Ne ≈
1

M2
Pl

∫ϕ∗
ϕend

V

V ′
dϕ , (7.15)

where ϕ∗ is the inflaton value at the reference scale (horizon crossing), and ϕend is
the inflaton value at the end of inflation when one of the slow roll parameters

εV(ϕ) =
M2

Pl

2

(
V ′

V

)2
and ηV(ϕ) =M

2
Pl

(
V ′′

V

)
, (7.16)

is no longer small (close to 1).
The amplitude of scalar perturbations at horizon crossing is given by [31]

A =
V3∗

12π2M6
Pl(V∗

′)2
=

3m2

8π2M2
Pl

sinh4
(

ϕ∗√
6MPl

)
. (7.17)

The Starobinsky model (7.1) is the excellent model of cosmological inflation,
in very good agreement with the Planck data [1–3]. The Planck satellite mission
measurements of the Cosmic Microwave Background (CMB) radiation [1–3] give
the scalar perturbations tilt as ns ≈ 1 + 2ηV − 6εV ≈ 0.968 ± 0.006 and restrict
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the tensor-to-scalar ratio as r ≈ 16εV < 0.08. The Starobinsky inflation yields
r ≈ 12/N2e ≈ 0.004 and ns ≈ 1 − 2/Ne, where Ne is the e-foldings number
between 50 and 60, with the best fit at Ne ≈ 55 [32,33].

The Starobinsky model (7.1) is geometrical (based on gravity only), while its
(mass) parameterm is fixed by the observed CMB amplitude (COBE, WMAP) as

m ≈ 3 · 1013 GeV or
m

MPl
≈ 1.3 · 10−5 . (7.18)

A numerical analysis of (7.15) with the potential (7.14) yields [31]√
2

3
ϕ∗/MPl ≈ ln

(
4

3
Ne

)
≈ 5.5 ,

√
2

3
ϕend/MPl ≈ ln

[
2

11
(4+ 3

√
3)

]
≈ 0.5 ,

(7.19)
where Ne ≈ 55 has been used.

7.3 Starobinsky inflation in supergravity

Let us introduce a set of two chiral superfields (Φ,H) and a real vector superfield
V coupled to the supergravity sector, with the following Lagrangian: 1

L =

∫
d2θ2E

{
3

8
(DD − 8R)e− 13 (K+2J) + 1

4
WαWα +W(Φ)

}
+ h.c. , (7.20)

whereR is the chiral scalar curvature superfield, E is the chiral density superfield,
(Dα,D

.
α) are the superspace covariant spinor derivatives, K = K(Φ,Φ) is the

Kähler potential, W(Φ) is the superpotential, Wα ≡ −1
4
(DD − 8R)DαV is the

abelian (chiral) superfield strength, and J = J(He2gVH) is a real function with the
coupling constant g.

The Lagrangian (7.20) is invariant under the supersymmetric U(1) gauge
transformations

H→ H ′ = e−igZH , H→ H ′ = eigZH , (7.21)

V → V ′ = V +
i

2
(Z− Z) , (7.22)

the gauge parameter of which, Z, is itself a chiral superfield. The chiral superfield
H can be gauged away via the gauge fixing of these transformations by imposing
the gauge condition H = 1. Then the Lagrangian (7.20) gets simplified to

L =

∫
d2θ2E

{
3

8
(DD − 8R)e− 13 (K+2J) + 1

4
WαWα +W

}
+ h.c. (7.23)

After eliminating the auxiliary fields and moving from the initial (Jordan)
frame to the Einstein frame, the bosonic part of the Lagrangian (7.23) reads [10] 2

e−1L = −
1

2
R−KAĀ∂mA∂

mĀ−
1

4
FmnF

mn−
1

2
J ′′∂mC∂

mC−
1

2
J ′′BmB

m−V , (7.24)

1 We use the standard notation [34] for supergravity in superspace.
2 The primes and capital latin subscripts denote the derivatives with respect to the corre-

sponding fields.
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with the scalar potential

V =
g2

2
J ′
2
+ eK+2J

{
K−1
AĀ

(WA + KAW)(WĀ + KĀW) −

(
3− 2

J ′
2

J ′′

)
WW

}
(7.25)

in terms of the physical fields (A, C, Bm), the auxiliary fields (F, X, D) and the
vector field strength Fmn = DmBn −DnBm.

As is clear from Eq. (7.24), the absence of ghosts requires J ′′(C) > 0, where the
primes denote the differentiations with respect to the given argument. We restrict
ourselves to the Kähler potential and the superpotential of the Polonyi model [12]:

K = ΦΦ , W = µ(Φ+ β) , (7.26)

with the parameters µ and β. Our model includes the single-field (C) inflationary
model, whose D-type scalar potential is given by

V(C) =
g2

2
(J ′)2 (7.27)

in terms of arbitrary function J(C), with the real inflaton field C belonging to a
massive vector supermultiplet. The Minkowski vacuum conditions (after inflation)
can be easily satisfied when J ′ = 0, which implies [12]

〈A〉 =
√
3− 1 and β = 2−

√
3 . (7.28)

This solution describes a stable Minkowski vacuum with spontaneous SUSY break-
ing at arbitrary scale 〈F〉 = µ. The related gravitino mass is given by

m3/2 = µe
2−
√
3+〈J〉 . (7.29)

There is also a complex (Polonyi) scalar of mass

MA = 2µe2−
√
3 ≥ 2m3/2 (7.30)

and a massless fermion in the physical spectrum. The inequality in Eq. (7.30) is
saturated in the original Polonyi model [12] but it is not the case in our model
when 〈J〉 < 0.

As regards the early Universe phenomenology, our model has the following
theoretically appealing features:

• there is no need to ”stabilize” the single-field inflationary trajectory against
scalar superpartners of inflaton, because our inflaton is the only real scalar in
a massive vector multiplet,

• any values of CMB observables ns and r are possible by choosing the J-
function,

• a spontaneous SUSY breaking after inflation occurs at arbitrary scale µ,
• there are only a few parameters relevant for inflation and SUSY breaking: the

coupling constant g defining the inflaton mass, g ∼ minf., the coupling constant
µ defining the scale of SUSY breaking, µ ∼ m3/2, and the parameter β in the
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constant term of the superpotential. Actually, the inflaton mass is constrained
by CMB observations as minf . ∼ O(10−6), while β is fixed by the vacuum
solution, so that we have only one free parameter µ defining the scale of SUSY
breaking in our model (before studying reheating and phenomenology).

The D-type scalar potential associated with the Starobinsky inflationary model
of (R+ R2) gravity arises when [9]

J(C) =
3

2
(C− lnC) (7.31)

that implies

J ′(C) =
3

2

(
1− C−1

)
and J ′′(C) =

3

2

(
C−2

)
> 0 . (7.32)

According to (7.24), a canonical inflaton field φ (with the canonical kinetic term) is
related to the field C by the field redefinition

C = exp
(√

2/3φ
)
. (7.33)

Therefore, we arrive at the (Starobinsky) scalar potential

VStar.(φ) =
9g2

8

(
1− e−

√
2/3φ

)2
with m2inf . = 9g

2/2 . (7.34)

The full action (7.20) of this PS supergravity in curved superspace can be
transformed into a supergravity extension of the (R+ R2) gravity action by using
the (inverse) duality procedure described in Ref. [9]. However, the dual super-
gravity model is described by a complicated higher-derivative field theory that is
inconvenient for studying particle production.

Another nice feature of our model is that it can be rewritten as a supersym-
metric (abelian and non-minimal) gauge theory coupled to supergravity in the
presence of a Higgs superfield H, resulting in the super-Higgs effect with simul-
taneous spontaneous breaking of the gauge symmetry and SUSY. Indeed, the
U(1) gauge symmetry of the original Lagrangian (7.20) allows us to choose a
different (Wess-Zumino) supersymmetric gauge by ”gauging away” the chiral and
anti-chiral parts of the general superfield V via the appropriate choice of the su-
perfield parameters Z and Z. Then the bosonic part of the Lagrangian in terms of
the superfield components in the Einstein frame, after elimination of the auxiliary
fields and Weyl rescaling, reads [11]

e−1L = −
1

2
R− KAA∗∂

mA∂mĀ−
1

4
FmnF

mn − 2Jhh̄∂mh∂
mh̄−

1

2
JV2BmB

m

+ iBm(JVh∂
mh− JVh̄∂

mh̄) − V , (7.35)

where h, h̄ are the Higgs field and its conjugate.
The standard U(1) Higgs mechanism arises with the canonical function J =

1
2
he2V h̄, where we have chosen g = 1 for simplicity. As regards the Higgs sector,

it leads to

e−1LHiggs = −∂mh∂
mh̄+ iBm(h̄∂mh− h∂mh̄) − hh̄BmB

m − V . (7.36)
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After changing the variables h and h̄ as

h =
1√
2
(ρ+ ν)eiζ, h̄ =

1√
2
(ρ+ ν)e−iζ , (7.37)

where ρ is the (real) Higgs boson, ν ≡ 〈h〉 = 〈h̄〉 is the Higgs VEV, and ζ is the
Goldstone boson, the unitary gauge fixing of h → h ′ = e−iζh and Bm → B ′m =

Bm + ∂mζ, leads to the standard result

e−1LHiggs = −
1

2
∂mρ∂

mρ−
1

2
(ρ+ ν)2BmB

m − V . (7.38)

The Minkowski vacuum after inflation can be easily lifted to a de Sitter vacuum
(Dark Energy) in our model by the simple modification of the Polonyi sector and
its parameters as [11]

〈A〉 = (
√
3−1)+

3− 2
√
3

3(
√
3− 1)

δ+O(δ2) , β = (2−
√
3)+

√
3− 3

6(
√
3− 1)

δ+O(δ2) , (7.39)

where δ is a very small deformation parameter, 0 < δ � 1. It leads to a positive
cosmological constant

V0 = µ
2eα

2

δ = m23/2δ (7.40)

and the superpotential VEV

〈W〉 = µ(〈A〉+ β) = µ(a+ b−
1

2
δ) , (7.41)

where a ≡ (
√
3−1) and b ≡ (2−

√
3) provide the SUSY breaking vacuum solution

to the Polonyi parameters in the absence of a cosmological constant.
The full scalar potential (7.25) is a sum of the D- and F-type terms, while there

is a mix of the inflaton - and Polonyi-dependent terms in the F-type contribution.
This mixing leads to instability of the (Starobinsky) inflationary trajectory that is
supposed to be driven by the D-term only. This issue was resolved in Ref. [35]
where a modification of the original PS supergravity action (7.20) was proposed
via adding the generalized Fayet-Iliopoulos term and modifying the J-function
(7.31).

7.4 Super heavy gravitino dark matter

The complete set of equations of motion in our supergravity model (Sec. 3) is very
complicated. In this section, we consider only the leading order with respect to the
inverse Planck mass. In addition, we neglect the coupling of Polonyi and gravitino
particles to the inflaton, and introduce the effective action of the Polonyi field
in the Friedmann-Lemaitre-Robertson-Walker (FLRW) background (in comoving
coordinates) as

I[A] =

∫
dt

∫
d3x

a3

2

(
Ȧ2 −

1

a2
(∇A)2 −M2

AA
2 − ζRA2

)
, (7.42)
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where the non-minimal coupling constant of the Polonyi field to gravity is equal
to ζ = 1, A is the Polonyi field,MA stands for its mass, R is the Ricci scalar, and a
is the FLRW scale factor.

The mode decomposition of the Polonyi field reads

A(x) =
∫
d3k(2π)−3/2a−1(η)

[
bkhk(η)e

ik·x + b†kh
∗
k(η)e

−ik·x
]
, (7.43)

where the conformal time coordinate η is introduced, b, b† are the (standard)
creation/annihilation operators, and the coefficient functions h, h+ are normalized
as follows:

hkh
′∗
k − h ′kh

∗
k = i . (7.44)

Because of Eqs. (7.42) and (7.43), the equation of motion of the modes is

h ′′k (η) +ω
2
k(η)hk(η) = 0 , where ω2k = 5

a ′′

a
+ k2 +M2

Aa
2 , (7.45)

and h ′′ = d2h/dη2. Equation (7.45) can be conveniently rescaled by using some
reference scales a(η∗) ≡ a∗ and H(η∗) = H∗ as follows:

h ′′
k̃
(η̃) + (k̃2 + b2ã2)hk̃(η̃) = 0 , (7.46)

in terms of the rescaled quantities

η̃ = ηa∗H∗ , ã = a/a∗ , k̃ = k/(H∗a∗) .

The leading order of the gravitino action coincides with the massive Rarita-
Schwinger action,

I[ψ] =

∫
d4x e ψ̄σRσ{ψ} , (7.47)

where the gravitino kinetic operator has been introduced as

Rσ{ψ} = m3/2γσνψν + iγσνρDνψρ , (7.48)

and the supercovariant derivative is

Dµψν = −Γρµνψρ + ∂µψν +
1

4
ωµabγ

abψν , (7.49)

in the γ-notation γµ1...µn = γ[µ1 ....γµn].
Since the supergravity torsion is of the second order with respect to the

inverse Planck mass, we ignore it in the leading order approximation. The Γρµν can
be represented by the standard symmetric Christoffel symbols that are actually
cancelled from the Rarita-Schwinger action (7.47). The Rarita-Schwinger action
leads to the gravitino equation of motion,

(i /D−m3/2)ψµ −
(
iDµ +

m3/2

2
γµ

)
γ ·ψ = 0 . (7.50)

In the flat FLRW background, Eq. (7.50) reduces to

iγmn∂mψn = −

(
m3/2 + i

a ′

a
γ0
)
γm∂mψ , (7.51)
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where

ωµab = 2ȧa−1eµ[ae
0
b] , eaµ = a(η)δaµ , m3/2 = m3/2(η) . (7.52)

A solution to Eq. (7.51) is

ψµ(x) =

∫
d3p(2π)−3(2p0)−1

∑
λ

{eik·xbµ(η, λ)akλ(η) + e
−ik·xbCµ (η, λ)a

†
kλ(η)} .

(7.53)
We find that the equations of motion for the 3/2-helicity gravitino modes

have the same form as that of Eq. (7.45), namely,

b ′′µ(η, λ) + Ĉ(k, a)b
′
µ(η, λ) +ω

2(k, a)bµ(η, λ) = 0 , (7.54)

where we have introduced the notation

Ĉ(k, a)b ′µ(η, λ) = −2iγνikiγνη∂
ηbµ − 2γν(m3/2 + i

a ′

a
γ0)iγνη∂ηbµ , (7.55)

ω2(k, a)/2 = k2 +m23/2 + 2i
a ′

a
γ0m3/2 −

(
a ′

a

)2
. (7.56)

Following a procedure similar to the standard one in the case of Dirac and Klein-
Gordon equations, we can reformulate the mode equations of motion in our case
as

PνP
νbµ(η, λ) = 0 , (7.57)

where we have introduced the projector operator

Pν = iγνη∂η − γ
νiki −

(
m3/2 + i

a ′

a
γ0
)
γν = 0 . (7.58)

The dynamics of the gravitino and Polonyi fields during inflation necessary
lead to their quantum production. The number density of produced particles can
be calculated by using a Bogoliubov transformation,

hη1k (η) = αkh
η0
k (η) + βkh

∗η0
k (η) . (7.59)

This transformation is performed from the vacuum solution selected by the bound-
ary conditions at η = ηin, corresponding to the initial time of inflation, to the final
time η = ηf, when the particles creations process from inflation stops. In the in-
flationary epoch, the dynamical regime is a ′/a2 �MPl andMPl ba/k� 1. This
implies that we can consider the extremes as ηin = −∞ and ηf = +∞, performing
a WKB semiclassical approximation. By assuming these boundary conditions, the
energy density of the Polonyi particles produced during inflation reads

ρA(η) =MAnA(η) =MAH
3
inf

(
1

ã(η)

)3
PA , (7.60)

where
PA =

1

2π2

∫∞
0

dk̃k̃2|βk̃|
2 . (7.61)
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The inflaton mass sets the characteristic energy scale for the Hubble constant,
calculated at fixed cosmological time t ≡ tf:

H2(tf) ' m2φ, ρ(tf) ' m2φM2
Pl .

We propose the following formula for Polonyi particles (energy-density and
Polonyi mass) produced during inflation [36]:

(ΩAh
2/ΩRh

2) ' 8π
3

(
MA

MPl

)(
Treh

T0

)
nA(tf)

MPlH2(tf)
, (7.62)

whereMA is the Polonyi mass,ΩRh2 ' 4.31×10−5 is the radiation energy density
at today’s temperature T0, ΩAh2 is the energy density of the produced Polonyi
fields, all in the units of the critical energy density. There is about 8th-orders-of-
magnitude suppression of the energy density. The normalized power spectrum
PA cannot provide such suppression with our values forMA and Hinf. However,
it comes from the dilution factor (ã)−3 = (af/ai)

−3 in Eq. (7.60).
To get the gravitino and Polonyi masses, we have to add a few cosmologi-

cal assumptions about the relevant parameters of the reheating process and, in
particular, about the reheating temperature Treh. The cosmological parameters
can be fixed by specifying the e-foldings number Ne in the range between 50
and 60. For a more precise estimate of the CDM abundance, we choose Ne = 55,
as in Sec. 2. This implies ns = 0.964, r = 0.004, minf = 3.2 · 1013GeV and
Hinf = πMP

√
Pg/2 = 1.4 · 1014GeV. In our scenario, well below the inflaton

mass scale the low-energy effective field theory is given by the Standard Model
(SM) that has the effective number of d.o.f. as g∗ = 106.75. It is reasonable to
assume that all the SM particles originated from perturbative inflaton decay via
the (Starobinsky) universal reheating mechanism, whose reheating temperature is
known [37,38]:

Treh =

(
90

π2g∗

)1/4√
ΓtotMP = 3 · 109GeV . (7.63)

On the other hand, the reheating temperature for heavy gravitino is given by
[39]

Treh = 1.5 · 108 GeV
(
80

g∗

)1/4 ( m3/2

1012GeV

)3/2
. (7.64)

Combining Eqs. (7.63) and (7.64) we get the gravitino and Polonyi masses as
follows:

m3/2 = (7.7± 0.8) · 1012GeV and MA = 2e−〈J〉m3/2 > 2m3/2 . (7.65)

7.5 Primordial Black Holes in supergravity

PBHs may be formed in the early Universe by collapse of primordial density per-
turbations resulting from inflation, when these perturbations re-enter the horizon
and are large enough, i.e. when gravity forces are larger than pressure, in general.
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Apart from being considered as another (non-particle) source for DM, some PBHs
(of stellar mass type) are also considered as the candidates for the gravitational
wave effects caused by the binary black hole mergers observed by LIGO/Virgo
collaboration [40,41].

The PBH mass MPBH is related to the perturbations scale k by Carr’s formula
[42]

MPBH = γρ
4πH−3

3
≈M�

( γ
0.2

)( g∗
3.36

)− 1
6

(
k/(2π)

3 · 10−9Hz

)−2

, (7.66)

whose coefficient γ = 3−3/2 ≈ 0.2, the (normalized) energy density is almost equal
to the (normalized) entropy density g∗ ≈ 3.36, andM� stands for the Solar mass,
M� ≈ 2× 1033 g.

The PBHs abundance f = ΩPBH/Ωc is proportional to the amplitude of the
scalar perturbations Pζ, while for the LIGO events one finds k/(2π) ∼ 10−9 Hz,
Pζ ∼ 10

−2 and f ∼ 10−2, as the regards the orders of their magnitudes [40,41]. The
value of 10−9 Hz corresponds to 106 Mpc−1.

In a single-field inflation, relevant perturbations are controlled by inflaton
scalar potential, so that large fluctuations PR ≈ κ2

2ε

(
H
2π

)2
are produced when

the slow roll parameter ε = r/16 goes to zero, i.e. when the potential has a near-
inflection point where

V ′ ≈ V ′′ ≈ 0 . (7.67)

Since we want a copious PBH production along with observationally con-
sistent CMB observables, we should ”decouple” these events, and demand the
existence of another (”short”) plateau in the scalar potential after the inflation-
ary plateau towards the end of inflation. This is not the case for the Starobinsky
inflation with the scalar potential (7.14), however, it can be easily achieved in a
more general framework. Our supergravity framework in Sect. 3 is an example of
such framework, because it leads to a single-field inflation governed by arbitrary
function J, so that the associated inflaton scalar potential is given by V = g2

2
(J ′)2.

As an example, let us consider the inflaton scalar potential

V

V0
=
(
1+ ξ− e−αφ − ξe−βφ

2
)2

, (7.68)

which is a deformation of the Starobinsky potential (7.14) with α =
√
2/3 and the

new real parameters β ≥ 0 and ξ ≥ 0. The Starobinsky potential (7.14) is recovered
when ξ = 0. The scalar potential (7.68) falls into our supergravity framework, has
Minkowski minimum at φ = 0 and the inflationary plateau for large positive φ.
But, in addition, it also has an inflection point in the ”waterfall” region between
the inflationary plateau and the Minkowski vacuum. Indeed, the conditions (7.67)
result in two equations,

αe−αφ + 2ξβφe−βφ
2

= 0 (7.69)

and
α2e−αφ − 2ξβe−βφ

2

+ 4ξβ2φ2e−φφ
2

= 0 , (7.70)
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respectively. They imply a quadratic equation on φ,

αφ+ 1− 2βφ2 = 0 , (7.71)

whose solution is given by

φ∗ =
α+

√
α2 + 4β

4β
> 0 . (7.72)

Then the remaining condition above is solved by

ξ =
αe−αφ∗+βφ

2
∗

2βφ∗
. (7.73)

Of course, there are many other possibilities to choose the scalar potential
having the form of a real function squared. We just showed that it is possible to
combine a viable (Starobinsky-like) inflation with a viable (stellar mass type) PBHs
production in the context of supergravity.

7.6 Conclusion

Our results lead to the intriguing unifying picture of CDM, dark energy (positive
cosmological constant) and cosmological inflation, in which their parameter spaces
are linked to each other. This scenario also suggests the interesting phenomenology
in the ultra high energy cosmic rays: super heavy Polonyi particles may decay
into the SM particles, as the secondaries, in top-bottom decays. Cosmological high
energy neutrinos from the primary and secondary decay channels can be tested
by IceCube and ANTARES experiments.

Another interesting outcome is that some (stellar mass type) PBHs remnants
produced from the supergravity fields can compose part of the CDM halo co-
existing with gravitinos. In this scenario, gravitational wave signals from the PBHs
mergers can be envisaged, with intriguing implications for LIGO/VIRGO exper-
iments. In short, gravitational wave experiments may provide us with precious
indirect information about the scalar sector of the inflationary supergravity.

Finally, the intriguing possibility exists for a unification of the inflaton in the
vector multiplet, and the SUSY GUTs such as the flipped SU(5) × U(1) model
arising from (Calabi-Yau) compactified heterotic superstrings or the intersecting
D-branes.
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8 Phenomenological Mass Matrices With a
Democratic Origin

A. Kleppe ?
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Abstract. Taking into account the available data on the mass sector, and without any
preconceptions about a specific matrix texture, we obtain quark mass matrices with a
kind of democratic underpinning. Our starting point is a factorization of the “standard”
parametrization of the Cabibbo-Kobayashi-Maskawa mixing matrix, from which we derive
this specific type of quark mass matrices.

Povzetek. Avtorica uporabi razpoložljive podatke o masah delcev in običajno parametriza-
cijo mešalne matrike Cabibba, Kobayashija in Maskawe ter poišče, ne da bi vnaprej privzela
kakršnokoli zahtevo za simetrijo, masne matrike za kvarke. Izkaže se, da so zelo zblizu
demokratičnim matrikam.

Keywords: Mass matrices, flavour symmetry, democratic texture

8.1 Mass states and flavour states

In this project, we take a rather phenomenological approach to the quark mass
sector, by assuming that the quark mass matrices can be derived from a simple
factorization of the Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix [1],

V =

Vud Vus VubVud Vus Vub
Vud Vus Vub


which appears in the charged current Lagrangian

Lcc = −
g

2
√
2
ψ̄Lγ

µVψ ′LWµ + h.c. (8.1)

where ψ and ψ ′ are fermion fields with charges Q and Q− 1, correspondingly.
Lcc is usually interpreted as an interaction between left-handed physical

particles with charge Q and superpositions of left-handed physical particles of
charge Q − 1, e.g. between a (left-handed) up-sector quark and a superposition

? E-mail: kleppe@nbi.dk
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of (left-handed) down-sector quarks. But it can just as well be interpreted as
interactions between flavour states f, f ′,

Lcc = −
g

2
√
2
f̄Lγ

µf ′LWµ + h.c. (8.2)

where
f = U†ψ, f ′ = U ′†ψ ′, and UU ′† = V

The reason we emphasize this is that f, f ′ appear in the mass Lagrangian

Lmass = f̄Mf+ f̄ ′M ′f ′ = ψ̄Dψ+ ψ̄ ′D ′ψ ′, (8.3)

where f, f ′ are quark flavour states with charge 2/3 and -1/3, respectively, and
ψ,ψ ′ are the corresponding mass states. The mass matrices in the weak basis are
denoted by M = M(2/3) and M ′ = M ′(−1/3), which in the mass bases corre-
spond to the diagonal matricesD = diag(mu,mc,mt) andD ′ = diag(md,ms,mb).
It is the form of the mass matricesM andM ′ in the weak basis that we are looking
for, in the hope that they can shed light on the mechanism behind the hierarchical
fermion mass spectra.

In the context of weak interactions it is thus crucial to distinguish between
mass states and flavour states, the flavour states being the eigenstates of the weak
interactions, and the mass eigenstates correspond to the “physical particles” that
take part in strong and electromagnetic interactions.

The picture is that the flavour states all live in the same weak basis in flavour
space, while the mass states of different charge sectors live in their separate mass
bases. We go from the weak basis to the mass bases of the charge 2/3- and charge
-1/3-sector, respectively, by rotating the mass matricesM(2/3) andM ′(−1/3) by
the unitary matrices U and U ′, which are factors of the CKM-matrix, V = UU ′†.

M→ UMU† = D = diag(mu,mc,mt) (8.4)

M ′ → U ′M ′U ′† = D ′ = diag(md,ms,mb)

We can always assume that the mass matrices are Hermitian [3], and diagonalized
by hermitian unitary matrices. Since V = UU ′† 6= 1, the up-sector mass basis is
different from the down-sector mass basis, and the CKM matrix bridges the two
mass bases.

It can be argued that flavour states merely exist in our fantasy, since they are
not directly measurable. This line of thought is however defied by the neutrinos.
Whereas in the quark sector there is a distinction between flavour states, where
mass states are perceived as “physical” and the weakly interacting flavour states
are defined as mixings of these physical particles, in the lepton sector the situation
is quite different. This is due to the fact that as far as we know, neutrino mass states
never appear on the scene - in the sense that they never take part in interactions,
but merely propagate in free space. The neutrinos νe, νµ, ντ are flavour states, but
we nontheless perceive them as “physical”, because they are the only neutrinos
that ever appear in interactions, i.e. they are the only neutrinos that we “see”.

A neutrino is defined by the charged lepton with which it interacts: what we
call the electron-neutrino νe is the superposition of neutrino mass states which
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appears together with the electron, and likewise for µ and τ; in that sense the
conservation of the lepton number is a tautology. The only mixing matrix that
occurs in the lepton sector is the Pontecorvo-Maki-Nakagawa-Sakata mixing
matrix Uwhich exclusively operates on neutrino states,νeνµ

ντ

 = U(PMNS)

ν1ν2
ν3


where (ν1, ν2, ν3) are mass eigenstates, and (νe, νµ, ντ) are the weakly interacting
flavour states. In the lepton sector, the charged currents are thus interpreted as
(e, µ, τ) interacting with the neutrino flavour states (νe, νµ, ντ) - and the charged
leptons are consequently defined as being both flavour states and mass states.

8.2 Factorizing the weak mixing matrix

The usual procedure in establishing an ansatz for the quark mass matrices is to
hypothesize a mass matrix of a specific form. Here we instead look for a “natural”
factorization of the Cabbibo-Kobayashi-Maskawa mixing matrix, hoping to find
the “correct” rotation matrices U and U ′ that diagonalize the mass matrices M
andM ′.

The CKM matrix can of course be parametrized and factorized in many dif-
ferent ways, and different factorizations correspond to different rotation matrices
U and U ′, and correspondingly to different mass matricesM andM ′. We choose
what we perceive as the most obvious and “symmetric” factorization of the CKM
mixing matrix, following the well-known standard parametrization [2] with three
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Euler angles α, β, 2θ,

V =

 cβc2θ sβc2θ s2θe
−iδ

−cβsαs2θe
iδ − sβcα −sβsαs2θe

iδ + cβcα sαc2θ
−cβcαs2θe

iδ + sβsα −sβcαs2θe
iδ − cβsα cαc2θ

 = UU
′† (8.5)

This corresponds to the diagonalizing rotation matrices for the up- and down-
sectors

U =W

1 0 0

0 cosα sinα
0 − sinα cosα

e−iγ 1
eiγ

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

W†
=W

 cθe
−iγ 0 sθe

−iγ

−sαsθe
iγ cα sαcθe

iγ

−cαsθe
iγ −sα cαcθe

iγ

W†
(8.6)

and

U ′ =W

cosβ − sinβ 0
sinβ cosβ 0

0 0 1

e−iγ 1
eiγ

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

W†
=W

cβcθe−iγ −sβ −cβsθe
−iγ

sβcθe
−iγ cβ −sβsθe

−iγ

sθe
iγ 0 cθe

iγ

W†
(8.7)

respectively, whereW =W(ρ) is a unitary matrix which is chosen is such a way
that the same phase γ appears in the mass matrices of both charge sectors, i.e. a
matrix of the form

W(ρ) ∼

0 cos ρ ± sin ρ
1 0 0

0 ∓ sin ρ cos ρ

 ,
 cos ρ 0 ± sin ρ

0 1 0

∓ sin ρ 0 cos ρ

 ,
 cos ρ ± sin ρ 0

0 0 1

∓ sin ρ cos ρ 0


Here the value of the parameter ρ is unknown, whereas α, β, θ and γ correspond
to the parameters in the standard parametrization, with γ = δ/2, δ = 1.2± 0.08
rad, and 2θ = 0.201 ± 0.011◦, while α = 2.38 ± 0.06◦ and β = 13.04 ± 0.05◦. In
our factorization scheme, α and β are the rotation angles operating in the up-
sector and the down-sector, respectively. With the rotation matrices U(α, θ, γ, ρ)
and U ′(β, θ, γ, ρ), we obtain the mass matrices for the up- and down-sectors,
respectively,

M = U†diag(mu,mc,mt)U and M ′ = U ′†diag(md,ms,mb)U
′

For the up-sector this gives

M =

M11 M12 M13

M21 M22 M23

M31 M32 M33

 =W†(ρ)

 Xc2θ + Ys
2
θ Zsθ e

−iγ (X− Y)cθsθ
Zsθ e

iγ Y − 2Z cot 2α −Zcθ e
iγ

(X− Y)cθsθ −Zcθ e
−iγ Xs2θ + Yc

2
θ

W(ρ)

(8.8)
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where

X = mu, Y = mc sin2 α+mt cos2 α,

Z = (mt −mc) sinα cosα =
√
(mt − Y)(Y −mc),

and mu,mc, mt are the masses of the up-, charm- and top-quark; and W(ρ) is a
unitary one-parameter matrix. Analogously for the down-sector mass matrix,

M ′ =

M ′11 M ′12 M ′13M ′21 M
′
22 M

′
23

M ′31 M
′
32 M

′
33


=W†(ρ)

 X ′s2θ + Y
′c2θ Z ′cθ e

iγ (X ′ − Y ′)cθsθ
Z ′cθ e

−iγ Y ′ + 2Z ′ cot 2β −Z ′sθ e
−iγ

(X ′ − Y ′)cθsθ −Z ′sθ e
iγ X ′c2θ + Y

′s2θ

W(ρ) (8.9)

where X ′ = mb, Y ′ = md cos2 β + ms sin2 β, Z ′ = (ms − md) sinβ cosβ =√
(ms − Y ′)(Y ′ −md), andmd,ms,mb are the masses of the down-, strange- and

bottom-quark, respectively. The two mass matrices thus display similar textures.
With Y = mc sin2 α+mt cos2 α, Z = (mt−mc) sinα cosα, Y ′ = md cos2 β+

ms sin2 β, and Z ′ = (ms −md) sinβ cosβ, we can moreover write

mu = X, mc = Y − Z cotα, mt = Y + Z tanα,
md = Y ′ − Z ′ tanβ, ms = Y

′ + Z ′ cotβ, mb = X ′,
(8.10)

8.3 The matrix W

There are of course many ways to chose a one-parameter unitary matrix, but we
choose a matrix W(ρ) which conveniently gives mass matrices with the same
phase γ for both charge sectors,

W(ρ) =

cos ρ − sin ρ 0
0 0 1

sin ρ cos ρ 0

 (8.11)

This gives the up-sector mass matrix

M =W†

 Xc2θ + Ys
2
θ Zsθ e

−iγ (X− Y)cθsθ
Zsθ e

iγ Y − 2Z cot 2α −Zcθ e
iγ

(X− Y)cθsθ −Zcθ e
−iγ Xs2θ + Yc

2
θ

W = (8.12)

=

X cos2 µ+ Y sin2 µ (Y − X) sinµ cosµ −Z sinµ e−iγ

(Y − X) sinµ cosµ X sin2 µ+ Y cos2 µ −Z cosµ e−iγ

−Z sinµ eiγ −Z cosµ eiγ F


where µ = ρ − θ, X = mu, Y = mc sin2 α +mt cos2 α, Z =

√
(mt − Y)(Y −mc)

and F = Y − 2Z cot 2α = mcc
2
α +mts

2
α.
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Now, depending on the value of µ = ρ− θ, we get different matrix textures,
e.g. for ρ− θ = 0 or π, we get the simple form

M(0, π) =

X 0 0

0 Y −Ze−iγ

0 −Zeiγ F

 , (8.13)

and for ρ− θ = π/2, equally simple

M(π/2) =

 Y 0 −Ze−iγ

0 X 0

−Zeiγ 0 F

 (8.14)

Applying the same procedure to the down-sector, we get the down-sector mass
matrix

M ′ =W(ρ)†

 X ′s2θ + Y
′c2θ Z ′cθ e

iγ (X ′ − Y ′)cθsθ
Z ′cθ e

−iγ Y ′ + 2Z ′ cot 2β −Z ′sθ e
−iγ

(X ′ − Y ′)cθsθ −Z ′sθ e
iγ X ′c2θ + Y

′s2θ

W(ρ) =

=

X ′ sin2 µ ′ + Y ′ cos2 µ ′ (X ′ − Y ′) sinµ ′ cosµ ′ Z ′ cosµ ′ eiγ

(X ′ − Y ′) sinµ ′ cosµ ′ X ′ cos2 µ ′ + Y ′ sin2 µ ′ −Z ′ sinµ ′ eiγ

Z ′ cosµ ′ e−iγ −Z ′ sinµ ′ e−iγ F ′

 (8.15)

where µ ′ = ρ+θ,X ′ = mb, Y ′ = md cos2 β+ms sin2 β,Z ′ =
√

(ms − Y ′)(Y ′ −md)

and F ′ = Y ′ + 2Z ′ cot 2β = mds
2
β +msc

2
β. Again, different µ ′-values correspond

to different matrices, e.g. for µ ′ = ρ+ θ = 0 or π, we get

M ′(0, π) =

 Y ′ 0 Z ′eiγ

0 X ′ 0

Z ′e−iγ 0 F ′

 (8.16)

and for µ ′ = ρ+ θ = π/2, we get

M ′(π/2) =

X ′ 0 0

0 Y ′ −Z ′eiγ

0 −Z ′e−iγ F ′

 (8.17)

8.4 Texture Zero Mass Matrices

The matrices (8.13) and (8.14), as well as (8.16) and (8.17), make us wonder if our
scheme is compatible with quark mass matrices of texture zero.

The study of texture zero matrices is driven by the need to reduce the number
of free parameters, since the fermion mass matrices are 3x3 complex matrices,
which without any constraints contain 36 real free parameters. It is however
always possible to perform a unitary transformation that renders an arbitrary
mass matrix Hermitian [3], so there is no loss of generality in assuming that the
mass matrices are Hermitian, reducing the number of free parameters to 18. This
is still a very large number, which in the end of the 1970-ies prompted Fritzsch [6],
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[7] to introduce “texture zero matrices”, i.e. mass matrices where a certain number
of the entries are zero.

Since then, a huge amount of articles have appeared, with analyses of the very
large number of (different types of) texture zero matrices and their phenomenology.
In the course of this work, a number of of texture zero matrices have been ruled
out. A handful of matrices have however been singled out as viable [8], which
among the texture 4 zero matrices are:A B 0

B∗ D C

0 C∗ 0

 ,
A B C

B∗ D 0

C∗ 0 0

 ,
A 0 B

0 0 C

B∗ C∗ D

 ,
 0 C 0

C∗ A B

0 B∗ D

 ,
 0 0 C

0 A B

C∗ B∗ D

 ,
D C B

C∗ 0 0

B∗ 0 A


while A 0 0

0 C B

0 B∗ D

 and

A 0 B

0 C 0

B∗ 0 D


are among the matrices that are ruled out. In our scheme this precisely corresponds
to the matrices (8.13), (8.14), (8.16) and (8.17), which gives a constraint on the angle
ρ,

ρ 6= 1

2
Nπ± θ (8.18)

whereN ∈ Z , ruling out the matricesM(1
2
Nπ−θ) andM ′(1

2
Nπ+θ). This implies

that our mass matrices M and M ′ are not of texture zero. Instead, they display
a kind of democratic texture [4], a feature that has merely been outlined in our
earlier project [5].

8.5 Democratic mass matrices

In the Standard Model, fermions get their masses from the Yukawa couplings
by the Higgs mechanism. We know that the fermion masses within one charge
sector are very different, but there is no apparent reason why there should be a
different Yukawa coupling for each fermion of a given charge. Taking the differ-
ence between the weak basis and the mass bases into account, the democratic
philosophy proclaims that in the weak basis, the fermions of a given charge should
have identical Yukawa couplings, just like they have identical couplings to the
gauge bosons of the strong, weak and electromagnetic interactions.

The democratic hypothesis thus implies that in the weak basis the quark mass
matrices for both charge sectors have an initial, “democratic” form

M0 = k

1 1 11 1 1

1 1 1

 ≡ kN (8.19)

where k has dimension mass; and the mass spectrum (0, 0, 3k) reflects the phe-
nomenology of the fermion mass spectra with one very big and two much smaller
mass values - in the mass basis. In the weak basis the matrixM0 = kN is however
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totally flavour symmetric, in the sense that the flavour states fi of a given charge
are indistinguishible and the initial mass Lagrangian reads

Lmass = kf̄Nf =
3∑

i=1,j=1

k f̄ifj

which is a totally flavour symmetric situation, with a discrete flavour symmetry
under the cyclic permutation group Z3 operating on the mass matrix. That the
Yukawa couplings are identical for all the flavours, while the mass eigenvalues
are so completely different is a reminder of the difference between flavour states
and mass states.

The democratic symmetry is unchanged if we add a diagonal matrix

diag(X,X, X)

to kN, since the new democratic mass matrix M0 = kN + diag(X,X, X) still
corresponds to a completely flavour symmetric mass Lagrangian,

Lmass = f̄M0f = k

3∑
i,j=1

f̄ifj + X

3∑
i=1

f̄ifi = (k+ X)

3∑
i=1

f̄ifj (8.20)

Moreover, since the up-sector mass matrix and the down sector mass matrix
in this assumed democratic initial stage are structurally identical, the mixing
matrix is equal to unity, so there is no CP-violation. In order to obtain the final
mass spectra with the three hierarchical non-zero values, the initial democratic
symmetry must be broken in such a way that we get a mixing matrix and masses
that all agree with data. In the democratic scenario an ansatz thus consists of a
specific choice for the flavour symmetry breaking scheme. In our approach, it
however comes out of the formalism, without any presupposition of a democratic
texture or a specific breaking scheme.

8.5.1 Reparametrizing the mass matrices

By reformulating the matrix elementsM11,M22,M
′
11, andM ′22 in the quark mass

matrices (8.12) and (8.15), using the relations

Xc2µ + Ys2µ = (Y − X)s2µ + X, Xs2µ + Yc2µ = (Y − X)c2µ + X, and
X ′s2µ ′ + Y

′c2µ ′ = (Y ′ − X ′)c2µ ′ + X
′, and X ′c2µ + Y ′s2µ = (Y ′ − X ′)s2µ ′ + X

′,

the mass matrices can be rewritten in a way that reveals a kind of “democratic
substructure”,

M =

 Xc2µ + Ys2µ (Y − X)sµcµ −Zsµ e
−iγ

(Y − X)sµcµ Xs2µ + Yc2µ −Zcµ e
−iγ

−Zsµ e
iγ −Zcµ e

iγ F

 = (8.21)

= B

sinµ
cosµ

Geiγ

1 1 11 1 1

1 1 1

sinµ
cosµ

Ge−iγ

+

X X
X+A


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and

M ′ =

 X ′s2µ ′ + Y
′c2µ ′ (X ′ − Y ′)sµ ′cµ ′ Z

′cµ ′ e
iγ

(X ′ − Y ′)sµ ′cµ ′ X
′c2µ ′ + Y

′s2µ ′ −Z ′sµ ′ e
iγ

Z ′cµ ′ e
−iγ −Z ′sµ ′ e

−iγ F ′

 = (8.22)

= B ′
(

cosµ ′

− sinµ ′

G ′e−iγ

)(
1 1 1
1 1 1
1 1 1

)( cosµ ′

− sinµ ′

G ′eiγ

)
+

(
X ′

X ′

X ′+A ′

)
where

X = mu, µ = ρ− θ, B = Y − X = mcs
2
α +mtc

2
α −mu,

G = −
(mt −mc)sαcα

(mcs2α +mtc2α −mu)
, A =

(mc −mu)(mt −mu)

(mcs2α +mtc2α −mu)
,

and X ′ = mb, µ ′ = ρ+ θ, B ′ = Y ′ −X ′ = mss
2
β +mdc

2
β −mb,

G ′ =
(ms −md)sβcβ

(mdc2β +mss2β −mb)
, A ′ =

(md −mb)(ms −mb)

(mdc2β +mss2β −mb)
,

α = arctan
(√

mt−Y
Y−mc

)
= 2.38± 0.06◦, β = arctan

(√
Y ′−md
ms−Y ′

)
= 13.04± 0.05◦.

The matrices of the two charge sectors thus display great similarities. That
A 6= 0 and A ′ 6= 0 moreover means that mc 6= mu, mt 6= mu, md 6= mb and
ms 6= mb, and with the additional conditionmc 6= mt andmd 6= mb, we almost
have the prerequisite for CP-violation - which basically says that CP-violation
occurs once there is a third family (and a complex phase).

8.6 Discussion

We interpret the structure displayed by (8.21) and (8.22) as the result of an in initial
democratic matrix, where the flavour symmetry undergoes a stepwise breaking,
each step corresponding to one term. If we consider the up-sector, the first term
comes from

M0 = k

1 1 11 1 1

1 1 1

⇒M1 = B

sinµ
cosµ

Geiγ

1 1 11 1 1

1 1 1

sinµ
cosµ

Ge−iγ

 ,
(8.23)

where k and B both have the dimension mass. This first symmetry breaking step
really corresponds to shifting the flavours in such a way that f1 → sµf1, f2 → cµf2,
f3 → Ge−iγf3. The mass spectrum still consists of two massless and one massive
state, but the flavour symmetry is partially broken, with the mass Lagrangian

Lmass = f̄M1f = χ̄1χ1 + χ̄1χ2 + χ̄2χ1 + χ̄2χ2 = (χ̄1 + χ̄2)(χ1 + χ2),

where χ1 = B(sµf1 + cµf2), χ2 = BGe−iγf3. The original total flavour symmetry
is thus broken down to the partial flavour symmetry f1 ⇔ f2, but there is still only
one non-vanishing eigenvalue.
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In the next step, by shifting the origin from diag(0, 0, 0) to diag(X,X, X), we
obtain a mass spectrum with one very heavy, massive state, and two lighter states
with mass X, i.e.

M1 ⇒M2 = B

sinµ
cosµ

Geiγ

1 1 11 1 1

1 1 1

sinµ
cosµ

Ge−iγ

+

X X
X


(8.24)

where X has dimension mass.
In the last step, the remaining degeneracy in the mass spectrum (X,X, X +

B(G2 + 1)) is subsequently broken, by adding the term diag(0, 0,A), where A has
dimension mass. We argue that this last breaking is necessitated by the principle
of minimal energy, in analogy with the Jahn-Teller effect.

M2 ⇒M3 = B

(
sinµ

cosµ
Geiγ

)(
1 1 1
1 1 1
1 1 1

)( sinµ
cosµ

Ge−iγ

)
+
(
X
X
X

)
+
(
0
0
A

)
(8.25)

We identify our scheme as a democratic scenario, where the flavour symmetry is
broken in the specific way described above.

8.7 Numerical values

In order to get a notion of the sizes of the parameters B,G,X,A, we calculate their
values for quark masses at different µ. Using quark masses atMZ, [9], [10], [11]

mu(MZ) = 1.24MeV, mc(MZ) = 624MeV, mt(MZ) = 171550MeV

md(MZ) = 2.69MeV, ms(MZ) = 53.8MeV, mb(MZ) = 2850MeV
(8.26)

we get the numerical values for the parameters:

up-sector d-sector
B = 171254MeV ≈ mt cos2 α B ′ = −2844.71MeV ≈ 2md −mb
G = 0.0414 G ′ = −0.0039

X = 1.24MeV X ′ = 2850MeV

A = 623.83MeV ≈ mc cosα A ′ = −2798.76MeV ≈ ms −md −mb

and as before, we use the angles α = 2.38◦ and β = 13.04◦.
We would also like to establish some numerical value, or at least a range, for

the parameter ρ. Our initial assumption was that the matrices (8.6), (8.7) which
diagonalize the up-sector and down-sector mass matrices, are given by the factor-
ization of the Cabibbi-Kobayashi-Maskawa matrix (8.5). The parameters of the
CKM matrix are well-known, so the only remaining “steering-parameter” is ρ. The
angles µ and µ ′ in the mass matrices of the up- and d-sector depend on ρ, whose
value is unknown. We have the constraint

ρ 6= 1

2
Nπ± θ (8.27)

which excludes some values of ρ, but it remains unknown what value(s) ρ actually
takes.
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8.8 Conclusion

By factorizing the “standard parametrization” of the CKM weak mixing matrix in
a very natural and straightforward way, we obtain mass matrices with a type of
democratic texture that can be derived from a democratic matrix, followed by a
well-defined scheme for breaking the primary flavour symmetry. This democratic
texture unexpectedly emerges from our factorization of the weak mixing matrix,
there is no presupposition about what form our resulting mass matrices would
have, and no assumptions other than our factorization scheme and the choice of
the unitary matrixW(ρ).
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Abstract. This is a discussion on fermion fields, the internal degrees of freedom of which are
described by either the Grassmann or the Clifford anticommuting ”coordinates”. We prove
that both fields can be second quantized so that their creation and annihilation operators
fulfill the requirements of the commutation relations for fermion fields. However, while
the internal spins determined by the generators of the Lorentz group of the Clifford objects
Sab and S̃ab (in the spin-charge-family theory Sab determine the spin degrees of freedom
and S̃ab the family degrees of freedom) are half integer, the internal spin determined by
Sab (expressible with Sab + S̃ab) is integer. Nature ”made” obviously the choice of the
Clifford algebra, at least in the so far observed part of our universe. We discuss here the
quantization — first and second — of the fields, the internal degrees of freedom of which are
functions of the Grassmann coordinates θa and their conjugate momenta, as well as of the
fields, the internal degrees of freedom of which are functions of the Clifford γa. Inspiration
comes from the spin-charge-family theory ([1,2,9,3], and the references therein), in which
the action for fermions in d-dimensional space isequal to

∫
ddx E 1

2
(ψ̄ γap0aψ) + h.c.,

with p0a = fαap0α + 1
2E

{pα, Ef
α
a}−, p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα. We write the

basic states as products of those either Grassmann or Clifford objects, which allow second
quantization for fermion fields, and look for the action and solutions for free fields also in the
Grassmann case in order to understand why the Clifford algebra ”wins in the competition”
for the physical (observable) degrees of freedom.

Povzetek. Avtorja obravnavata razliko med fermionskimi polji, katerih interne prostostne
stopnje opišemo bodisi z Grassmannovimi bodisi s Cliffordovimi antikomutirajočimi “ko-
ordinatami”. Dokažeta, da lahko v obeh primerih poiščemo kreacijske in anihilacijske
operatorje, ki zadoščajo komutacijskim relacijam za fermionska polja v drugi kvantizaciji.
Obe vrsti opisa fermionskih polj se vseeno bistveno razlikujeta: notranji spini, določeni
z generatorji Lorenztove grupe Cliffordovih objektov Sab in S̃ab (v teoriji spinov-nabojev-
družin določajo Sab spinsko kvantno število ter s tem spine in naboje kvarkov in leptonov,
S̃ab pa določajo družinska kvantna števila), imajo polštevilčen spin, medtem ko je notanji
spin, ki ga določajo Sab (izrazljivi z Sab + S̃ab), celoštevilčen. Narava je očitno “izbrala”
Cliffordovo algebro (vsaj v opazljivem delu vesolja). Avtorja obravnavata prvo in drugo
kvantizacijo polj, katerih notranje prostostne stopnje opišeta s funkcijami Grassmannovih

? This article is the expanded part of the talk presented by N.S. Mankoč Borštnik at the
21st Workshop ”What Comes Beyond the Standard Models”, Bled, 23 of June to 1 of July,
2018.
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koordinat θa in ustreznih konjugiranih momentov, pa tudi polja, katerih notranje prostostne
stopnje so opisane s funkcijami Cliffordovih koordinat γa. Uporabo za opis fermionov
v Grassmannovem prostoru je navdihnila teorija spinov-nabojev-družin ([1,2,9,3], in refer-
ence v njih), v kateri akcijo v d-razsežnem prostoru opiše eden od avtorjev (N.S.M.B.) z∫
ddx E 1

2
(ψ̄ γap0aψ) + h.c., s kovariantnim odvodom p0a = fαap0α + 1

2E
{pα, Ef

α
a}−,

p0α = pα−
1
2
Sabωabα−

1
2
S̃abω̃abα. Bazna stanja iščeta kot produkt bodisi Grassmannovih

bodisi Cliffordovih ”koordinat”, ki dopuščajo drugo kvantizacijo, ponudita akcijo za prosta
polja tudi v primeru Grassmannovih koordinat, da bi bolje razumela, zakaj je v tekmi za
fizikalne prostostne stopnje “zmagala” Cliffordova algebra.

Keywords: Second quantization of fermion fields, Spinor representations, Kaluza-
Klein theories, Discrete symmetries, Higher dimensional spaces, Beyond the stan-
dard model
PACS:11.30.Er,11.10.Kk,12.60.-i, 04.50.-h

9.1 Introduction

This paper is to look for the answers to the questions: Why our universe ”uses” the
Clifford rather than the Grassmann coordinates, although both lead in the second
quantization procedure to the anti-commutation relations required for fermion
degrees of freedom? Is the answer that the Clifford degrees of freedom offer the
appearance of families, the half integer spin and the charges as observed so far for
fermions, while the Grassmann coordinates offer the groups of (isolated) integer
spin states with the charges in the adjoint representations and no families? Can the
choice of the Clifford degrees of freedom explain why the simple starting action of
the spin-charge-family theory of one of us (N.S.M.B.) [9,3,5,8,4,6,7] is doing so far
extremely well in manifesting the observed properties of the fermion and boson
fields in the observed low energy regime?

The questions are too demanding that this paper could offer the answers. We
are trying only to make first steps towards understanding them.

Our working hypothesis is that ”nature knows all the mathematics”, accordingly
therefore also both — the Grassmann and the Clifford ”coordinates”. In a trial to
understand why Grassmann space ”was not the choice of nature” to describe the
internal degrees of freedom of fermions, we see that γa’s and γ̃a’s of the spin-
charge-family theory enable to describe not only the spin and charges of fermions,
but also the existence of families of fermions (in the first and second quantized
theory of fields).

This work is a part of the project of both authors, which includes the fermion-
ization procedure of boson fields or the bosonization procedure of fermion fields,
discussed in Refs. [11,12,14] for any dimension d (by the authors of this contri-
bution, while one of them, H.B.F.N. [13], has succeeded with another author to
do the fermionization for d = (1 + 1)), and which would hopefully help to better
understand the content and dynamics of our universe.

In the spin-charge-family theory [9,3,5,8,4,6,7] — which offers explanations
for all the assumptions of the standard model, with the appearance of families, the
scalar higgs and the Yukawa couplings included, offering also the explanation for
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the matter-antimatter asymmetry in our universe and for the appearance of the
dark matter — a very simple starting action for massless fermions and bosons in
d = (1 + 13) is assumed, in which massless fermions interact with only gravity,
the vielbeins fαa (the gauge fields of moments pa) and the two kinds of the spin
connections (ωabα and ω̃abα, the gauge fields of the two kinds of the Clifford
algebra objects γa and γ̃a, respectively).

A =

∫
ddx E

1

2
(ψ̄ γap0aψ) + h.c.+∫

ddx E (αR+ α̃ R̃) , (9.1)

with p0a = fαap0α + 1
2E

{pα, Ef
α
a}−, p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα and

R = 1
2
{fα[afβb] (ωabα,β − ωcaαω

c
bβ)} + h.c., R̃ = 1

2
{fα[afβb] (ω̃abα,β −

ω̃caα ω̃
c
bβ)}+ h.c.. The two kinds of the Clifford algebra objects, γa and γ̃a,

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ ,

{γa, γ̃b}+ = 0 . (9.2)

anticommute (γa and γ̃b are connected with the left and the right multiplication of
the Clifford objects, there is no third kind of the Clifford operators). One kind of the
objects, the generators Sab = i

4
(γa γb − γb γa), determines spins and charges of

spinors of any family, another kind, S̃ab = i
4
(γ̃a γ̃b−γ̃b γ̃a), determines the family

quantum numbers. Here 1 fα[afβb] = fαafβb− fαbfβa. There are correspondingly
two kinds of infinitesimal generators of the Lorentz transformations in the internal
degrees of freedom — Sab for SO(13, 1) and S̃ab for S̃O(13, 1) — arranging states
into representations.

The scalar curvatures R and R̃ determine dynamics of the gauge fields — the
spin connections and the vielbeins, which manifest in d = (3+ 1) all the known
vector gauge fields as well as the scalar fields [5] which explain the appearance
of higgs and the Yukawa couplings, provided that the symmetry breaks from the
starting one SO(13, 1) to SO(3, 1)× SU(3)×U(1).

The infinitesimal generators of the Lorentz transformations for the gauge
fields — the two kinds of the Clifford operators and the Grassmann operators —
operate as follows, Eq. (9.25)

{Sab, γe}− = −i (ηae γb − ηbe γa) ,

{S̃ab, γ̃e}− = −i (ηae γ̃b − ηbe γ̃a) ,

{Sab, θe}− = −i (ηae θb − ηbe θa) ,

{Mab, Ad...e...g}− = −i (ηaeAd...b...g − ηbeAd...a...g) , (9.3)

1 fαa are inverted vielbeins to eaα with the properties eaαfαb = δab, e
a
αf
β
a = δβα, E =

det(eaα). Latin indices a, b, ..,m, n, .., s, t, .. denote a tangent space (a flat index), while
Greek indices α, β, .., µ, ν, ..σ, τ, .. denote an Einstein index (a curved index). Letters from
the beginning of both the alphabets indicate a general index (a, b, c, .. and α, β, γ, .. ),
from the middle of both the alphabets the observed dimensions 0, 1, 2, 3 (m,n, .. and
µ, ν, ..), indexes from the bottom of the alphabets indicate the compactified dimensions
(s, t, .. and σ, τ, ..). We assume the signature ηab = diag{1,−1,−1, · · · ,−1}.
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where Mab are defined by a sum of Lab plus either Sab or S̃ab, in the Grassmann
case Mab is Lab + Sab, which appear to be Mab= Lab + Sab + S̃ab, as presented
later in Eq. (9.26).

We discuss in what follows the first and the second quantization of the fields,
the internal degrees of freedom of which are determined by the Grassmann coor-
dinates θa, as well as of the fields, the internal degrees of freedom of which are
determined by the Clifford coordinates γa (or γ̃a) in order to understand why
”nature has made a choice” of fermions of spins and charges (describable in the
spin-charge-family theory by subgroups of the Lorentz group expressible with the
generators Sab) in the fundamental representations of the groups (which interact
in the spin-charge-family theory through the boson gauge fields — the vielbeins
and the spin connections of two kinds), rather than of fermions with the integer
spins and charges. We choose correspondingly either θa’s or γa’s (or γ̃a’s, either
γa’s or γ̃a’s [6,7,9]) to describe the internal degrees of freedom of fields.

In all these cases we treat free massless fields; masses of the fields in d =

(3+ 1) are in the spin-charge-family theory due to their interactions with the grav-
itational fields in d > 4, described by the scalar vielbeins or spin connection
fields [[1,2,9,3,5,8,4,6,7], and the references therein].

9.2 Observations helping to understand why Clifford algebra
manifests in the observable d = (3+ 1)

We present in this section properties of fields with the integer spin in d-dimensional
space, expressed in terms of the Grassmann algebra objects, and the spinor fields
with the half integer spin, expressed in terms of the Clifford algebra objects. Since
the Clifford algebra objects are expressible with the Grassmann algebra objects
(Eqs. (9.17, 9.18)), the norms of both are determined by the integral in Grassmann
space, Eqs. (9.28, 9.31) 2.

a. Fields with the integer spin in Grassmann space

A point in d-dimensional Grassmann space of real anticommuting coordinates
θa, (a = 0, 1, 2, 3, 5, . . . , d), is determined by a vector

{θa} = (θ0, θ1, θ2, θ3, θ5, . . . , θd).

A linear vector space over the coordinate Grassmann space has correspondingly
the dimension 2d, due to the fact that (θai)2 = 0 for any ai ∈ (0, 1, 2, 3, 5, . . . , d).

Correspondingly are fields in Grassmann space expressed in terms of the
Grassmann algebra objects

B =

d∑
k=0

aa1a2...ak θ
a1θa2 . . . θak |φog > , ai ≤ ai+1 , (9.4)

2 These observations might help also when fermionizing boson fields or bosonizing fermion
fields.
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where |φog > is the vacuum state, here assumed to be |φog >= |1 >, so that
∂
∂θa

|φog >= 0 for any θa. The Kalb-Ramond boson fields aa1a2...ak are antisym-
metric with respect to the permutation of indexes, since the Grassmann coordinates
anticommute

{θa, θb}+ = 0 . (9.5)

The left derivative ∂
∂θa

on vectors of the space of monomials B(θ) is defined as
follows

∂

∂θa
B(θ) =

∂B(θ)
∂θa

,{
∂

∂θa
,
∂

∂θb

}
+

B = 0 , for all B . (9.6)

Defining pθa = i ∂
∂θa

it correspondingly follows

{pθa, pθb}+ = 0 , {pθa, θb}+ = i ηab , (9.7)

The metric tensor ηab (= diag(1,−1,−1, . . . ,−1)) lowers the indexes of a vector
{θa}: θa = ηab θ

b, the same metric tensor lowers the indexes of the ordinary vector
xa of commuting coordinates.

Defining 3

(θa)† =
∂

∂θa
ηaa = −i pθaηaa , (9.8)

it follows

(
∂

∂θa
)† = ηaa θa , (pθa)† = −iηaaθa . (9.9)

Making a choice for the complex properties of θa, and correspondingly of ∂
∂θa

, as
follows

{θa}∗ = (θ0, θ1,−θ2, θ3,−θ5, θ6, ...,−θd−1, θd) ,

{
∂

∂θa
}∗ = (

∂

∂θ0
,
∂

∂θ1
,−

∂

∂θ2
,
∂

∂θ3
,−

∂

∂θ5
,
∂

∂θ6
, ...,−

∂

∂θd−1
,
∂

∂θd
) , (9.10)

it follows for the two Clifford algebra objects γa = (θa + ∂
∂θa

), and γ̃a = i(θa −
∂
∂θa

), Eqs. (9.17, 9.18), that γa is real if θa is real, and imaginary if θa is imaginary,
while γ̃a is imaginary when θa is real and real if θa is imaginary, just as it is
required in Eq. (9.23).

We define here the commuting object γaG, which will be useful to find the
action for Grassmann fermions, Eq. (9.37), and the appropriate discrete symmetry
operators for this purpose — (CG , TG , PG) in ((d− 1) + 1)-dimensional space-time

3 In Ref. [2] the definition of θa† was differently chosen. Correspondingly also the scalar
product needed a (slightly) different weight function in Eq. (9.28).
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and (CN , TN , PN ) in (3+ 1) space-time — while following the definitions of the
discrete symmetry operators in the Clifford algebra case [21]

γaG = (1− 2θaηaa
∂

∂θa
)

= −iηaa γaγ̃a ,

{γaG, γ
b
G}− = 0 . (9.11)

Index a is not the Lorentz index in the usual sense. γaG are commuting operators —
{γaG, γ

b
G}− = 0 for all (a, b) — as expected. They are real and Hermitian.

γa†G = γaG , (γaG)
∗ = γaG . (9.12)

Correspondingly it follows: γa†G γ
a
G = I, γaGγ

a
G = I. I represents the unit operator.

By introducing [2] the generators of the infinitesimal Lorentz transformations
in Grassmann space as

Sab = (θapθb − θbpθa) ,

(9.13)

one finds

{Sab,Scd}− = i{Sadηbc + Sbcηad − Sacηbd − Sbdηac} ,

Sab† = ηaaηbbSab . (9.14)

The basic states in Grassmann space can be arranged into representations with
respect to the Cartan subalgebra of the Lorentz algebra as presented in Ref. [2,15].
The state in d-dimensional space, for example, with all the eigenvalues of the
Cartan subalgebra of the Lorentz group of Eq. (9.84) equal to either i or 1 is:
(θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−1 + iθd)|φog >, with |φog >= |1 >. All the
states of the representation, which start with this state, follow by the application
of those Sab, which do not belong to the Cartan subalgebra of the Lorentz algebra.
S01, for example, transforms (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−1 + iθd)|φog >
into (θ0θ3+ iθ1iθ2)(θ5+ iθ6) · · · (θd−1+ iθd)|φog >, while S01− iS02 transforms
this state into (θ0 + θ3)(θ1 − iθ2)(θ5 + iθ6) · · · (θd−1 + iθd)|φog >.

b. Fermion fields with the half integer spin and the Clifford objects

Let us present as well the properties of the fermion fields with the half integer
spin, expressed by the Clifford algebra objects

F =

d∑
k=0

aa1a2...ak γ
a1γa2 . . . γak |ψoc > , ai ≤ ai+1 , (9.15)

where |ψoc > is the vacuum state. The Kalb-Ramond fields aa1a2...ak are again in
general boson fields, which are antisymmetric with respect to the permutation of
indexes, since the Clifford objects have the anticommutation relations, Eq. (9.2),

{γa, γb}+ = 2ηab . (9.16)
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A linear vector space over the Clifford coordinate space has again the dimension
2d, due to the fact that (γai)2 = ηaiai for any ai ∈ (0, 1, 2, 3, 5, . . . , d).

One can see that γa are expressible in terms of the Grassmann coordinates
and their conjugate momenta as

γa = (θa − i pθa) . (9.17)

We also find γ̃a

γ̃a = i (θa + i pθa) , (9.18)

with the anticommutation relation of Eq. (9.16) for either γa and γ̃a

{γ̃a, γ̃b}+ = 2ηab , {γa, γ̃b}+ = 0 . (9.19)

Taking into account Eqs. (9.8, 9.17, 9.18) one finds

(γa)† = γaηaa , (γ̃a)† = γ̃aηaa ,

γaγa = ηaa , γa(γa)† = I , γ̃aγ̃a = ηaa , γ̃a(γ̃a)† = I , (9.20)

where I represents the unit operator. Making a choice for the θa properties as
presented in Eq. (9.10), it follows for the Clifford objects

{γa}∗ = (γ0, γ1,−γ2, γ3,−γ5, γ6, ...,−γd−1, γd) ,

{γ̃a}∗ = (−γ̃0,−γ̃1, γ̃2,−γ̃3, γ̃5,−γ̃6, ..., γ̃d−1,−γ̃d) , (9.21)

All three choices for the linear vector space — spanned over either the coordi-
nate Grassmann space, or over the vector space of γa, as well as over the vector
space of γ̃a — have the dimension 2d.

We can express Grassmann coordinates θa and momenta pθa in terms of γa

and γ̃a as well 4

θa =
1

2
(γa − iγ̃a) ,

∂

∂θa
=
1

2
(γa + iγ̃a) . (9.22)

It then follows ∂
∂θb

θa|1 >= ηab|1 >.
Correspondingly we can use either γa or γ̃a instead of θa to span the vec-

tor space. In this case we change the vacuum from the one with the property
∂
∂θa

|φog >= 0 to |ψoc >with the property [2,7,9]

< ψoc|γ
a|ψoc > = 0 , γ̃a|ψoc >= iγ

a|ψoc > , γ̃aγb|ψoc >= −iγbγa|ψoc > ,

γ̃aγ̃b|ψoc > |a 6=b = −γaγb|ψoc > , γ̃aγ̃b|ψoc > |a=b = ηab|ψoc > . (9.23)

4 In Ref. [28] the author suggested in Eq. (47) a choice of superposition of γa and γ̄a, which
resembles the choice of one of the authors (N.S.M.B.) in Ref. [2] and both authors in
Ref. [16,17] and in present article.
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182 N.S. Mankoč Borštnik and H.B.F. Nielsen

This is in agreement with the requirement

γa F(γ) |ψoc >:=

(a0 γ
a + aa1 γ

a γa1 + aa1a2 γ
a γa1γa2 + · · ·+ aa1···ad γa γa1 · · ·γad ) |ψoc > ,

γ̃a F(γ) |ψoc >:= ( i a0γ
a − i aa1γ

a1 γa + i aa1a2γ
a1γa2 γa + · · ·+

i (−1)d aa1···adγ
a1 · · ·γad γa ) |ψoc > . (9.24)

We find the infinitesimal generators of the Lorentz transformations in Clifford
space

Sab =
i

4
(γaγb − γbγa) , Sab† = ηaaηbbSab ,

S̃ab =
i

4
(γ̃aγ̃b − γ̃bγ̃a) , S̃ab† = ηaaηbbS̃ab , (9.25)

with the commutation relations for either Sab or S̃ab of Eq. (9.14), if Sab is replaced
by either Sab or S̃ab, respectively, while

Sab = Sab + S̃ab ,

{Sab, S̃cd}− = 0 . (9.26)

The basic states in Clifford space can be arranged in representations, in which
any state is the eigenstate of the Cartan subalgebra operators of Eq. (9.84). The
state, for example, in d-dimensional space with the eigenvalues of either S03, S12,
S56, . . . , Sd−1d or S̃03, S̃12, S̃56, . . . , S̃d−1d equal to 1

2
(i, 1, 1, . . . , 1) is (γ0−γ3)(γ1+

iγ2)(γ5 + iγ6) · · · (γd−1 + iγd), where the states are expressed in terms of γa. The
states of one representation follow from the starting state by the application of
Sab, which do not belong to the Cartan subalgebra operators, while S̃ab, which
operate on family quantum numbers, cause jumps from the starting family to the
new one.

9.2.1 Norms of vectors in Grassmann and Clifford space

Let us look for the norm of vectors in Grassmann space

B =

d∑
k=0

aa1a2...ak θ
a1θa2 . . . θak |φog >

and in Clifford space

F =

d∑
k=0

aa1a2...ak γ
a1γa2 . . . γak |ψoc >,

where |φog > and |φoc > are the vacuum states in the Grassmann and Clifford
case, respectively. In what follows we refer to Ref. [2].

a. Norms of the Grassmann vectors
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Let us define the integral over the Grassmann space [2] of two functions of
the Grassmann coordinates < B|C >, < B|θ >=< θ|B >†, by requiring

{dθa, θb}+ = 0,

∫
dθa = 0 ,

∫
dθaθa = 1 ,∫

ddθ θ0θ1 · · · θd = 1 ,

ddθ = dθd . . . dθ0 ,

ω = Πdk=0(
∂

∂θk
+ θk) , (9.27)

with ∂
∂θa

θc = ηac. We shall use the weight function ω = Πdk=0(
∂
∂θk

+ θk) to
define the scalar product < B|C >

< B|C > =

∫
dd−1xddθa ω < B|θ >< θ|C >=

d∑
k=0

∫
dd−1xb∗b1...bkcb1...bk ,

(9.28)

where, according to Eq. (9.8), follows:

< B|θ >=< φog|
d∑
p=0

(−i)p a∗a1...app
θap ηapap · · ·pθa1 ηa1a1 .

The vacuum state is chosen to be |φog >= |1 >, as taken in Eq. (9.4).
The norm < B|B > is correspondingly always nonnegative.

b. Norms of the Clifford vectors

Let us look for the norm of vectors, expressed with the Clifford objects
F =

∑d
k aa1a2...ak γ

a1γa2 . . . γak |ψoc >, where |φog > and |ψoc > are the two
vacuum states when the Grassmann and the Clifford objects are concerned, respec-
tively. By taking into account Eq. (9.20) it follows that

(γa1γa2 . . . γak)† = γakηakak . . . γa2ηa2a2γa1ηa1a1 , (9.29)

since γa γa = ηaa.
We can use Eqs. (9.27, 9.28) to evaluate the scalar product of two Clifford

algebra objects< γ|F >=< (θa−ipθa)|F > and equivalently for< (θa−ipθa)|G >.
These expressions follow from Eqs. (9.17, 9.18, 9.20)). We must then choose for
the vacuum state the one from the Grassmann case — |ψoc >= |φog >= |1 >. It
follows

< F|G > =

∫
dd−1xddθa ω < F|γ >< γ|G >=

d∑
k=0

∫
dd−1xa∗a1...akbb1...bk .

(9.30)

{Similarly we obtain, if we express F̃ =
∑d
k=0 aa1a2...ak γ̃

a1 γ̃a2 . . . γ̃ak |φoc >

and G̃ =
∑d
k=0 bb1b2...bk γ̃

b1 γ̃b2 . . . γ̃bk |φoc > and take |ψoc >= |φog >= |1 >,
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the scalar product

< F̃|G̃ > =

∫
dd−1xddθa ω < F̃|γ̃ >< γ̃|G̃ >=

d∑
k=0

∫
dd−1xa∗a1...akab1...bk .}

(9.31)

Correspondingly we can write∫
ddθa ω(aa1a2...ak γ

a1γa2 . . . γak)†(aa1a2...ak γ
a1γa2 . . . γak) =

a∗a1a2...ak aa1a2...ak . (9.32)

The norm of each scalar term in the sum of F is nonnegative.
c. We have learned that in both spaces — Grassmann and Clifford — norms of

basic states can be defined so that the states, which are eigenvectors of the Cartan
subalgebra, are orthogonal and normalized using the same integral.

Studying the second quantization procedure in Subsect. 9.2.3 we learn that
not all 2d states can be represented as creation and annihilation operators, either
in the Grassmann or in the Clifford case, since they must — in both cases — fulfill
the requirements for the second quantized operators, either for states with integer
spins in Grassmann space or for states with half integer spin in Clifford space.

9.2.2 Actions in Grassmann and Clifford space

Let us construct an action for free massless particles in which the internal degrees
of freedom will be described: i. by states in Grassmann space, ii. by states in
Clifford space. In the first case the internal degrees of freedom manifest the integer
spin, in the second case the internal degrees of freedom manifest the half integer
spin.

While the action in Clifford space is well known since long [22], the action in
Grassmann space must be found. We shall represent it here. In both cases we look
for actions for free massless states in ((d − 1) + 1) space 5. States in Grassmann
space as well as states in Clifford space will be organized to be — within each of
the two spaces — orthogonal and normalized with respect to Eq. (9.27). We choose
the states in each of two spaces to be the eigenstates of the Cartan subalgebra
— with respect to Sab in Grassmann space and with respect to Sab and S̃ab in
Clifford space, Eq. (9.84).

In both spaces the requirement that states are obtained by the application of
creation operators on the vacuum states — b̂θi obeying the commutation relations
of Eq. (9.48) on the vacuum state |φog >= |1 > in Grassmann space, and b̂αi
obeying the commutation relation of Eq. (9.60) on the vacuum states |ψoc >,
Eq. (9.67), in Clifford space — reduces the number of states, in Clifford space more
than in Grassmann space. But while in Clifford space all physically applicable
states are reachable by either Sab (defining family members quantum numbers)

5 In (3 + 1) space the mass is due to the interaction of particles with the scalar fields, with
which the particles interact in ((d − 1) + 1) space.
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or by S̃ab (defining family quantum numbers), the states in Grassmann space,
belonging to different representations with respect to the Lorentz generators, seem
not to be connected.

a. Action in Clifford space

In Clifford space the action for a free massless object must be Lorentz invariant

A =

∫
ddx

1

2
(ψ†γ0 γapaψ) + h.c. , (9.33)

pa = i ∂
∂xa

, leading to the equations of motion

γapa|ψ
α > = 0 , (9.34)

which fulfill also the Klein-Gordon equation

γapaγ
bpb|ψ

α
i > = papa|ψ

α
i >= 0 ,

(9.35)

for each of the basic states |ψαi >. Correspondingly γ0 appears in the action since
we pay attention that

Sab† γ0 = γ0 Sab ,

S†γ0 = γ0S−1 ,

S = e−
i
2
ωab(S

ab+Lab) . (9.36)

We choose the basic states to be the eigenstates of all the members of the
Cartan subalgebra, Eq. (9.84). Correspondingly all the states, belonging to different
values of the Cartan subalgebra — they differ at least in one value of either the
set of Sab or the set of S̃ab, Eq. (9.84) — are orthogonal with respect to the scalar
product defined as the integral over the Grassmann coordinates, Eq. (9.27), for
a chosen vacuum state. Correspondingly the states generated by the creation
operators, Eq. (9.65), on the vacuum state, Eq. (9.67), are orthogonal as well (both
last equations will appear later).

b. Action in Grassmann space

We define here the action in Grassmann space, for which we require — simi-
larly as in the Clifford case — that the action for a free massless object

A =
1

2
{

∫
ddx ddθ ω (φ†(1− 2θ0

∂

∂θ0
)
1

2
(θapa + ηaaθa†pa)φ} , (9.37)

is Lorentz invariant. We use the integral also over θa coordinates, with the weight
functionω from Eq. (9.27). Requiring the Lorentz invariance we add after φ† the
operator γ0G (γaG = (1 − 2θa ∂

∂θa
)), which takes care of the Lorentz invariance.

Namely

Sab† (1− 2θ0
∂

∂θ0
) = (1− 2θ0

∂

∂θ0
)Sab ,

S† (1− 2θ0
∂

∂θ0
) = (1− 2θ0

∂

∂θ0
)S−1 ,

S = e−
i
2
ωab(L

ab+Sab) , (9.38)
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while θa, ∂
∂θa

and pa transform as Lorentz vectors. The equation of motion follow
from the action, Eq. (9.37),

1

2
[(1− 2θ0

∂

∂θ0
) θa + ((1− 2θ0

∂

∂θ0
) θa)†] pa |φ

θ
i > = 0 , (9.39)

as well as the Klein-Gordon equation

{(1− 2θ0
∂

∂θ0
)θapa}

† θbpb|φ
θ
i > = papa|φ

θ
i >= 0 , (9.40)

for each of the basic states |ψαi >.
c. We learned:
In both spaces — in Clifford and in Grassmann space — there exists the action,

which leads to the equations of motion and to the corresponding Klein-Gordon
equation for free massless particles. In both cases we use the operator, which does
not change the Clifford or Grassmann character of states.

We shall see that, if one identifies the creation operators in both spaces with
the products of odd numbers of either θa (in the Grassmann case) or γa (in
the Clifford case) and the annihilation operators with their Hermitian conjugate
operators, the creation and annihilation operators fulfill the anticommutation
relations, required for fermions. The internal parts of states are then defined by the
application of the creation operators on the vacuum state. But while the Clifford
algebra defines spinors with the half integer eigenvalues of the Cartan subalgebra
operators of the Lorentz algebra, the Grassmann algebra defines states with the
integer eigenvalues of the Cartan subalgebra.

9.2.3 Second quantization of Grassmann vectors and Clifford vectors

States in Grassmann space as well as states in Clifford space are organized to be
— within each of the two spaces — orthogonal and normalized with respect to
Eq. (9.27). All the states in each of spaces are chosen to be eigenstates of the Cartan
subalgebra — with respect to Sab in Grassmann space, and with respect to Sab

and S̃ab in Clifford space, Eq. (9.84).
In both spaces the requirement that states are obtained by the application

of creation operators on vacuum states — b̂θi obeying the commutation relations
of Eqs. (9.42, 9.48) on the vacuum state |φog >= |1 > for Grassmann space, and
b̂αi obeying the commutation relation of Eq. (9.60) on the vacuum states |ψoc >,
Eq. (9.67), for Clifford space — reduces the number of states arranged into the
representations of the Lorentz group. The reduction of degrees of freedom depends
on whether d = 2(2n+1) or d = 4n,n is a positive integer. The second quantization
procedure with creation operators expressed by the product of Grassmann or
Clifford objects requires that the product has an odd number of objects.

We shall pay attention in this paper almost only to spaces with d = 2(2n+1) 6.

6 The main reason that we treat here mostly d = 2(2n + 1) spaces is that one Weyl
representation, expressed by the product of the Clifford algebra objects, manifests in
d = (1 + 3) all the observed properties of quarks and leptons, if d ≥ 2(2n + 1), n = 3.
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We define in Grassmann space creation operators by an odd number of factors
of superposition of θa’s and annihilation operators by Hermitian conjugation of the
corresponding creation operators. In Clifford space we define creation operators by
an odd number of factors of superposition of γa’s and the annihilation operators
by Hermitian conjugate creation operators. Each basic state is a product of factors
chosen to be eigenstates of the Cartan subalgebra of the Lorentz algebra.

But while in Clifford space all physically applicable states are reachable
either by Sab or by S̃ab, the states, belonging to different groups with respect to
the Lorentz generators, in Grassmann space two different representations of the
Lorentz group are not connected by the Lorentz operators.

Let us construct creation and annihilation operators for the cases that we use
a. Grassmann vector space, b. Clifford vector space. We shall see that from 2d

states in either of these two spaces there are reduced number of states generated
by the creation operators, which fulfill the requirements for the creation and their
Hermitian conjugate annihilation operators.

a. Quantization in Grassmann space

There are 2d states in Grassmann space, orthogonal to each other with respect
to Eq. (9.27). To any coordinate there exists the conjugate momentum. We pay
attention in what follows mostly to spaces with d = 2(2n+1), although also spaces
with d = 4nwill be treated. In d = 2(2n+1) spaces there are d!

d
2
!d
2
!

states, Eq. (9.51),
divided into two separated groups of states, all states of one group reachable from
a starting state by Sab. These states are Grassmann odd products of eigenstates
of the Cartan subalgebra. We use these products to define the creation operators
and their Hermitian conjugate operators as the annihilation operators, fulfilling
requirements of Eq. (9.41, 9.42). Let us see how it goes.

If b̂θ†i is a creation operator, which creates a state in the Grassmann space
when operating on a vacuum state |ψog > and b̂θi = (b̂θ†i )† is the corresponding an-
nihilation operator, then for a set of creation operators b̂θ†i and the corresponding
annihilation operators b̂θi it must be

b̂θi |φog > = 0 ,

b̂θ†i |φog > 6= 0 . (9.41)

We first pay attention on only the internal degrees of freedom — the spin.
Choosing b̂θa = ∂

∂θa
it follows

b̂θ†a = θa ,

b̂θa =
∂

∂θa
,

{b̂θa, b̂
θ†
b }+|φog > = δab|φog > ,

{b̂θa, b̂
θ
b}+|φog > = 0 ,

{b̂θ†a , b̂
θ†
b }+|φog > = 0 ,

b̂†θa |φog > = θa|φog > ,

b̂θa |φog > = 0 . (9.42)
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The vacuum state |φog > is in this case |1 >.
The identity I (I† = I) can not be taken as a creation operator, since its

annihilation partner does not fulfill Eq. (9.41).
We can use the products of superposition of θa’s as creation and products

of superposition of ∂
∂θa

’s as annihilation operators provided that they fulfill
the requirements for the creation and annihilation operators, Eq. (9.48), with the
vacuum state |φog >= |1 >. In general they would not. Only an odd number of θa

in any product would have the required anticommutation properties.
It is convenient to take products of superposition of vectors θa and θb to

construct creation operators so that each factor is the eigenstate of one of the Cartan
subalgebra member of the Lorentz algebra (9.84). We can start with the creation
operators as products of d

2
states b̂θ†aibi =

1√
2
(θai ±εθbi). Then the corresponding

annihilation operators have d
2

factors of b̂θaibi = 1√
2
( ∂
∂θai

± ε∗ ∂
∂θbi

), ε = i, if

ηaiai = ηbibi and ε = −1, if ηaiai 6= ηbibi .
In d = 2(2n+ 1), n is a positive integer, we can start with the state

|φθ11 > = (
1√
2
)
d
2 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−1 + iθd)|1 > . (9.43)

The rest of states, belonging to the same Lorentz representation, follows from the
starting state by the application of the operators Scf, which do not belong to the
Cartan subalgebra operators.

Let us add that in d = 4nwe should start with the state

|φθ11 > |4n =

(
1√
2
)
d
2
−1 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)θd−1θd|1 > . (9.44)

Again the rest of states, belonging to the same Lorentz representation, follow from
the starting state by the application of the operators Scf, which do not belong to
the Cartan subalgebra operators.

i. Taking into account Eqs. (9.8, 9.9, 9.43) one can propose the following
starting creation operator and the corresponding annihilation operator

b̂θ1†i = (
1√
2
)
d
2 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−1 + iθd) ,

b̂θ1i = (
1√
2
)
d
2 (

∂

∂θd−1
− i

∂

∂θd
) · · · ( ∂

∂θ0
−

∂

∂θ3
) ,

for d = 2(2n+ 1) ,

b̂θ1†i = (
1√
2
)
d
2
−1 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)θd−1θd ,

b̂θ1i = (
1√
2
)
d
2
−1 ∂

∂θd
∂

∂θd−1
(

∂

∂θd−3
− i

∂

∂θd−2
) · · · ( ∂

∂θ0
−

∂

∂θ3
) ,

for d = 4n . (9.45)

The rest of the creation operators belonging to this group in either d = 2(2n+1) or
in d = 4n follows by the application of all the operators Sef, which do not belong
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to the Cartan subalgebra operators. The corresponding annihilation operators
follow by the Hermitian conjugation of a particular creation operator. One finds,
for example for d = 2(2n+ 1),

b̂θ1†j = (
1√
2
)
d
2
−1 (θ0θ3 + iθ1θ2)(θ5 + iθ6) · · · (θd−1 + iθd) ,

b̂θ1j = (
1√
2
)
d
2
−1 (

∂

∂θd−1
− i

∂

∂θd
) · · · ( ∂

∂θ3
∂

∂θ0
− i

∂

∂θ2
∂

∂θ1
) .

· · · (9.46)

For d = 4n one finds equivalently

b̂θ1†j = (
1√
2
)
d
2
−2 (θ0θ3 + iθ1θ2)(θ5 + iθ6) · · · (θd−3 + iθd−2) θd−1θd ,

b̂θ1j = (
1√
2
)
d
2
−2 ∂

∂θd
∂

∂θd−1
(

∂

∂θd−3
− i

∂

∂θd−2
) · · · ( ∂

∂θ3
∂

∂θ0
− i

∂

∂θ2
∂

∂θ1
) .

· · · (9.47)

It was taken into account in the above two equations that S01 transforms ( 1√
2
)2(θ0−

θ3)(θ1 + iθ2) into 1√
2
(θ0θ3 + iθ1θ2) and that any Sac (a 6= c), which does not be-

long to Cartan subalgebra, Eq.(9.82), transforms ( 1√
2
)2(θa + iθb)(θc + iθd) (a 6= c

and a 6= d, b 6= c and b 6= d, ηaa = ηbb) into 1√
2
(θaθb + θcθd). The states are

normalized and the simplest phases are chosen.
One finds that Sab(θa ± εθb) = ∓i ηaa

ε
(θa ± εθb), ε = 1 for ηaa = 1 and

ε = i for ηaa = −1, while either Sab or Scd, applied on (θaθb ± εθcθd), gives
zero.

Although all the states, generated by creation operators, which include one
(I ± εθaθb) or several (I ± εθa1θb1) · · · (I ± εθakθak), are orthogonal with re-
spect to the scalar product, Eq.(9.28), their Hermitian conjugate values include
I†, which, when applying on the vacuum state |φog >= |1 >, does not give zero.
Correspondingly such creation operators do not have appropriate annihilation
partners, which would fulfill Eqs. (9.41, 9.42).

However, creation operators which are products of several θ’s, let say n with
n = 2, 4 . . . d

2
−1— always of an even number of θ’s, since Sab is a Grassmann even

operator, θa1 · · · θan (factors θaθb can be ”eigenstates” of the Cartan subalgebra
operators provided that Sab belong to the Cartan subalgebra: Sabθaθb|1 >= 0)
— can appear in the expression for a creation operator, provided that the rest of
expression has an odd number of factors (d

2
− n (with ”eigenvalues” either (+1 or

−1) or (+i or −i), as can be seen in the states of Eqs. (9.45, 9.46, 9.47)). Then such
creation and annihilation operators fulfill the relations, we skip the index 1 in b̂θ1i
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and in b̂θ1†i

{b̂θi , b̂
θ†
j }+|φog > = δij |φog > ,

{b̂θi , b̂
θ
j }+|φog > = 0 |φog > ,

{b̂θ†i , b̂
θ†
j }+|φog > = 0 |φog > ,

b̂θ†j |φog > = |φj >

b̂θj |φog > = 0 |φog > . (9.48)

It is not difficult to see that states included into a representation, which started
with b̂θ†i as presented in Eq. (9.45) for d = (2n + 1)2 and 4n spaces, have the
properties, required by Eq. (9.48):

i.a. In any d-dimensional space the product ∂
∂θa1

· · · ∂
∂θak

, with all different
ai (also if all or some of them are equal, since ( ∂

∂θa
)2 = 0), if applied on the vacuum

|1 >, is equal to zero. Correspondingly the second equation and the last equation
of Eq. (9.48) are fulfilled.

i.b. In any d space the product of different θas — θa1θa2 · · · θak with all
different θa’s (ai 6= aj) for all ai and aj — applied on the vacuum |1 > is different
from zero. Since all the θ’s, appearing in Eqs. (9.45, 9.46, 9.47) are different, forming
normalized states, the fourth equation of Eq. (9.48) is fulfilled.

i.c. The third equation of Eq. (9.48) is fulfilled provided that there is
an odd number of θs in the expression for a creation operator. Then, when in
the anticommutation relation different θa’s appear (like in the case of d = 6

{θ0θ3θ5, θ1θ2θ6}+), such a contribution gives zero. When two or several equal θ’s
appear in the anticommutation relation, the contribution is zero (since (θa)2 = 0).

i.d. Also for the first equation in Eq. (9.48) it is not difficult to show that it is
fulfilled only for a particular creation operator and its Hermitian conjugate: Let us
show this for d = 1+3 and the creation operator 1√

2
(θ0−θ3) θ1θ2 and its Hermitian

conjugate (annihilation) operator: 1√
2
{ ∂
∂θ2

∂
∂θ1

( ∂
∂θ0

− ∂
∂θ3

), 1√
2
(θ0 − θ3) θ1θ2}+.

Applying ( ∂
∂θ0

− ∂
∂θ3

) on (θ0 − θ3) gives two, while ∂
∂θ2

∂
∂θ1

applied on θ1θ2

gives one.
ii. There is additional group of creation and annihilation operators which

follows from the starting state

|φθ21 > |2(2n+1) =

(
1√
2
)
1
2 (θ0 + θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)(θd−1 + iθd) ,

for d = 2(2n+ 1) ,

|φθ21 > |4n =

(
1√
2
)
d
2
−1(θ0 + θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2) θd−1θd ,

for d = 4n . (9.49)

These two states can not be obtained from the previous group of states, presented
in Eqs. (9.43, 9.44) by the application of Sef, since each Sef changes an even number
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of factors, never an odd one. Correspondingly both starting states form a new
group of states, the first in d = 2(2n+ 1), the second in d = 4n. All the rest states
of this new group of states in either d = 2(2n + 1) or in d = 4n follow from the
starting one by the application of Sef. The corresponding creation and annihilation
operators are

b̂θ2†01 = (
1√
2
)
d
2 (θ0 + θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−1 + iθd) ,

b̂θ201 = (
1√
2
)
d
2 (

∂

∂θd−1
− i

∂

∂θd
) · · · ( ∂

∂θ0
+

∂

∂θ3
) ,

for d = 2(2n+ 1) ,

b̂θ2†01 = (
1√
2
)
d
2
−1 (θ0 + θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)θd−1θd ,

b̂θ201 = (
1√
2
)
d
2
−1 ∂

∂θd
∂

∂θd−1
(

∂

∂θd−3
− i

∂

∂θd−2
) · · · ( ∂

∂θ0
+

∂

∂θ3
) ,

for d = 4n . (9.50)

As in the first case all the rest of creation operators can be obtained from the
starting one, in each of the two kinds of spaces, by the application of Sac, and
the annihilation operators by the Hermitian conjugation of the creation operators.
Also all these creation and annihilation operators fulfill the requirements for the
creation and annihilation operators, presented in Eq. (9.48).

One can choose as the starting creation operator of the second group of
operators by changing sign instead of in the factor (θ0−θ3) in the starting creation
operator of the first group in any of the rest of factors in the product. In each case
the same group will follow.

Let us count the number of states with the odd Grassmann character in
d = 2(2n+ 1).

There are in (d = 2) two creation ((θ0 ∓ θ1, for ηab = diag(1,−1)) and
correspondingly two annihilation operators ( ∂

∂θ0
∓ ∂

∂θ1
), each belonging to its

own group with respect to the Lorentz transformation operators, both fulfill
Eq. (9.48).

It is not difficult to see that the number of all creation operators of an odd
Grassmann character in d = 2(2n+ 1)-dimensional space is equal to d!

d
2
!d
2
!
.

We namely ask: In how many ways can one put on d
2

places d different
θa’s. And the answer is — the central binomial coefficient for x

d
2 1

d
2 — with all

x different. This is just d!
d
2
!d
2
!
. But we have counted all the states with an odd

Grassmann character, while we know that these states belong to two different
groups of representations with respect to the Lorentz group.

Correspondingly one concludes:There are two groups of states in d = 2(2n+ 1)

with an odd Grassmann character, each of these two groups has

1

2

d!
d
2
!d
2
!

(9.51)

members.
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In d = 2we have two groups with one state, which have an odd Grassmann
character, in d = 6we have two groups of 10 states, in d = 10we have two groups
of 126 states with an odd Grassmann characters. And so on.

Correspondingly we have in d = 2(2n+ 1)-dimensional spaces two groups
of creation operators with 1

2
d!
d
2
!d
2
!

members each, creating states with an odd
Grassmann character and the same number of annihilation operators. Creation
and annihilation operators fulfill anticommutation relations presented in Eq. (9.48).

The rest of creation operators [and the corresponding annihilation operators]
have rather opposite Grassmann character than the ones studied so far — like θ0θ1

[ ∂
∂θ1

∂
∂θ0

] in d = (1 + 1) (θ0 ∓ θ3)(θ1 ± iθ2) [( ∂
∂θ1
∓ i ∂

∂θ2
)( ∂
∂θ0
∓ ∂
∂θ3

], θ0θ3θ1θ2

[ ∂
∂θ2

∂
∂θ1

∂
∂θ3

∂
∂θ0

] in d = (3+ 1).
All the states |φθi >, generated by the creation operators, Eq. (9.48), on the vac-

uum state |φog > (= |1 >) are the eigenstates of the Cartan subalgebra operators
and are orthogonal and normalized with respect to the norm of Eq. (9.27)

< φθi |φ
θ
j > = δij . (9.52)

If we now extend the creation and annihilation operators to the ordinary
coordinate space, the relations among creation and annihilation operators at one
time read

{b̂θi (~x), b̂
θ†
j (~x ′)}+|φog > = δij δ(~x− ~x

′)|φog > ,

{b̂θi (~x), b̂
θ
j (~x
′)}+|φog > = 0 |φog > ,

{b̂θ†i (~x), b̂θ†j (~x ′)}+|φog > = 0 |φog > ,

b̂θj (~x)|φog > = 0 |φog >

|φog > = |1 > . (9.53)

Again the index 1 or 2 in (b̂θ1i , b̂θ†1i ) or in (b̂θ2i , b̂θ†2i ) is kept.

b. Quantization in Clifford space

In Grassmann space the requirement that products of eigenstates of the Cartan
subalgebra operators represent the creation and annihilation operators, obeying
the relations of Eq. (9.48), reduces the number of states from 2d (allowed in the
first quantization procedure) to two isolated groups of 1

2
d!
d
2
!d
2
!

(There is no operator
that determines the family quantum number and would connect both isolated
groups of states.)

Let us study what happens, when, let say, γa’s are used to create the basis
and correspondingly also to create the creation and annihilation operators.

Let us point out that γa is expressible with θa and its derivative (γa =

(θa + ∂
∂θa

)), Eq. (9.17), and that we again require that creation (annihilation)
operators create (annihilate) states, which are eigenstates of the Cartan subalgebra,
Eq. (9.84). We could as well make a choice of γ̃a = i(θa − ∂

∂θa
) instead of γa’s to

create the basic states 7. We shall follow here to some extent Ref. [19].
7 In the case that we would choose γ̃a’s instead of γa’s, Eq.(9.17), the role of γ̃a and γa

should be then correspondingly exchanged in Eq. (9.92).
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Making a choice of the Cartan subalgebra eigenstates of Sab, Eq. (9.84),

ab

(k):=
1

2
(γa +

ηaa

ik
γb) ,

ab

[k]:=
1

2
(1+

i

k
γaγb) , (9.54)

where k2 = ηaaηbb, recognizing that the Hermitian conjugate values of
ab

(k) and
ab

[k] are

ab

(k)

†

= ηaa
ab

(−k),
ab

[k]

†

=
ab

[k] , (9.55)

while the corresponding eigenvalues of Sab, Eq. (9.56), and S̃ab, Eq. (9.101), are

Sab
ab

(k) =
1

2
k
ab

(k) , Sab
ab

[k]=
1

2
k
ab

[k]

S̃ab
ab

(k) =
k

2

ab

(k) , S̃ab
ab

[k]= −
k

2

ab

[k] , (9.56)

we find in d = 2(2n+ 1) that from the starting state with products of odd number
of only nilpotents

|ψ11 > |2(2n+1) =
03

(+i)
12

(+)
35

(+) · · ·
d−3 d−2

(+)
d−1 d

(+) |ψoc > , (9.57)

having correspondingly an odd Clifford character 8, all the other states of the same
Lorentz representation, there are 2

d
2
−1 members, follow by the application of Scd

(which do not belong to the Cartan subalgebra) on the starting state 9, Eq. (9.84):
Scd |ψ11 > |2(2n+1) = |ψ1i > |2(2n+1).

The operators S̃cd, which do not belong to the Cartan subalgebra of Eq. (9.84),
generate states with different eigenstates of the Cartan subalgebra (S̃03, S̃12, S̃56,
· · · , S̃d−1d), we call the eigenvalues of their eigenstates the ”family” quantum
numbers. There are 2

d
2
−1 families. From the starting new member with a different

”family” quantum number the whole Lorentz representation with this ”family”
quantum number follows by the application of Sef: Sef S̃cd|ψ11 > |2(2n+1) =

|ψji > |2(2n+1). All the states of one Lorentz representation of any particular
”family” quantum number have an odd Clifford character, since neither Scd nor
S̃cd, both with an even Clifford character, can change this character.

We are interested only in states with an odd Clifford character, in order that
the corresponding creation operators defining these states when being applied
on an appropriate vacuum state, and their annihilation operators, will fulfill
anticommutation relations required for spinors with half integer spin. We shall
discuss the number of states with an odd Clifford character after defining the
creation and annihilation operators.

8 We call the starting state in d = 2(2n + 1) |ψ11 > |2(2n+1), and the starting state in d = 4n

|ψ11 > |4n.
9 The smallest number of all the generators Sac, which do not belong to the Cartan subal-

gebra, needed to create from the starting state all the other members, is 2
d
2
−1 − 1. This is

true for both even dimensional spaces – 2(2n + 1) and 4n.
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For d = 4n the starting state must be the product of one projector and 4n− 1

nilpotents applied on an appropriate vacuum state, since we again require that
the corresponding creation and annihilation operators fulfill the anticommutation
relations.

Let us start with the state

|ψ11 > |4n =
03

(+i)
12

(+)
35

(+) · · ·
d−3 d−2

(+)
d−1 d

[+] |ψoc > , (9.58)

All the other states belonging to the same Lorentz representation follow again by
the application of Scd on this state |ψ11 > |4n, while a new family starts by the
application of S̃cd|ψ11 > |4n and from this state all the other members with the
same ”family” quantum number can be generated by SefS̃cd on |ψ11 > |4n: SefS̃cd

|ψ11 > |4n = |ψji > |4n.
All these states in either d = 2(2n+ 1) space or d = 4n space are orthogonal

with respect to Eq. (9.27).
However, let us point out that (γa)† = γaηaa. Correspondingly it follows,

Eq. (9.55), that
ab

(k)

†

= ηaa
ab

(−k), and
ab

[k]

†

=
ab

[k].
Since any projector is Hermitian conjugate to itself, while to any nilpotent

ab

(k) the Hermitian conjugated one has an opposite k, it is obvious that Hermitian
conjugated product to a product of nilpotents and projectors can not be accepted
as a new state 10.

The vacuum state |ψoc > ought to be chosen so that < ψoc|ψoc >= 1, while

all the states belonging to the physically acceptable states, like
03

[+i]
12

[+]
56

[−]
78

[−]

· · ·
d−3 d−2

(+)
d−1 d

(+) |ψoc > in d = 2(2n + 1), must not give zero for either
d = 2(2n + 1) or for d = 4n. We also want that the states, obtained by the
application of ether Scd or S̃cd or both, are orthogonal. To make a choice of the
vacuum it is needed to know the relations of Eq. (9.88). It must be

< ψoc| · · ·
ab

(k)

†

· · · | · · ·
ab

(k ′) · · · |ψoc > = δkk ′ ,

< ψoc| · · ·
ab

[k]

†

· · · | · · ·
ab

[k ′] · · · |ψoc > = δkk ′ ,

< ψoc| · · ·
ab

[k]

†

· · · | · · ·
ab

(k ′) · · · |ψoc > = 0 . (9.59)

Our experiences in the case, when states with the integer values of the Cartan
subalgebra operators were expressed by Grassmann coordinates, teach us that the
requirements, that creation and annihilation operators must fulfill, influence the
choice of the number of states, as well as of the vacuum state.

10 We could as well start with the state |ψ11 > |2(2n+1) =
03

(−i)
12

(−)
35

(−) · · ·
d−3 d−2

(−)
d−1 d

(−) |ψoc >

for d = 2(2n + 1) and with |ψ11 > |4n =
03

(−i)
12

(−)
35

(−) · · ·
d−3 d−2

(−)
d−1 d

[−] |ψoc > in the case of
d = 4n. Then creation and annihilation operators will exchange their roles and also the
vacuum state will be correspondingly changed.
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Let us first repeat therefore the requirements which the creation and annihila-
tion operators must fulfill

{b̂αγi , b̂βγ†k }+|ψoc > = δαβ δ
i
k|ψoc > ,

{b̂αγi , b̂βγk }+|ψoc > = 0|ψoc > ,

{b̂αγ†i , b̂βγ†k }+|ψoc > = 0|ψoc > ,

b̂αγi |ψoc > = 0|ψoc > ,

b̂αγ†i |ψoc > = |ψαγi > , (9.60)

paying attention at this stage only at the internal degrees of freedom of the states,
that is on their spins. Here (α,β, . . . ) represent the family quantum number de-
termined by S̃ac and (i, j, . . . ) the quantum number of one representation, deter-
mined by Sac and index γ is to point out that these creation operators represent
Clifford rather than Grassmann objects. In what follows we shall skip the index γ,
since either states or creation and annihilation operators carry two indexes, while
in Grassmann case there is no family quantum number.

From Eqs. (9.57, 9.58) is not difficult to extract the creation operator which,
when applied on the vacuum state for either d = 2(2n+ 1) or d = 4n, generates
the starting state .

i. One Weyl representation
We define the creation b̂1†1 — and the corresponding annihilation operator

b̂11 = (b̂1†1 )† — which when applied on the vacuum state |ψoc > create a vector of
one of the two equations (9.57, 9.58), as follows

b̂1†1 : =
03

(+i)
12

(+)
56

(+) · · ·
d−1 d

(+) ,

b̂11 : =
d−1 d

(−) · · ·
56

(−)
12

(−)
03

(−i) ,

for d = 2(2n+ 1) ,

b̂1†1 : =
03

(+i)
12

(+)
56

(+) · · ·
d−3 d−2

(+)
d−1 d

[+] ,

b̂11 : =
d−1,d

[+]
d−2 d−3

(−) · · ·
56

(−)
12

(−)
03

(−i) ,

for d = 4n . (9.61)

We shall call the b̂1†1 |ψoc >, when operating on the vacuum state, the starting
vector of the starting ”family”.

Now we can make a choice of the vacuum state for this particular ”family”
taking into account Eq. (9.88)

|ψoc > =
03

[−i]
12

[−]
56

[−] · · ·
d−1 d

[−] |0 > ,

for d = 2(2n+ 1) ,

|ψoc > =
03

[−i]
12

[−]
56

[−] · · ·
d−3 d−2

[−]
d−1 d

[+] |0 > ,

for d = 4n , (9.62)
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n is a positive integer, so that the requirements of Eq. (9.60) are fulfilled. We
see: The creation and annihilation operators of Eq. (9.61) (both are nilpotents,
(b̂1†1 )2 = 0 and (b̂11)

2 = 0), b̂1†1 (generating the vector |ψ11 >when operating on the
vacuum state) gives b̂1†1 |ψoc > 6= 0, while the annihilation operator annihilates the
vacuum state b̂11|ψ0 >= 0, giving {b̂11, b̂

1†
1 }+|ψoc >= |ψoc >, since we choose the

appropriate normalization, Eq. (9.54).
All the other creation and annihilation operators, belonging to the same

Lorentz representation with the same family quantum number, follow from the
starting ones by the application of particular Sac, which do not belong to the
Cartan subalgebra (9.82).

We call b̂1†2 the one obtained from b̂1†1 by the application of one of the four
generators (S01, S02, S31, S32). This creation operator is for d = 2(2n+ 1) equal to

b̂1†2 =
03

[−i]
12

[−]
35

(+) · · ·
d−1 d

(+) , while it is for d = 4n equal to b̂1†2 =
03

[−i]
12

[−]
56

(+) · · ·
d−1 d

[+] .
All the other family members follow from the starting one by the application of
different Sef, or by the product of several Sgh.

We accordingly have

b̂1†i ∝ Sab..Sefb̂
1†
1 ,

b̂1i ∝ b̂11Sef..Sab , (9.63)

with Sab† = ηaaηbbSab. We shall make a choice of the proportionality factors so
that the corresponding states |ψ11 >= b̂

1†
i |ψoc >will be normalized.

We recognize that [19]:
i.a. (b̂1†i )2 = 0 and (b̂1i )

2 = 0, for all i.

To see this one must recognize that Sac (or Sbc, Sad, Sbd) transforms
ab

(+)
cd

(+) to
ab

[−]
cd

[−], that is an even number of nilpotents (+) in the starting state is transformed
into projectors [−] in the case of d = 2(2n+ 1). For d = 4n, Sac (or Sbc, Sad, Sbd)

transforms
ab

(+)
cd

[+] into
ab

[−]
cd

(−). Therefore for either d = 2(2n + 1) or d = 4n at
least one of factors, defining a particular creation operator, will be a nilpotent. For
d = 2(2n+ 1) there is an odd number of nilpotents, at least one, leading from the

starting factor
dg

(+) in the creator. For d = 4n a nilpotent factor can also be
d−1 d

(−)

(since
d−1d

[+] can be transformed by Sed−1, for example into
d−1 d

(−) ). A square of
at least one nilpotent factor (we started with an odd number of nilpotents, and
oddness can not be changed by Sab), is enough to guarantee that the square of
the corresponding (b̂1†i )2 is zero. Since b̂1i = (b̂1†i )†, the proof is valid also for
annihilation operators.

i.b. b̂1†i |ψoc > 6= 0 and b̂1i |ψoc >= 0, for all i.
To see this in the case d = 2(2n+ 1) one must recognize that b̂1†i distinguishes

from b̂1†1 in (an even number of) those nilpotents (+), which have been transformed

into [−]. When
ab

[−] from b̂1†i meets
ab

[−] from |ψoc >, the product gives
ab

[−] back,

and correspondingly a nonzero contribution. For d = 4n also the factor
d−1 d

[+] can
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be transformed. It is transformed into
d−1 d

(−) which, when applied to a vacuum

state, gives again a nonzero contribution (
d−1 d

(−)
d−1 d

[+] =
d−1 d

(−) , Eq. (9.88)).
In the case of b̂1i we recognize that in b̂1†i at least one factor is nilpotent; that

of the same type as in the starting b̂†1 — (+) — or in the case of d = 4n it can be

also
d−1 d

(−) . Performing the Hermitian conjugation (b̂1†i )†, (+) transforms into (−),

while
d−1 d

(−) transforms into
d−1 d

(+) in b̂1i . Since (−)[−] gives zero and
d−1 d

(+)
d−1 d

[+]

also gives zero, b̂1i |ψoc >= 0.
i.c. {b̂1†i , b̂

1†
j }+ = 0, for each pair (i, j).

There are several possibilities to be discussed. A trivial one is, if both b̂1†i and
b̂1†j have a nilpotent factor (or more than one) for the same pair of indexes, say
kl

(+). Then the product of such two
kl

(+)
kl

(+) gives zero. It also happens, that b̂1†i

has a nilpotent at the place (kl) (
03

[−] · · ·
kl

(+) · · ·
mn

[−] · · · ) while b̂1†j has a nilpotent

at the place (mn) (
03

[−] · · ·
kl

[−] · · ·
mn

(+) · · · ). Then in the term b̂1†i b̂
1†
j the product

mn

[−]
mn

(+) makes the term equal to zero, while in the term b̂1†j b̂
1†
i the product

kl

[−]
kl

(+)

makes the term equal to zero. There is no other possibility in d = 2(2n + 1). In

the case that d = 4n, it might appear also that b̂1†i =
03

[−] · · ·
ij

(+) · · ·
d−1 d

[+] and

b̂1†j =
03

[−] · · ·
ij

[−] · · ·
d−1 d

(−) . Then in the term b̂1†i b̂
1†
j the factor

d−1 d

[+]
d−1 d

(−) makes

it zero, while in b̂1†j b̂
1†
i the factor

ij

[−]
ij

(+) makes it zero. Since there are no further
possibilities, the proof is complete.

i.d. {b̂1i , b̂
1
j }+ = 0, for each pair (i, j).

The proof goes similarly as in the case with creation operators. Again we treat
several possibilities. b̂1i and b̂1j have a nilpotent factor (or more than one) with the

same indexes, say
kl

(−). Then the product of such two
kl

(−)
kl

(−) gives zero. It also

happens, that b̂1i has a nilpotent at the place (kl) (· · ·
mn

[−] · · ·
kl

(−) · · ·
03

[−]) while b̂1j

has a nilpotent at the place (mn) (· · ·
mn

(−) · · ·
kl

[−] · · ·
03

[−]). Then in the term b̂1i b̂
1
j the

product
kl

(−)
kl

[−] makes the term equal to zero, while in the term b̂1j b̂
1
i the product

mn

(−)
mn

[−] makes the term equal to zero. In the case that d = 4n, it appears also that

b̂1i =
d−1 d

[+] · · ·
ij

(−) · · ·
03

[−] and b̂1j =
d−1 d

(+) · · ·
ij

[−] · · ·
03

[−]. Then in the term b̂1i b̂
1
j the

factor
ij

(−)
ij

[−] makes it zero, while in b̂1j b̂
1
i the factor

d−1 d

(+)
d−1 d

[+] makes it zero.
i.e. {b̂1i , b̂

1†
j }+|ψoc >= δij|ψoc > .

To prove this we must recognize that b̂1i = b̂1S
ef..Sab and b̂1†i = Sab..Sefb̂1.

Since any b̂1i |ψoc >= 0, we only have to treat the term b̂1i b̂
1†
j . We find b̂1i b̂

1†
j ∝

· · ·
lm

(−) · · ·
03

(−)Sef · · ·SabSlm · · ·Spr
03

(+) · · ·
lm

(+) · · · . If we treat the term b̂1i b̂
1†
i ,

generators Sef · · ·SabSlm · · ·Spr are proportional to a number and we normalize
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< ψoc|b̂
1
i b̂
1†
i |ψoc > to one. When Sef · · ·SabSlm · · ·Spr are proportional to several

products of Scd, these generators change b̂1†1 into
03

(+) · · ·
kl

[−] · · ·
np

[−] · · · , making

the product b̂1i b̂
1†
j equal to zero, due to factors of the type

kl

(−)
kl

[−]. In the case of

d = 4n also a factor
d−1 d

[+]
d−1 d

(−) might occur, which also gives zero.
We saw and proved that for the definition of the creation and annihilation operators,

Eq. (9.61), for states in Eqs. (9.57, 9.58) and further for all the rest of creation and
annihilation operators, Eq. (9.63), and for the choice of the vacuum states, Eq. (9.62),
all the requirements of Eq. (9.60) are fulfilled, provided that creation and correspondingly
also the annihilation operators have an odd Clifford character, that is that the number of
nilpotents in the product is odd.

For an even number of factors of the nilpotent type in the starting state and
accordingly in the starting b̂1†1 , an annihilation operator b̂1i would appear with all
factors of the type [−], which on the vacuum state (Eq.(9.62)) would not give zero.

ii. Families of Weyl representations
Let b̂α†i be a creation operator, fulfilling Eq. (9.60), which creates one of the

(2d/2−1) Weyl basic states of an α−th ”family”, when operating on a vacuum state
|ψoc > and let b̂αi = (b̂α†i )† be the corresponding annihilation operator. We shall
now proceed to define b̂α†i and b̂αi from a chosen starting state (9.57, 9.58), which
b̂1†1 creates on the vacuum state |ψoc >.

When treating more than one Weyl representation, that is, more than one
”family”, we must take into account that: i. The vacuum state chosen to fulfill
requirements for second quantization of the starting family might not and it will
not be the correct one when all the families are taken into account. ii. The products
of S̃ab, which do not belong to the Cartan subalgebra set of the generators S̃ab,
when being applied on the starting family ψ11, generate the starting member ψα1
of each of the remaining families. There is correspondingly the same number of
”families” as the number of vectors of one Weyl representation, namely 2d/2−1.
Then the whole Weyl representation of a particular family ψα1 follows again with
the application of Sef, which do not belong to the Cartan subalgebra of Sab on
this starting α family state.

Any vector |ψαi > follows from the starting vector, Eqs. (9.57, 9.58), by the
application of either S̃ef, which change the family quantum number, or Sgh, which
change the member of a particular family (as it can be seen from Eqs. (9.90, 9.102))
or with the corresponding product of Sef and S̃ef

|ψαi > ∝ S̃ab · · · S̃ef|ψ1i >∝ S̃ab · · · S̃efSmn · · ·Spr|ψ11 > . (9.64)

Correspondingly we define b̂α†i (up to a constant) to be

b̂α†i ∝ S̃ab · · · S̃efSmn · · ·Sprb̂
1†
1

∝ Smn · · ·Sprb̂1†1 Sab · · ·Sef . (9.65)

This last expression follows due to the property of the Clifford object γ̃a and
correspondingly of S̃ab, presented in Eqs. (9.92, 9.93).
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For b̂αi = (b̂α†i )† we accordingly have

b̂αi = (b̂α†i )† ∝ Sef · · ·Sabb̂11Spr · · ·Smn . (9.66)

The proportionality factor will be chosen so that the corresponding states |ψαi >=
b̂α†i |ψoc >will be normalized.

We ought to generalize the vacuum state from Eq. (9.62) so that b̂α†i |ψoc > 6= 0
and b̂αi |ψoc >= 0 for all the members i of any family α. Since any S̃eg changes
ef

(+)
gh

(+) into
ef

[+]
gh

[+] and
ab

[+] † =
ab

[+], while
ab

(+) †
ab

(+)=
ab

[−], the vacuum state |ψoc >

from Eq. (9.62) must be replaced by

|ψoc >=

03

[−i]
12

[−]
56

[−] · · ·
d−1 d

[−] +
03

[+i]
12

[+]
56

[−] · · ·
d−1 d

[−] +
03

[+i]
12

[−]
56

[+] · · ·
d−1 d

[−] + · · · |0 > ,
for d = 2(2n+ 1),

|ψoc >=

03

[−i]
12

[−]
35

[−] · · ·
d−3 d−2

[−]
d−1 d

[+] +
03

[+i]
12

[+]
56

[−] · · ·
d−3 d−2

[−]
d−1 d

[+] + · · · |0 > ,
for d = 4n, (9.67)

n is a positive integer. There are 2
d
2
−1 summands, since we step by step replace all

possible pairs of
ab

[−] · · ·
ef

[−] in the starting part
03

[−i]
12

[−]
35

[−] · · ·
d−1 d

[−] (or
03

[−i]
12

[−]
35

[−]

· · ·
d−3 d−2

[−]
d−1 d

[+] ) into
ab

[+] · · ·
ef

[+] and include new terms into the vacuum state so
that the last 2n+ 1 summands have for d = 2(2n+ 1) case, n is a positive integer,
only one factor [−] and all the rest [+], each [−] at different position. For d = 4n

also the factor
d−1 d

[+] in the starting term
03

[−i]
12

[−]
35

[−] · · ·
d−3 d−2

[−]
d−1 d

[+] changes to
d−1 d

[−] . The vacuum state has then the normalization factor 1/
√
2d/2−1.

There is therefore

2
d
2
−1 2

d
2
−1 (9.68)

number of creation operators, defining the orthonormalized states when applying
on the vacuum state of Eqs. (9.67) and the same number of annihilation operators,
which are defined by the creation operators on the vacuum state of Eqs. (9.67).
S̃ab connect members of different families, Sab generates all the members of one
family.

We recognize that:
ii.a. The above creation and annihilation operators are nilpotent — (b̂a†i )2 =

0 = (b̂ai )
2 — since the ”starting” creation operator b̂1†1 and annihilation operator

b̂ai are both made of the product of an odd number of nilpotents, while products
of either Sab or S̃ab can change an even number of nilpotents into projectors. Any
b̂a†i is correspondingly a factor of an odd number of nilpotents (at least one) (and
an even number of projectors) and its square is zero. The same is true for b̂ai .

ii.b. All the creation operators operating on the vacuum state of Eq. (9.67)
give a non zero vector — b̂a†i |ψoc > 6= 0 — while all the annihilation operators
annihilate this vacuum state — b̂ai |ψ0 >= 0 for any α and any i.
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It is not difficult to see that b̂ai |ψoc >= 0, for any α and any i. First we
recognize that whatever the set of factors Smn · · ·Spr appear on the right hand
side of the annihilation operator b̂11 in Eq. (9.66), it leaves at least one factor [−]

unchanged. Since b̂11 is the product of only nilpotents (−) and since
ab

(−)
ab

[−]= 0,

this part of the proof is complete.
Let us prove now that b̂α†i |ψoc > 6= 0 for any α and any i. According to

Eq. (9.65) the operation Smn on the left hand side of b̂1†1 , with (m,n, ..), which
does not belong to the Cartan subalgebra set of indices, transforms the term
03

[−i]
12

[−] · · ·
lm

[−] · · ·
nk

[−] · · ·
d−1 d

[−] (or the term
03

[−i]
12

[−] · · ·
lm

[−] · · ·
nk

[−] · · · · · ·
d−1 d

[+] ) into

the term
03

[−i]
12

[−] · · ·
lm

(+) · · ·
nk

(+) · · ·
d−1 d

[−] (or into the term
03

[−i]
12

[−] · · ·
lm

(+) · · ·
nk

(+)

· · · · · ·
d−1 d

[+] ) and b̂1†1 on such a term gives zero, since
lm

(+)
lm

(+)= 0 and
nk

(+)
nk

(+)= 0.
Let us first assume that Smn is the only term on the right hand side of b̂1†1 and
that none of the operators from the left hand side of b̂1†1 in Eq. (9.65) has the
indices m,n. It is only one term among all the summands in the vacuum state
(Eq. (9.67)), which gives non zero contribution in this particular case, namely the

term
03

[−i]
12

[−] · · ·
lm

[+] · · ·
nk

[+] · · ·
d−1 d

[−] (or the term
03

[−i]
12

[−] · · ·
lm

[+] · · ·
nk

[+] · · · · · ·
d−1 d

[+] ).

Smn transforms the part · · ·
lm

[+] · · ·
nk

[+] · · · into · · ·
lm

(−) · · ·
nk

(−) · · · and since
lm

(+)
lm

(−)

gives ηll
lm

[+], while for the rest of factors it was already proven that such a factor
on b̂1†1 forms a b1†i giving non zero contribution on the vacuum, Eq. (9.62), the
proof is complete.

It is also proved that what ever other Sab but Smn operate on the left hand side
of b̂1†1 the contribution of this particular part of the vacuum state is nonzero. If the
operators on the left hand side have the indexesm or n or both, the contribution on
this term of the vacuum will still be nonzero, since then such a Smp will transform

the factor
lm

(+) in b̂1†1 into
lm

[−] and
lm

[−]
lm

(−) is nonzero, Eq. (9.88).
It was proven that b̂α†i operating on the vacuum |ψoc > of Eq. (9.67) gives a

nonzero contribution. The vacuum state has namely a term which guarantees a non
zero contribution for any possible set of Smn · · ·Spr operating from the right hand
side of b̂1†1 (that is for each family) (what we achieved just by the transformation

of all possible pairs of
cd

[−],
gh

[−] in the vacuum into
cd

[+],
gh

[+]). (When we speak about

[−] also
03

[−i] is understood.) It is not difficult to see that for each ”family” of 2
d
2
−1

families it is only one term among all the summands in the vacuum state |ψoc >

of Eq. (9.67), which gives a nonzero contribution, since whenever [+] appears on a

wrong position, that is on the position, so that the product of
ab

(+) from b̂1† and
ab

[+]

from the vacuum summand ”meet”, the contribution is zero.
ii.c. Any two creation operators anticommute: {b̂α†i , b̂

β†
j }+ = 0. According

to Eq. (9.65) we can rewrite {b̂α†i , b̂
β†
j }+, up to a factor, as {Smn · · ·Sprb̂1†1 Sab · · ·Sef,

Sm
′n ′ · · ·Sp ′r ′ b̂1†1 Sa

′b ′ · · ·Se ′f ′ }+. Whatever the product Sab · · ·SefSm ′n ′ · · ·Sp ′r ′

(or Sa
′b ′ · · ·Se ′f ′Smn · · ·Spr) is, it always transforms an even number of (+) in b̂1†1

into [−]. Since an odd number of nilpotents (+) (at least one) remains unchanged
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in this right b̂1†1 after the application of all the Sab in the product in front of it, or
d−1 d

[+] transforms into
d−1 d

(−) , and since the left b̂1†1 is a product of only nilpotents
(+) in d = 2(2n + 1), or an odd number of nilpotents and [+] for d = 4n, while
d−1 d

[+]
d−1 d

(−) = 0, the anticommutator for any two creation operators is zero.
ii.d. Any two annihilation operators anticommute: {b̂αi , b̂

β
j }+ = 0.According

to Eq. (9.66) we can rewrite {b̂αi , b̂
β
j }+, up to a factor, as {Sab · · ·Sefb̂11Smn · · ·Spr,

Sa
′b ′ · · ·Se ′f ′ b̂11Sm

′n ′ · · ·Sp ′r ′ }+. Whatever the product Smn · · ·SprSa ′b ′ · · ·Se ′f ′
(or Sm

′n ′ · · ·Sp ′r ′Sab · · ·Sef) is, it always transforms an even number of (−) in b̂11
into [+]. Since an odd number of nilpotents (−) (at least one) remains unchanged

in this b̂11 after the application of all the Sab in the product in front of it or
d−1 d

[+]

is transformed into
d−1 d

(−) , and since b̂11 on the left hand side is a product of
only nilpotents (−) for d = 2(2n + 1) (or an odd number of nilpotents and [+]

for d = 4n), while
ab

(−)
ab

(−)= 0 and
ab

[+]
ab

[−]= 0, the anticommutator of any two
annihilation operators is zero.

ii.e. For any creation and any annihilation operator it follows: {b̂αi , b̂
β†
j }+ |ψoc >=

δαβδij |ψoc >. Let us prove this. According to Eqs. (9.65, 9.66) we may rewrite
{b̂αi , b̂

β†
j }+ up to a factor as

{Sab · · ·Sefb̂11Smn · · ·Spr, Sm
′n ′ · · ·Sp ′r ′ b̂1†1 Sa

′b ′ · · ·Se ′f ′ }+.

We distinguish between two cases. It can be that both Smn · · ·SprSm ′n ′ · · ·Sp ′r ′
and Sa

′b ′ · · ·Se ′f ′Sab · · ·Sef are numbers. This happens when α = β and i = j.
Then we follow i.b.. We normalize the states so that < ψαi |ψ

α
i >= 1.

The second case is that at least one of products Smn · · ·SprSm ′n ′ · · ·Sp ′r ′ and

Sa
′b ′ · · ·Se ′f ′Sab · · ·Sef is not a number. Then the factors like

ab

(−)
ab

[−] or
ab

[+]
ab

(−) or
ab

(+)
ab

[+] make the anticommutator equal to zero. And the proof is completed.
Let us extend the creation and annihilation operators to the ordinary coordi-

nate space

{b̂αi (~x), b̂
β†
j (~x ′)}+|φoc > = δαβ δ

i
j δ(~x− ~x

′)|φoc > ,

{b̂αi (~x), b̂
β
j (~x

′)}+|φoc > = 0 |φoc > ,

{b̂α†i (~x), b̂β†j (~x ′)}+|φoc > = 0 |φoc > ,

b̂αj (~x)|φoc > = 0 |φoc > ,

b̂α†j (~x)|φoc > = |ψαi (~x) > , (9.69)

with the vacuum state |φoc > defined in Eq. (9.67).

c. Discrete symmetries in Grassmann space and in Clifford space in d
and in d = (3+ 1) space

Let Ψ†p[Ψp] be the creation operator creating a fermion in the state Ψp (which
is a function of ~x) and let Ψp(~x) be the second quantized field creating a fermion
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at position ~x either in the Grassmann or in the Clifford case. Then

Ψ†p[Ψp] =

∫
Ψ†p(~x)Ψp(~x)d

(d−1)x , (9.70)

describes on a vacuum state a single particle in the state Ψ

{Ψ†p[Ψp] =

∫
Ψ†p(~x)Ψp(~x)d

(d−1)x } |vac >

so that the anti-particle state becomes

{CΨ†p[Ψposp ] =

∫
Ψp(~x) (C Ψposp (~x))d(d−1)x} |vac > .

We distinguish in d-dimensional space two kinds of dicsrete operators C,P and T
operators with respect to the internal space which we use.

In the Clifford case we have [21]

CH =
∏
γa∈=

γa K ,

TH = γ0
∏
γa∈<

γa K Ix0 ,

P(d−1)
H = γ0 I~x ,

Ixx
a = −xa , Ix0x

a = (−x0,~x) , I~x~x = −~x ,

I~x3x
a = (x0,−x1,−x2,−x3, x5, x6, . . . , xd) . (9.71)

The product
∏
γa is meant in the ascending order in γa.

In the Grassmann case we correspondingly define

CG =
∏

γa
G
∈=γa

γaG K ,

TG = γ0G
∏

γa
G
∈<γa

γaG K Ix0 ,

P(d−1)
G = γ0G I~x , (9.72)

γaG is defined in Eq. (9.11) as

γaG = (1− 2θaηaa
∂

∂θa
) , (9.73)

while Ixxa = −xa , Ix0xa = (−x0,~x) , I~x~x = −~x ,

I~x3x
a = (x0,−x1,−x2,−x3, x5, x6, . . . , xd) .

Let be noticed, that since γaG (= −iηaa γaγ̃a) is always real as there is γaiγ̃a,
while γa is either real or imaginary, we use in Eq. (9.72) γa to make a choice of
appropriate γaG. In what follows we shall use the notation as in Eq. (9.72).
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Let us define in the Clifford case and in the Grassmann case the operator
”emptying” [7,9] (arxiv:1312.1541) the Dirac sea, so that operation of ”emptyingN”
after the charge conjugation CH in the Clifford case and ”emptyingG” after the
charge conjugation CG in the Grassmann case (both transform the state put on
the top of either the Clifford or the Grassmann Dirac sea into the corresponding
negative energy state) creates the anti-particle state to the starting particle state,
both put on the top of the Dirac sea and both solving the Weyl equation, either in
the Clifford case, Eq. (9.34), or in the Grassmann case, Eq. (9.39), for free massless
fermions

"emptyingN" =
∏
<γa

γa K in Clifford space ,

"emptyingG" =
∏
<γa

γaG K in Grassmann space , (9.74)

although we must keep in mind that indeed the anti-particle state is a hole in the
Dirac sea from the Fock space point of view. The operator ”emptying” is bringing
the single particle operator CH in the Clifford case and CG in the Grassmann case
into the operator on the Fock space in each of the two cases. Then the anti-particle
state creation operator — Ψ†a[Ψp] — to the corresponding particle state creation
operator — can be obtained also as follows

Ψ†a[Ψp] |vac > = CH Ψ
†
p[Ψp] |vac >=

∫
Ψ†a(~x) (CH Ψp(~x))d(d−1)x |vac > ,

CH = "emptyingN" · CH (9.75)

in both cases.
The operators CH and CG

CH = "emptyingN" · CH , CG = "emptyingNG" · CG , (9.76)

operating on Ψp(~x) transforms the positive energy spinor state (which solves
the corresponding Weyl equation for a massless free fermion) put on the top of
the Dirac sea into the positive energy anti-fermion state, which again solves the
corresponding Weyl equation for a massless free anti-fermion put on the top of
the Dirac sea. Let us point out that either the operator "emptyingN" or the operator
"emptyingNG" transforms the single particle operator either CH or CG into the
operator operating in the Fock space.

We use the Grassmann even, Hermitian and real operators γaG, Eq. (9.11), to
define discrete symmetry in Grassmann space, first in ((d+ 1) − 1) space and then
in (3+ 1) space, as we did in [21] in the Clifford case. In the Grassmann case we
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do this in analogy with the operators in the Clifford case [21]

CNG =
∏

γm
G
∈<γm

γmG K Ix6x8...xd ,

TNG = γ0G
∏

γm
G
∈=γm

K Ix0Ix5x7...xd−1 ,

P(d−1)
NG = γ0G

d∏
s=5

γsGI~x ,

CNG =
∏

γs
G
∈<γs

γsG , Ix6x8...xd ,

CNGP(d−1)
NG = γ0G

d∏
γs
G
∈=γs,s=5

γsG I~x3 Ix6x8...xd ,

CNGTNGP(d−1)
NG =

∏
γs
G
∈=γa

γaG IxK . (9.77)

Let us try to understand the Grassmann fermions in the case d = 5 + 1,
before the break, as well as after the break of d = 5+ 1 into d = 3+ 1, when the
fifth and the sixth dimension determine the charge in d = 3 + 1. There are two
decuplets in this case [15], both of an odd Grassmann character, which can be
second quantized. The two triplets in the first decuplet— (ψI1, ψI2, ψI3) and (ψI4,
ψI5, ψI6) — both solving the Eq. (9.39) for massless free fermions in Grassmann
space with the space function e−ipax

a

. The Grassmann even opoerator operator
CNGP(d−1)

NG transforms ψI1 with pa = (|p0|, 0, 0, |p3|, 0, 0) into the antiparticle state
ψI6, with the positive energy |p0| and with −|p3|, for example. Correspondingly
transforms CNGP(d−1)

NG the particle state ψI3 with the positive energy and into the
antiparticle state ψI4 with the positive energy, and the particle ψI3 into the positive
energy antiparticle state ψI4. All belong to the same representation.

Applying the Grassmann even operators on one of the states of one the de-
cuplets — CG(= γ2Gγ5G, Eq. (9.72)), CNGP(d−1)

NG (= γ1Gγ
3
Gγ

5
Gγ

6
G Ix6I~x3K, Eq. (9.72))

— one remains within the same decuplet. To get the positive energy antiparticle
states the operator emptingN in (d − 1) + 1 and emptingNG in d = (3 + 1) are
needed, Eqs. (9.74, 9.76). The reader can find more discussions in Refs. [15,21].

d. What do we learn in the second quantization procedure in Grassmann
and in Clifford space

We proved that basic states in both spaces can be written by creation operators
operating on an appropriate vacuum state. The creation and annihilation operators
fulfill in both spaces anticommutation relations as required for fermions, Eqs (9.48,
9.60).

In both spaces the creation operators are chosen to create states that are
eigenstates of the corresponding Cartan subalgebra of the Lorentz algebra, the
generators of which are Sab, Eq. (9.13), for the Grassmann case and (Sab, S̃ab),
first generating spins and the second families, Eq. (9.25), for the Clifford case.
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I decuplet S03 S12 S56

1 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) i 1 1

2 (θ0θ3 + iθ1θ2)(θ5 + iθ6) 0 0 1

3 (θ0 + θ3)(θ1 − iθ2)(θ5 + iθ6) −i −1 1

4 (θ0 − θ3)(θ1 − iθ2)(θ5 − iθ6) i −1 −1

5 (θ0θ3 − iθ1θ2)(θ5 − iθ6) 0 0 −1

6 (θ0 + θ3)(θ1 + iθ2)(θ5 − iθ6) −i 1 −1

7 (θ0 − θ3)(θ1θ2 + θ5θ6) i 0 0

8 (θ0 + θ3)(θ1θ2 − θ5θ6) −i 0 0

9 (θ0θ3 + iθ5θ6)(θ1 + iθ2) 0 1 0

10 (θ0θ3 − iθ5θ6)(θ1 − iθ2) 0 −1 0

II decuplet S03 S12 S56

1 (θ0 + θ3)(θ1 + iθ2)(θ5 + iθ6) −i 1 1

2 (θ0θ3 − iθ1θ2)(θ5 + iθ6) 0 0 1

3 (θ0 − θ3)(θ1 − iθ2)(θ5 + iθ6) i −1 1

4 (θ0 + θ3)(θ1 − iθ2)(θ5 − iθ6) −i −1 −1

5 (θ0θ3 + iθ1θ2)(θ5 − iθ6) 0 0 −1

6 (θ0 − θ3)(θ1 + iθ2)(θ5 − iθ6) i 1 −1

7 (θ0 + θ3)(θ1θ2 + θ5θ6) −i 0 0

8 (θ0 − θ3)(θ1θ2 − θ5θ6) i 0 0

9 (θ0θ3 − iθ5θ6)(θ1 + iθ2) 0 1 0

10 (θ0θ3 + iθ5θ6)(θ1 − iθ2) 0 −1 0

Table 9.1. The creation operators of the decuplet and the antidecouplet of the orthog-
onal group SO(5, 1) in Grassmann space are presented. Applying on the vacuum state
|φ0 >= |1 > the creation operators form eigenstates of the Cartan subalgebra, Eq. (9.84),
(S03,S12, S56). The states within each decouplet are reachable from any member by Sab. The
product of the discrete operators CNG (=

∏
<γs γ

s
G Ix6x8...xd ) P(d−1)

NG (= γ0G
∏d
s=5 γ

s
GI~x3 )

transforms, for example, ψI1 into ψI6, ψI2 into ψI5 and ψI3 into ψI4. Solutions of the Weyl
equation, Eq. (9.39), with the negative energies belong to the ”Grassmann sea”, with the
positive energy to the particles and antiparticles.

While in the Grassmann case the vacuum state is simple, |φog >= |1 >, in the
Clifford case the vacuum state is a sum of products of 2

d
2
−1 projectors, Eq. (9.67).

In 2(2n+1)-dimensional spaces there are in the Clifford case 2
d
2
−1 states in one

representation reachable from (any) starting state by Sab, while S̃ab transform each
of these states changing its family quantum number. There are correspondingly
2
d
2
−1 × 2d2−1 states reachable with either Sab or S̃ab. Each state is obtained by

the corresponding creation operator on the vacuum state and is annihilated by its
Hermitian conjugate operator.

In 2(2n + 1)-dimensional spaces there are in the Grassmann case two de-
coupled groups with 1

2
d!
d
2
!d
2
!

states in each representation. Each of states can be
obtained by the corresponding creation operator and is annihilated by its Her-
mitian conjugated operator. While all of 2

d
2
−1 × 2d2−1 states in Clifford space are

reachable by even Clifford objects, either Sab or S̃ab, in Grassmann space the two
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groups of representations can not be reached by an even number of Grassmann
objects.

9.3 Conclusions

We have learned in the present study that one can use either Grassmann or Clifford
space to express the internal degrees of freedom of fermions in any even dimen-
sional space, either for d = 2(2n+ 1) or d = 4n. In both spaces the creation opera-
tors and their Hermitian conjugated annihilation operators fulfill the anticommuta-
tion relation requirements, needed for fermions, provided that they are expressed
as odd products of either Grassmann (θa, (θa)† = ∂

∂θa
ηaa, Eq. (9.8)) or Clifford

objects (either γa = (θa + ∂
∂θa

), Eq. (9.17) and correspondingly γa† = γaηaa, or
γ̃a = i(θa − ∂

∂θa
), Eq. (9.18), and correspondingly γ̃a† = γ̃aηaa). But while in

the Clifford case states appear in the fundamental representations of the Lorentz
group, carrying half integer spins, the states in the Grassmann case are in adjoint
representations of the Lorentz group. The Clifford case, offering two kinds of
the Clifford objects (γa and γ̃a), enables to describe besides the spin degrees of
freedom of fermion fields also their family degrees of freedom. The Grassmann
case offers only one kind of objects. Assuming that ”nature has both choices” for
describing the internal degrees of freedom of fermion fields, the question arises
why Grassmann choice is not chosen, or better, why the Clifford choice is chosen.

In the case that spin degrees in d ≥ 5 manifest as charges in d = (3 + 1),
fermions in the Grassmann case manifest charges in the adjoint representations.
On the other hand in the Clifford case — this is used in the spin-charge-family
theory, which takes the Lorentz group SO(13, 1) — the spin and charges appear in
the fundamental representations of the corresponding groups, offering also the
family degrees of freedom.

We present in this paper the action describing free massless particles with the
internal degrees of freedom describable in Grassmann space, Eqs. (9.37, 9.38). The
action leads to the equation of motion analogous to the Weyl equation in Clifford
space, fulfilling the Klein-Gordon equation.

Since the Clifford objects γa and γ̃a are expressible with the Grassmann
coordinates θa and their conjugate moments ∂

∂θa
, either basic states in Grassmann

space, Eq. (9.4), or basic states in Clifford space, Eq. (9.15), can be normalized with
the same integral, Eq. (9.27, 9.28, 9.30).

To understand better the difference in the description of the fermion internal
degrees of freedom with either Clifford or Grassmann space, let us replace in the
starting action of the spin-charge-family theory, Eq. (9.1), using the Clifford algebra
to describe fermion degrees of freedom, the covariant momentum p0a = fαa
p0α, p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα, with p0α = pα − 1

2
SabΩabα, where

Sab = Sab + S̃ab, Eq. (9.26), and Ωabα are the spin connection gauge fields
of Sab (which are the generators of the Lorentz transformations in Grassmann
space!), while fαa p0α replaces the ordinary momentum when massless objects
start to interact with the gravitational field through the vielbeins and the spin
connections. Let us add that varying the action with respect to eitherωabα or ω̃abα
when no fermions are present, one learns that both spin connections are uniquely
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determined by the vielbeins ([9,3,5] and references therein) and correspondingly
in this particular caseωabα = ω̃abα .

Let us use instead of pa in the action for free massless fields using Grassmann
space to describe the internal degrees of freedom, Eq. (9.37), the above covariant
momentum p0a = fαa (pα − 1

2
SabΩabα). One finds in this case that the repre-

sentations of the Lorentz group in d = 2(2n + 1) = 13 + 1 and their subgroups
SO(7, 1), SU(3) and U(1) are all in the adjoint representations of the groups.

The spin-charge-family theory (using Clifford objects) offers the explanation
for all the assumptions of the standard model of elementary fields, fermions and
bosons, vector and scalar gauge fields, with the appearance of families included,
explaining also the phenomena like the existence of the dark matter [10], of the
matter-antimatter asymmetry [4], offering correspondingly the next step beyond
both standard models — cosmological one and the one of the elementary fields.

We do notice, however, that the Grassmann degrees of freedom do not offer the
appearance of families at all.

We also notice that the second quantization procedure allows in d = 2(2n+1)-
dimensional space for each member of a Weyl representation in Clifford space
(for each of 2

d
2
−1 ”family member”) 2

d
2
−1 ”families”, all together therefore 2

d
2
−1×

2
d
2
−1 basic states which can be second quantized, according to this paper. From 2d

Clifford objects, only those of an odd Clifford character contribute to the second
quantization — half of them as creation and half of them as annihilation operators,
2
d
2
−1 projectors from the rest of objects form the vacuum state.

We notice that in case of Grassmann space and d = 2(2n+ 1) only twice two
isolated groups of 1

2
d!
d
2
!d
2
!

states of an odd Grassmann character can be second
quantized.

To come to the low energy regime the symmetry must break, first from
SO(13, 1) to SO(7, 1)×SU(3)×U(1) and then further to SO(3, 1)×SU(3)×U(1), in
both spaces, in Grassmann and in Clifford. In Clifford case there are two kinds of
generators and correspondingly two kinds of symmetries. We learned in Refs. [23–
25] that when breaking symmetries only some of families stay massless and
correspondingly observable in d = (3+ 1).

This study is indeed to learn more about possibilities that ”nature has”. One
of the authors (N.S.M.B.) wants to learn: a. Why is the simple starting action of
the spin-charge-family theory doing so well in manifesting the observed properties
of the fermion and boson fields? b. Under which condition can more general
action lead to the starting action of Eq. (9.1)? c. What would more general action,
if leading to the same low energy physics, mean for the history of our Universe? d.
Could the fermionization procedure of boson fields or the bosonization procedure
of fermion fields, discussed in Ref. [12] for any even dimension d (by the authors
of this contribution, while one of them (H.B.F.N. [13]) has succeeded with another
author to do the fermionization for d = (1+ 1)) tell more about the ”decisions” of
the universe in the history?

Although we have not yet learned enough to be able to answer these questions,
yet we have learned at least that the description of the fermion internal degrees
of freedom in Grassmann space would not offer families, and would not be in
agreement with the spin and charges and other observations so far. We also learned
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that if there are no fermion present only one kind of dynamical fields manifests,
since eitherωabα or ω̃abα are uniquely expressed by vielbeins ([9] Eq. (C9) and
references therein), which could mean that the appearance of the two kinds of the
spin connection fields might be due to the break of symmetries.

9.4 Appenix: Lorentz algebra and representations in Grassmann
and Clifford space

The Lorentz transformations of vector components θa, γa, or γ̃a, which all could
be used to describe internal degrees of freedom of fields with the anticommutation
relations of fermions, and of vector components xa, which are real (ordinary)
commuting coordinates:

θ ′a = Λab θ
b, γ ′a = Λab γ

b, γ̃ ′a = Λab γ̃
b and xa = Λab x

b, leave forms
aa1a2...ai θ

a1θa2 . . . θai , aa1a2...ai γ
a1γa2 . . . γai , aa1a2...ai γ̃

a1 γ̃a2 . . . γ̃ai

and ba1a2...ai x
a1xa2 . . . xai , i = (1, . . . , d), invariant.

While ba1a2...ai (= ηa1b1ηa2b2 . . . ηaibi b
b1b2...bi) is a symmetric tensor

field, aa1a2...ai (= ηa1b1ηa2b2 . . . ηaibi a
b1b2...bi) are antisymmetric tensor Kalb-

Ramond fields.
The requirements: x

′a x
′bηab = xc xdηcd, θ ′aθ ′bεab = θcθdεcd, γ ′aγ ′bεab =

γcγdεcd and γ̃ ′aγ̃ ′bεab = γ̃cγ̃dεcd lead to ΛabΛcd ηac = ηbd. Here ηab (in our
case ηab = diag(1,−1,−1, . . . ,−1)) is the metric tensor lowering the indexes of
vectors ({xa} = ηabxb, {θa} = ηab θb, {γa} = ηab γb and {γ̃a} = ηab γ̃b) and εab
is the antisymmetric tensor. An infinitesimal Lorentz transformation for the case
with detΛ = 1,Λ00 ≥ 0 can be written asΛab = δab+ω

a
b, whereωab+ωba = 0.

According to Eqs. (9.17, 9.18, 9.25) one finds, Eq. (9.3),

{γa, S̃cd}− = 0 = {γ̃a, Scd}− ,

{γa,Scd}− = {γa, Scd}− = i (ηacγd − ηadγc) ,

{γ̃a,Scd}− = {γ̃a, S̃cd}− = i (ηacγ̃d − ηadγ̃c) . (9.78)

Comments: In cases with either the basis θa or with the basis of γa or γ̃a the scalar
products — the norms< B|B > and< F|F > (where< θ|B >, Eq. (9.4), and< γ|F >,
Eq. (9.15), are vectors in Grassmann and Clifford space, respectively) — are non
negative and equal to

∑d
k=0

∫
dd−1xb∗b1...bkbb1...bk .

9.4.1 Lorentz properties of basic vectors

What follows is taken from Ref. [2] and Ref. [9], Appendix B.
Let us first repeat some properties of the anticommuting Grassmann coordi-

nates.
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An infinitesimal Lorentz transformation of the proper ortochronous Lorentz
group is then

δθc = −
i

2
ωabSabθc = ωcaθa ,

δγc = −
i

2
ωabS

abγc = ωcaγ
a ,

δγ̃c = −
i

2
ωabS̃

abγ̃c = ωcaγ̃
a ,

δxc = −
i

2
ωabL

abxc = ωcax
a , (9.79)

whereωab are parameters of a transformation and γa and γ̃a are expressed by θa

and ∂
∂θa

in Eqs. (9.17, 9.18).
Let us write the operator of finite Lorentz transformations as follows

S = e−
i
2
ωab(Sab+Lab) . (9.80)

We see that the Grassmann θa and the ordinary xa coordinates and the Clifford
objects γa and γ̃a transform as vectors Eq. (9.80)

θ ′c = e−
i
2
ωab(Sab+Lab) θc e

i
2
ωab(Sab+Lab)

= θc −
i

2
ωab{Sab, θc}− + · · · = θc +ωcaθa + · · · = Λcaθa ,

x ′c = Λcax
a , γ ′c = Λcaγ

a , γ̃ ′c = Λcaγ̃
a . (9.81)

Correspondingly one finds that compositions like γapa and γ̃apa, here pa are
pxa (= i ∂

∂xa
), transform as scalars (remaining invariants), while Sabωabc and

S̃ab ω̃abc transform as vectors.
Also objects like

R =
1

2
fα[afβb] (ωabα,β −ωcaαω

c
bβ)

and
R̃ =

1

2
fα[afβb] (ω̃abα,β − ω̃caαω̃

c
bβ)

from Eq. (9.1) transform with respect to the Lorentz transformations as scalars.
Making a choice of the Cartan subalgebra set of the algebra Sab, Sab and S̃ab,

Eqs. (9.13, 9.17, 9.18),

S03,S12,S56, · · · ,Sd−1 d ,
S03, S12, S56, · · · , Sd−1 d ,
S̃03, S̃12, S̃56, · · · , S̃d−1 d , (9.82)

one can arrange the basic vectors so that they are eigenstates of the Cartan sub-
algebra, belonging to representations of Sab, or of Sab and S̃ab, with ab from
Eq (9.82).
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9.5 Appendix: Technique to generate spinor representations in
terms of Clifford algebra objects

We shall briefly repeat the main points of the technique for generating spinor
representations from Clifford algebra objects, following Ref. [16]. We advise the
reader to look for details and proofs in this reference.

We assume the objects γa, Eq. (9.17), which fulfill the Clifford algebra, Eq (9.16).

{γa, γb}+ = I 2ηab, for a, b ∈ {0, 1, 2, 3, 5, · · · , d} , (9.83)

for any d, even or odd. I is the unit element in the Clifford algebra, while {γa, γb}± =

γaγb ± γbγa.
We accept the “Hermiticity” property for γa’s, Eq. (9.20), γa† = ηaaγa ,

leading to γa†γa = I. Assuming the relation of Eq. (9.17) this last relations follow.
The Clifford algebra objects Sab close the Lie algebra of the Lorentz group

{Sab, Scd}− = i(ηadSbc + ηbcSad − ηacSbd − ηbdSac). One finds from Eq.(9.20)
that (Sab)† = ηaaηbbSab and that {Sab, Sac}+ = 1

2
ηaaηbc.

Recognizing that two Clifford algebra objects Sab, Scd with all indexes differ-
ent commute, we select (out of many possibilities) the Cartan sub algebra set of
the algebra of the Lorentz group as follows

S0d, S12, S35, · · · , Sd−2 d−1, if d = 2n,

S12, S35, · · · , Sd−1 d, if d = 2n+ 1. (9.84)

To make the technique simple, we introduce the graphic representation [16]
as follows

ab

(k): =
1

2
(γa +

ηaa

ik
γb),

ab

[k]: =
1

2
(1+

i

k
γaγb), (9.85)

where k2 = ηaaηbb. One can easily check by taking into account the Clifford alge-
bra relation (Eq. (9.83)) and the definition of Sab (Eq. (9.25)) that if one multiplies

from the left hand side by Sab the Clifford algebra objects
ab

(k) and
ab

[k], it follows
that

Sab
ab

(k)=
1

2
k
ab

(k),

Sab
ab

[k]=
1

2
k
ab

[k] . (9.86)

This means that
ab

(k) and
ab

[k] acting from the left hand side on anything (on a
vacuum state |ψ0〉, for example) are eigenvectors of Sab.

We further find

γa
ab

(k) = ηaa
ab

[−k], γb
ab

(k) = −ik
ab

[−k],

γa
ab

[k] =
ab

(−k), γb
ab

[k] = −ikηaa
ab

(−k) . (9.87)



i
i

“proc18” — 2018/12/10 — 11:44 — page 211 — #227 i
i

i
i

i
i

9 Why Nature Made a Choice of Clifford and not Grassmann Coordinates? 211

It follows that Sac
ab

(k)
cd

(k)= − i
2
ηaaηcc

ab

[−k]
cd

[−k], Sac
ab

[k]
cd

[k]= i
2

ab

(−k)
cd

(−k), Sac
ab

(k)
cd

[k]=

− i
2
ηaa

ab

[−k]
cd

(−k), Sac
ab

[k]
cd

(k)= i
2
ηcc

ab

(−k)
cd

[−k]. It is useful to deduce the following
relations

ab

(k)
ab

(k) = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k] ,
ab

(−k)
ab

(k)= ηaa
ab

[−k] ,
ab

(−k)
ab

(−k)= 0 ,
ab

[k]
ab

[k] =
ab

[k] ,
ab

[k]
ab

[−k]= 0 ,
ab

[−k]
ab

[k]= 0 ,
ab

[−k]
ab

[−k]=
ab

[−k] ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(−k)
ab

[k]=
ab

(−k) ,
ab

(−k)
ab

[−k]= 0 ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

[k]
ab

(−k)= 0 ,
ab

[−k]
ab

(k)= 0 ,
ab

[−k]
ab

(−k)=
ab

(−k) .

(9.88)

We recognize in the first equation of the first row and the first equation of the
second row the demonstration of the nilpotent and the projector character of the

Clifford algebra objects
ab

(k) and
ab

[k], respectively.
Whenever the Clifford algebra objects apply from the left hand side, they always

transform
ab

(k) to
ab

[−k], never to
ab

[k], and similarly
ab

[k] to
ab

(−k), never to
ab

(k).
We define in Eq. (9.62) a vacuum state |ψoc > so that one finds

<
ab

(k)

†
ab

(k) >= 1 , <
ab

[k]

†
ab

[k] >= 1 . (9.89)

Taking the above equations into account it is easy to find a Weyl spinor
irreducible representation for d-dimensional space, with d even or odd. (We advise
the reader to see Ref. [16].)

For d even, we simply set the starting state as a product of d/2, let us say, only

nilpotents
ab

(k) for d = 2(2n+1), Eq. (9.57), or nilpotents and one projector, Eq. (9.58),
for d = 4n, one for each Sab of the Cartan subalgebra elements (Eq. (9.84)),
applying it on the vacuum state, Eq. (9.62). Then the generators Sab, which do not
belong to the Cartan subalgebra, applied to the starting state from the left hand
side, generate all the members of one Weyl spinor.

0d

(k0d)
12

(k12)
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) |ψoc > ,
0d

[−k0d]
12

[−k12]
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) |ψoc > ,
0d

[−k0d]
12

(k12)
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) |ψoc > ,

...
od

(k0d)
12

[−k12]
35

[−k35] · · ·
d−1 d−2

[−kd−1 d−2] |ψoc > ,

ford = 2(2n+ 1) , n = positive integer . (9.90)
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0d

(k0d)
12

(k12)
35

(k35) · · ·
d−1 d−2

[kd−1 d−2] |ψoc > ,
0d

[−k0d]
12

[−k12]
35

(k35) · · ·
d−1 d−2

[kd−1 d−2] |ψoc > ,
0d

[−k0d]
12

(k12)
35

[−k35] · · ·
d−1 d−2

[kd−1 d−2] |ψoc > ,

...
od

(k0d)
12

[−k12]
35

[−k35] · · ·
d−1 d−2

[kd−1 d−2] |ψoc > ,

ford = 4n , n = positive integer . (9.91)

9.5.1 Technique to generate ”families” of spinor representations in terms of
Clifford algebra objects

When all 2d states are considered as a Hilbert space, we found in this paper that
for d even there are 2d/2−1 ”families members” and 2d/2−1 ”families” of spinors,
which can be second quantized. (The reader is advised to se also Ref. [2,26,16,17,27,9].)
We shall pay attention on only even d.

One Weyl representation form a left ideal with respect to the multiplication
with the Clifford algebra objects. We proved in Ref. [9], and the references therein
that there is the application of the Clifford algebra object from the right hand side,
which generates ”families” of spinors.

Right multiplication with the Clifford algebra objects namely transforms
the state with the quantum numbers of one ”family member” belonging to one
”family” into the state of the same ”family member” (into the same state with
respect to the generators Sab when the multiplication from the left hand side is
performed) of another ”family”.

We defined in Ref.[17] the Clifford algebra objects γ̃a’s as operations which
operate formally from the left hand side (as γa’s do) on any Clifford algebra object
A as follows

γ̃aA = i(−)(A)Aγa , (9.92)

with (−)(A) = −1, if A is an odd Clifford algebra object and (−)(A) = 1, if A is an
even Clifford algebra object.

Then it follows, in accordance with Eqs. (9.17, 9.18, 9.19), that γ̃a obey the
same Clifford algebra relation as γa.

(γ̃aγ̃b + γ̃bγ̃a)A = −ii((−)(A))2A(γaγb + γbγa) = I · 2ηabA (9.93)

and that γ̃a and γa anticommute

(γ̃aγb + γbγ̃a)A = i(−)(A)(−γbAγa + γbAγa) = 0 . (9.94)

We may write

{γ̃a, γb}+ = 0, while {γ̃a, γ̃b}+ = I · 2ηab . (9.95)



i
i

“proc18” — 2018/12/10 — 11:44 — page 213 — #229 i
i

i
i

i
i

9 Why Nature Made a Choice of Clifford and not Grassmann Coordinates? 213

One accordingly finds

γ̃a
ab

(k): = −i
ab

(k) γa = −iηaa
ab

[k] , γ̃b
ab

(k): = −i
ab

(k) γb = −k
ab

[k] ,

γ̃a
ab

[k]: = i
ab

[k] γa = i
ab

(k) , γ̃b
ab

[k]: = i
ab

[k] γb = −kηaa
ab

(k) . (9.96)

If we define

S̃ab =
i

4
[γ̃a, γ̃b] =

1

4
(γ̃aγ̃b − γ̃bγ̃a) , (9.97)

it follows

S̃abA = A
1

4
(γbγa − γaγb) , (9.98)

manifesting accordingly that S̃ab fulfil the Lorentz algebra relation as Sab do.
Taking into account Eq. (9.92), we further find

{S̃ab, Sab}− = 0 , {S̃ab, γc}− = 0 , {Sab, γ̃c}− = 0 . (9.99)

One also finds

{S̃ab, Γ }− = 0 , {γ̃a, Γ }− = 0 , for d even ,

Γ (d) : = (i)d/2
∏
a

(
√
ηaaγa) , if d = 2n , (9.100)

where handedness Γ ({Γ, Sab}− = 0) is a Casimir of the Lorentz group, which
means that in d even transformation of one ”family” into another with either S̃ab

or γ̃a leaves handedness Γ unchanged.
We advise the reader also to read [2] where the two kinds of Clifford algebra

objects follow as two different superpositions of a Grassmann coordinate and its
conjugate momentum.

We present for S̃ab some useful relations

S̃ab
ab

(k) =
k

2

ab

(k), S̃ab
ab

[k] = −
k

2

ab

[k], S̃ac
ab

(k)
cd

(k) =
i

2
ηaaηcc

ab

[k]
cd

[k],

S̃ac
ab

[k]
cd

[k] = −
i

2

ab

(k)
cd

(k), S̃ac
ab

(k)
cd

[k] = −
i

2
ηaa

ab

[k]
cd

(k), S̃ac
ab

[k]
cd

(k) =
i

2
ηcc

ab

(k)
cd

[k] .

(9.101)

We transform the state of one ”family” to the state of another ”family” by
the application of S̃ac (formally from the left hand side) on a state of the first
”family” for a chosen a, c. To transform all the states of one ”family” into states
of another ”family”, we apply S̃ac to each state of the starting ”family”. It is,
of course, sufficient to apply S̃ac to only one state of a ”family” and then use
generators of the Lorentz group (Sab) to generate all the states of one Dirac spinor
d-dimensional space.

One must notice that nilpotents
ab

(k) and projectors
ab

[k] are eigenvectors not
only of the Cartan subalgebra Sab but also of S̃ab. Accordingly only S̃ac, which
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do not carry the Cartan subalgebra indices, cause the transition from one ”family”
to another ”family”.

The starting state of Eq. (9.90) can change, for example, to

0d

[k0d]
12

[k12]
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) , (9.102)

if S̃01 was chosen to transform the Weyl spinor of Eq. (9.90) to the Weyl spinor of
another ”family”.
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Ed. N.S. Mankoč Borštnik, H.B. Nielsen, D. Lukman, DMFA Založništvo, Ljubljana,
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Abstract. It is an old idea of ours (H. B. Nielsen “Dual Models”,section 6 “Catastrophe
Theory Program”, Scottish University Summer School, 1976) that a most general material
with only translation symmetry, but otherwise no symmetries should generically (in general)
have some small regions in quasi momentum space, where you “see” an approximate Weyl
equation behavior. The Weyl equation is the relativistic equation for a (left handed) neutrino.
This remark means that one could imagine, that there were behind the Standard Model
of High energy physics, a very general crystal model with very little symmetry. Even for
the Yang Mills or electrodynamics types fields a similar philosophy is possible. There are
though some problems with this solid-state type of model beyond the Standard model, for
which we thought have some remedy by means of homolumo gap effects.

By making use of relativistic quantum field theory on the lattice we predicted the-
oretically very high magneto-conduction due to Adler-Bell-Jackiw chiral anomaly effect
– so called Nielsen-Ninomiya effect (or mechanism) in gapless parity violating material.
Nowadays this kind of material such as chiral or Weyl semimetal and the effect are detected
by experiments.

Povzetek. Avtorja obravnavata idejo HBN (H. B. Nielsen “Dual Models”, razdelek 6 “Catas-
trophe Theory Program”, Scottish University Summer School, 1976), da obstajajo v najbolj
splošnem modelu za snov, ki ima le translacijsko simetrijo, majhna območja v prostoru
kvazi gibalne količine, v katerih približno velja Weylova enačba. Ker velja Weylova enačba
za relativistično gibanje (levoročnih) nevtrinov, predlagata, da razširjeni standardni model
gledamo kot zelo splošen model za kristal z zelo malo simetrijami. Podoben pristop upora-
bita za primer elektromagnetnega polja in vsa Yang-Millsova polja. Težave, ki se pri tem
pojavijo, omilita s ”homo-lumo” vrzelmi.

Uporaba relativistične kvantne teorije polja na rešetki napove visoko magnetno prevod-
nost, ki jo sproži kiralna anomalija Adler-Bell-Jackiwa, ter s tem pojav Nielsen-Ninomiye:
visoko magnetno prevodnost v snoveh, ki kršijo parnost, med obema pasovoma pa ni vrzeli.
Te lastnosti materialov merijo v Weylovih (kiralnih) polkovinah.

Keywords: Weyl equation, homo-lumo gap



i
i

“proc18” — 2018/12/10 — 11:44 — page 217 — #233 i
i

i
i

i
i

10 Do We Find High Energy Physics Inside. . . 217

Introduction

The authors, in particular H. B. N. have through many years the dream, that it
is not important what the (most) fundamental laws of Nature might be, because
almost certainly the same effective laws would come out anyway: This philosophy
is called “Random Dynamics”.

Inside a piece of matter - crystal, glass, ... - one should then at very low
temperature according to this dream find the Standard Model.

Recently one is about to find Cases of Relativity-behaving Quasi-particles: A
material, e.g. graphene, with such simulations of relativistic particles as we talk
about.

Materials with relativistic particles simulated as quasiparticles may be very
applicable to say high conductivity purposes,...

Some of our publications:

• H. B. Nielsen and M. Ninomiya, “No Go Theorem for Regularizing Chiral
Fermions,” Phys. Lett. 105B, 219 (1981).

• H. B. Nielsen and M. Ninomiya, “Absence of Neutrinos on a Lattice, 1. Proof
by homotopy theory” Nucl. Phys. B 185, 20 (1981).

• H. B. Nielsen and M. Ninomiya, “Absence of Neutrinos on a Lattice. 2. Intuitive
Topological Proof,” Nucl. Phys. B 193, 173 (1981).
• As for the initiation of Random Dynamics, See “Fundamentals of Quark Mod-

els”. Proceedings: 17th Scottish Universities Summer School in Physics, St.
Andrews, Aug 1976, I.M. Barbour, A.T. Davies (Glasgow U.);1977 - 588 pages;
Edinburgh: SUSSP Publ. (1977);Conference: C76-08-01; Contributions: Dual
Strings, Holger Bech Nielsen (Bohr Inst.). Aug 1974, 71 pp.;NBI-HE-74-15
In the last section the idea of “Random Dynamics ” is introduced based on
finding Weyl equation in “whatever”.

The present paper consists as part I and part II.
The part I: Relativity Theory found in solid state.
and
The part II “What comes beyond Topological Insulator – Nielsen-Ninomiya

Effect (or Mechanism) due to ABJ Anomaly –”
Part I: Relativity-Theory found in Solid State Physics

I-1 Introduction
I-2 Automatic: a pet-thought: Natural laws come by themselves! (“Random Dy-

namics”)
I-3 General: A very general world with (only) momentum conservation.
I-4 Graphene: Example Graphene.
I-5 Heusler: Half-metals, Heusler compounds.
I-6 Wang: Thoughts about making materials having models of relativistic particles

inside.
I-7 Doubling: Nielsen - Ninomiya theorem about doubling of such relativistic

particles unavoidably on the lattice. great future; hope of seeing high energy
physics in low temperature materials not out, but not quite finished. material
simulates relativistic quantum field theory.
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I-8 Further: Further Developments of our “Random Dynamics”
I-9 Conclusion for part I

The part II: What comes beyond Topological Insulator –Nielsen-Ninomiya
Effect (or Mechanism) due to ABJ Anomaly

II-1 : Introduction
II-2 : 1+1 dimensional Example
II-3 : 3+1 dimensional case Weyl (or chiral) Fermion Adler-Bell-Jackiw Anomaly
II-4 : Parity non-invariant, Zero-gap material
II-5 : Transfer from Left- to Right- comes by Adler-Bell-Jackiw anomaly
II-6 : Further arguments
II-7 : Conclusions
Appendix A : Necessary properties of quantum field theory in this paper
Appendix B : Adler-Bell-Jackiw anomaly in continuum spacetime

I-2 Automatic

Our Old Work in 1976: Dreams Laws of Nature Automatic
”Dual Strings. Fundamentals of Quark Models.” by H. B. Nielsen, in Scottish

University Summer School in Physics, St. Andrews, 1976 (There H.B.N. still mainly
is talked on String theory, but at the end a general (fermion) Hamiltonian is
studied.)

Assumed was translational invariance, at least with respect to a lattice say,
and thus a (quasi) momentum conservation, but with respect to the “internal
degrees of freedom” there is a very general theory, though assuming there being
essentially a finite (discrete). system of states(representing possibly spin and band
degrees of freedom.).

(Trivial) Generic Considerations on Fermion Dispersion relations (1976).
We ignore all conservation laws except for

• Energy conservation and Hamiltonian development.
• Momentum Conservation.
• Particle (number) conservation.
• Free approximation (first).
• Smoothness, (so that e.g H(~p) is differentiable and continuous as function of
~p.)
• Generic: i.e. no fine-tuned values of parameters,

and consider a single particle equation:

i
∂

∂t
ψ(~p, t) = H(~p)ψ(~p), (10.1)

where for each value of the momentum ~p the H(~p) is a Hermitian matrix.
Relativity and Dimensionality of Space time being 3+1 come out Automati-

cally!
A priori - with no fine-tuning (=generically) - the Fermi surface would put

itself at separate eigenvalues; but if for some reason ( e.g. “homlumo-gap effect”)
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the Fermi-level were just where n = 2 levels meet, then in a small neighborhood
the shape of the dispersion relations would be given by taking H(p̃) to be n× n =

2× 2. We then Taylor expand

H(~p) ≈ H(~p0) +
∑
a,µ

σaVµapµ + ... (10.2)

where σa are the Pauli-matrices and the unit matrix σ0 = 1. The “vierbein” Vµa is
a set of expansion coefficients for H(~p) as function of the components pµ (strictly
speaking µ =1,2,3; here).

Hermitian matrix, Provided Fermi-level at Degeneracy n = 2 leads to Weyl
Equation in 3+1 Dimensions.

In the old days we argued that in a general physics universe the Hubble
expansion would finally lead to the Fermi-level approaching an n = 2 degenerate
levels energy; but now H. B. N.’s Zagreb group - I.Andric, L. Jonke, D. Jurman, and
HBN - have studied in general, what is called “Homolumo-gap Effect” meaning
the by Jahn and Teller[1] first proposed effect, that the electrons filling the Fermi-
sea would back react such as to increase the homolumo gap between the lowest
unoccupied (LUMO) and the highest occupied (HOMO) state. This effect goes
in the direction to make metals not occur, and make every materials become an
insulator, but the gapless semiconductor may be too hard for the homolumo-gap
effect to dispense with.

Note that this hope for getting automaticly a Weyl-equation like theory had,
when using just Hermitean Hamiltonian marices and looking at the n = 2 degen-
eracy possibility, the consequence that there came only three spatial dimensions
functioning the relativistic way, because there were only 3 Pauli matrices. Some-
how arguing that the dimensions for which there are no Pauli matrices will lead
to essentially zero velocity for the fermion/quasi-electron in these directions and
that such dimensions will not be observed, we have come to 3+1 dimensions as an
additional prediction from the very general starting theory!

With time-reversal symmetry imposed dimension prediction gets modified.

Symmetry Square Pauli M. Dimension Field
TP (TP)2 = 1 σx, σz 2+1 Real
- - σx, σy, σz 3+1 Complex

TP (TP)2 = −1 5 of them 5+1 Quaternions

Table 10.1. The symmetry assumed in line 1 and 3 is the combination of time reversal T
and parity P to TP, which leaves the momentum ~p invariant but is an antilinear operator
effectively conjugating the complex numbers in the matrix. If then Fermi-level falls at
n = 2 degenerate levels in addition to the Kramers-Kronig doubling in the 3rd case, one
gets by Taylor expanding the 2× 2 resolved into Pauli-matrices, and a generalized Weyl
equation results corresponding to the in fourth column denote space + time dimensions.
Actually the effective theory is naturally written in terms of the in column 5 mentioned
division-algebra(= field).

Fundamentally in many Dimensions, but in Most dimensions the Fermion
Run with Zero Velocity, we Ignore them.
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In the for fundamental physics ideal situation of no extra T or TP symmetry
the Hamiltonian matrix H(~p) is just a generic(∼ random) Hermitian matrix (with
complex matrix elements), and it predicts at the two levels degenerate point -
hoped to be favored at the Fermi-surface by either Hubble expansion or homolumo-
gap-effect - that the Fermion only moves with appreciable velocity in as many
spatial dimensions as there are Pauli-matrices. We hope that the dimensions in
which the velocity gets zero, can/shall be ignored. If the zero-velocity dimensions
are ignored, then we have remarkable agreement:

The number of dimensions in which the generic double degeneracy neigh-
borhood has the fermions move just corresponds to experimental number of
dimensions 3+1 and to having relativity and rotational invariance!

If TP (or T) is good symmetry and (TS)2 = 1then H(~p) must have real
matrix elements.

This is the case in which we in a crystal - with PT symmetry say - completely
ignore the usual spin as being decoupled so as to be totally ignored.

In this case we get the effective dimensionality, if we ignore the zero-velocity
directions:

2 + 1
This means that the relativistic effective fermion should appear “generically”

(automatically) even in only 2 spatial dimensions.
With Genuine Spin=1

2
Electrons and Unbroken Time reversal, the “Quaternion

Case” If T or TP good symmetries, and spin 1
2

included, then T2 = (TP)2 = −1 we
have generally doubling of all levels according to Kramers-Kronig rule.[2]

So double degeneracy is already there generally and nothing special. In this
case we shall therefore instead consider that we can get 4 times degenerate levels
sporadically. If we go to such a 4-times degenerate point in momentum space,
we could elegantly go to a quaternion 2 × 2 matrices (quaternions are writable
as 2 × 2 complex matrices, so that 2 × 2 quaternion matrices can be equivalent
to 4× 4 complex matrices with some restriction. Dimension of non-zero velocity
directions:

5 + 1
I-3 Graphene

Graphene denotes the layer of carbon like the ones in graphite taken as seperate,
i.e. it is 2(space)dimensional material. The quasi electrons running in the graphene
layers actuall do show dispersion relations behaving how we above argued for the
case with time reversal but ignoring the spin leading to the effective space time
dimension 2+1.

On the following picture 10.1 one sees the lattice structure of graphene:
The next figure 10.2 is supposed to generally illustrate a metal, an insulator

and a material with a Dirac-like quasi particle (on the figure 10.1).
Even just making a two-layer of graphene complicates the situation and the

work by Gammelgaard on the next figure 10.3 illustrates a gap appearing:
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Fig. 10.1. (2+1)-dimensional Example is Graphene.

Fig. 10.2.

Fig. 10.3. Putting Double Layer Produces Gap.
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The left dispersion law is for a double layer of graphene; the right for single
layer. (Gammelgaard).

The next figures 10.4 illustrate calculation of the dispersion relations for
quasi-electrons in graphene by the model described just below. Since we have
a 2 space dimension material the energy can be the orbital direction up in the
perspective while the two spatial momentum components form the basis plane of
the three-dimensional perspective figure:

Fig. 10.4. .

The Dirac points are of course the points where two branches of the dispersion
relation meet with a cone shape. (Fig. 10.5):

Fig. 10.5.

Dispersion Relation of Graphene The electronic properties of graphene can
be described using a simple tight binding model. The electrons in the covalent
bonds form deep fully filled valence bands, and thus their effects on the conductiv-
ity can be safely disregarded. The unhybridized p orbital is only slightly perturbed
by the neighboring atoms. Therefore, the wave function of an electron in the sys-
tem can be written as a Linear Combination of Atomic Orbitals (LCAO). Using
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these orbitals as the basis set to represent the wave function, the Hamiltonian that
governs the dynamics of the electron is given by:

H =
∑
i

εi|ψi >< ψi|+
∑
l

∑
{<i|j>}l

tl(|ψi >< ψj|+ |ψj >< ψi|) (10.3)

whereεi represents the onsite energy at the atom, |ψi > the i’th atomic orbital ,
{< i, j >}l the set of couples of lth-nearest neighbors, and tl the hopping parameter
between them.

In Graphene the Fermi- surface just Lies at the Double degenerate Point
So in graphene by symmetry one really get a simulation of a 2+1 dimensional

massless Weyl/Dirac fermion, also w.r.t. the placing of the fermi surface.
If we think of just the generic case of a very general theory there will typically

be no reason why the fermi surface should be just at the Weyl point (with the
double degeneracy).

We have, however, speculated on two mechanisms, which might make the
fermi-surface be driven towards the degeneracy point:

• If the world in question has a strong Hubble expansion, then filled states
above the degeneracy point would be gradually emptied and holes below the
degeneracy point would be also gradually be expanded away/attenuated.

• “Homolumo-gap-effect” - meaning that the fermions act back onto the various
degrees of freedom that can be adjusted in the lattice in which the fermions
run. This back action will be so as to in the ground state arrange to lower the
energies of filled fermi states. Thereby arise the so called Homolumo-gap, or
rather it gets expanded by this back action “homolumo-gap-effect”. In the case
that we have degeneracy point that is somehow topologically stabilized, as
one might say of the Weyl points discussed here, it may not be possible for
the homolumo-gap-effect to really produce a gap. In stead we expect that it
will only bring the fermi surface to coincide with the degeneracy point; that
would namely lower the filled states as much as possible with the “topological
ensurance” of the degeneracy point.

I-4 Heusler

Heusler CompoundMn2CoAl is a Spin Gapless Semicondutor:
Siham Oardi, G.H. Fecher, C. Felser and J. Kübler (arXiv:1210.0148v1 [cond-

mat.mtrl-sci], 29 Sep. 2012.) investigated the Heusler compoundMn2CoAl. They
gave the article the name Realization of spin gapless semiconductors: the Heusler
compoundMn2CoAl.

In halfmetallic ferromagnets you have so to speak metal as far as the electrons
with one direction of the spin is concerned, but insulator w.r.t. to the elctrons with
the opposite spin direction. Now it may further happen that we instead of the
metallic we get a gapless semiconductor, namely if we have a degeneracy point
as we discussed above. Once there is effectively only one spin of the electron one
escapes the time reversal symmetry. Thus in such halfmettals there is a better
chance to find Weyl points.
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The following figure 10.6 illustrates dispersion relation along a piecewise
straight curve in momentum space for the two different spin directions along the
magnetization axis for the compoundMn2CoAl. The dispersion relation for the
two different spin orientations are printed respectively red and blue:

Fig. 10.6. Band structure ofMn2CoAl, Majority spin red.

In the following figure 10.7 are then as function of temperature given some
carrier properties of this materialMn2CoAl:

On the following page from Lakhan Baisly et al. as figure 7 in their article we
see the density of electron levels (DOS) for the two spin orientations seperately. In
the in red shown DOS there can be seen crudely a gap, so for this spin orientation
we have the insulator. For the other spin orientation - shown with the positive
ordinate pointing upwards there is also a dip at the fermilevel, but now the DOS
is going non-zero immediately by going away from the fermilevel. So for this spin
we rather have the gapless semiconductor behavior.

The strong dependence of the conductivity as function of the magnetic field is
just what one expects due to the Adler-Bell-Jackiw-anomaly-effect described more
in part II of the present article below.

These figures are from:
Siham Ouardi et al. “Realization of Spin Gapless Semiconductors: The Heusler

Compound Mn2CoAl” DOI: 10.1103/PhysRevLett.110.100401.
Zero Gap Material with Quadratic Energy Dispersion (this is by fine tuning)

HgTe is one of the few materials wherin this quadratic dispersion law zero gap
has been found, since 1950’s.

Pb1−xSnxTe, Pb1−xSnxSeandBixSb1−x are zero-gap materials (with quadratic
disp.).

But really one - Wang, Dou, and Zhang - expects that all narrow gap semi-
conductors by some doping or pressure could be tuned to have zero gap (with
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Fig. 10.7. Majority spin and Minority spin. Calculated with spin orbit coupling.

quadratic dispersion law). Then they call for finding a non-toxic material of this
kind.

I-5 Wang

Physical Chemistry; Chemical Physics
Controllable electronic and magnetic properties in a two-dimensional ger-

manene heterostructure Run-wu Zhang, Wei-xiao Ji, Chang-wen Zhang,* Sheng-
shi Li,b Ping Li, Pei-ji Wang, Feng Lia and Miao-juan Rena Author affiliations
Abstract

The control of spin without a magnetic field is one of the challenges in devel-
oping spintronic devices. Here, based on first-principles calculations, we predict
a new kind of ferromagnetic half-metal (HM) with a Curie temperature of 244
K in a two-dimensional (2D) germanene Van der Waals heterostructure (HTS).
Its electronic band structures and magnetic properties can be tuned with respect
to external strain and electric field. More interestingly, a transition from HM to
bipolar-magnetic-semiconductor (BMS) to spin-gapless-semiconductor (SGS) in a
HTS can be realized by adjusting the interlayer spacing. These findings provide a
promising platform for 2D germanene materials, which hold great potential for
application in nanoelectronic and spintronic devices.



i
i

“proc18” — 2018/12/10 — 11:44 — page 226 — #242 i
i

i
i

i
i

226 H.B. Nielsen and M. Ninomiya

Fig. 10.8.
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Fig. 10.9. Hall conductivity as function of magnetic field.
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Fig. 10.10. Magnetoresistence as function of a magnetic field.

I-6 Doubling

Nielsen-Ninomiya’s No-go theorem
The authors are very proud of, that we have shown a theorem saying:
When one makes the mentioned “relativistic fermions of Weyl-type” (=chi-

rale fermion) on a lattice (so e.g. in a crystal) then you always get equally many
right-spinning and left-spinning Weyl-type particle(species).

This theorem is a great challenge for those wanting to make a lattice model
(with calculational purposes) for a theory with massless (or almost massless)
quarks, let alone the Standard Model.

By having 3 K +3 K ′ Dirac-points of Compensating Handedness Our Dou-
bling Theorem Realized in Graphene.

I-7 ABJ Anomaly

In the article
H. B. Nielsen and M. Ninomiya, “Adler-Bell-Jackiw Anomaly And Weyl

Fermions In Crystal,” Phys. Lett. 130B, 389 (1983). doi:10.1016/0370-2693(83)91529-
0

we have put forward how to understand intuitively the Adler-Bell-Jackiw
anomaly and how it should be possible to see it in crystals. Indeed now it has
-presumably- been found in Na3Sb in its three dimensional form; at least the
characteristic property that this anomaly can lead to a negative magnetoresistance
seems justified for this material as should be seen from the following figure 10.12:
It is clearly seen for the low temperatures that there is a dramatic peak in the
resistance when the magnetic field is small, whereas the resistance becomes ap-
preciably smaller when the magnetic field is switched on. The lower of the two
figures shows the resistance in the direction of the magnetic field. It is indeed
important that this increased conductivity goes in the direction of the magnetic
field and thus there is a dependence of the magnetoresistance as a function also of
the angle between the magnetic field and the direction of the electric field.

This subject will be explained in more detail in part II.
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Fig. 10.11. Our Doubling Theorem Realized in Graphene.

Fig. 10.12.
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I-8 Further

Further Developments of Our “Random Dynamics” Further speculations, cal-
culations, supporting the idea of getting the Standard Model out as a - say low
energy limit - of/from almost whatever the (most) “fundamental” physical laws
(say complicated) might be:

• A low energy boson system - with only momentum conservation ... like the gen-
eral fermion system considered - gives (in free approximation) free Maxwell
equations.

• Remarkably: All species of particles in the Standard Model except the Higgs
boson are eihter Yang-Mills particles or chiral fermions; so they would all be
massless except for effects due to the Higgs field! This is just what one gets
by asking for the low energy limit in the general theory!

I-9 Conclusion

• Hope that the type of relativistic chiral fermions, one finds in high energy
physics Standard Model in fact comes by itself - and even points to the right di-
mensionality 3 +1, which just is the right one-; but there are a couple of “small”
problems (different species of particles have in first go different “maximal”
velocities)
• Now adays the phenomenon is about being found in real materials, graphene

etc. One can make relativity models chemically

It should be especially stressed that the negative magneto-resistance due to
the Adler Bell Jackiw anomaly has been seen in Na3Sb.

II. What comes beyond Topological Insulator ?
–“Nielsen-Ninomiya Effect” due to Adler-Bell Jackiw chiral Anomaly–

II-1 Introduction

In part I we mainly argued about “Gapless Semiconductor” “Topological Insulator”
and this subject has been very rapidly developing presently.

We now, in this part II, argue chiefly a new application of relativistic quantum
field theory. Specifically, We investigate in condensed matter (in nano-scale∼=
10−9m) how the Relativistic Quantum field theory Effect can appear and can be
detected in material science.

Theoretically this effect was predicted already 35 years ago in 1983 by the
present authors

• (H. B. N and M. N.) in a High Energy Theoretical Physics journal, Physics
Letters B Vol. 130, issue 6 p 389 (1983), entitled “The Adler-Bell-Jackiw anomaly
and Weyl Fermions in a Crystal”.
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• Prior to the above paper one of the authors (M. N) was invited to give talks
in the International Workshop on “Lattice Field Theory” in Saclay, Paris and
Subsequently held XXI International Conference on High Energy Physics, Paris
July 26-31, 1982 (so called “Rochester Conference series”), where he talked
about Weyl fermions on lattices and the ABJ-anomaly.

In solid material there offen appears crystal lattice structure. Thus we are forced to
use lattice field theory which has been well developped in high energy physics. In
this formulation the crucial facts for us are the following:

Suppose At each lattice site we put one Weyl fermion e.g. ΨL (Left-handed
one).

Our Nielsen-Ninomiya Theorem states that there should appear equally many
right handed and left handed Weyl fermions - looking in momentum space at
different momentum values -. In the simplest construction resulting from just
“naively” replacing derivatives by differences on the lattice our theorem is imple-
mented by there appearing 2d species (d: space dimension). Therefore in 3 space
dimensions it turs out that there should be 8 species of Weyl (or chiral) fermions.
Furthermore 4 of them are left-handed ΨL and rest 4 species are right-handed ΨR
chiral fermions.

That is to say on the lattice there should be pairwise (left-handed and right-
handed) chiral fermions. Therefore we are not able to construct chiral theory with
for instance only one handed fermion on the lattice. Thus it leads to the very
important consequence in high energy physics. In reality the Standard Model or,
unified model of, weak and electromagnetic interactions called “Glashow-Salam-
Weinberg model”, or “Standard Model” of Weak and Electromagnetic Interaction
cannot be constructed on the lattice! The reason is that in the Standard Model all
the fermions are left-handed chiral fermions, while no right-handed fermion at
all. The experimental results performed so far are all well in agreement with the
standard model predictions.

If one takes serious the proposal of a new law of nature by one of us and
various collaborators, “Multiple Point Principle”, one can even claim an indication
for, that the Standard Model contrary to the expectation of many of our colleagues,
should be valid up to an energy scale of the order of 1018GeV (rather close to the
Planck scale):

One of the authors (H. B. N.) made together with C. D. Froggatt a theoretical
calculation ofmH with recourse to the just mentioned “multiple point principle
(MPP)”. The value is in very good agreement with experimental value at LHC
(Large Hadron Collider in CERN, Geneva)mH ∼ 125GeV.

See e.g. H. B. Nielsen and M. Ninomiya “Degenerate vacua from unification
of second law of thermodynamics with other laws; The derivation of Multiple
point principle” Int. J. Mod. Phys. A23 (2008) 919 DOI: 10.1142/S02177510839682,
in which an argument for among other things is given MPP from a model with
the action taken to be complex rather than real as it is normal.

If the Standard Model shall as from this suggestion from Multiple Point
Principle etc. be valid only with tiny corrections if any almost up to the Planck
scale, it would be even more mysterious that we could not put it on a lattice



i
i

“proc18” — 2018/12/10 — 11:44 — page 232 — #248 i
i

i
i

i
i

232 H.B. Nielsen and M. Ninomiya

because of its chiral particles. Really we could -it looks -hardly regularize it with
any sensible cut off! Quite a mystery. [3]

2) ABJ anomaly on a lattice
Condensed matter researchers except for high energy physicists (including

some nuclear theorists), may not have heard of the Adler-Bell-Jackiw or chiral
anomaly. Therefore we briefly explained ABJ anomaly in continuum space in
Appendix A.

Here we turn to our nano-scale material case. In the material there is a lattice
structure Fig. 10.13.

Fig. 10.13. Lattice structure.

In this 3 dimensional lattice on each sites we put one Weyl or Chiral electron
e.g. eL (Left handed electron),then according to the Nielsen-Ninomiya Theorem,
there should appear somehow so many of them, that there are equally many right
haned and left handed ones. In fact we get in the simplest case 4 eL as well as 4 eR.

To understand band structure, we go to the momentum space.
Note that due to the lattice translational invariance the momentum is con-

served modulo multiple of the unit length of reciprocal lattice.
The Brillouin zone in the momentum space is topologically equivalent to the

hypertorus S1 × S1 × S1.
In such a topological structure of crystal lattice, the Adler-Bell-Jackiw anomaly

explained for continuum spacetime in appendix B, is easily understood also , as
was presented in PLB 130 n06, (1983) by the present authors.
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II-2 1+ 1 dimensional example

For simplicity, as an example the 1 space 1 time dimensional case is considered.
Right chiral (Weyl) fermion obeys lattice Weyl eg.

i ∂
∂t
ΨR(na) =

i
2a

[ΨR((n+1)a)−ΨL((n−1)a)] where n = 0,±1,±2, · · · denote
sites and a is a lattice space. This can be easily solved and the dispersion relation
is given by w = ( 1

a
) sinpa. Thus near p = 0 there is a RH (RH = right handed)

species with the dispersion law w ≈ p and further there is a LH (LH =left handed)
species near π

a
with the dispersion law

w ≈ −(p− π
a
).

These situations are illustrated in the following Fig. 10.14.

Fig. 10.14.

Note that due to topology of momentum space, there is a periodicity modulo
2π. (e.g. points p = −π

a
and π

a
are identified)

II-3 3+ 1 dimensional case

This 1+ 1 dimension example clearly tells us, that in lattice theory there appear
equal number of RH and LH chiral (or Weyl) fermion species (really in 1+1 di-
mension one should rather talk about right mover and left mover, because there is
no genuine handedness in 1+1 dimensions) . It is not completely straightforward
to generalize to 3 + 1 dimensions, but with use of the appriate mathematics of
homotopy (group) theory one make the analogous theorem in 3+1 or in even
higher dimensions to the theorem in 1+1 that in a period real function has pass
zero in positive and in negative direction equally many times per period.
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II-3 (a) Weyl (or chiral) Fermion

In generic chiral (Weyl) fermion theory which obeys
iΨ̇(−→x ) = HΨ(−→x ) = wΨ(−→x )
We assume that the generic Hamiltonian satisfy the following four conditions:
(1) Locality of interaction in the sense thatH(−→x −−→y )→ 0 as |−→x −−→y )|→ large

fast enough that the Fourie transform of H(−→x ) has continuous first derivative.
(2) Translational invariance in the lattice (3) Hermiticiti of H (reality of S) (4)
Furthermore an assumption is that the charge (=lepton number in our case) is
bilinear in the fermion field.

Under these conditions in the generic H case we gave a rigorous proof in
terms of the Homotopy theory in topology in 1981 (see, II-1).

II-3 (b) Adler-Bell-Jackiw anomaly on a lattice

Let us go into the Adler-Bell-Jackiw (ABJ) anomaly on the lattice in the continuum
spacetime. We reviewed this anomaly in continuum spacetime in Appendix B.

Here we argue for the lattice version of the ABJ anomaly. Firstly we as as an
example let us explain the 1+ 1 dimensional lattice Weyl (chiral) fermion. In the
lattice RH chiral or Weyl electron system, we put on an external uniform electric
field E in x-direction denoted by Ȧ1 = E in temporal gauge (A0 = 0). Then the
Weyl eq. reads

i ∂
∂t
ΨR(x) = (−i ∂

∂x
− Ȧ1)ΨR(x).

The dispersion law is given byω(p) = p.
In the classical eq. of the electron in the presence of the electric field is ṗ = eE

so that the RH electron in quantum theory is given by
ω̇ = ṗ = eE.

Therefore the creation rate of the RH electrons per unit time and unit length is
determined by a change of the Fermi surface that separates the filled and unifilled
states as shown in Fig. 10.15.

Fig. 10.15.
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We denotes the quantization length L, then the density of states per unit
momentum is given by L

2π
. Therefore the rate of change of the RH electron number

NR is given by ṄR = L
2π
· ω̇fs

where ω̇fs denotes the rate of energy take up of the RH electron fermi surface
per fermion, i.e. eE.

Therefore we obtain RH electron creation is given by ṄR = e
2π
E per unit

length (namely for L=1). This is the ABJ anomaly.
Thus the chiral charge QR defined as the total number of RH particles (over

the fermisea minus the number of holes) is not conserved: Q̇R = ṄR = e
2π
E In

the same manner the annihilation rate of LH electrons withω = −p is derived as
ṄL = − e

2π
E

This means that creation rate of the LH anti-electron is given as
˙̄NL = e

2π
E

By adding both, the anomaly of the Dirac electrons is
ṄR + ṄL = e

π
E, and thus

Q̇5 =
e
π
E

To proceed to the 3+ 1 dimension case, we should calculate the energy levels
in the presence of an external uniform magnetic field, e.g. in the z-direction so
that A2 = Hx, and Aµ = 0 otherwise. Thus we consider the equation for the two
component RH electron field ΨR[

i ∂
∂t

− (−→p − e
−→
A)−→σ ]ΨR(x) = 0

This eq. can be solved by introducing an auxiliary fieldΦ as
ΨR =

[
i ∂
∂t

+ (−→p − e
−→
A)−→σ ]Φ.

Thus the eq. forΦ is given by[
i∂
∂
− (−→p − e

−→
A)−→σ ] · [i∂

∂
+ (−→p − e

−→
A)−→σ ]Φ = 0

This eq. reduces to the harmonic oscillation tpe eq,[
−( ∂
∂x ′

)2 + (eH)2(x ′ + p2
eH

) + (p3)
2 + eHσ3

]
Φ = ω2Φwith σ3 = ±1

The energy eigenvaluesω are given by the Landau levels as follows

ω(n, σ3, p3) = ±
[
2eH(n+ 1

2
) + (p3)

2 + (eHσ3)
] 1
2 with n = 0, 1, 2, · · · , ex-

cept for the n = 0 and σ3 = −1mode. Here
ω(n = 0, σ = −1, p3) = ±p3.
The eigenfunction is of the form
Φnσ3(x) = Nnσ3(x)×exp(−ip2x2−ip3x3)×exp(−1

2
eH(x ′+ p2

eH
)2)×Hm(x ′+

p2
eH

)χ(σ3)

where Nnσ3 is normalization constant and χ(σ3) denotes the eigenfunctions

of Pauli spin σ3 : χ(1) =
(
1

0

)
and χ(−1) =

(
0

1

)
Thus the solution of the eq. for Two-component RH electron ΨR becomes the

relations Ψ(n+1,σ3=−1)
R = Nn+1,σ3=−1

Nn,σ3=1
Ψn,σ3=1R

for n = 0, 1, 2, · · ·
The zero mode n = 0 is
Ψ

(n=0,σ3=−1)
R = 0withω = −p3.

Therefore the ground state energy of ΨR is given byω(n = 0, σ3 = −1, p3) =

p3 The energy eigenvalue for the other modes are
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ω(n = 0, σ3, p3) = ±
[
2eH(n+ 1

2
) + (p3)

2 + eHσ3
] 1
2

These dispersion laws are depicted in the Fig. 10.16.

Fig. 10.16.

In the next step an external uniform electric field E is turned on along the
same direction parallel to H. For the zero mode (n = 0, σ3 = −1) the dispersion
law is the same as that for 1+ 1 dimensions. Thus the creation rate of the particles
is calculated in a similar manner.

We should note that the electric field E is switched on adiabatically,and there
is no particle creation in the n 6= 0modes. The density of the state in momentum
space in the magnetic field direction is for quantization length L L eH

4π2
, and thus

the creation rate (=the ABJ anomaly) is expressed as

ṄR = 1
L
LeH
4π2

ωfs (n = 0, σ3 = −1, P3)

= e2

4π2
EH

= Q̇R

For the LH electrons annihilation rate of LH anti electron is

ṄL = −
e2

4π
EH
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and the creation rate of the LH anti particle is given by

˙̄NL = e2

4π2
EH

= Q̇L

In the case of the Dirac electron

ṄR + ˙̄NL = e2

2π2
EH

= Q̇5

II-3 (c) Generic Case

We again look at a generic case of which Hamiltonian is given by N×N local Her-
mitian matrix. The N discrete energy eigenvalues are determined by the following
eigenvalue eq.

N∑
l=1

Hkl(
−→p )Ψ(i)

l (−→p ) = ωiΨk(−→p ) (i = 1, · · · , N)

Here we assume that the ith level Ψi(−→p ) and (i+ 1)th level are degenerate. The
eigenvalue ωi(−→p ) are assumed to be degenerate with the (i + 1) level at sev-
eral different points in momentum space, which are denoted as (ωd(−→pd),−→p d) in
the dispersion space (ω(−→p ),−→p ). The ith and (i + 1)th levels are described by d
submatrix H(2)(−→p ): it has the ith and (i+ 1)th entries of N×N matrix H.

We then expandH(2)(−→p ) in powers of (−→p −−→p d) around are of the degenerate
point (ωd(−→p d), pd). In the expansion of H(2)(−→p ) is given

H(2)(−→p ) = H(2)(−→p d) + (−→p −−→p d)∂H(2)(−→p )
∂−→p |−→p=−→pd +O((−→p −−→p d)2).

The derivative term is expressed by the Pauli matrices (1+ σα), (α = 1, 2, 3)

and1 = 2× 2 unit matrix, as

∂H(2)

∂−→p k |−→p=−→pd = ak(
−→p d)1+ Vαk (−→p d)σα

Here V are the constants depending on −→p d. Thus near −→p = −→p d, H(2)(−→p ) takes
the form

H(2)(−→p ) = ωd1+ (−→p −−→p d)−→a1+ (−→p −−→p d)kVkασα
The eigenvalue eq. of the ith and (1+ i)th energy eigenvalues near −→p = −→p d

H(2)(−→p )u = ωu.
This is rewritten by using a new set of variables

p̂ = −→p −−→p d, p0 = ω−ωd − p̂−→a
as

p̂V−→σ u = p0u
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If we introduce

K0 = p0 and k = ±p̂−→V
Were ± correspond to the sign of det V . For simplicity we may take as an example
Vkα = vδkα (k, α = 1, 2, 3).

The above eigenvalue eq. becomes

−→
k−→σu = ±k0u

Where the dispersion law (k0)2 = v2k2. Thus, it isω2 = v2p2

In this way RH and LH Weyl eq. describes the 2 energy levels near degeneracy
point in (ω(−→p ),−→p ) space correspond to a species of Weyl fermions contained in the
theory. Our theorem tells that RH and LH degeneracy points appear necessarily as
a pair because of the Brillouin zero structure (topology). The theorem was proved
by only topological arguments together with locality, as was shown our papers in
1981. The doubling of the Weyl fermions are illustrated in Fig. II-4 (page 18).

II-4 Parity non-invariant zero-gap material

We assume that we have found a parity non invariant material (i.e. a crystal should
be of non-centrosymmetric symmetry; e.g. BiTeI form a non-centrosymmetric
crystal. Best might be a triclinic pedial class with no point symmetry at all.) with
zero-gap, which can be simulated by a Weyl, fermion theory with a dispersion
lawω2 = v2p2. The effect analogous to the ABJ anomaly gives rise to a peculiar
behavior of the conductivity of the electric current in the presence of the magnetic
field. It is enough to consider one conduction bandωi.

The valence bandωi+1 (negative energy state) is assumed to be completely
filled. In the absence of external field, the single electron distribution function in the
thermodynamical equilibrium is of the form f0(

−→p ) = [1+ exp[(ω(p) − u)/kT ]]−1

In the presence of E and H = 0 there occurs a small deviation from thermody-
namical equilibrium so that f = f0 + δf, and the E field accelerates the electrons in
the same direction and then (

∂f

∂t

)
drift

= eE
∂f

∂pz
.

At the same time the accelerated electrons get scattered back into some states in
the same cone. We assume that f fills back into f0 exponentially with a relaxation
time τ0 so that δf ∝ e−

τ
τ0

Then (
∂f

∂t

)
coll

= −
1

τ0
(f− f0)

Therefore the steady state condition is
(
∂f
∂t

)
drift = −

(
∂f
∂t coll

)
(Boltzmann eq.).

The sol. of this is in the lowest order in E

f(−→p ) = f0(ω) + eEτ0
∂f(ω)

∂pz
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Then the longitudinal current density is given by

J0 =
1

L3

∑
−→p

(−e)vzf(
−→p )(#deg. pts)

Where vz = ∂ω
∂pz

and (#deg. pt) denotes the number of deg. pts (= degeneracy
points).

In the low temperature approximation f0(ω) = θ(µ−ω) so that

J0 =
1

6π2
e2E(

µ2

v
)τ0(#deg. pt)

the relaxation time is given in terms of transition probability of electron from the
state with−→p into one with−→p ′,W(−→p → −→p ′) by

1

τ0
=
1

L3

∑
−→p ′

pz − p
′
Z

pz
W(−→p → −→p ′)

We assume that the interaction between the electron and the ionized impurities is
given by the screened Coulomb potential (pot.) of the from

V(−→x ) = (4πe2
k

)
e
−

|−→x|

γ0

|−→x |
With the screening length γ0 and k the dielectric constant. Computing τ0 in the
first order perturbation we obtain the current as

J0 =
4e2E

3πηI

(
k

4πe2

)2(
µ4

v2

)[
ln(1+ β) −

β

1+ β

]−1
(#deg. pt)

With β = 2πkv
e2

(#deg. pt) and ηI the density of impurity.
Next compute the magneto-conductivity when H parallel to E is so strong that

only the lowest states n = 0, σ3 = −1with dispersion lawω = vpz orω = −vpz
near the RH and LH degeneracy point are filled the ABJ anomaly effect will cause
the movement in the momentum space of electrons from the lowest Landau level
(n = 0, σ3 = −1) at the one deg. pt. (=degeneracy point) in the LH cone to the
corresponding one (n = 0, σ3 = −1) in the RH cone (at the RH deg.pt.). Thus
these moved electrons will give raise to a deviation from the thermodynamical
equilibrium, that can be expressed by the different chemical potentials for the
electrons at the RH degeneracy pt., µR and at the LH one µL. If one had calculated
the relaxation time in the approximation where only one degeneracy point at a
time was relevant -such as we did above in the H = 0 case–we would have found
1
τ
= 0. This comes out of such a calculation due to the energy conservation factor

δ(ω−ω ′) = 1
v
δ(pz − p

′
z) contained inW(PZ − P ′Z) which makes (23) give 1

τ
= 0.

However we cannot neglect scattering processes involving two degeneracy point.

II-5 Transfer from LH to RH cones by Adler-Bell-Jackiw Anomaly

The mechanism for the electric current with both E can H switched on peculiarly
different from the one with a negligibly weak H. In the presence of strong H the
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lattice anomaly of the ABJ anomaly takes place: transfer of the particles from the
LH degeneracy pt. to the RH one acts as a drift term, i.e. Ṅ|drift in the Boltzmann
equation. On the other hand for negligible H each degeneracy points act inde-
pendently. By the ABJ anomaly the Fermi energy level µR in the RH cone goes
up compared to that of the H = 0 case µ and µL in the LH cone is lowered. See
Fig. 10.16 (a) (1+ 1 dim. case) and Fig. 10.17 (3+ 1 dim. case)

Fig. 10.17.

In order that the system is in the steady state
the excess electrons by the ABJ anomaly in the RH cone must be scattered

back to the another state.
But they can not be scattered back into the state in the same come! because, as

was explained above τ =∞.
Therefore they must transfer into the states in another cone; that is from the

RH cone into the LH cone.
We may call this the intercone scattering and we denote the corresponding

relaxation time by τI. If the intercone transition probability W(pz → p ′z) from RH
cone into the LH cone is calculated, then the collision term is given by

ṄR|coll =
2
L

∑
pZ

[f(pZ) − f0(pz)]
1
L

∑
p ′z
W(pz → p ′z)

≡ −
p ′z
τI

(NR −N0R)
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Here NR and N0R denote the total electron numbers in the RH cone above
the degeneracy energy in the H 6= 0 and H = 0 cases respectively. Thus 1

τI
=

2eH
(2π)2

1
L

∑
p ′
3
W(pz − p

′
z)

The generation of a current associated with the ABJ anomaly can be shown by
the following energy conservation argument. ABJ anomaly indicates that electrons
are transferred from the LH cone into the RH cone by the rate of e

2EH
(2π)2

per unit
Time,per unit volume.: Notice that the dispersion law is continuous and the RH
and LH cones are connected smoothly as shown Fig. 10.17.

Since the Fermi level energies are µR > µL the transfer costs the energy
e2

(2π)2
EH(µR − µL). This energy must be taken from the E field by the presence of

a current JA determined by the energy balance as
EJA = e2

(2π)2
eH(µR − µL)

At the zero temperature, in the RH cone
f0(ω) = θ(µR −ω) and thus

NR = 1
L3

∑
pypz

f0(ω) eH
(2π)2

µR
v

∼= N0R + (µR − µ)∂NR
∂µ

Inserting this into Boltzmann eq.
ṄR|drift = −ṄR|col

We obtain µR − µL = evEτI
Therefore JA = ev e2

(2π)2
EHτI(#deg.pt.) Here the subscript A stands for the

anomalous current the one associated with the analogue of the ABJ anomaly. In
the definition of τI we may approximateW(−→pz → p ′z)

∼=W(−→p −
−→
p ′)

So thatW(pZ−p
′
Z)

∼= (4π
2

k
)2ηI

[
(−→p −−→p ′)2 + 1

γ2
H

]−2
2πδ(ω−ω ′) with 1

γ2
H

=

EH
kv

(#deg.pt.). According to −̂→p ≡ −→p −−→p d, p0 = ω−ωd− p̂
−→a , we have −→p −−→p ′ =

−→p d −−→p ′d + −̂→p − p̂ ′

where −̂→p and −̂→p ′ are oscillating around −→p d and −→p ′d: since they are order of

(eH)
1
2 . We may ignore the oscillatory part (−̂→p − −̂→p ′) and 1

γ2
H

term in the denomi-
nator ofW(pZ − p ′Z) when compared to the distance of the RH and LH deg. pts
−→p d −−→p ′d. In this approximation we obtain

JA = e2v2E
2πηI

(
k
4π2

)2
(−→p d −−→p ′d)4(#deg.pt.)

We then obtain the ratio of the conductivity that is defined by f = σE as
σA
σ0

= 3
16

(
v
µ

)4 [
ln(1+ β) − β

1+β

]
(−→p d −−→p ′d)4

By these results, for the intercom relation time τI the electrons must travel
a “long distance” in momentum space. Thus τI is expected to be a large value
compared to τ0 for H = 0. Therefore σA

σ0
given above is large.

II-6 Further arguments

So far we have presented our own theoretical predictions in 1983 although we
believed sooner or later our predicted “Nielsen-Ninomiya” mechanism (or effect)
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will be proved by experiment. Indeed after almost 35 year later Princeton Uni-
versity group led by Prof. N. Phuan Ong and R. Cava, found chiral anomaly in
crystalline material. This surprising news in science community appeared in an
article by Catherine Zandonella,

• office of the Dean of Research, in Science, September 3, 2015 entitled Research
at Princeton: Long-sought chiral anomaly detected in crystalline material
(science).
At the almost same time, scientist’s article entitled.
• “Evidence for the chiral anomaly in the Dirac semimetal Na3Bi” By J. Xiong

Satya K. Kushwaha, Tian Liang, J. W. Kritzan, M. Hirsehberger, Wulin Wang,
R. J. Cava, X. P. Oug, Science Express, 03 , September 2015. and

• “Signature of the chiral anomaly in a Dirac semimetal – a current plume
steered by J. Xiong, S. K. Kushwaraha, T. Liang, J. W. Krizan, Wudi Wang, R. J.
Cava and N. P. Ong

Since then the works on this subject is really under rapidly developing mainly
in Experiments, also theories: e. g. Dirac cones,and Weyl semimetals. We believe
in the rather near future we shall see some machines using “Nielsen-Ninomiya
Mechanism (or Effect). See e.g also [4].

II-7 Conclusions

In the present article we present the viewpoint at two exceptional high energy
theoretical physicists new eras of condensed matter.

In the first part I we mainly considered “Topological Insulator” from random
dynamics point of view. The essential point is that in generic Fermion dispersion
relations i.e. in (almost) all solids or fluids at low temperature we can derive the
recently found properties of Topological insulators such as graphene etc.

In the 2nd point II, we present what comes beyond topological insulator.
We believe that the Adler-Bell-Jackiw anomaly effect in the chiral non invari-

ant gapless material, causes that

• magnetic conductance is enhanced very much (ideally permanent current)
• Chiral electron (chiral fermion in general) in lattice of the gapless material runs

with a fixed speed. (This fixed speed is what in the relativity theory analogue is
the speed of light.) This is so, because we by analogy can apply the relativistic
quantum field theory.

To make any apparatus using the above theory will be widely opened to not
only condensed matter, but chemistry, beyond artificial division such as, physics
chemistry engineering etc.
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Appendix A

We consider electron in quantum field theory (Relativistic quantum mechanics.)
We present only necessary properties in Appendix A

The electron in the relativistic quantum field theory it is usually described as

Dirac field Ψ =

(
ΨL
ΨR

)
where ΨL and ΨR are 2 component fields. Now the electron

has intrinsic spin
−→
S . Thus electron has the angular momentum then

−→
J , whose

value are half integers, and the spin components is
−→
S take values ±1

2
.

For massless fermions the right ΨR and the left ΨL componets in the (free)
Dirac equation gets seperated, and we actually even find that the spin direction
is the same as that of electron movement for the right components ΨR and the
opposite for the left components ΨL. Let us start with the Dirac field such as an
electron in the quantum field theory. The electron has intrinsic spin 1

2
of fermion

obeying the free Dirac eq.
(iγµ∂µ −me)ΨD = 0 (II − 1)
thereafter we ignore electron mass unless described. Our notation is that of

the textbook of Bjorken-Drell “ Relativistic Quantum Fields”. For our purpose we
list up relevant notations below

• The 3+ 1 dimensional flat space metric (tensor):

gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


• The γmatrices are

γ0 =

(
1 0

0 −1

)
were1 =

(
1 0

0 1

)
and γi =

(
0 σi

−σi 0

)
i = 1, 2, 3

Here σi denotes 2× 2 Pauli matrices and1 =
(
1 0

0 1

)
.

Furthermore

γ5 = γ5 =

(
01

1 0

)
(note

(
γ5
)2

= 1)

• The 4 component Dirac field is denoted as
ΨD(p, s)

and when there is no interactions obeys the free Dirac eq. as
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(iγµ∂µ −m)Ψ = 0

where ∂µ = ∂
∂xµ

, in momentum representation
pµ = i ∂

∂xµ

ΨD(
−→p , s).

Here s denote intrinsic spin |s| = 1
2

ΨD(
−→p ,−→s ) obeys

/pΨD(p, s) = 0

with 4 component Dirac field we may describe

ΨD(p, s) =

(
ΨL
ΨR

)
(p, s)

Where ΨL and ΨR are 2 component spinor respectively the eigenvalue solution
of free Dirac eq. (II − 1) is the form of
Ψ(p, s) = ±

√−→p 2 +m2

Fig. 10.18. Dirac’s “hole theory”.

We adopt the Dirac’s “hole theory”. In this theory often used in condensed
matter as dispersion relation, the negative states are all filled, while the hole in the
Dirac sea is antiparticle, i.e. positron e+.

In solid state physics where one has say a crystal lattice, which from the
quantum field theory is discretized, so therefore we are interested in discretizing
the quantum field theory here. The Dirac fermion wave function ΨD(−→p , s) has
4-components: 2 degree of freedom as that energy can have plus or minus. Fur-
thermore the electron has intrinsic spin of which value is |s| = 1

2
. In the massless

case spin/(vector) direction can be either the direction of the electron motion or
the opposite. We then define for describing “chirality”. It is usually distinguished
by this quantity. That is to say γ5Ψ = +1or − 1. Customary +1 is named Left
moving- and −1 case is Right moving-Weyl or chiral fermion denoted ΨL and ΨR
respectively. (The Lorentz or Poincare group of spacetime in 3+ 1 dim Hermann
Weyl investigated in detail and the basis is 2 component spinor called Weyl spinors
ΨL and ΨR. In terms of these 4 component Dirac field Ψ such handed components

can be constructed (ΨD =

(
ΨL
ΨR

)
)
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Appendix B

We are now ready to discuss about Adler-Bell-Jacklin anomaly. In quantum field
theory there are various symmetries. One of the most interesting symmetries is
chiral (or axial) symmetry. That is the interaction of Dirac field ΨD with electro-
magnetic field Aµ is given by

S =
∫
d4xΨ̄(x) [iγµ (∂µ + ieAµ(x))]ΨD(x) (∗)

in the case of massless electron., where Ψ̄D = Ψ†γ0. It has chiral symmetry
which may be obvious, if we rewrite (∗) in terms of ΨL and ΨR as the Dirac eq. can
be written as(

0 i(∂0 + σ
i(∂i + ieAi))

i(∂0 − σ
i(∂i + ieAi)) 0

)(
ΨL
ΨR

)
= 0.

In this way the equations of ΨL and ΨR are separately given by the following
Weyl equations

i(∂0 − σ
i(∂i +Ai))ΨL = 0

and
i(∂0 + σ

i(∂i +Ai))ΨR = 0.

In these forms it is evident that the theories are invariant under the following
infinitesimal Weyl transformations

ΨL → (1− iαi σi
2

− βi σi
2
)ΨL

ΨR → (1− iαi σi
2

+ βi σi
2
)ΨR

Where αi and βi (i = 1, 2, 3) are infinitesimal transformation parameters,
restricted to leave the normalization of the Weyl fields invariant. This Weyl or
Chiral transformation is broken due to quantum effect in quantum field theory.
There were several suggestive articles, but explicit manifestation is presented by

• S. Adler, Phys. Rev. 177 (1969) 2426
and

• J. S. Bell and R. Jackiw Nuovo Cimento 60A (1969) 4.

Furthermore the method of path integral formulation this ABJ anomaly is due to
nor-invariance of the path integral measure

• K. Fujikawa Phys. Rev. Lett. 42 1195 (1979)

Phenomenologically this ABJ anomaly is really important. It has been observed
by experiments. Π0 meson decays into 2 photons. When we approximate Π0 as
being massless, this decay process is expressed as the following diagram, triangle
diagram of Feynman diagram
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If chiral symmetry is not broken, this diagram turns out to give zero. Thus this
decay is not allowed. However, experimentally this decay process certainly exists.
This is the evidence that Adler-Bell-Jackiw anomaly does exist. In high energy,
physics the ABJ anomaly is expressed as the non-conservation chiral current J5µ
such that

∂µJ5µ = − e2

16π2
εαβγδFαβFγδ

Here the chiral current J5µ is defined as

J5µ = limε→0 {Ψ̄(x+ ε
2
)γµγ

5exp
[
−ie
∫x+ε

2

x−ε
2
dzA(z)

]
Ψ(x+ ε

2
)
}

We might perform the calculation to show that the above triangle diagram is
non-zero due to the ABJ anomaly. But we have instead in subsection 10 alluded to
a derivation of the ABJ-anomaly by using how particles are pumped up or down
from or to the fermi-sea (in high energy physics the Dirac sea).
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Abstract. We consider a dark matter scenario in the minimal supersymmetric standard
model with CP violation where the Bino-like neutralino is a dark matter and its annihilation
cross section is enhanced enough to reproduce the observed relic abundance of the dark
matter through heavy Higgs bosons exchange. In this benchmark scenario, we examine the
electric dipole moments of the electron, the mercury, and the neutron. We also consider the
spin-independent cross section for the dark matter scattering with nuclei. We show that the
electric dipole moments will be very powerful tool to explore the parameter space in this
model, even when most of the new particles are very heavy.

Povzetek. Avtor obravnava model za temno snov v okviru minimalnega supersimetričnega
standardnega modela s kršitvijo CP, v katerem temno snov tvori vrsta nevtralina z dovolj
velikim sipalnim presekom za anihilacijo z izmenjavo težkih Higsovih bozonov, da da
njegova gostota ustreže izmerjeni pogostosti temne snovi. V tem modelu oceni električne
dipolne momente elektrona, jedra živega srebra in nevtrona. Obravnava od spina neodvisne
sipalne preseke za sipanje te temne snovi na jedrih. Ugotovi, da je električni dipolni moment
elektrona koristno orodje za raziskavo prostora parametrov tega modela tudi v primeru, če
je večina delcev v tem supersimetričnem modelu zelo masivnih.

Keywords: dark matter, neutralino, EDM, MSSSM

11.1 Introduction

Though there is no evidence of supersymmetry (SUSY) at the LHC experiments,
SUSY is still an attractive candidate of physics beyond the Standard Model (SM).
There are several motivations to consider the minimal SUSY Standard Model
(MSSM) than it in the SM. For example, (i) the gauge coupling unification is
improved in the MSSM, (ii) quadratic divergence in the scalar sector is cancelled,
(iii) spin-0 scalar fields are naturally introduced, (iv) MSSM provides a well-
defined ultraviolet picture of type-II two Higgs doublet model, (v) If R-parity is
unbroken, the lightest SUSY particle (LSP) can be a dark matter (DM) candidate,
and so on.

Among such attractive motivations, we focus on the point (v). In the SM, there
are several unsolved problems and one of the most serious problems is absence of
? E-mail: shindou@cc.kogakuin.ac.jp
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the DM candidate. In the MSSM, all the SM particles are R-parity even and all the
SUSY partner particles are R-parity odd, so that the lightest R-parity odd particle
cannot decay. Therefore, unbroken R-parity guarantees the stability of the LSP
which can be a DM.

Several different candidates can be considered in the MSSM such as the
neutralino, the gravitino, the axino, the saxion and the sneutrino. In this talk, we
briefly review the analysis studied in Ref. [1] where a neutralino DM scenario is
considered.

In the neutralino DM scenario, the relic abundance of the LSP tends to be much
more than the observed value. In order to realise the observed relic abundance of
the DM, a mechanism to enhance the annihilation cross section of LSP is necessary.
For example, following scenarios are sometimes considered: (i) neutralinos annihi-
late significantly through SU(2) gauge interaction, or (ii) annihilation cross section
of Bino-like neutralino is enhanced with a particular mass spectrum of other associ-
ated particles. In the former class, one possible case is the Higgsino-like neutralino
DM scenario with the mass of about 1 TeV. In this scenario, phenomenology such
as the direct detection of DM, contribution to the EDMs, and collider signals have
been studied in Ref. [2]. There is another possibility that a neutralino DM whose
main component is Bino annihilates through heavy Higgs boson resonance [3–7].

We, here, focus on the second case. In this scenario, masses of the heavy Higgs
boson are about twice of the mass of the neutralino DM. This Bino-like neutralino
also contains small Higgsino component so that the neutralino can directly be
searched through Higgs bosons exchange by the spin-independent scattering off
nucleus [8].

We consider the MSSM with CP violating phases. In this case, the CP violating
phases can significantly affect the electric dipole moments (EDM). Therefore the
EDMs are powerful tools to explore the CP violating phases in the model. In this
talk, we examine the electron EDM, the nucleon EDM, and the mercury EDM.
CP phases can also contribute to the DM-nucleon spin-independent scattering
cross section. Since the pseudo scalar exchange process is strongly suppressed in
the non-relativistic limit, the spin-independent cross section is suppressed with a
significant size of CP phase.

11.2 The benchmark of our analysis

The superpotential and the soft SUSY breaking terms in the MSSM are given by[9]

W = εab
[
(ye)ijH

a
1L
b
i Ēj

+ (yd)ijH
a
1Q

b
i D̄j

+ (yu)ijH
a
2Q

b
i Ūj (11.1)

− µHa1H
b
2

]
,
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and

Lsoft = −
M1

2
B̃B̃−

M2

2
W̃αW̃α −

M3

2
G̃AG̃A

−m2H1H
∗
1aH

a
1 +m2H2H

∗
2aH

a
2 − q̃∗iLa(M

2
q̃)ijq̃

a
jL − ˜̀∗

iLa
(M2

˜̀ )ij ˜̀ajL
− ũiR(M

2
ũ)ijũ

∗
jR − d̃iR(M

2
d̃
)ijd̃

∗
jR − ẽiR(M

2
ẽ)ijẽ

∗
jR

− εab
[
(Te)ijH

a
1

˜̀b
iLẽjR + (Td)ijH

a
1 q̃
b
iLd̃jR

+(Tu)ijH
a
2 q̃
b
iLũjR +m23H

a
1H

b
2 + h.c.

]
, (11.2)

respectively. In the following, we ignore the Yukawa couplings except for the third
generation quarks and leptons. Then yt, yb, and yτ denote the Yukawa couplings
of top, bottom, and tau, respectively. We also neglecting the flavor mixing in the
soft SUSY breaking terms, we take flavor diagonal soft scalar masses as M2

q̃i
=

(M2
q̃)ii, M2

˜̀
i
= (M2

˜̀ )ii, M2
ũi

= (M2
ũ)ii, M2

d̃i
= (M2

d̃
)ii, and M2

ẽi
= (M2

ẽ)ii. For
the trilinear couplings, A parameters defined by (Tu)33 = Aτyt, (Td)33 = Aτyb,
and (Te)33 = Aτyτ are used. Since we consider the CP violating case, the each
parameter in the above superpotential and the soft SUSY breaking Lagrangian can
be a complex number.

The mass of the SM-like Higgs boson in the MSSM is calculated by the input
parameters in the superpotential and the SUSY breaking Lagrangian. In order to
reproduce the observed mass value mh = 125 GeV, we take tanβ := 〈H2〉/〈H1〉 =
30 and we fix the stop mass parameters as Mq̃3 = 7 TeV, Mt̃ := Mũ3 = 7 TeV
and At = 10 TeV. The other SUSY particles are irrelevant to the mass of the
SM-like Higgs boson as well as the DM relic density. Therefore we can take their
masses much heavier than stop. In such a case, they are decoupled from low
energy observables. Here we take masses of the other sfermions as 100 TeV and
M2 =M3 = 10 TeV. In our analysis, we focus on the Bino-like DM with the Higgs
funnel scenario so that the heavy Higgs boson mass is close to twice the mass of
the DM. In the scenario, the Bino-like neutralino rapidly annihilate through the
heavy Higgs bosons resonance and the appropriate cosmic abundance for DM is
reproduced. In addition, the masses of heavier neutral Higgs bosons,mH andmA,
are close to the charged Higgs boson massmH± in the MSSM. Thus we fixmH±
to be twice of Bino mass parameterM1. Note that the χ̃-χ̃-Higgs boson coupling
depends on non-vanishing Higgsino component in the neutralino. We choose |µ| to
reproduce the correct amount of DM relic density asΩDMh

2 = 0.1198±0.0015 [10].
As a consequence of these fact, both the Bino mass |M1| and the Higgsino mass |µ|
should be of the order of TeV. We consider M1 as a free parameter and solve |µ|

from the measured dark matter energy density.
In the following, we summarise our benchmark parameter set:

|M2| = |M3| = 10 TeV, (11.3)

Mq̃1,2 =Mũ1,2 =Md̃1,2,3
=M ˜̀

1,2,3
=Mẽ1,2,3 = 100 TeV, (11.4)

Mq̃3 =Mt̃ = 7 TeV, (11.5)

At = 10 TeV, (11.6)

mH± = 2M1, (11.7)

tanβ = 30. (11.8)
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The other A-terms are zero.
With this parameter set, CP phases in the five parameters, (µ,M1,M2,M3,At),

may be relevant to our analysis of EDMs and the spin-independent cross section.
The CP phases of these parameters are described as (φµ, φM1

, φM2
, φM3

, φAt),
respectively, where each phases of a quantity X are defined by X = |X|eiφX .

Note that some of those CP phases are unphysical. It is known that there is a
rephasing degree of freedom in the MSSM. Actually, all the physical quantities are
described by the following combinations of the parameters,

arg(MiM
∗
j ) ,

arg(MiA
∗
t) ,

arg(µMi) ,

arg(µAt) ,

(i, j = 1, 2, 3) .

(11.9)

By using the rephasing degree of freedom, without loss of generality, we can
take the basis of CP phases as φM3

= 0. We also take φAt = 0 for simplicity. In
general, the CP phase φAt also significantly contributes to the predictions of the
EDMs. However, in our benchmark parameter set given in Eqs. (11.3) – (11.8), the
contribution from φAt is strongly suppressed because the mass splitting between
two stops is small. Therefore we scan the following four parameters,

(|M1|, φµ, φM1
, φM2

). (11.10)

11.3 Numerical analysis

In calculations of dark matter thermal relic density and the Higgs mass, we use
micrOMEGAs 4.3.5 [11] with CPsuperH2.3 [12]. The Higgs mass is almost
fixed to be 125 GeV in our benchmark point. When we scattered the parameters,
we pick up the parameter sets which reproduce the correct DM relic abundance
and the correct Higgs mass. Then we calculate the electron EDM, the neutron
EDM, and the mercury EDM. We also discuss the scattering cross section for the
direct detection experiments.

Since the sfermions are too heavy to contribute to the EDMs via one-loop
diagrams, the two-loop Barr-Zee diagrams provide dominant contributions unless
Wino, stop, and sbottom masses are heavy enough to be decoupled.

In Fig. 11.1, we show our numerical results. We can see theM1 dependence
by comparing the left panels and the right panels where M1 = 1 TeV and 2 TeV,
respectively. It is easily seen that larger M1 weaken the constraint from EDM
experiments. The Bino massM1 is approximately identified to be the mass of the
dark matter neutralino. Then for largerM1, heavy Higgs bosons and Higgsinos
become heavier, and the contributions to the EDMs become smaller. We also
discuss the φµ and φM2

dependence of the EDMs. The left panels in Fig. 11.1
shows the electron EDM, the mercury EDM, and the neutron EDM with φM1

= 0.
The shaded regions are already excluded by the current upper bound on the EDMs.
We find the combination of the electron EDM and the mercury EDM exclude the
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large region of the parameter space. Both φµ and φM2
cannot be large. We also

find that the electron EDM strongly depends on φM2
. On the other hand, φM2

dependence of the mercury EDM and the neutron EDM are milder.
Fig. 11.2 displays the φM1

dependence. Taking into account the constraint
from the mercury EDM, we find that the mercury EDM and the neutron EDM are
almost independent of φM1

. On the other hand, the dependence of the electron
EDM on φM1

is mild but visible.
From these figures, one can see that the neutron and the mercury EDMs are

sensitive to φµ, and also weakly depend on φM2
. On the other hand, the electron

EDM is sensitive to φM2
+φµ, and weakly depend on φM1

. Most of the parameter
space in Figs. 11.1 and 11.2 are within the future prospects of the electron EDM
and the neutron EDM. In Summer of 2018, the constraint on the electron EDM
is updated to be |de/e| < 1.1× 10−29e·cm by ACME collaboration[13]. With this
new constraint, the allowed regions in Figs. 11.1 and 11.2 become very thin stripes.
Thus the correlation among the EDMs in future experiments provide a strong hint
to explore the CP phases in the SUSY breaking sector.

Let us discuss DM-nucleon scattering cross section. Since we consider the
Higgs funnel scenario, the DM neutralino couples to neutral scalar bosons. Through
these couplings, the DM neutralino and nucleon interact with each other.

Though the couplings are rather small in the scenario, the couplings lead to a
significant size of the spin-independent cross section and it will be within future
prospects of the DM direct detection experiments.

In Figure 11.3, the φM2
and φµ dependence of σSI is shown. In this figure, the

parameter choice is the same as in Fig. 11.1. Figure 11.4 displays the φM1
and φµ

dependence of σSI with the same parameter choice as in Fig. 11.2.
The spin-independent cross section is found to be smaller than the current

upper bound [14–16] in all the region of the parameter space. However is is within
the future prospects of the DARWIN [17], the DarkSide-20k [18], and the LZ [19].

Note that the scattering cross section depends on φM1
+ φµ, and the φM2

dependence is not significant.
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Fig. 11.1. The EDMs for tanβ = 30 andφM1 = 0◦. The left (right) panels are forM1 = 1 TeV
(M1 = 2 TeV). The contours in the top, the center, and the bottom panels are those of the
electron EDM, the mercury EDM, and the neutron EDM, respectively. The dashed lines
show the negative values. The red and blue shaded regions are excluded by the electron
EDM and the mercury EDM, respectively. The figures are taken from Ref. [1].
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Fig. 11.2. The EDMs for M1 = 1 TeV and tanβ = 30. In the left (right) panels, φM2 = 0◦

(30◦). The shadings and contours are the same as in Fig. 11.1. The figures are taken from
Ref. [1].
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Fig. 11.3. The DM-nucleon scattering cross sections for tanβ = 30 and φM1 = 0◦. The left
(right) panel is for |M1| = 1 TeV (2 TeV). The shadings are the same as in Fig. 11.1. The
figures are taken from Ref. [1].

Fig. 11.4. The DM-nucleon scattering cross sections forM1 = 1 TeV and tanβ = 30. The left
(right) panel is for |φM2 | = 0

◦ (30◦). The shadings are the same as in Fig. 11.1. The figures
are taken from Ref. [1].

11.4 Summary

In this talk, we have considered the MSSM with CP phases, and we have focused
on a DM scenario where the Bino-like neutralino is a DM whose annihilation cross
section is enhanced enough through heavy Higgs bosons exchange so that the
observed relic abundance of the DM can be explained. In this benchmark scenario,
we have examined several EDMs and the spin-independent cross section for DM
scattering with nuclei. We have shown that the EDMs are very powerful tool to
explore the parameter space in the MSSM with CP phases even when most of the
SUSY particles are very heavy.
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Discussion Section

The discussion section is reserved for those open problems presented and
discussed during the workshop, that might start new collaboration among partici-
pants or at least stimulate participants to start to think about possible solutions
of particular open problems in a different way, or to invite new collaborators on
the problems, or there was not enough time for discussions and will hopefully be
discussed in the next Bled workshop.

Since the time between the workshop and the deadline for contributions for
the proceedings is very short and includes for most of participants also their holi-
days, it is not so easy to prepare there presentations or besides their presentations
at the workshop also the common contributions to the discussion section.

However, the discussions, even if not presented as a contribution to this
section, influenced participants’ contributions, published in the main section.
Contributions in this section might not be yet pedagogically enough written,
although they even might be innovative and correspondingly valuable indeed.

As it is happening every year also this year quite a lot of started discussions
have not succeeded to appear in this proceedings. Organizers hope that they will
be developed enough to appear among the next year talks, or will just stimulate
the works of the participants.

There are seven contributions in this section this year.
One contribution discusses shortly a possible influence of the ”dark atom”s

on the expanding universe, offering the explanations for some puzzles in the
experiments trying to detect dark matter. ”Dark atom” is the ”atom”, which
contains a double electromagnetically charged ”baryon” made of three stable Ū
quarks, decoupled from the three observed families of quarks. A bound state of
an ordinary He nucleus with such a ”baryon” would made the ”dark atom”. The
elaboration of this idea looks very interesting.

There is the contribution, which is pointing out that inconsistency between
the theoretical predictions and the experimental data is not necessarily a signal for
new physics, since it can just be due to the higher order corrections not included
in the theoretical evaluations. The authors, discussing several cases, conclude that
there might not be yet any experimental data, which could be interpreted as a
signal of new physics beyond the standard model.

And yet we all hope that the new data, either the cosmological ones or,
hopefully, also the LHC or of other experiments ones, will confirm the theory
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beyond the standard models, like it is the spin-charge-family theory, since there are
(so many) assumptions in the standard model, which ought to have explanations.

The contribution presenting the Dirac operators γa and Sab, and of the oper-
ators γ̃a and the corresponding S̃ab, determining in the spin-charge-family theory
— first the family members quantum numbers of fermions, and the second the
family quantum numbers of fermions — was stimulated by participants of this
year workshop. In the basic states in (3 + 1) (out of d = (13 + 1)), the matrices
have the dimension 16 × 16. The contribution is to make it easier for the reader
to recognize the differences between the quantum numbers describing the family
members and those describing families.

The contribution discussing some representations of the second quantisable
integer spin fermions is meant to recognize better the differences between the
fermions with the internal degrees of freedom described in Clifford space (with
the spins and charges in fundamental representations of the groups, the subgroups
of the Lorentz group) and the fermions with the internal degrees of freedom
described in Grassmann space (with the spins and charges in the adjoint represen-
tations of the subgroups of the Lorentz group), presented in this proceedings in
the talks section. If consisting of the integer spins fermions (only), nuclei, atoms,
molecules . . . would in such an universe be of completely different kind. Nature
has obviously ”made a choice” of the Clifford space.

There is the contribution, which represents the improvement of the by the
author proposed model with the broken SU(3) gauged family symmetry. It reports
on the parameter space region, in which all the results are in agreement with so far
observed data. The mass of the SU(2)L weak singlet vector-like D quark, proposed
in this theory, may be of the orden of 10 TeV.

There are two contributions in which the author constructs, while recognizing
the correspondence between the Clifford algebra states as represented in the spin-
charge-family theory and the binary codes, the geometrical model with closed
packed cells of two different shapes representing quarks and leptons with their
observed charges. Author tries to extract out of these cells, recognizing different
possible symmetries, even forces among these constituents. Although the author
has almost incredible recognitions, yet it is very questionable what one can learn
out of such a model, especially when one would like to look beyond the standard
model to understand the origin of properties of fermion and boson fields, and in
the author’s case, what does determine assumptions and parameters of his model.

All discussion contributions are arranged alphabetically with respect to the
authors’ names.



i
i

“proc18” — 2018/12/10 — 11:44 — page 259 — #275 i
i

i
i

i
i

Diskusije

Ta razdelek je namenjen odprtim vprašanjem, o katerih smo med delavnico
razpravljali in bodo morda privedli do novih sodelovanj med udeleženci, ali pa
so pripravili udeležence, da razmislijo o možnih rešitvah odprtih vprašanj na
drugačne načine, ali pa bodo k sodelovanju pritegnili katerega od udeležencev, ali
pa ni bilo dovolj časa za diskusijo na določeno temo in je upati, da bo prišla na
vrsto na naslednji blejski delavnici.

Ker je čas med delavnico in rokom za oddajo prispevkov zelo kratek, vmes pa
so poletne počitnice, je zelo težko pripraviti prispevek in še težje poleg prispevka,
v katerem vsak udeleženec predstavi lastno delo, pripraviti še prispevek k temu
razdelku.

Tako se precejšen del diskusij ne bo pojavil v letošnjem zborniku. So pa gotovo
vplivale na prispevek marsikaterega udeleženca. Nekateri prispevki še morda niso
dovolj pedagoško napisani, so pa vseeno lahko inovativni in zato dragoceni.

Organizatorji upamo, da bodo te diskusije do prihodnje delavnice dozorele
do oblike, da jih bo mogoče na njej predstaviti.

Letos je v tem razdelku sedem prispevkov.
Eden prispevek obravnava na kratko možnost vpliva “temnih atomov” na

razvoj vesolja in ponudi razlago nekaterih ugank v poskusih, ki naj bi merili temno
snov. “Temni atom” je atom, ki vsebuje “barion” z dvojnim elektromagnetnim
nabojem in ga tvorijo trije stabilni kvarki Ū. Ti so neodvisni od treh že poznanih
družin kvarkov. Vezano stanje helijevega jedra s takim “barionom” bi tvorilo
“temni atom”. Obravava te ideje se zdi zanimiva.

Avtorja pokažeta, da neujemanje teoretičnih napovedi z meritvami še ne
pomeni nujno, da je to signal za novo teorijo, ki preseže standardni model elek-
trošibke interakcije, ker so neujemanja lahko tudi posledica tega, da pri teoretičnih
izračunih niso vključeni popravki dovolj visokih redov. Obravnavata več primerov
in skleneta, da po njuno doslej še ni meritev, ki bi jih ne bilo mogoče pojasniti s
standardnim modelom.

In vendar vsi upamo, da bodo bodisi kozmološke meritve bodisi meritve na
pospeševalniku LHC ali na drugih pospeševalnikih kmalu potrdile pravilnost
teorij(e), kot je denimo teorija spinov-nabojev-družin, saj standardni model s
svojimi 30 privzetki nima razlage za vse te privzetke.

Prispevek, ki obravnava Diracove operatorje γa in ustrezne Sab, ter γ̃a in
ustrezne S̃ab, ki določajo v teoriji spinov-nabojev-družin prvi spine in naboje
fermionov, drugi družinska kvantna števila fermionov, so spodbudile razprave
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udeležencev letošnje delavnice. Matrike imajo na baznih stanjih v prostoru (3+ 1)

(ki je vključen v d = (13 + 1)) dimenzijo 16 × 16. Namen prispevka je olajšati
bralcem, da prepoznajo razliko med kvantnimi števili, ki opišejo člane družin in
kvantnimi števili, ki opišejo družine.

V razdelku je tudi prispevek, ki razpravlja o nekaterih upodobitvah fermionov
s celoštevilčnim spinom v drugi kvantizaciji, kar naj pomaga bolje razumeti razlike
med fermioni, katerih notranje prostostne stopnje opišemo v Cliffordovem pros-
toru (spini in naboji so v tem primeru v fundamentalnih upodobitvah grup, ki so
podgrupe Lorentzove grupe), ter fermioni, katerih notranje prostostne stopnje so
opisane v Grassmannovem prostoru (spini in naboji so tem primeru v adjungiranih
upodobitvah podgrup Lorentzove grupe). Diskusija je povezana s prispevkom
v razdelku predavanj v tem zborniku in obravnava primer, v katerem bi imeli
fermioni le celoštevilčni spin. Taka izbira bi vodila do popolnoma drugačnih jeder,
atomov, molekul . . . . Narava je očitno izbrala Cliffordov prostor.

Prispevek, v katerem avtor predlaga model z zlomljeno družinsko simetrijo
SU(3), obravnava območje parametrov, ki zagotovi ujemanje modela z izmerjenimi
podatki. Maso napovedanega novega kvarka oceni na ∼ 10 TeV.

Razdelek vsebuje dva prispevka, v katerih postavi avtor, upoštevajoč zveze
med stanji Cliffordove algebre kot jih predstavi teorija spinov-nabojev-družin in
binarnimi kodami, geometrijski model, v katerem so kvarki in leptoni ter njihovi
naboji predstavljeni s tesno zloženimi celicami dveh oblik. Iz tega geometrijskega
modela poskuša avtor izpeljati z upoštevanjem možnih simetrij, ki jih ponudi
model, lastnosti in celo sile med sestavnimi delci, to je kvarki in leptoni. Avtorjev
pristop je neverjetno domiselen, saj vse lastnosti osovnih delcev in polj pripiše
geometrijskim lastnostim modela. Vprašanje pa je, kaj se lahko naučimo iz takega
modela, kjer parametre modela določa geometrija, zlasti, če želimo razumeti od
kod lastnosti fermionskih in bozonskih polj ter v avtorjevem primeru, kaj določa
parametre modela.

Prispevki v tej sekciji so, tako kot prispevki v glavnem delu, urejeni po abeced-
nem redu priimkov avtorjev.
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Abstract. In this study we consider triple-periodical electrical charge distributions with
the pattern similar to the Weaire-Phelan structure. According to it, the space is splitted to
opposite-charged cells separated with electrically neutral border.

Possible configurations obtained as results of exchanges of these cells appear to have
properties that can be corresponded to the quantum numbers of known fundamental
particles.

We find it promising to use models of this kind, aiming to infer the axioms and con-
stants of the Standard Model from the emergent geometrical properties of the distribution.

Povzetek. Prispevek obravnava trojne periodične porazdelitve električnih nabojev, ki imajo
vzorec podoben Weaire-Phelan strukturam. V modelu je prostor razdeljen na celice z
nasprotnimi naboji, ki jih loči električno nevtralna meja.

Konfiguracije, ki sledijo z izmenjavo teh celic, imajo lastnosti, ki jih avtor poveže s
kvantnimi števili kvarkov in leptonov.

Avtor meni, da ti modeli omogočijo izpeljavo privzetkov in konstant standardnega
modela.

Keywords: Particle model,Weaire-Phelan tessellation

12.1 Introduction

The spin-charge-family theory presented in [1], [2], [8], [9] offers reasonable ex-
planations for the phenomena of the Standard Model of the fundamental parti-
cles. Originating from Clifford algebra, it comes to the binary internal degrees of
freedom, explaining properties of existing fundamental particles and predicting
existence of extra fermion families.

In turn, we reproduce particle properties starting with binary code model. As
we have shown in [7], Boolean models designed for fundamental particles can
reproduce most of their properties, including charges (electrical, color, weak and
hyper-charge), lepton- and baryon numbers, fermion flavor and family member-
ship, and boson spin magnitude. The particles are represented as combinations or
codes of symbols carrying one of two possible values, so these models are binary.
? E-mail: eliadmitrieff@gmail.com
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Developing these models, we started with well-known linear codes, that
consist of binary digits (bits) with usual values either 1 or 0. Then, in order to
reduce the amount of information carried by the code, we abandoned the linear
structure in favor of spatial one. Also we have symmetrized and normalized the
values carried by bits, using +1

6
and −1

6
instead of 1 and 0. These values could be

directly interpreted as electrical charge in units of electron charge e.
Using spatial combination of eight symbols of this kind, we managed to

represent all known fundamental particles. Also, analyzing unused combinations,
we proposed existence of new scalar particle forming the vacuum condensate. It
could be represented by this combination that is repeated periodically, filling the
space as a tessellation.

Since the tessellation can be chiral, the space filled with small alternating
charged regions, comparing to simple empty space, has an advantage of offering
possible explanation for difference between right- and left-handed particles in
respect of the vacuum.

Different particle codes, substituting vacuum codes in the tessellation, violate
the periodicity with different ways. We suppose that it may be used to infer
associated rest energies (masses) instead of postulating them.

Treating vacuum expectation value as Coulomb potential between neighbor-
ing opposite-charged ”bits” [11], we estimated that the distance between them
should be on scale of ≈ 10−21m.

Being inspired by idea of vacuum domains [3], we suppose that the interpre-
tation of these ”bits” as domains can explain the problem of their observations
absence. As asserted originally by Zeldovich with co-authors, the vacuum domains
should appear as consequence of symmetry break in the phase transition. In our
models, they do exist but have the correlation radius on sub-particle scale instead
of cosmological one. This should happen in case the 2-order phase transition is
not yet complete but just approaches its critical point.

Having a model with some spatial distribution of charged bits, or vacuum
domains, we recognize that it is necessary to find out the pattern of this distribution
which is consistent with other observable properties of vacuum and particles,
including their symmetry, mass spectrum, propagation, interactions and so on.

After checking simple (NaCl-like) and volume-centered (CsCl-like) cubic
lattices, we found out that the A15 (Nb3Sn-like) lattice, or Weaire-Phelan structure,
has some advantages allowing it to be the possible vacuum- and particle model.

12.2 Overview of the original Weaire-Phelan tessellation

The original Weaire-Phelan structure is described in [12]. It is a foam of equal-
volumed cells separated by thin walls. Among other structures, having the same
cell volume, this one has the minimal (known at the present time) inter-cell wall
area, so it is a candidate solution for the Kelvin problem [14]. There is evidence
of self-assembling of this tessellation driven by minimization of the surface en-
ergy [13].

Cells forming the Weaire-Phelan structure have almost flat faces and just
slightly curved edges, thus they can be closely approximated by irregular polyhe-
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dra. It is nesessary to use two kinds of them – dodecahedra (D) and tetrakaideca-
hedra (T )1.

Unlike dodecahedra, the tetrakaidecahedra have three possible orientations in
respect of the three Cartesian axes.

The cells of both kinds can be included in the tessellation in two ways, so they
became chiral.

Eight cells, differing in kind, chirality, and orientation, form one translation
unit. These translation units, in turn, form simple cubic grid.

Assuming the size of translation unit to be l = 4λ in each dimension (where λ
is a scale factor, and 4 is used to get most of coordinates integer), we get the unit
volume Vu = l3 = 64λ3, and cell volume Vc = 1

8
Vu = 8λ3 (remembering that all

cells are equal-volumed).
Having the coordinate axes perpendicular to the hexagonal faces of the

tetrakaidecahedra, and associating the origin with the center of one of dodec-
ahedra, one can obtain coordinates of the centers of all other cells:

D Tx Ty Tz
R (0,0,0) (0,2,1) (1,0,2) (2,1,0)
L (2,2,2) (0,2,3) (3,0,2) (2,3,0)

These coordinates are expressed in units of λ and derermined up to 4λ, mean-
ing that one can obtain coordinates of each cell by adding of ”even” vector

VE = (4nx, 4ny, 4nz) λ, ni ∈ Z. (12.1)

Further, we omit the scale factor λwhere it shouldn’t cause misunderstanding.
Here we chose the R and Lmark of the chirality by the arbitrary choice.
There are four symmetry axis C3 defined by equations ±x = ±y = ±z.
Since the structure does not possess reflection symmetry, it is chiral, so there

are two mirror-reflected structures. For instance, after reflecting in the plane x = y
the chirality is reversed and the coordinates are changed as the following:

D Tx Ty Tz
L (0,0,0) (2,0,1) (0,1,2) (1,2,0)
R (2,2,2) (2,0,3) (0,3,2) (3,2,0)

After performing the shift (move) of the whole infinite structure with the
”odd” vector

VO = VE + (±2,±2,±2)λ, (12.2)

1 The dodecahedron is a pyrithohedron with twelve equal pentagonal faces, possessing
terrahedral symmetry Th, and the tetrakaidecahedron is truncated hexagonal trapezohe-
dron posessing rotoreflextion symmetry C3h, with two hexagonal faces, four large and
eight small pentagonal faces.
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i.e. for the half-size of the translation unit (2
√
3λ), in direction of C3 axis, we get

the original structure again:

D Tx Ty Tz
L (2,2,2) (2,0,3) (2,3,0) (1,2,0)
R (0,0,0) (0,2,1) (2,1,0) (1,0,2)

Thus, the structure possesses global PS symmetry, where P is parity (particu-
larly, exchange of any two coordinates) and S is shift along C3 axis on the half of
translation unit size (or, generally, on the odd vector).

It also means that despite of mirror asymmetry of each finite part, there is
only one infinite Weaire-Phelan structure, which is either right- or left-handed
depending on the choice of origin. It can be also considered as two overlapped
chiral structures consisting of the same elements but shifted in respect of each
other with the odd vector (12.2).

12.3 Dual-charged Weaire-Phelan structure

To use the Weaire-Phelan structure as a spatial version of binary-code model, we
need to assume that each cell carries electrical charge with magnitude of 1

6
. Since

the space containing no particles is electrically neutral, the counts of positive and
negative cells in any volume & l3 should be the same. Any change of cell charge,
that can be from +1

6
to −1

6
, or back, would cause the total electric charge to change

on ±1
3

. Thus, all the particles in this model will have discrete charges with step of
1
3

, that is according to experiments. So the existence of particles with charges, for
instance, of ±1

2
, is impossible.

In general, the charge inside cells can be distributed being determined by
physical law acting on this scale, for instance:

• all the charge can be concentrated in cell centers, in point-size sub-particles
(partons or rishons);
• the charge can be distributed smoothly inside cells around their centers, falling

to zero on the inter-cell borders;
• the charges of opposite sign can be concentrated on both sides of the walls

between opposite-charged cells, and also can be smoothly distributed along
them.

In the following subsections we consider these simplified assumptions of the
charge distribution.

We assume that the basic ”vacuum” alteration of charged cells in the tessella-
tion should fulfill the following requirements:

• each translation unit should be electrically neutral, and
• cells with opposite chirality should also be opposite-charged.
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So, we assume positive charge of cells of one chirality and negative for another.
However, at this stage we do not recognize any natural rule that would define the
absolute chirality. So, there are 23 = 8 choices of Ti charges and also 2 choices ofD.
We make this choice as shown in the following table:

Cell type Charge Coordinates Plane
DR − (0, 0, 0) x+ y+ z = 4n

TRi + (0, 2, 1), (1, 0, 2), (2, 1, 0) x+ y+ z = 4n+ 3

DL + (2, 2, 2) x+ y+ z = 4n+ 2

TLi − (0, 2, 3), (3, 0, 2), (2, 3, 0) x+ y+ z = 4n+ 1

In the last column of the table we show the equations of planes that contain
all the cell centers of particular type.

Making the choice of charge sign for Ti, we break the symmetry between C3
axis, so one of them becomes dedicated. Also, making this choice forD cell charge
breaks symmetry between opposite handednesses. So there are two possible dual-
charged Weaire-Phelan structures. That corresponds to the principal possibility of
physical vacuum with reversed chirality.

12.4 Cell Centers approximation

Here we abstract from the details of spatial distribution of the electric charge, and
suppose it is just concentrated somewhere in the vicinity of the cell centers. We do
so to simplify the charge calculation, replacing the integration of the charge density
in the volume of interest with counting the number of centers of positive and
negative cells falling into it. Since the coordinates of the cell centers are integers
(i.e., proportional to the scale factor λ), they can lay on the certain planes only,
between which, in this approximation, there is nothing.

12.4.1 CPS symmetry

The following set of grids (Fig. 12.1) illustrates the placement of positive and nega-
tive cells’ centers, as black and white circles, respectively, in the cubic translation
unit of size 4× 4× 4 starting with its left bottom front corner from the origin of
reference frame. Centers of D-cells are marked with double-border.

The first grid is the cross-section for plane z = 0, the second one is for plane
z = 1 and so on. The plane z = 4 is the same as z = 0 due to the periodicity.

Considering the translation unit cube that is shifted with the ”even” vector
(2n+ 1)(2, 2, 2), for instance (−2,−2,−2), i.e. performing S operation, we get the
scheme on the Fig. 12.2 (the first grid is plane z = −2 and so on).

After reflecting in the plane x = y (P operation) we get the scheme on the
Fig. 12.3.

One can ensure that this shift operation (S) followed by reflection (P) has the
same result as the charge inversion (C). So these three operations being applied
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consequently (in any order) turn the structure back to its original state. It means
that the structure possesses the symmetry in respect of CPS combination, but
neither in respect of C, P, S individually nor in respect of their pairs CP=PC=S,
PS=SP=C, CS=SC=P.
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12.4.2 View in isometric projection

The distribution of charged cell centers also can be represented in the reference
frame ξζυ, in which ζ axis follows the diagonal of the translation unit cube. The
planes containing cells of one type, that are x+ y+ z = 4n+ k = ζ, are planes ξυ.
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We perform the reference frame transformation xyz 7→ ξζυ using O(3) rota-

tion matrix with Euler angles π
4

and arccos
√
2
3

:ξζ
υ

 =
1√
6


√
3 0 −

√
3√

2
√
2
√
2

−1 2 −1

xy
z

 . (12.3)

The diagram on Fig. 12.5 illustrates six faces of the translation unit with the
center in the point (0, 0, 0) (the cell center in this point is not shown since it does
not belong to the cube’s faces). The plane ξυ is faced to the observer while the ζ
axis directs away from the observer.
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Fig. 12.5. Translation unit cube with the center in (0, 0, 0) in the isometric projection on its
diagonal

The projection to the ζυ plane (Fig. 12.6) illustrates that in each translation
unit cube there are 12 planes perpendicular to its diagonal (ζ axis), that contain
charged cell centers, and that these planes are different. Starting from the 0th plane
with ζ = 0, and increasing ζ by 1√

3
, one can found that it is just the 12th one at

ζ = 12/
√
3, where the next translation unit starts, is the same with the 0th plane).

However, planes starting from the translation unit center (the 6th,, ζ = 6/
√
3)

repeat planes from 0th through 5th but reversed in charge. Since the translation in
ζ direction on 6/

√
3 is the S operation, that is equal to CP, they are also mirrored,

i.e. parity-inversed.
So any change in this structure, that is possible in any particular place, can

have its ”anti-change”, with opposite charge and parity, possible in places shifted
on some ”odd” vector VO (12.2).

The diagram on Fig. 12.7 illustrates the placement of the cell centers in the
projection on the υξ plane:

On this diagram the cells residing on the same plane perpendicular to the ζ
axis are joined together with lines and labeled with values of ζ coordinate (in units
of 1/

√
3), so one can see the equilateral triangles that they form2.

2 The visible ’constellations’ of T cell centers do not form equilateral triangles in the υξ
planes since they have different ζ.
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TheD cells of different charge overlap and hide each other along the projective
direction, so behind each positive cell the negative one is assumed, and vice versa.

The planes, cell types and the shapes the cell centers form, are listed in the
Table 12.1, from ζ = 0 to 12/

√
3.

ζ,× 1√
3

kind, charge shape size shape description

0 D− be − Axial D−

1 T−
ccc √14 Large T− triangle counterclockwise

2 D+

sesese √32 D+ triangle υ-down

3 T+
ss s √6 Small T+triangle (ξ-right)

4 D− bebebe √32 D− triangle υ-up

5 T− ccc √14 Large T− triangle clockwise

6 D+ se − Axial D+

7 T+
ss s √14 Large T+ triangle clockwise

8 D−

bebebe √32 D− triangle υ-down

9 T−
ccc √

6 Small T− triangle (ξ-left)

10 D+ sesese √32 D+ triangle υ-up

11 T+ ss s √14 Large T+ triangle counterclockwise

12 D− be − Axial D−

Table 12.1. Shapes of cell center placements in twelve different planes

12.4.3 Small T triangle and its environment

Consider the small triangle of three T+ cells with the same charge at ζ = 3/
√
3,

with edge of
√
6. The triangle has electric charge Σq3 = +1/2, so its environment

has the opposite charge qenv = −1/2 that ensures the total electrical neutrality.
The closest neighborhood of the small T triangle is asymmetrical: in ζ direc-

tion, there are two planes with different charge before it and two negative-charged
planes after it.

Namely, at ζ = 1/
√
3 there is a large (edge is

√
14) T− triangle carrying electric

charge q = −1/2, and at ζ = 2/
√
3 there is a D+ triangle (edge=

√
32) carrying

q = +1/2, altogether q = 0.
On the contrary, at the two following planes (ζ = 4/

√
3 and ζ = 5/

√
3) there

are triangles with the same structure as before, but both are negative-charged,
carrying together q = −1.

The same structure, due to the CPS symmetry, exists around small T− triangle
at ζ = 9/

√
3, with all the charges (and parity) inverted: both of the triangle in this

position, and of its environment.
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12.4.4 Choosing the translation unit cell

In our approach, the translation unit is a substitution for concept of a point of
space, as a place where a particle can reside.

Instead, a particle in the point is represented as some anti-structural defects
located in the corresponding translation unit, so the presupposed concepts of a
particle or material point gets unnecessary.

Since the translation unit of dual-charged Wheaire-Phelan structure consists
of eight different binary elements (i.e. cells charged ±1

6
e), the translation unit

has eight internal binary degrees of freedom pretending to replace the curled up
dimensions in Kaluza-Klein theories [4], [5], [6], [1], [2], [8], [9].

The translation unit cell can be chosen arbitrary as long as it includes eight
structure cells of different geometry3 [10].

The primitive translation unit cell is a body-centered cube (Fig. 12.5). Most of
cells included in it are cross-sectioned by the imaginary borders of the unit cell. It
is not quite useful for modeling purposes. Namely, the T cells are taken by halves
and while one D cell is taken by eighth parts, another one, residing in the cube’s
center, is included as whole.

Intending to study defects in the periodical structure, we choose the non-
primitive unit so the cells that would participate in the exchange are included as
whole, without cross-section.

We found also possible to include additional cells, that would overlay cells
with the same geometry while translating, in case these add-ons appear as mutu-
ally compensating pairs of cells having opposite parity and also opposite electrical
charge.

So we choose the neutral translation unit that consist of 3 positive charged
cells of small T -triangle at ζ = 3/

√
3, that would participate in the exchange, and

halves of negative charged cells of two large T -triangles both at 1/
√
3 and at 5/

√
3,

that would remain unchanged.
We do not consider the changes that may occur in cells of large T triangles

since each T cell belonging to any small triangle in one chiral sub-lattice also
belongs to a large triangle in another, mirror-reflected sub-lattice.

12.4.5 Anti-structure defects

Now we consider the inversion of the electric charge that can occur in particular
cell or cells for some reason. Namely, it should happen as result of an interaction.
Since the electric charge is conserved, the inversion in any particular cell must be
accompanied by reverse inversion in another cell nearby, so all the inversions are,
in fact, te results of exchanges.

However, we focus on possible single, double and triple inversions in the
cells of small T triangle supposing that the corresponding reverse inversions are
migrated or propagated into some location that is enough far away.

3 See the above in this section 12.2.
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Also, we can examine just one small T triangle of two, for instance, at ζ =

3/
√
3; another small T triangle at ζ = 9/

√
3 is located in position shifted on half-

unit size, so the latter should have the same properties as the first one, but CP-ed,
i.e. charge-inverted and mirror-reflected.

Consider the small T+triangle accompanied by several cells in its closest
neighborhood, keeping total electrical charge of them to be zero (Σqn means the
electric charge of three cell with the center at n-th plane, i.e. with ζ = n/

√
3):

Q = Σq1 + Σq3 = −
1

2
+
1

2
= 0, or

Q = Σq3 + Σq5 =
1

2
−
1

2
= 0, or

Q =
Σq1 + Σq5

2
+ Σq3 = 0, or

Q = q0 +
Σq1

2
+ Σq3 +

Σq5

2
+ q6 = 0, or

Q = q0 + Σq1 + Σq3 + q6 = −
1

6
−
1

2
+
1

2
+
1

6
= 0, or

Q = q0 +
Σq1

2
+
Σq2

2
+ Σq3 +

Σq4

2
+
Σq5

2
+ q6 = 0.

(12.4)

In all the cases, Q = Σq3 + qenv = 0, while Σq3 = +1
2

, so the environment
charge qenv = −1

2
.

It is obvious that this qenv is determined by T -cells only, since it is a charge of
initially neutral vacuum after ”removing” three positive-charged T+cells forming
the small triangle and keeping the original count ofD cells. So there are three extra
negative-charged T -cells while all the D-cells still compensate each other:

qenv =q
T
env = −

1

2
;

qDenv = 0.
(12.5)

Each plane of T -cells before the small triangle in ζ-oder has its corresponding
equal-charged plane after it at the same distance (for instance, at ζ = 1/

√
3 and

5/
√
3). This symmetry requires a half of environment charge, that is determined by

T sub-lattice, to be resided before the small triangle plane ζ = 3/
√
3, and another

half to be resided after it:

qTenv(ζ <
3√
3
) = −

1

4
;

qTenv(ζ >
3√
3
) = −

1

4
.

(12.6)

Due to the CPS symmetry, we also have

qTenv(ζ <
9√
3
) = +

1

4
;

qTenv(ζ >
9√
3
) = +

1

4

(12.7)

for the environment of the negative-charged small T -triangle at ζ = 9/
√
3.
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12.4.6 Handedness change as Exchange of D triangles

AlthoughD-sublattice has no influence on the total charge of the small T+triangle’s
environment qenv (12.5), exchanges in it can redistribute the electric charge be-
tween rear (ζ < 3√

3
) and front (ζ > 3√

3
) half-spaces because it is asymmetric in

respect of the plane (ζ = 3/
√
3).

We examine such exchanges whether they can be used to represent the parti-
cle’s handedness that also does not influence on its charge.

Following the model that assumes the charge is located closely to the cell
centers, we must conclude that D triangles just before and after small triangle at
ζ = 3/

√
3 have the charges

Σq2 = q
D(ζ =

2√
3
) = +

1

2
,

Σq4 = q
D(ζ =

4√
3
) = −

1

2
,

(12.8)

and in case they exchange, the charge of 1 will redistribute from rear half-space to
the front one4.

However, considering the case when the charge of cells is not concentrated in
their centers, being instead distributed on radii comparable to the inter-centers
distance (≈ 2 . . .

√
5 ≈ 2.236), we recognize that the charge of cells in plane

ζ = 2/
√
3 would not reside just before the plane ζ = 3/

√
3. It is so because the

offset between these planes is significantly less than the inter-center distance:
1/
√
3 ≈ 0.577 < 2 (Fig. 12.8), and is comparable with the distribution radius.

That is why one should assert that some part of q2 would reside after the plane
ζ = 3/

√
3, and some part of q4 would, in turn, reside before it (see Fig. 12.8).

To be the representation of the reversed handedness, the D-exchange oper-
ation should redistribute only the half of the charge (12.8). This requirement is
fulfilled in case a quarter of the charge of each D-cell in triangles is distributed on
the other side of the plane ζ = 3/

√
3 that is located at the 1/

√
3 of its center. So we

can use this condition to obtain more realistic rule of the charge distribution rather
than simple charged point in the cell center. Now we use the halved values of (12.8),
that are equal to qTenv by the magnitude, so they can effectively compensate them:

qD∗(ζ =
2√
3
) = +

1

4
,

qD∗(ζ =
4√
3
) = −

1

4
,

(12.9)

In this case,

qenv(ζ <
3√
3
) = qTenv(ζ <

3√
3
) + qD∗(ζ =

2√
3
) = −

1

4
+
1

4
= 0;

qenv(ζ >
3√
3
) = qTenv(ζ >

3√
3
) + qD∗(ζ =

4√
3
) = −

1

4
−
1

4
= −

1

2
,

(12.10)

4 Such an exchange also can be considered as a rotation of a spatial hexagon containing all
six cell centers of the both D-triangles, with the angle of 60◦ in any direction
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Fig. 12.8. Visually overlapping cells of two D triangles with ζ = 2/
√
3 and ζ = 4/

√
3 in

polyhedral approximation

and after exchange between D-triangles at ζ = 2/
√
3 and 4/

√
3 they would turn

into

qenv(ζ <
3√
3
) = qTenv(ζ <

3√
3
) + qD∗(ζ =

2√
3
) = −

1

4
−
1

4
= −

1

2
;

qenv(ζ >
3√
3
) = qTenv(ζ >

3√
3
) + qD∗(ζ =

4√
3
) = −

1

4
+
1

4
= 0.

(12.11)

So we can use them to represent weak isospin and weak hypercharge for ”down”
particles:

Tdown3 = qenv(ζ <
3√
3
) =

1

2
(Σq1 + Σq2) (12.12)

YdownW /2 = Σq3 + qenv(ζ >
3√
3
) = Σq3 +

1

2
(Σq4 + Σq5) (12.13)

At ζ = 9/
√
3, the small T -triangle and its neighborhood are inverted in respect

to ζ = 3/
√
3 due to the CPS symmetry, so original

qenv(ζ <
9√
3
) = qTenv(ζ <

9√
3
) + qD∗(ζ =

8√
3
) = +

1

4
−
1

4
= 0;

qenv(ζ >
9√
3
) = qTenv(ζ >

9√
3
) + qD∗(ζ =

10√
3
) = +

1

4
+
1

4
= +

1

2

(12.14)

would turn after D-exchange into

qenv(ζ <
9√
3
) = qTenv(ζ <

9√
3
) + qD∗(ζ =

8√
3
) = +

1

4
+
1

4
= +

1

2
;

qenv(ζ >
9√
3
) = qTenv(ζ >

9√
3
) + qD∗(ζ =

10√
3
) = +

1

4
−
1

4
= 0,

(12.15)
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and both the values qenv(ζ < 9√
3
) and Σq9+qenv(ζ > 9√

3
) would, again, coincide

with weak isospin T3 and weak hypercharge YW/2 for ”up” fermions, respectively:

Tup3 = qenv(ζ <
9√
3
) =

1

2
(Σq7 + Σq8) (12.16)

YupW /2 = Σq9 + qenv(ζ >
9√
3
) = Σq9 +

1

2
(Σq10 + Σq11) (12.17)

So the exchange between D triangles (or, that is the same, rotation of the
distorted D hexagon) can be used as a model representing switching between two
handednesses.

12.4.7 Down fermions as Inversions in small T+triangle

Inverting charges of cells it the small T+triangle q3, namely of q(2, 1, 0), q(2, 1, 0)
and q(2, 1, 0) in (x, y, z) reference frame5, one can get eight possible cases (Ta-
ble 12.2). The total electric charge Q, that changes with steps of ±1

3
according to

the count of inverted cells, coincides with the electric charge of eight ”down”6

fermions.

T3 :=
YW
2

:=

q(<3) q2 1 03 q1 0 23 q0 2 13 Σq3 q(>3) q(≥3) Q symbol

+ + +
ss s+1/2 0 0

ν̃L

− + +
ss c d

c1
R

+ − +
sc s+1/6 −1/3 −1/3 d

c2
R

1
2
×
ccc sesese + + −

cs s 1
2
× bebebeccc d

c3
R

+ − −
cc s ũ

c̃1
L

0 − + −
cs c−1/6 −1/2 −2/3 −2/3 ũ

c̃2
L

− − +
sc c ũ

c̃3
L

− − −
cc c−1/2 −1 −1 l−R

Table 12.2. Eight cases of inversions in the small T -triangle at ζ = 3/
√
3 with original

(unchanged) D-triangles at ζ = 2/
√
3 and 4/

√
3, associated with weak-uncharged ”down”

fermions

The original unchanged state withQ = 0 is the vacuum state, so it takes place
of the left-handed anti-neutrino, that, according to experiments, does not exist. In

5 In the (ξ, ζ, υ) reference frame they are q(
√
2,
√
3, 0), q(− 1√

2
,
√
3,− 3√

6
), q(− 1√

2
,
√
3, 3√

6
)).

6 We consider anti-”up” fermions as ”down” ones, and vice versa. The ”up” particles as
well as ”up” (anti-”down”) anti-particles have the electric charge greater by 1 then the
charge of corresponding ”down” particles or anti-particles.
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T3 :=
YW
2

:=

q(<3) q2 1 03 q1 0 23 q0 2 13 Σq3 q(>3) q(≥3) Q symbol

+ + +
ss s+1/2 +1/2 0 ν̃R

− + +
ss c d

c1
L

+ − +
sc s+1/6 +1/6 −1/3 d

c2
L

1
2
×
ccc bebebe + + −

cs s 1
2
× seseseccc d

c3
L

+ − −
cc s ũ

c̃1
R

−1/2 − + −
cs c−1/6 0 −1/6 −2/3 ũ

c̃2
R

− − +
sc c ũ

c̃3
R

− − −
cc c−1/2 −1/2 −1 l−L

Table 12.3. Eight cases of inversions in the small T -triangle at ζ = 3/
√
3 with exchanged

D-triangles at ζ = 2/
√
3 and 4/

√
3 associated with weak-charged ”down” fermions

this model, the absence of left-handed anti-neutrino is explained by no differences
between it and the vacuum state.

Also consider the same cases but combined with exchanged D-triangles at
ζ = 2/

√
3 and 4/

√
3 (Table 12.3).

12.4.8 Up fermions as Inversions in small T -triangle

Considering the same cases but for the small T -triangle at ζ = 9/
√
3, we found

out that they can be as well associated with ”up” fermions. It is so because the
shift for half-unit (S) from ζ = 3/

√
3 to 9/

√
3 is equal to the CP operation. So this

triangle and its environment have the reversed handedness and opposite-charged
in respect to those considered before.The total charge Q is greater by 1 comparing
to the corresponding ”down” cases (Table 12.4).

Again, the original vacuum state corresponds to the non-existing particle, that
is the right-handed neutrino.

12.5 Polyhedral approximation

Considering the Polyhedral approximation of the dual-charged Weaire-Phelan
structure (section 12.3), one can see that walls between cells consist of flat polygo-
nal faces. It is obvious that there are two kinds of walls, since a face can separate
either equal-charged or opposite-charged cells.

Supposing the wall possesses a surface energy E that it is proportional to the
face surface area S, and there is a fixed difference in surface density ∆ρ between
both wall kinds, one could estimate the particle mass by the rest energy ∆E
associated with a particular defect configuration:

m = ∆E = ∆ρ∆S. (12.18)
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T3 := YW/2 :=

q(<9) q4 2 39 q3 4 29 q2 3 49 Σq9 q(>9) q(≥9) Q

+ + + sss +1/2 +1 +1 l+L

− + + ssc u
c1
R

+ − + scs +1/6 +2/3 +2/3 u
c2
R

1
2
× ss sbe bebe + + − css 1

2
× se sesess s u

c3
R

+ − − ccs d̃
c̃1
L

0 − + − csc −1/6 +1/2 +1/3 +1/3 d̃
c̃2
L

− − + scc d̃
c̃3
L

− − − ccc −1/2 0 0
νR

+ + + sss +1/2 +1/2 +1 l+R

− + + ssc u
c1
L

+ − + scs +1/6 +1/6 +2/3 u
c2
L

1
2
× ss sse sese + + − css 1

2
× be bebess s u

c3
L

+ − − ccs d̃
c̃1
R

+1/2 − + − csc −1/6 0 −1/6 +1/3 d̃
c̃2
R

− − + scc d̃
c̃3
R

− − − ccc −1/2 −1/2 0 νL

Table 12.4. Eight cases of inversions in the small T -triangle at ζ = 9/
√
3, repeated twice

with original and exchanged D-triangles at ζ = 8/
√
3 and 10/

√
3, associated with ”up”

fermions

Since D cell has 6 equal-charged and also 6 opposite-charged neighbors, the
inversion does not affect the area (∆S = 0) and

∆ED = 0. (12.19)

In contrast, among 14 neighbors of T cell six ones are equal-charged but there
are eight opposite-charged ones. Both opposite-charged neighbors that become
equal-charged ones in an inversion, are separated with the hexagonal faces with
area S6. So

∆ET = 2∆ρS6. (12.20)

Assuming the energy density for wall between equal-charged cells is greater than
for opposite-charged ones, ∆ρ > 0 and ∆E > 0.

In case of inversions of two neighboring cells, there is an additional effect
caused by their common face.

In case two neighbor cells exchange their charge (thus, they are D and T
touching each other with large pentagonal face S5L or two T touching each other
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with small pentagonal face S5s or hexagonal one S6) the common face remains
separating opposite-charged cells, instead of being turned into separating equal-
charged cells, so energy effect is negative:

∆ED�T = −2∆ρS5L,

∆ET�T5 = −2∆ρS5s,

∆ET�T6 = −2∆ρS6.

(12.21)

In case of two neighbor cells inverting in the same direction, the additional
effect of the common face is opposite, i.e. positive:

∆ED⇒T = 2∆ρS5L,

∆ET⇒T5 = 2∆ρS5s,

∆ET⇒T6 = 2∆ρS6.

(12.22)

Note that numerical values of the faces’ areas (in units of λ2) are such that S5L
is almost equal to the arithmetic mean of S6 and S5s:

S5L ≈ 1.77477,
S5s ≈ 1.15338,
S6 ≈ 2.41260, so

S6 + S5s − 2S5L ≈ 0.0164.

(12.23)

Now we can build the simple hierarchical seesaw model of mass based on
addition and subtraction of energy effects.

• Since D exchanges have ∆E = 0, massless particles like photon and neutrino
must be associated with D-only exchanges.

• Following our 8-bit model [7], associate W+ boson with five defects combi-
nation shown on Fig. 12.9W. Note that it is colorless and has correct electric
charge Q = +1. The affected area of these defects is

W Z

Fig. 12.9. Models ofW+ and Z0 bosons in polyhedral approximation
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∆SW = 6 (S6 + S5L) = 25.12422. (12.24)

Using experimental value ofmW = 80.385GeV we get

∆ρ =
mW

∆SW
≈ 3.1995GeV/λ2. (12.25)

• Following the same way, we associate Z0 boson with neutral six T defect
configuration shown on Fig. 12.9Z. Using the same ∆ρ value, we get

mZ = 12∆ρS6 ≈ 92.629GeV. (12.26)

• The Higgs boson having, accordingly to 8-bit model, the defects structure
similar to Z boson but with one additional D defect pair (Fig. 12.9H), must
have one of D cells isolated the same way as W has, to get the appropriate
mass:

mH = ∆ρ(12S6 + 6S5L) ≈ 126.699GeV. (12.27)

γ H

Fig. 12.10. Models of γ photon and H0 bosons in polyhedral approximation

• For charged lepton we suppose the structure of small-T -triangle inversion com-
bined with eight inversions ofD cells providing the compensation (Fig.12.11).This
mechanism does not follow the pattern used in 8-bit model for fermion families
representation7, but it offers effective mass reduction below GeV scale.

ml = ∆ρ(6S6 − 12S5s + 6S5L) ≈ 0.315GeV. (12.28)

• The zero-charged compensating ”frame” consisting from D cells could be
associated with massless neutrino (Fig.12.11ν).

• Although the exchange between two or more stacked T cells has the positive
energetic effect, its magnitude does not depend on the stack length, and
originates just from the non-compensated ends of the stack that has the color
charge due to their asymmetry. So it can be associated with the gluon thread
terminated with quarks.

7 the latter involves additional T -D exchange.
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l− ν

Fig. 12.11. Models of charged lepton with compensated mass, and massless neutrino in
polyhedral approximation

12.6 Analytical approximation of charge distribution

In addition to the Polyhedral and Cell-Center approximations we consider an ap-
proximation of the structure by the triple-periodical analytical function of electrical
charge density distribution.

The electrical charge of the cell concentrated at its center (x0, y0, z0) can be
expressed analytically using the δ-function:

q =
e

6

∫
R3

δ(x− x0, y− y0, z− z0)dxdydz (12.29)

The delta function can be considered as the spherically-symmetrical Gaussian
distribution with zero deviation:

δ(x, y, z) = lim
σ→0 δ(x, y, z, σ); (12.30)

δ(x, y, z, σ) =
1

(σ
√
2π)3

e−
x2+y2+z2

2σ2 (12.31)

As we have shown in section 12.4.6, the model explaining the weak isospin
T3 = 0 for right-handed fermions and T3 = ±1/2 for left-handed ones by the
charge exchange between D-triangles at ζ = 2/

√
3 and 4/

√
3, requires one quarter

of the charge of each D cell to reside behind the section plane located at the
distance of 1/

√
3 from the cell center:

−1/
√
3∫

x=−∞
+∞∫

y=−∞
+∞∫
z=−∞

ρ(x, y, z)dxdydz =
1

4
(12.32)

Assuming charge density ρ(x, y, z) to be the Gaussian distribution (12.31), and
solving the equation

1

(σ
√
2π)3

−1/
√
3∫

x=−∞
+∞∫

y=−∞
+∞∫
z=−∞

e−
x2+y2+z2

2σ2 dxdydz =
1

4
(12.33)
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numerically, we found σ ≈ 0.87377.

Soliton model To construct the charge distribution in the analytical form, we can
use, instead of each cell, some spherical-symmetrical function, which decreases
quite rapidly on distance from its center, i.e. soliton.

We consider the soliton function as normalized error function

ρi = ±
e

6σ
√
2π

exp
[
−
(x− xi)

2 + (y− yi)
2 + (z− zi)

2

2σ2

]
, (12.34)

representing positive or negative charged cell with the center at (xi, yi, zi). The
charge density in the particular point is calculated as a sum of contributions of all
the cells in the model:

ρ =
∑
i

ρi (12.35)

One can manage the position and charge of each individual cell, so this model
should be flexible. On another hand, it requires extensive computation to calculate
each point.

Triple-periodic trigonometric function Since the most interesting application of
this model is to represent the only one or several defects being surrounded by the
”pure” vacuum, we looked for the periodic function that has the same symmetry
as the dual-charged Weaire-Phelan structure considered above. It is intended to
represent the pure vacuum avoiding calculating of plenty periodically allocated
solitons.

At first, we consider the real function that has zero surface close to the
Schwartz P minimal surface [15].

ρ0 = cos x+ cosy+ cos z, (12.36)

or, equivalently,
ρ0 =

∑
i

cos xi. (12.37)

ρ0 = cos
xπ

2λ
+ cos

yπ

2λ
+ cos

zπ

2λ
, (12.38)

It has minimum in points (2πnx, 2πny, 2πnz) = 2π(nx, ny, nz) and maxi-
mum in π(2nx + 1, 2ny + 1, 2nz + 1) since

∂ρ0

∂xi
= − sin xi = 0⇒ xi = πni, (12.39)

and
∂2ρ0

∂x2i
= − cos xi. (12.40)

The last equation also means that

∆ρ0 = −ρ0, (12.41)
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so ρ0 is eigenfunction of the Laplasian, with eigenvalue −1.
The translation unit with nx = ny = nz = 0 is a cube with xi ∈ [−π;π].
So, ρ0 has one minimum in (0, 0, 0) and one maximum in π

4
(2, 2, 2).

As the second step, we consider the surface ρ0 = 0. Its saddle points are the
same with the T cell center points. So we can add the function with extremals at
these points, namely at centers of D cells:

ρxz =
1

4
siny(1− cos x)(1+ cos z) (12.42)

ρyx =
1

4
sin z(1− cosy)(1+ cos x) (12.43)

ρzy =
1

4
siny(1− cos z)(1+ cosy) (12.44)

ρxy =
1

4
sin z(1− cos x)(1+ cosy) (12.45)

ρyz =
1

4
siny(1− cosy)(1+ cos z) (12.46)

ρzx =
1

4
siny(1− cos z)(1+ cos x) (12.47)

ρR = ρxy + ρyz + ρzx (12.48)

ρL = ρyx + ρzy + ρxz (12.49)

We construct right and left vacuum electric charge density as

ρ0R = ρ0 + ρR (12.50)

ρ0L = ρ0 + ρL. (12.51)

Note that ρxz (12.42) and other ρij can be rewritten in the following way:

ρxz =
1

4
(siny+ siny cos z− siny cos x− siny cos x cos z) , (12.52)

so ρR and ρL can be represented as sums of four functions listed below, which
accumulate summands of four particular types, that occur in (12.42).

Introducing ”Schwartz P”- like distribution

Pθ = cos(x− θ) + cos(y− θ) + cos(z− θ), (12.53)

right and left gyroid-like distributions

GR = cos x siny+ cosy sin z+ cos z sin x, (12.54)

GL = cos x sin z+ cosy sin x+ cos z siny, (12.55)

and ”layers-with-holes” distribution

H = cos x siny cos z+ cosy sin z cos x+ cos z sin x cosy, (12.56)
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we can express ρR through them:

ρ0R =
1

4

[
Pπ/2 +GL −GR −H

]
−
1

3
P0. (12.57)

Since G and H are also eigenfunctions of the Laplasian ∆:

∆G = −2G;∆H = −3H, (12.58)

one can find the scalar electric potential:

div gradϕ0R = ∆ϕ0R = 4πρ0R, (12.59)

ϕ0R = +
1

12π
P0 −

1

16π

[
Pπ/2 +

1

2
GL −

1

2
GR −

1

3
H

]
. (12.60)

Combining triple-periodical trigonometric equation for the vacuum state with
doubled opposite-charged soliton located in particular cell centers one can obtain
a model representing one or more particles surrounded by the vacuum.

12.7 Discussion

12.7.1 Two-dimension model

Consider the surface of zero potential (12.60):

ϕ0R = +
1

12π
P0 −

1

16π

[
Pπ/2 +

1

2
GL −

1

2
GR −

1

3
H

]
= 0. (12.61)

It defines the manifold with the mostly negative Gaussian curvature that can be
studied using two-dimensional Einstein GRT equation.

The three-dimensional space, discrete with the grid size l ≈ 4 · 10−21m,
appears in this model as a result of the foam-like structure of this two-dimensional
manifold. So the continuous three-dimensional space can be considered just as
an asymptotic on distances lager than the grid size. As a consequence of this
approach, the three-dimensional gravity should not be considered in its usual
form on distances comparable to or less than the grid size.

12.7.2 Liquid-Liquid Phase Transition model

We suppose that the structures close to one considered above can emerge in
systems possessing 2-order phase transition near the critical point, for instance, in
liquid-liquid mixtures like H2O−−C6H5OH.

12.7.3 Other topics

There are some topics that we’d like to mention here as directions in which the
research can be continued.
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Firstly, it is the dynamics. Each defect in the vacuum structure is supposed
to be able to change its localization. It can be considered from several viewpoints
listed above and also using other approaches, for instance, the cellular automata.

Secondly, the interactions and the virtual particles. Our approach can be also
applied to bosons. Some ’bosonic’ exchanges seem to have no influence on the two-
dimensional manifold topology, so there is no sharp difference between particles
(defects) and classical fields (distortions).

Thirdly, there can be another structures with the properties allowing to use
them as a model of vacuum and particles. We have found and tested just one.

12.8 Conclusion

We presented here our approach to the particle and vacuum modeling, based on the
assumption that on scale≈ 10−19 cm there are areas with non-zero electrical charge
density and they are self-assembled in the structure close to the Weaire-Phelan
tessellation. This structure possesses CPS symmetry and allows the existence
of anti-structure defects in it, that can be corresponded to known fundamental
particles (at least, for one fermion family), reproducing their known properties.
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13 The Correspondence Between Fermion Family
Members in Spin-charge-family Theory and Structure
Defects in Electrically-charged Tessellations

E.G. Dmitrieff ?

Irkutsk State University, Russia

Abstract. In this article we compare spinor representations in the the Spin-charge-family
theory with the possible charge distributions in spatial tessellations. Particularly, we con-
sidered alternations of opposite-charged binary triangles and the Weaire-Phelan structure,
and found out that the correspondence between anti-structural defects and representations
of fundamental fermions can be established.

Povzetek. Prispevek primerja spinorske upodobitve v teoriji Spinov-nabojev-družin z možni-
mi porazdelitvami naboja v prostorskih teselacijah. Lastnosti alternirajočih binarnih trikot-
nikov z nasprotnimi naboji v Weaire-Phelanovih strukturah z antistrukturnimi defekti
poveže z lastnostmi kvarkov in leptonov.

Keywords: Particle model, Weaire-Phelan tessellation, Spin-charge-family theory

13.1 Introduction

A fermion family derived in spin-charge-family theory [1] consists of 64 members,
that differs from each other by their color, weak charge, hyper-charge, electric
charge, handedness, and spin.

The theory starts from several assumptions, including metric, action in 13+ 1
dimensions, and the schema of symmetry breaks. Also, the theory postulates the
basic vacuum state formed by two right-handed neutrinos with opposite spins,
and the set of operators, acting on this state, that are members of Clifford algebra.

Each particular fermion state is produced by applying operators

Sab =
i

4

{
γa, γb

}
−
=
i

2
γaγb (a 6= b), (13.1)

that are infinitesimal generators of the Lorentz transformations, to the vacuum
state.

One can obtain quantum numbers of each state as a combination of eigenval-
ues kab/2 of these operators,

(kab)
2 = ηaaηbb, (13.2)

? E-mail: eliadmitrieff@gmail.com
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that are ±1 or ±i since the metric ηab = diag(−1, 1, 1...1):

Sab
ab

(kab) =
kab

2

ab

(kab), S
ab

ab

[kab] =
kab

2

ab

[kab]. (13.3)

Here

ab

(kab) =
1

2

(
γa +

ηaa

ikab
γb
)
,

ab

[kab] =
1

2

(
I+

i

kab
γaγb

) (13.4)

and γa, γb are the Clifford algebra objects following the defining equation{
γa;γb

}
+
= 2ηabI (13.5)

with the metric ηab = diag(− + + + · · ·+) and unit matrix I.
We found out that these kab can be mapped to the structure close to the Weaire-

Phelan tessellation [4], assuming its cells carrying electric charge of ±1
6
e [5], [3].

We recognize it as a possible mechanism for manifestation of the 13+1-
dimensional spin-charge-family theory in the 3-dimensional space.

13.2 Charged binary triangles

We consider the small model system containing three unordered elements having
the electrical charge of either +1

6
e or −1

6
e1. Since the elements are unordered,

one can imagine this system as an equilateral triangle with elements residing
in its vertices (Fig. 13.1A). The system has three binary degrees of freedom and
possesses SU(3) symmetry of its possible states.

13.2.1 Charged binary triangle’s state space

The state space of charged binary triangles, shown on Fig. 13.1B, contains 23 = 8
states. In three-dimensional Cartesian reference frame with its axes representing
states of particular elements, it looks like a cube.

One of these eight states has the total electric charge q = 3 × (−1
6
) = −1

2
,

three states have q = −1
6

, another three states have q = +1
6

, and, again, one has
q = +1

2
. These counts are binomial coefficients for n = 3 and the charge values

coincide with eigenvalues of τ4, that is the U(1) fermion charge operator in the
spin-charge-family theory:

τ4 = −
1

3

(
S9 10 + S11 12 + S13 14

)
= −

1

6
(k9 10 + k11 12 + k13 14) . (13.6)

One can see that among four diagonals of this cube there are three diagonals
of one kind, connecting states with difference of 1

6
, and one of another kind,

1 Further we omit the e unit
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Fig. 13.1. (A) The system of three elements charged with ± 1
6
e and (B) its three-dimensional

state space containing eight possible states

connecting states with the difference of 1. This dedicated ”main” diagonal is the
τ4 axis since the projections of cube vertex on it coincide with τ4 eigenvalues.

The edge of the state cube is therefore 1√
3

, and the radius from τ4 axis to

non-axial states is r =
√
2
3

.
Consider the isometric projection of the state cube onto Cartesian coordinate

plain that is orthogonal to the τ4 axis (Fig. 13.2). Let the ordinate axis to be directed
opposite to the edge corresponding to k13 14. Then the projections of states on the

abscissas and ordinate axes, divided by projection distortion of
√
2
3

, coincide with

color charge components τ33 and τ38, respectively:

τ33 =
1

2

(
S9 10 − S11 12

)
=
1

4

(
k9 10 − k11 12

)
=

=

√
2

3
cos
(π
6
+
πn

6

)
×
√
3

2
∈
{
0;±1

2

}
,

τ38 =
1

2
√
3

(
S9 10 + S11 12 − S13 14

)
=

1

4
√
3

(
k9 10 + k11 12 − k13 14

)
=

=

√
2

3
sin
(π
6
+
πn

6

)
×
√
3

2
∈
{
± 1√

3
;± 1

2
√
3

}
.

(13.7)

13.2.2 Model with alternation of charged binary triangles

Note that a charged binary triangle cannot be electrically neutral. Nevertheless, a
pair of opposite-charged binary triangles, or, generally, any even number of them
can hold zero electric charge.
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Fig. 13.2. The isometric projection of the state cube along the τ4 axis

Consider a big system containing sufficiently large amount of opposite-
charged binary triangles, half of them consisting of three positive-charged el-
ements, and half of three negative-charged ones, arranged in alternating pattern.
The whole system is electrically neutral.

Each triangle in this system, either having charge of +1
2

or −1
2

, is surrounded
by opposite-charged environment with the same magnitude:

qenv = −τ4. (13.8)

We found out that in this system, where positive- and negative-charged
triangles have different own places due to their alternation, the additional degree
of freedom emerges for any single triangle.

For instance, the negative-charged triangle with q = τ4 = −1
2

in its own
place must be effectively neutralized by its environment and therefore must be
indistinguishable from the background. But the same triangle in the place of
positive-charged one should be treated as having effective charge of −1 that
emerges as a sum of the negative triangle charge and the negative charge of the
environment surrounding the place where the positive triangle should be:

Q = τ4 + qenv = −
1

2
+

(
−
1

2

)
= −1. (13.9)

So the state space for the charged binary triangle that participates in the
neutral alternation of such triangles, must reflect this emergent binary degree of
freedom. The state space becomes four-dimensional, splitting each original state
to the doublet with the triple magnitude 1

2
in comparison to original 1

6
(Fig. 13.3).

One of the states shifts up in charge with +1
2

while another one shifts down, with
−1
2

.
One can ensure that among these 16 states there are neutral and integer-

and fractional-charged ones with step of 1
3

so the effective charges coincide with
charges of known fundamental fermions and anti-fermions belonging to one
family.
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Fig. 13.3. Four-dimensional state hyper-rectangle space for the single charged binary trian-
gle in the environment of neutral tessellation of alternating ± 1

2
-charged binary triangles,

labeled with symbols of corresponding fermion family members

The degree of freedom emerging from implementing the tessellation instead
of isolated triangle manifests the physical sense of the isospin, or the weak charge,
connecting corresponding up and down particles.

Following the observations mentioned above, we suppose that one should
search for geometrical structure containing equilateral triangles, aiming to obtain
suitable model for the fundamental particles. It must be chiral to represent hand-
edness and also must possess some additional degrees of freedom to be able to
represent fermion families and fundamental bosons.

13.3 Calculation of electrical charge and Weaire-Phelan
tessellation

We consider a graph for calculating the electric charge Q from values kab [1],
that are the doubled eigenvalues (13.3) of Lorentz transformations infinitesimal
generators Sab (13.1) [1], [2]. The graph is constructed aiming to fetch all the
data required for the calculation from the charges of cells in the dual-charged
Weaire-Phelan tessellation [5].

In the Spin-Charge-Family theory, as well as in the Standard Model, the
electric charge of a particle is calculated as a sum of the third projection of its
SU(2)I weak charge τ13 and the hypercharge Y:

Q = τ13 + Y. (13.10)

Since the weak charge operator is defined as

~τ1 =
1

2

(
S58 − S67, S57 + S68, S56 − S78

)
, (13.11)
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and each Sab has two eigenvalues, namely 1
2
kab, where kab = ±1, the weak

charge is expressed through kab in the following way:

τ13 =
1

4
k56 −

1

4
k78. (13.12)

Therefore it can be of one of three different values:

k56 k78 τ13

-1 -1 0
1 1 0

-1 1 −1/2

1 -1 1/2

In turn, the hypercharge is the sum of SU(2)II charge τ23 and U(1) ”fermion
charge” τ4:

Y = τ23 + τ4, (13.13)

where
~τ2 =

1

2

(
S58 + S67, S57 − S68, S56 + S78

)
(13.14)

and
τ4 = −

1

3

(
S9 10 + S11 12 + S13 14

)
. (13.15)

After transition to the eigenvalues,

τ23 =
1

4
k56 +

1

4
k78, (13.16)

τ4 = −
1

6
k9 10 −

1

6
k11 12 −

1

6
k13 14. (13.17)

So
Y =

1

4
k56 +

1

4
k78 −

1

6
k9 10 −

1

6
k11 12 −

1

6
k13 14, (13.18)

and, finally,

Q =
1

4
k56 −

1

4
k78 +

1

4
k56 +

1

4
k78 −

1

6
k9 10 −

1

6
k11 12 −

1

6
k13 14. (13.19)

One can build the following graph illustrating how the electrical charge is
calculated, where the arcs show the data dependence between nodes:

Q

{{ $$
τ13

��

	

��

Y

zz %%
τ23

{{ ��

τ4

	
zz

	
��

	
%%

1
4
k5 6

1
4
k7 8

1
6
k9 10

1
6
k11 12

1
6
k13 14
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The value of k78 is included in equation (13.19) twice, with opposite signs, so
it has no influence on the total charge Q, and the equation can be simplified:

Q =
1

2
k56 −

1

6
k9 10 −

1

6
k11 12 −

1

6
k13 14. (13.20)

The corresponding simplified calculation graph is the following:
Q

��   
1
2
k5 6 τ4

yy �� %%
−1
6
k9 10 −1

6
k11 12 −1

6
k13 14

In this form, the graph is equivalent to the charge calculation in our 4-bit
model presented in [3]:

Q =

2∑
i=0

ci

3
− q2, (13.21)

with the following correspondence:

1

2
k56 = −(q2 −

1

2
)

1

6
k9 10 = −

1

3
(c0 −

1

2
)

1

6
k11 12 = −

1

3
(c1 −

1

2
)

1

6
k13 14 = −

1

3
(c2 −

1

2
).

(13.22)

The ci ∈ {0; 1} are three bits of the color code and q2 ∈ {0; 1} is the most
significant bit of the electrical charge code in the ones’ complement convention.

After splitting the node 1
2
k5 6 into three nodes 1

6
k
(1)
5 6 , 1

6
k
(2)
5 6 , and 1

6
k
(3)
5 6 , the

graph becomes equivalent to our 6-bit model [3]:
Q

�� ''1
2
k5 6

|| �� ""

τ4

yy �� %%
1
6
k
(1)
5 6

1
6
k
(2)
5 6

1
6
k
(3)
5 6 −1

6
k9 10 −1

6
k11 12 −1

6
k13 14

,

Q =

2∑
i=0

bci +

2∑
i=0

bT3i , (13.23)

where symbols bci are produced from ci by scaling and shifting down:

bci =
ci

3
−
1

6
, i ∈ {0; 1; 2};bci ∈

{
−
1

6
;
1

6

}
. (13.24)
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The symbols bT3i are produced from q2 by splitting it into three parts, scaling and
shifting up:

bT3i =
1

6
−
q2

3
, i ∈ {0; 1; 2} , bT3i ∈

{
−
1

6
;
1

6

}
(13.25)

Note that we do not mean an increase in the number of degrees of freedom
as a consequence of splitting nodes, at least while considering members of one
fermion family, since all the three subnodes are assumed keeping the same values
that are equal to value of splitted node..

Both these graphs have the following advantage in relation to the original
one: they allow interpretation of particle’s electrical charge as a simple sum of values
of all the nodes2 due to its tree-form and arcs meaning addition only. The last one
also has an advantage of equal magnitude of nodes3.

To get these advantages in the original graph, we transform it the following
way, getting rid of two loops and the subtracting arc. To do so, we assume that
there are two different subnodes behind 1

4
k5 6 and two others behind 1

4
k7 8, always

keeping equal values in the first case, and opposite values in the second one.
After transformation the graph becomes the following:

Q

xx ��
τ13

�� ��

Y

yy &&
τ23

zz ��

τ4

xx �� &&
1
4
k
(1)
5 6

− 1
4
k
(1)
7 8

1
4
k
(2)
7 8

1
4
k
(2)
5 6

− 1
6
k9 10 − 1

6
k11 12 − 1

6
k13 14

Then we double the factors in all the nodes for k5 6 and k7 8, introducing
compensating nodes that divide the corresponding values back. That makes these
nodes ready to split on three sub-nodes with the factor of 1

6
. Arguments in favor

of division in half for nodes k5 6 and k7 8 are different and given below and are
discussed in detail in [5].

2 or integration of charge density in continuous models
3 The choice of positive or negative eigenvalues is made while choosing the initial vacuum

state corresponding to the right neutrino, and it can be changed to eliminate minus signs.
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Q

xx ��
τ13

× 1
2

zz
× 1
2

��

Y //

��

τ23

× 1
2

%%
× 1
2

��
1
2
k
(1)
5 6 −1

2
k
(1)
7 8 τ4

yy �� %%

1
2
k
(2)
7 8

1
2
k
(2)
5 6

−1
6
k9 10 −1

6
k11 12 −1

6
k13 14

At the last step, we split each node k5 6, k7 8 to three sub-nodes. Then we es-
tablish correspondence between these nodes and cells in the dual-charged Weaire-
Phelan tessellation:

Q

vv ��
τ13

× 1
2

ww
× 1
2

��

Y //

��

τ23

× 1
2

''
× 1
2

��
1
2
k
(1)
5 6

��

−1
2
k
(1)
7 8

��

τ4

��

1
2
k
(2)
7 8

��

1
2
k
(2)
5 6

��16k
(2,1)
5 6

1
6
k
(2,2)
5 6

1
6
k
(2,3)
5 6


Σq1

Σq7

−1
6
k
(2,1)
7 8

−1
6
k
(2,2)
7 8

−1
6
k
(2,3)
7 8


Σq2

Σq8

−1
6
k9 10

−1
6
k11 12

−1
6
k13 14


Σq3

Σq9

16k
(2,1)
7 8

1
6
k
(2,2)
7 8

1
6
k
(2,3)
7 8


Σq4

Σq10

16k
(2,1)
5 6

1
6
k
(2,2)
5 6

1
6
k
(2,3)
5 6


Σq5

Σq11

ccc sesese or bebebe ss s. . . cc c bebebe or sesese ccc
ss s bebebe or sesese ccc . . . sss sesese or bebebe ss s

The last two rows contain the corresponding triangles of charged cells, re-
siding in sequential ζ-planes in the tessellation. These triangles are listed in the
Table 13.1 (it is borrowed from [5]). The first row contains cells triangles in planes
from 1 to 5 and represents down fermions; in turn, the charge-inversed and mirror-
reflected triangles in planes from 7 to 11 represent corresponding up particles.

Note that cells in planes 1 and 5, 7 and 11, that are the data sources for the
k5 6 nodes, do not have any degrees of freedom and carry the negative charge for
down particles and positive for up particles. Since all six cells are equal in charge
and they must represent the qenv = ±12 , i.e. charge of the environment for cells in
planes 3 or 9, their charge value is divided in half.
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ζ,× 1√
3

kind, charge shape size shape description

0 D− be − Axial D−

1 T−
ccc √14 Large T− triangle counterclockwise

2 D+

sesese √32 D+ triangle υ-down

3 T+
ss s √6 Small T+triangle (ξ-right)

4 D− bebebe √32 D− triangle υ-up

5 T− ccc √14 Large T− triangle clockwise

6 D+ se − Axial D+

7 T+
ss s √14 Large T+ triangle clockwise

8 D−

bebebe √32 D− triangle υ-down

9 T−
ccc √

6 Small T− triangle (ξ-left)

10 D+ sesese √32 D+ triangle υ-up

11 T+ ss s √14 Large T+ triangle counterclockwise

12 D− be − Axial D−

Table 13.1. Shapes of cell center placements in twelve different planes

The cells in planes 2 and 4, 8 and 10 provide the data for the k7 8 nodes and
each couple of triplets has just one degree of freedom, that represent the exchange
between triangles in the coupled plane. The exchanged electrical charge of 1

2

moves from one side of the plane 3 or 9 to another, representing the change of
handedness and adjustment of weak charge and hyper-charge.

Since the cells in planes 2 and 4, 8 and 10 appear to have finite size, they par-
tially overlap in projection to zeta axis, providing only half of charge is exchanged.

The three cells in plane 3, and three cells in plane 9 provide data for k9 10,
k11 12, and k13 14. Each of them keeps its degree of freedom, so there are eight
combinations for small triangle in these planes, corresponding to eight down- and
eight up particles or antiparticles.They are listed in Tables 13.2 and 13.3.

Note that in our approach the corresponding down and up particles with
the same color have in this representation the opposite projections to the τ38 axis.
It is so because they are mirror reflections of each other due to the P operation
between them (C operation is not applied because we list all 8 combinations of
charge for both cases, q3 and q9, in the same order). The spin-charge-family theory,
in contrast, provides equal τ38 values in this case [2].

13.3.1 On k numbers without influence on total electric charge

The value of k7 8 has no contribution to the total electric charge. As we have shown
above, it can be considered as existing of mutually compensating cells of opposite
charges. Also we note that the expression (13.19) can be expanded by including
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additional terms, arbitrary in magnitude, that cancel each other. Since they have
no influence on the electrical charge, they can’t be determined from the charge
analyse. We suppose that the expression of the electrical charge can also contain
the last real eigenvalue, k1 2:

Q = ak
(1)
12 −ak

(2)
12 +

1

4
k56−

1

4
k78+

1

4
k56+

1

4
k78−

1

6
k9 10−

1

6
k11 12−

1

6
k13 14, (13.26)

where a is a factor that can be equal to 1/6. It allows to associate k(1)12 , k(2)12 with
the ”axial” D cells at ζ = 0 and 6/

√
3 for down fermions, and 6/

√
3 and 12/

√
3 for

up ones.
In the spin-charge theory the value of k03 is dependent on values of other kab

since the equation
k03 = −ik12k56k78k9 10k11 12k13 14 (13.27)

is fulfilled for each fermion combination in [1], [2]. In our opinion, it is connected
with the fact that the seven binary values of kab generate only 26 = 64 com-
binations. For one family there are only six independent degrees of freedom
represented by kab, so since there are seven of them, one (in our case, k03) should
be expressed through six others.

Thus, there is no degree of freedom connected with k03 and there is no
corresponding cell in the Weaire-Phelan structure, so the value of spin always can
be computed based on other data 13.27.

Totally, we have the following correspondence between values of kab in the
Spin-Charge-Family theory and charges associated with cells of dual-charged
Weaire-Phelan model:

k1 2 = 3q−3 − 3q+3

k5 6 = Σq−2 + Σq+2

k7 8 = Σq−1 − Σq+1

k9 10 = 6q
ijk

k11 12 = 6q
jki

k13 14 = 6q
kij

k0 3 = −ik12k56k78k9 10k11 12k13 14

(13.28)

It is provided in relative form, for both up and down particles. The lower index
counting the ζ-plane number relative to the plane of the small T -triangle (that is 3
for down or 9 for up fermions), and the upper index counts x,y,z coordinates of
three individual cells in the triangle; the Σ sign means sum of these three cells.

13.4 Conclusion

We presented here our approach to the particle and vacuum modelling. It is, being
applied to one fermion family, reproduces the same quantum numbers as those
obtained in the spin-charge-family theory. The advantage of spatial tessellation
model, on our opinion, is the lower dimension count, so it can fit in the usual
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spacetime and be more demonstrative. Also it provides native CPS symmetry
and emergent weak charge. We suppose that one can find out the appropriate 3-
or 4-dimensional spatial model that would, keeping the shown advantages, also
represent and explain fermion families and also fundamental bosons, basing on
8-bit code model [3].
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14 Ko − K̄o,Do − D̄o in a Local SU(3) Family
Symmetry
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Departamento de Fı́sica, ESFM - Instituto Politécnico Nacional.
U. P. ”Adolfo López Mateos”. C. P. 07738, Ciudad de México, México.

Abstract. Within a broken SU(3) gauged family symmetry, we report the analysis of∆F = 2
processes induced by the tree level exchange of the new massive horizontal gauge bosons,
which introduce flavor-changing couplings. We provide a parameter space region where
this framework can accommodate the hierarchical spectrum of quark masses and mixing
and simultaneously suppress within current experimental limits the contributions toKo−K̄o

and Do − D̄o mixing. In addition we find out that the mass of the SU(2)L weak singlet
vector-like D quark introduced in this BSM, may be of the orden of 10 TeV.

Povzetek. Avtor v okviru svojega predloga teorije z zlomljeno družinsko simetrijo SU(3)
analizira procese tipa ∆F = 2, ki jih inducira izmenjava novih masivnih horizontalnih
umeritvenih bozonov na drevesnem nivoju, kar privede do sklopitev, ki spremenijo okus.
Najde območje v prostoru parametrov, ki dovoljuje izmerjeni masni spekter kvarkov ter
njihovo mešalno matriko, pri tem pa so prispevki mešanjaKo−K̄o inDo−D̄o pod trenutnimi
eksperimentalnimi mejami. Maso napovedanega kvarka D, ki je šibki singlet vektorskega
tipa SU(2)L, oceni na ∼ 10 TeV.

Keywords: Quark and lepton masses and mixing, Flavor symmetry,
∆F = 2 Processes.

PACS: 14.60.Pq, 12.15.Ff, 12.60.-i

14.1 Introduction

Flavor physics and rare processes play an important role to test any Beyond
Standard Model(BSM) physics proposal, and hence, it is crucial to explore the
possibility to suppress properly these type of flavor violating processes.

Within the framework of a vector-like gauged SU(3) family symmetry model[1,2],
we study the contribution to ∆F = 2 processes[3]-[6] in neutral mesons at tree
level exchange diagrams mediated by the gauge bosons with masses of the order
of some TeV’s, corresponding to the lower scale of the SU(3) family symmetry
breaking.

? E-mail: albino@esfm.ipn.mx



i
i

“proc18” — 2018/12/10 — 11:44 — page 300 — #316 i
i

i
i

i
i

300 A. Hernandez-Galeana

The reported analysis is performed in a scenario where light fermions obtain
masses from radiative corrections mediated by the massive bosons associated to
the broken SU(3) family symmetry, while the heavy fermions; top and bottom
quarks and tau lepton become massive from tree level See-saw mechanisms.
Previous theories addressing the problem of quark and lepton masses and mixing
with spontaneously broken SU(3) gauge symmetry of generations include the
ones with chiral local SU(3)H family symmetry as well as other SU(3) family
symmetries. See for instance [7]-[14] and references therein.

14.2 SU(3) family symmetry model

The model is based on the gauge symmetry

G ≡ SU(3)F ⊗ SU(3)C ⊗ SU(2)L ⊗U(1)Y (14.1)

where SU(3) is a completely vector-like and universal gauged family symme-
try. That is, the corresponding gauge bosons couple equally to Left and Right
Handed ordinary Quarks and Leptons, with gH, gs, g and g′ the corresponding
coupling constants. The content of fermions assumes the standard model quarks
and leptons:

Ψoq = (3, 3, 2,
1

3
)L , Ψol = (3, 1, 2,−1)L (14.2)

Ψou = (3, 3, 1,
4

3
)R , Ψod(3, 3, 1,−

2

3
)R , Ψoe = (3, 1, 1,−2)R (14.3)

where the last entry is the hypercharge Y, with the electric charge defined by
Q = T3L +

1
2
Y.

The model includes two types of extra fermions: Right Handed Neutrinos: ΨoνR =

(3, 1, 1, 0)R, introduced to cancel anomalies [7], and a new family of SU(2)L
weak singlet vector-like fermions: Vector like quarks UoL, U

o
R = (1, 3, 1, 4

3
) and

DoL, D
o
R = (1, 3, 1,−2

3
), Vector Like electrons: EoL, E

o
R = (1, 1, 1,−2), and New Ster-

ile Neutrinos: NoL, N
o
R = (1, 1, 1, 0).

The particle content and gauge symmetry assignments are summarized in
Table 14.1. Notice that all SU(3) non-singlet fields transform as the fundamental
representation under the SU(3) symmetry.

14.3 SU(3) family symmetry breaking

To implement the SSB of SU(3), we introduce two flavon scalar fields:

ηi = (3, 1, 1, 0) =

ηoi1ηoi2
ηoi3

 , i = 1, 2 (14.4)
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SU(3) SU(3)C SU(2)L U(1)Y

ψoq 3 3 2 1
3

ψouR 3 3 1 4
3

ψodR 3 3 1 - 2
3

ψol 3 1 2 -1
ψoeR 3 1 1 -2
ψoνR 3 1 1 0

Φu 3 1 2 -1
Φd 3 1 2 +1
ηi 3 1 1 0

UoL,R 1 3 1 4
3

DoL,R 1 3 1 - 2
3

EoL,R 1 1 1 -2
NoL,R 1 1 1 0

Table 14.1. Particle content and charges under the gauge symmetry

with the ”Vacuum ExpectationValues” (VEV’s):

〈η1〉T = (Λ1, 0, 0) , 〈η2〉T = (0,Λ2, 0) . (14.5)

It is worth to mention that these two scalars in the fundamental representation is
the minimal set of scalars to break down completely the SU(3) family symmetry.
The interaction Lagrangian of the SU(3) gauge bosons to the SM massless fermions
is

iLint,SU(3)F = gH
(
f̄o1 f̄

o
2 f̄
o
3

)
γµ



Zµ
1

2
+

Zµ
2

2
√
3

Y+µ
1√
2

Y+µ
2√
2

Y−µ
1√
2

−
Zµ
2√
3

Y+µ
3√
2

Y−µ
2√
2

Y−µ
3√
2

−
Zµ
1

2
+

Zµ
2

2
√
3




fo1

fo2

fo3

 (14.6)

where gH is the SU(3) coupling constant, Z1, Z2 and Y±j =
Y1j ∓iY

2
j√

2
, j = 1, 2, 3 are

the eight gauge bosons.
Thus, the contribution to the horizontal gauge boson masses from the VEV’s

in Eq.(14.5) read

• 〈η1〉 : g2HΛ
2
1

2
(Y+1 Y

−
1 + Y+2 Y

−
2 ) +

g2HΛ
2
1

4
(Z21 +

Z22
3

+ 2Z1
Z2√
3
)

• 〈η2〉 : g2HΛ
2
2

2
(Y+1 Y

−
1 + Y+3 Y

−
3 ) + g

2
HΛ

2
2
Z22
3

The ”Spontaneous Symmetry Breaking” (SSB) of SU(3) occurs in two stages

SU(3)×GSM
〈η2〉
−−−→ SU(2) ?×GSM

〈η1〉
−−−→ GSM

FCNC ?
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Notice that the hierarchy of scales Λ2 > Λ1 yield an ”approximate SU(2) global
symmetry” in the spectrum of SU(2) gauge boson masses.

Therefore, neglecting tiny contributions from electroweak symmetry breaking, we
obtain the gauge boson mass terms.

(M2
1 +M

2
2) Y

+
1 Y

−
1 +M2

1 Y
+
2 Y

−
2 +M2

2 Y
+
3 Y

−
3 +

1

2
M2
1 Z

2
1

+
1

2

M2
1 + 4M

2
2

3
Z22 +

1

2
(M2

1)
2√
3
Z1 Z2 (14.7)

M2
1 =

g2HΛ
2
1

2
, M2

2 =
g2HΛ

2
2

2
(14.8)

Z1 Z2

Z1 M2
1

M21√
3

Z2 −
M21√
3

M21+4M
2
2

3

Table 14.2. Z1 − Z2 mixing mass matrix

Diagonalization of the Z1 − Z2 squared mass matrix yield the eigenvalues

M2
− =

2

3

(
M2
1 +M

2
2 −

√
(M2

2 −M
2
1)
2 +M2

1M
2
2

)
(14.9)

M2
+ =

2

3

(
M2
1 +M

2
2 +

√
(M2

2 −M
2
1)
2 +M2

1M
2
2

)
(14.10)

and finally

(M2
1 +M

2
2) Y

+
1 Y

−
1 +M2

1 Y
+
2 Y

−
2 +M2

2 Y
+
3 Y

−
3 +M2

−

Z2−
2

+M2
+

Z2+
2
, (14.11)

where (
Z1
Z2

)
=

(
cosφ sinφ
− sinφ cosφ

)(
Z−

Z+

)
(14.12)

cosφ sinφ =

√
3

4

M2
1√

M4
1 +M

2
2(M

2
2 −M

2
1)

(14.13)



i
i

“proc18” — 2018/12/10 — 11:44 — page 303 — #319 i
i

i
i

i
i

14 Ko − K̄o , Do − D̄o in a Local SU(3) Family Symmetry 303

14.4 Electroweak symmetry breaking

For electroweak symmetry breaking we introduce two triplets of SU(2)L Higgs
doublets, namely;

Φu = (3, 1, 2,−1) , Φd = (3, 1, 2,+1) , (14.14)

with the VEV’s

〈Φu〉 =

〈Φu1 〉〈Φu2 〉
〈Φu3 〉

 , 〈Φd〉 =

〈Φd1 〉〈Φd2 〉
〈Φd3 〉

 , (14.15)

where

〈Φui 〉 =
1√
2

(
vui
0

)
, 〈Φdi 〉 =

1√
2

(
0

vdi

)
. (14.16)

The contributions from 〈Φu〉 and 〈Φd〉 generate the W and Zo SM gauge boson
masses

g2

4
(v2u + v2d)W

+W− +
(g2 + g′

2
)

8
(v2u + v2d)Z

2
o (14.17)

+ tiny contribution to the SU(3) gauge boson masses and mixing (14.18)

with Zo, (14.19)

v2u = v21u + v22u + v23u , v2d = v21d + v22d + v23d. So, if MW ≡ 1
2
gv, we may write

v =
√
v2u + v2d ≈ 246 GeV.

14.5 Fermion masses

14.5.1 Dirac See-saw mechanisms

The scalars and fermion content allow for quarks the gauge invariant Yukawa
couplings

Hu ψoq Φ
u UoR + hiu ψ

o
uR ηi U

o
L + MU U

o
L U

o
R + h.c (14.20)

Hd ψoq Φ
d DoR + hid ψ

o
dR ηi D

o
L + MD D

o
L D

o
R + h.c (14.21)

MU ,MD are free mass parameters and Hu , Hd , hiu , hid are Yukawa coupling
constants. When the involved scalar fields acquire VEV’s, we get in the gauge
basis ψoL,R

T = (eo, µo, τo, Eo)L,R, the mass terms ψ̄oLMoψoR + h.c, where
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Mo =


0 0 0 h v1
0 0 0 h v2
0 0 0 h v3

h1Λ1 h2Λ2 0 M

 ≡

0 0 0 a1
0 0 0 a2
0 0 0 a3
b1 b2 0 M

 . (14.22)

Mo is diagonalized by applying a biunitary transformation ψoL,R = VoL,R χL,R.

VoL
TMo VoR = Diag(0, 0,−λ3, λ4) (14.23)

VoL
TMoMoT VoL = VoR

TMoTMo VoR = Diag(0, 0, λ23, λ
2
4) , (14.24)

where λ3 and λ4 are the nonzero eigenvalues, λ4 being the fourth heavy fermion
mass, and λ3 of the order of the top, bottom and tau mass for u, d and e fermions,
respectively. We see from Eqs.(14.23,14.24) that from tree level the See-saw mecha-
nism yields two massless eigenvalues associated to the light fermions:

14.6 One loop contribution to fermion masses

The one loop diagram of Fig. 1 gives the generic contribution to the mass term
mij ē

o
iLe

o
jR,

eojR eokR

Y

Eo
L Eo

R eofL eoiL

M

< ηk > < Φd >

Fig. 14.1. Generic one loop diagram contribution to the mass termmij ē
o
iLe

o
jR

mij = cY
αH

π

∑
k=3,4

mok (V
o
L )ik(V

o
R)jkf(MY ,m

o
k) , αH ≡

g2H
4π
, (14.25)

MY being the mass of the gauge boson, cY is a factor coupling constant, Eq.(14.6),
mo3 = −λ3 andmo4 = λ4, and f(x, y) = x2

x2−y2
ln x2

y2
,∑

k=3,4

mok (V
o
L )ik(V

o
R)jkf(MY ,m

o
k) =

ai bjM

λ24 − λ
2
3

F(MY) , (14.26)

i = 1, 2, 3 , j = 1, 2, and F(MY) ≡ M2
Y

M2
Y
−λ2
4

ln M2
Y

λ2
4

−
M2
Y

M2
Y
−λ2
3

ln M2
Y

λ2
3

. Adding up all

possible the one loop diagramss, we get the contribution ψ̄oLMo
1 ψ

o
R + h.c.,
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Mo
1 =


D11 D12 0 0

D21 D22 0 0

D31 D32 D33 0

0 0 0 0

 αH

π
, (14.27)

D11 = µ11(
FZ1
4

+
FZ2
12

+ Fm) + 1
2
µ22F1 D12 = µ12(−

FZ2
6

− Fm)

D21 = µ21(−
FZ2
6

− Fm) D22 =
1
2
µ11F1 +

1
3
µ22FZ2

D31 = µ31(−
FZ1
4

+
FZ2
12

) D32 = µ32(−
FZ2
6

+ Fm)

D33 =
1
2
(µ11F2 + µ22F3)

αH =
g2H
4 π

, F1 ≡ F(MY1) , F2 ≡ F(MY2) , F3 ≡ F(MY3) (14.28)

FZ1 = cos2φF(M−) + sin2φF(M+) (14.29)

FZ2 = sin2φF(M−) + cos2φF(M+) (14.30)

Fm =
cosφ sinφ
2
√
3

[ F(M+) − F(M−) ] . (14.31)

FZ1 , FZ2 are the contributions from the diagrams mediated by the Z1 , Z2 gauge
bosons, Fm comes from the Z1 − Z2 mixing diagrams, withM1,M2,M−,M+ the
horizontal boson masses, Eqs.(7-11),

µij =
ai bjM

λ24 − λ
2
3

=
ai bj

a b
λ3 cα cβ , (14.32)

cα = cosα, cβ = cosβ, sα = sinα, sβ = sinβ are the mixing angles from the
diagonalization ofMo. Therefore, up to one loop corrections the fermion masses
are

ψ̄oLMo ψoR + ψ̄oLMo
1 ψ

o
R = χ̄LM χR , (14.33)

where ψoL,R = VoL,R χL,R, and M ≡
[
Diag(0, 0,−λ3, λ4) + V

o
L
TMo

1 V
o
R

]
may be

written as:

M =



m11 m12 cβm13 sβm13

m21 m22 cβm23 sβm23

cαm31 cαm32 (−λ3 + cαcβm33) cαsβm33

sαm31 sαm32 sαcβm33 (λ4 + sαsβm33)


, (14.34)
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The diagonalization ofM, Eq.(14.34) gives the physical masses for u and d quarks,
e charged leptons and ν Dirac neutrino masses.

Using a new biunitary transformation χL,R = V
(1)
L,R ΨL,R; χ̄LM χR = Ψ̄LV

(1)
L

T
M V

(1)
R ΨR,

with ΨL,RT = (f1, f2, f3, F)L,R the mass eigenfields, that is

V
(1)
L

T
MMT V

(1)
L = V

(1)
R

T
MTM V

(1)
R = Diag(m21,m

2
2,m

2
3,M

2
F) , (14.35)

m21 = m2e, m22 = m2µ, m23 = m2τ and M2
F = M2

E for charged leptons. So, the
rotations from massless to mass fermions eigenfields in this scenario reads

ψoL = VoL V
(1)
L ΨL and ψoR = VoR V

(1)
R ΨR (14.36)

14.6.1 Quark Mixing Matrix VCKM

We recall that vector like quarks are SU(2)L weak singlets, and hence the in-
teraction of L-handed up and down quarks; fouL

T = (uo, co, to)L and fodL
T =

(do, so, bo)L, to theW charged gauge boson is

g√
2
f̄ouLγµf

o
dLW

+µ =
g√
2
Ψ̄uL (VCKM)4×4 γµΨdL W

+µ , (14.37)

where the non-unitary quark mixing matrix VCKM of dimension 4× 4 is

(VCKM)4×4 = [(VouL V
(1)
uL )3×4]

T (VodL V
(1)
dL )3×4 (14.38)

14.7 Numerical results for quark masses and mixing

As an example of the possible spectrum of quark masses and mixing from this
scenario, we show up the following fit of parameters at theMZ scale [15]

Using the input values for the horizontal boson masses, Eq.(8), and the coupling
constant of the SU(3) symmetry:

M1 = 3.3× 103 TeV , M2 = 3.3× 105 TeV ,
αH

π
= 0.05 , (14.39)

we write the tree level Mo
q, and up to one loop corrections Mo

q quark mass
matrices, as well as the corresponding mass eigenvalues and mixing:

d-quarks:

Tree level see-saw mass matrix:
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Mo
d =


0 0 0 906.643

0 0 0 5984.81

0 0 0 8139.76

3.00124× 106 −670943. 0 9.10502× 106

MeV , (14.40)

the mass matrix up to one loop corrections:

Md =


−5.64571 −11.0583 46.8646 15.829

−29.9051 −39.4588 −11.5894 −3.91444

40.9245 −30.3588 −2859.86 130.424

0.0409246 −0.0303588 0.386143 9.61036× 106

MeV , (14.41)

the d-quark mass eigenvalues

(md,ms,mb,MD) = ( 2.97549 , 51.0 , 2860.72 , 9.61036× 106 )MeV , (14.42)

and the product of mixing matrices:
VdL = VodL V

(1)
dL :
0.981831 0.17522 −0.0728363 0.0000922

−0.183881 0.783786 −0.593184 0.0005976

0.0468496 −0.5958 −0.801765 0.0008133

−0.0000187 −6.6982× 10−10 0.0010134 0.999999

 (14.43)

VdR = VodR V
(1)
dR:


0.146421 −0.175219 −0.922135 0.312291.

0.577678 −0.783785 0.217014 −0.0698145

0.803005 0.595801 0.0142936 4.3164× 10−9
−0.0056951 −9.0660× 10−8 0.319949 0.947418

 (14.44)

u-quarks:

Mo
u =


0 0 0 673649.

0 0 0 5.57857× 106
0 0 0 7.8041× 106

4.10528× 108 −4.1775× 107 0 1.92243× 1010

MeV , (14.45)

Mu =


−0.47816 −0.551837 5.4868 0.117774

−3.21341 602.954 4467.75 95.9001

4.51209 1368.75 −173107. 714.009

0.00225605 0.684377 16.632 1.92287× 1010

MeV , (14.46)



i
i

“proc18” — 2018/12/10 — 11:44 — page 308 — #324 i
i

i
i

i
i

308 A. Hernandez-Galeana

the u-quark mass eigenvalues

(mu,mc,mt,MU) = (1.37677 , 638.055 , 173170 , 1.92287× 1010)MeV (14.47)

and the product of mixing matrices:
VuL = VouL V

(1)
uL:

0.996356 0.0468431 −0.0712817 0.0000350

−0.0010006 −0.829224 −0.558915 0.0002900

−0.0852899 0.556949 −0.826155 0.0004057

0 0.0000128 0.0004998 1.

 (14.48)

VuR = VouR V
(1)
uR:
0.0003359 0.0934631 −0.995394 0.0213497

0.0032952 0.995617 0.0934386 −0.0021725

0.999995 −0.0033122 0.0000265 0

−1.4066× 10−8 0.0001676 0.0214593 0.99977

 (14.49)

and the quark mixing matrix VCKM:
0.974441 0.224613 −0.0035948 0.0000219

0.224564 −0.973557 0.041928 −0.0000382

−0.0059177 0.0416636 0.999114 −0.0010126

6.3092× 10−8 −8.2754× 10−6 −0.0004999 5.0666× 10−7

 (14.50)

14.8 ∆F = 2 Processes in Neutral Mesons

Here we study the tree level FCNC interactions that contribute to Ko−K̄o,Do−D̄o

mixing via Z1 , Y±2 exchange from the depicted diagram in Fig. 2.

Y

s

d

d

s

K̄o Ko

Fig. 14.2. Generic tree level exchange contribution to Ko − K̄o from the SU(3) horizontal
gauge bosons.

The Z1 , Y±2 (Y±2 =
Y12∓iY

2
2√

2
) gauge bosons become massive at the second stage of

the SU(3) symmetry breaking, and have flavor changing couplings in both left-
and right-handed fermions, and then contribute the ∆S = 2 effective operators
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OLL = (d̄LγµsL)(d̄Lγ
µsL) , ORR = (d̄RγµsR)(d̄Rγ

µsR) (14.51)

OLR = (d̄LγµsL)(d̄Rγ
µsR) (14.52)

The SU(3) couplings to fermions, Eq.(14.6), when written in the mass basis yield
the gauge couplings

Lint,Z1 =
gH

2

(
CLZ1 d̄LγµsL + CRZ1 d̄RγµsR

)
Zµ1 (14.53)

Lint,Y1
2
=
gH

2

(
CLY1

2
d̄LγµsL + CRY1

2
d̄RγµsR

)
Y1µ1 (14.54)

Lint,Y2
2
=
gH

2

(
CLY2

2
d̄LγµsL + CRY2

2
d̄RγµsR

)
i Y2µ1 (14.55)

with the coefficients

CLZ1 = L11 L12 − L31 L32 , CRZ1 = R11 R12 − R31 R32

CLY1
2
= L12 L31 + L11 L32 , CRY1

2
= R12 R31 + R11 R32

CLY2
2
= (L12 L31 − L11 L32) , CRY2

2
= (R12 R31 − R11 R32)

(14.56)

where VL,R =≡ VoL,R V
(1)
L,R, and Lij ≡ VL ij , Rij ≡ VR ij. For each gauge boson, the

effective four-fermion hamiltonian at the scale of the gauge boson mass is

HZ1 =
g2H
4M2

Z1

(
C2LZ1 OLL + 2CLZ1CRZ1OLR + C2RZ1 ORR

)
(14.57)

HY1
2
=

g2H
4M2

1

(
C2LY1

2
OLL + 2CLY1

2
CRY1

2
OLR + C2RY1

2
ORR

)
(14.58)

HY2
2
= −

g2H
4M2

1

(
C2LY2

2
OLL + 2CLY2

2
CRY1

2
OLR + C2RY2

2
ORR

)
(14.59)

with MY1
2
=MY2

2
=M1. Therefore, the total four-fermion hamiltonian HSU(2) =

HZ1 +HY12 +HY2
2

can be written as
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HSU(2) =
g2H
4M2

1

[
(C2LZ1 + C

2
LY1

2
− C2LY2

2
)OLL + (C2RZ1 + C

2
RY1

2
+ C2RY2

2
)ORR

+2(CLZ1CRZ1 + CLY12CRY12 − CLY2
2
CRY2

2
)OLR

]

+
g2H
4

(
1

M2
Z1

−
1

M2
1

)
[
C2LZ1OLL + C2RZ1ORR + 2CLZ1CRZ1OLR)

]
(14.60)

From the coefficients in eq.(14.56) we obtain:

C2LZ1 + C
2
LY1

2
− C2LY2

2
= δ2L , C2RZ1 + C

2
RY1

2
− C2RY2

2
= δ2R , , (14.61)

CL,Z1 CR,Z1 + CL,Y12 CR,Y12 − CL,Y2
2
CR,Y2

2
= δL δR

+ 2(L11 R31 − L31 R11)(L32 R12 − L12 R32) , (14.62)

and we can write

HSU(2) =
g2H
4M2

1

[
δ2L OLL + δ2R ORR + δ2LR OLR

]
(14.63)

+
g2H
4

(
1

M2
Z1

−
1

M2
1

)
[
(L11L12 − L31L32)

2 OLL + (R11R12 − R31R32)
2 ORR

+2(L11L12 − L31L32)(R11R12 − R31R32) OLR)]
with

δL = L11 L12 + L31 L32 , δR = R11 R12 + R31 R32 (14.64)

δLR = 2(δL δR + 2(L11 R31 − L31 R11)(L32 R12 − L12 R32)) (14.65)

The reported parameter space region in section 7 generateMZ1 ≈M1 with quite
good approximation, and then the dominant contribution to neutral meson mixing
comes from the four-fermion Hamiltonian in eq.(14.63). The suppression of the
generic meson mixing couplings ζij

Λ2
(q̄iLγ

µPL,R qj)
2 come out as follows

14.8.1 Ko − K̄o meson mixing

δL = 0.144124 , M1
gH
2

|δL|
= 32594.5 TeV

δR = 0.452775 , M1
gH
2

|δR|
= 10375.2 TeV

√
|δLR| = 0.361261 , M1

gH
2

√
|δLR|

= 13003.4 TeV

(14.66)
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14.8.2 Do − D̄o meson mixing

δL = −0.000829741 , M1
gH
2

|δL|
= 5.66157× 106 TeV

δR = −0.00328084 , M1
gH
2

|δR|
= 1.43184× 106 TeV

√
|δLR| = 0.456165 , M1

gH
2

√
|δLR|

= 10298.1 TeV

(14.67)

These numerical values are within the suppression required for BSM contributions
reported for instance in the review ”CKM Quark - Mixing Matrix” in PDG2018[16].

14.9 Conclusions

Horizontal gauge bosons from the local SU(3) family symmetry introduce flavor
changing couplings, and in particular mediate ∆F = 2 processes at tree level. We
reported the analytic and numerical contribution to Ko − K̄o and Do − D̄o meson
mixing from tree level exchange diagrams mediated by the SU(2) horizontal
gauge bosons Z1 , Y±2 . We provided in section 7 a particular parameter space
region where this scenario can accommodate the hierarchy spectrum of quark
masses and mixing, and simultaneously suppress properly the ∆S = 2 and ∆C = 2

processes.
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14.10 Appendix: Diagonalization of the generic Dirac See-saw
mass matrix

Mo =


0 0 0 a1
0 0 0 a2
0 0 0 a3
0 b2 b3 c

 (14.68)

The tree levelMo 4× 4 See-saw mass matrix is diagonalized by a biunitary
transformation ψoL = VoL χL and ψoR = VoR χR. The diagonalization of MoMoT

(MoTMo) yield the nonzero eigenvalues

λ23 =
1

2

(
B−

√
B2 − 4D

)
, λ24 =

1

2

(
B+

√
B2 − 4D

)
(14.69)
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and rotation mixing angles

cosα =

√
λ24 − a

2

λ24 − λ
2
3

, sinα =

√
a2 − λ23
λ24 − λ

2
3

,

(14.70)

cosβ =

√
λ24 − b

2

λ24 − λ
2
3

, sinβ =

√
b2 − λ23
λ24 − λ

2
3

.

B = a2 + b2 + c2 = λ23 + λ
2
4 , D = a2b2 = λ23λ

2
4 , (14.71)

a2 = a21 + a
2
2 + a

2
3 , b2 = b21 + b

2
2 + b

2
3 (14.72)

The rotation matrices VoL , V
o
R admit several parametrizations related to the two

zero mass eigenstates, for instance

VoL =


c1 −s1 s2 s1 c2 cα s1 c2 sα
0 c2 s2 cα s2 sα

−s1 −c1 s2 c1 c2 cα c1 c2 sα
0 0 −sα cα

 , VoR =


1 0 0 0

0 cr sr cβ sr sβ
0 −sr cr cβ cr sβ
0 0 −sβ cβ

 (14.73)

an =
√
a21 + a

2
3 , bn =

√
b21 + b

2
3 , a =

√
a2n + a22 , b =

√
b2n + b22 ,

(14.74)

s1 =
a1

an
, c1 =

a3

an
, s2 =

a2

a
, c2 =

an

a
, sr =

b2

b
, cr =

b3

b
(14.75)
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Abstract. The modern Standard cosmological model of inflationary Unvierse and baryosyn-
thesis deeply involves particle theory beyond the Standard model (BSM). Inevitably, models
of BSM physics lead to cosmological scenarios beyond the Standard cosmological paradigm.
Scenarios of dark atom cosmology in the context of puzzles of direct and indirect dark
matter searches, of clusters of massive primordial black holes as the source of gravitational
wave signals and of antimatter globular cluster as the source of cosmic antihelium are
discussed.

Povzetek. V standardni kozmološki model inflacijskega vesolja in tvorbe barionov vključi
avtor tudi teorijo osnovnih delcev in polj, kar razširi standardni model. Avtor obravnava
model ”temnih atomov”, to je atomov, ki vsebujejo fermione družine z veliko maso. Pred-
stavi prispevek temnih atomov v experimentih, ki naj bi detektirali temno snov, vlogo
temnih atomov kopic masivnih prvotnih črnih lukenj, ki sevajo gravitacijske valove ter v
globularnih kopicah antisnovi, ki naj bi bil izvor antihelija v vesolju.

Keywords: cosmoparticle physics, inflation, baryosynthesis, dark matter, dark
atoms, clusters of massive primordial black holes, antimatter, double charged
particles, nuclear reactions, nucleosynthesis
PACS: 12.60.-i; 95.35.+d; 14.80.-j; 21.90.+f; 36.10.-k; 98.80.-k; 98.80.Cq; 98.80.Ft;
04.70.-s;

15.1 Introduction

The basis of the modern Standard cosmological paradigm, involving inflation,
baryosynthesis and dark matter as its neccessary basic elements, is related to
new physics predicted in theory beyond the Standard model (BSM) of elemen-
tary particles (see e.g. Ref. [1] for review and reference). However, BSM models,
reproducing the necessary basic elements of the modern cosmology, inevitably
contain additional model dependent consequences that lead beyond the Standard
cosmological scenario [2].

Methods of cosmoparticle physics, studying fundamental relationship of cos-
mology and particle physics in the combination of its physical, astrophysical and

? E-mail: khlopov@apc.in2p3.fr
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cosmological signatures, involve such model dependent cosmological predictions
to probe models of BSM physics and cosmological scenarios, based on them. [3–5].

Here we show that BSM physics leads to cosmological scenarios accomplished
by nontrivial deviations from the Standard cosmological model that deserve
special interest in the context of the recent experimental progress.

We address a possibility of existence of stable double charged particles O−−

bound with primordial helium in neutral nuclear interacting O-helium dark atoms
(Section 15.2) and consider advantages of this scenario to resolve puzzles of direct
and indirect dark matter searches, as well as the open problems of OHe interaction
with matter. We show that BSM physics of inflationary models that naturally leads
to strong primordial inhomogeneities and to clusters of massive primordial black
holes, in particular, is possibly reflected in the gravitational wave signal from
massive black hole coalescence (Section 15.3). We discuss in Section 15.4 existence
of antimatter stars in our Galaxy, originated from nonhomogeneous baryosynthe-
sis in baryon asymmetrical Universe and reflected in cosmic antihelium fluxes,
possibly detected by AMS02 [6,7].

15.2 Dark atom physics and cosmology

In the simplest case physics of dark matter is reduced to prediction by BSM
model of new neutral elementary weakly interacting massive particle (WIMP).
This type of prediction is beyond the standard model of elementary particles,
but fits perfectly well the standard cosmological LambdaCDM paradigm. Super-
symmetric (SUSY) models, predicting WIMP candidates, seemed to support this
simple approach to dark matter physics. However negative results of experimental
underground WIMP searches, as well as of collider searches for SUSY particles
appeal to other possible BSM solutions for the dark matter problem. Possibly,
SUSY physics and cosmology corresponds to superhigh energy scales as discussed
in this Volume in [8].

In fact, the necessary conditions for dark matter candidates to be stable,
satisfy the measured dark matter density and be decoupled from plasma and
radiation at least before the beginning of matter dominated stage in no case
demand these particle candidates to be weakly or superweakly interacting. Even
nuclear interacting particles can play the same role due to decoupling of the gas of
such particles from plasma and radiation before the end of radiation dominated
stage. It gives rise to models of dark matter in the form of Strongly Interacting
Massive Particles (SIMPs) [9–14].

By definition dark matter should be ’dark’, nonluminous, what seem to favor
neutral elementary particles. However ordinary atomic matter is neutral but it is
composite and consists of electriclly charged particles (nuclei and electrons). In the
same way O-helium dark atoms represent a specific example of composite SIMPs,
in which hypothetical double charged O−− particles are bound with primordial
helium nuclei by ordinary Coulomb force [15–20].
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15.2.1 OHe andO-nuclearites

The main problem for hypothetical stable charged particles is their absence in
the matter. If they do exist, they should be bound with ordinary matter and
form anomalous isotopes. Severe experimental constraints on such isotopes, on
anomalous hydrogen especially, seem to exclude a possibility for stable charged
particles. However, if there exist stable particles with charge -2 in excess over
corresponding particles with charge +2, such negatively charged particles are
captured by primordial helium and form neutral OHe dark atom. There are various
models, in which such stable -2 charged particles O−− are predicted [15–20].
Moreover, if these particles possess electroweak SU(2) gauge charges, their excess
can be equilibrated by electroweak sphaleron transitions with baryon excess, as it
is the case in Walking Technicolor models [17].

The general analysis of the bound states of single O−− with nuclei was devel-
oped in a simple model [21–23]. For small nuclei the Coulomb binding energy is
like in hydrogen atom and is given by

Eb =
1

2
Z2Z2Oα

2Amp. (15.1)

For large nuclei O−− is inside nuclear radius and the harmonic oscillator
approximation is valid for the estimation of the binding energy

Eb =
3

2
(
ZZOα

R
−
1

R
(
ZZOα

AmpR
)1/2). (15.2)

Here Z is the charge of nucleus, A is its atomic number, R is radius of nucleus,
ZO = 2 is the charge of O−−, mp is the proton mass and α = 1/137 is the fine
structure constant. In the case of OHe ZZOαAmpR ≤ 1, what proves its Bohr-
atom-like structure (see [19,20] for review and references). However, the radius of
Bohr orbit in these “atoms” [15,17] ro ∼ 1/(ZOZHeαmHe) ≈ 2 · 10−13 cm is of the
order the size of He nucleus. Therefore the corresponding correction to the binding
energy due to non-point-like charge distribution in He nucleus is significant.

O−− particles are either elementary lepton-like states, or clusters of heavy Ū
quarks with charge -2/3 ŪŪŪ, which have strongly suppressed QCD interaction.
In the contrary to ordinary atoms OHe has heavy lepton-like core and nuclear
interacting shell.

If multiple O−− are captured by a heavy nucleus, the corresponding neutral
bound system can acquire the form of O-nuclearites, in which negative charge of
O−− is compensated by posistive charge of protons in the nucleus [24]. The energy
of such a O-nuclearite is given by [24]

E = −16MeV ·A−

∫
d3r(np − 2nO)V −

∫
d3r

(∇V)2
8πe2

+ EOkin . (15.3)

Here the first term is the volume energy of the atomic nucleus with atomic number
A, next two terms describe the electromagnetic energy, and

EOkin =

∫
d3r

pF,O∫
0

p2dp

π2
p2

2mO
(15.4)
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is the kinetic energy of the O-fermions of the massmO; V = −eφ is the potential
well for the electron in the field of the positive charge (e > 0, φ > 0) and on the
other hand it is the potential well also for the protons in the field of the negative
charge of O-particles.

The most energetically favorable O-particle distribution inside the nucleus
is that follows the proton one, fully compensating the Coulomb field. Thereby
O-particles, if their number wereNO ≥ A/4, would be re-distributed to minimize
the energy, and finally the density of O inside the atomic nucleus becomes nO =

np/2 = (n0p/2) θ(r− R) for O-nuclearite, that corresponds to V = const for r < R.
Excessive O-particles are pushed out.

15.2.2 Cosmoparticle physics of OHe model

After the Standard Big Bang Nucleosynthesis (SBBN) O−− charged particles cap-
ture 4He nuclei in neutral OHe “atoms” [15]. For the mass of O−− mO ∼ 1TeV,
O−− abundance is much smaller than helium abundamce, so that He is in excess in
such capture, making the abundance of frozen out free O−− exponentially small.

The cosmological scenario of OHe Universe involves only one parameter of
new physics − the mass of O−−. Such a scenario is insensitive to the properties
of O−− (except for its mass), since the main features of the OHe dark atoms are
determined by their nuclear interacting helium shell.

Before the end of radiation domination stage the rate of expansion exceeds
the rate of energy and momentum transfer from plasma to OHe gas and the latter
decouples from plasma and radiation. Then OHe starts to dominate at the Matter
Dominated stage, playing the role of Warmer than Cold Dark Matter in the process
of Large Scale Structure formation[15,19]. This feature is due to conversion of
small scale fluctuations in acoustic waves before OHe decoupling and to their
corresponding suppression. However, the suppression of such fluctuations is not
as strong as the free streaming suppression for few keV dark matter particles in
Warm Dark matter models.

In terrestrial matter OHe dark atoms are slowed down and cannot cause
significant nuclear recoil in the underground detectors, making them elusive for
detection based on nuclear recoil. The positive results of DAMA experiments (see
[25] for review and references) can find in this scenario a nontrivial explanation
due to a low energy radiative capture ofOHe by intermediate mass nuclei [19,1,20].
This explains the negative results of the XENON100 and LUX experiments. The
rate of this capture is proportional to the temperature: this leads to a suppression
of this effect in cryogenic detectors, such as CDMS.

OHe collisions in the central part of the Galaxy lead to OHe excitations,
and de-excitations with pair production in E0 transitions can explain the excess
of the positron-annihilation line, observed by INTEGRAL in the galactic bulge
[1,20,26,27]. Due to the large uncertainty of DM distribution in the galactic bulge
this interpretation of the INTEGRAL data is possible in a wide range of masses
of O-helium with the minimal required central density of O-helium dark matter
at mO = 1.25TeV. For smaller or larger values of mo one needs larger central
density to provide effective excitation of O-helium in collisions. Current analysis
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favors lowest values of central dark matter density, making possible O-helium
explanation for this excess only for a narrow window around this minimal value.

In a two-component dark atom model, based on Walking Technicolor, a
sparse WIMP-like component of atom-like state, made of positive and negative
doubly charged techniparticles, is present together with the dominant OHe dark
atoms. Decays of doubly positive charged techniparticles to pairs of same-sign
leptons can explain [28] the excess of high-energy cosmic-ray positrons, found in
PAMELA and AMS02 experiments[29–32]. Since even pure lepton decay channels
are inevitably accompanied by gamma radiation the important constraint on
this model follows from the measurement of cosmic gamma ray background in
FERMI/LAT experiment[33]. The multi-parameter analysis of decaying dark atom
constituent model determines the maximal model independent value of the mass
of decaying +2 charge particle, at which this explanation is possible

mO < 1TeV.

One should take into account that even in this range hypothesis on decaying
composite dark matter, distributed in the galactic halo, can lead according to [34]
to gamma ray flux exceeding the measurement by FERMI/LAT. It can make more
attractive interpretation of these data by an astrophysical pulsar local source[35]
or by some local source of dark matter annihilation or decay.

Experimental probes for OHe dark matter at the LHC strongly differ from the
usual way of search for dark matter at acelerators, involving missed energy and
momentum detection. Pending on the nature of the double charge constituents
it may be search for new stable U-hadrons (heavy stable hadrons that appear in
the result of production of UŪ pair) or search for stable double charged lepton-
like particles. In the first case there are applicable constraints from the search for
supersymmetric R-hadrons, having similar experimental signatures and giving
the minimal mass for UUU close to 3 TeV. It excludes OHe interpretation of the
cosmic positron anomalies in terms of heavy quark cluster constituents of OHe.

The possibility to interpret cosmic positron anomalies in terms of OHe cos-
tituents that appear in the experiments as stable lepton-like double charged par-
ticles is also close to complete test. The ATLAS and CMS collaborations at the
LHC are searching for the double charged particles since 2011 [36–38]. The most
stringent results achieved so far exclude the existence of such particles up to their
mass of 680 GeV. This value was obtained by both ATLAS and CMS collabora-
tions independently. It is expected that if these two collaborations combine their
independently gathered statistics of LHC Run 2 (2015–2018), the lower mass limit
of double charged particles could reach the level of about 1.3 TeV. It will make
search for exotic long-living double charged particles an experimentum crucis for in-
terpretation of low and high energy positron anomalies by composite dark matter
[39,40].

The successful and self-consistent OHe scenario implies the existence of dipole
Coulomb barrier, arising in OHe-nuclear interaction and supporting dominance
of elastic OHe-nuclear scattering. This problem of nuclear physics of OHe remains
the main open question of composite dark matter, which implies correct quantum
mechanical solution [41]. The lack of such a barrier and essential contribution
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of inelastic OHe-nucleus processes seem to lead to inevitable overproduction of
anomalous isotopes [42]. The advantages of the qualitative picture of OHe scenario
appeal to increase the efforts to solve this problem.

15.3 Primordial massive black hole clusters

The standard cosmological model considers homogeneous and isotropic Universe
as the result of inflation. The observed celestial objects and strong inhomogeneities
are evolved from small primordial density fluctuations that are also originated
from small fluctuations of the inflaton field. It seems that there is no room for
strong primordial inhomogeneities in this picture. Moreover, the existence of
large scale inhomogeneities at the scales� 100Mpc is excluded by the measured
isotropy of CMB.

However, BSM physics, predicting new fields and mechanisms of symmetry
breaking, adds new elements in this simple scenario that provide the existence
of strong primordial inhomogeneities. Such predictions are compatible with the
observed global homogeneity and isotropy of the Universe, if the strongly inho-
mogeneous component iwith (δρ/ρ)i ∼ 1 contributes into the total density ρtot
whithin the observed level of the large scale density fluctuations (δρ/ρ) = δ0 � 1.
It implies either large scale inhomogeneities, suppressed by the small contribution
of the component i into the total density ρi/ρtot ≤ δ0, or inhomogeneities at small
scales.

A simple example of an axion-like model with U(1) symmetry broken sponta-
neously and then explicitly illustrates these two possible forms of strong primor-
dial inhomogeneities.

In this model spontaneous U(1) symmetry breaking is induced by the vacuum
expectation value

〈ψ〉 = f (15.5)

of a complex scalar field
Ψ = ψ exp (iθ), (15.6)

having also explicit symmetry breaking term in its potential

Veb = Λ4(1− cos θ) (15.7)

.
If the first phase transion takes place after inflation at T = f and f� Λ, the

potential Eq. (15.7) doesn’t influence continuous degeneracy of vacua on θ and
string network is formed, which is converted in a walls-surrounded-by-strings
network, separating regions with discrete vacuum degeneracy θvac + 0, 2π, ...
after the second phase transition at T = Λ. The vacuum structure network is
unstable and decays, but the energy density distribution of θ field oscillations is
strongly inhomogeneous and retains the large scale structure of this network, as
it was shown in the example of axion models in [43–45]. To fit the observational
constraints on the inhomogeneity at large scales the contribution into the total
density of such structure, called archioles, should be suppressed. It causes serious
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problem for CDM models, in which the dominant form of dark matter is explained
by axions [43–45].

If the first phase transition takes place at the inflational stage and f� Λ, as
it was considered in [46], there appears a valley relative to values of phase in the
field potential in this period. Fluctuations of the phase θ along this valley, being
of the order of ∆θ ∼ H/(2πf) (here H is the Hubble parameter at inflational stage)
change in the course of inflation its initial value within the regions of smaller size.
Owing to such fluctuations, for the fixed value of θ60 in the period of inflation
with e-foldingN = 60 corresponding to the part of the Universe within the modern
cosmological horizon, strong deviations from this value appear at smaller scales,
corresponding to later periods of inflation withN < 60. If θ60 < π, the fluctuations
can move the value of θN to θN > π in some regions of the Universe.

After reheating, when the Universe cools down to temperature T = Λ the
phase transition to the true vacuum states, corresponding to the minima of Veb
takes place. For θN < π the minimum of Veb is reached at θvac = 0, whereas in the
regions with θN > π the true vacuum state corresponds to θvac = 2π. For θ60 < π
in the bulk of the volume within the modern cosmological horizon θvac = 0.
However, within this volume there appear regions with θvac = 2π. These regions
are surrounded by massive domain walls, formed at the border between the two
vacua. Since regions with θvac = 2π are confined, the domain walls are closed.
After their size equals the horizon, closed walls can collapse into black holes.

The mass range of formed BHs is constrained by fundamental parameters
of the model f and Λ. The maximal BH mass is determined by the condition
that the wall does not dominate locally before it enters the cosmological horizon.
Otherwise, local wall dominance leads to a superluminal a ∝ t2 expansion for
the corresponding region, separating it from the other part of the Universe. This
condition corresponds to the mass [47]

Mmax =
mpl

f
mpl(

mpl

Λ
)2. (15.8)

The minimal mass follows from the condition that the gravitational radius of BH
exceeds the width of wall and it is equal to[47,48]

Mmin = f(
mpl

Λ
)2. (15.9)

This mechanism can lead to formation of primordial black holes of a whatever
large mass (up to the mass of active galactic nuclei (AGNs) [49,50], see [51] for
the latest review). Such black holes appear in the form of primordial black hole
clusters, exhibiting fractal distribution in space [47,48,52,51]. It can shed new light
on the problem of galaxy formation [47,50,51].

Closed wall collapse leads to primordial GW spectrum, peaked at

ν0 = 3 · 1011(Λ/f)Hz (15.10)

with energy density up to

ΩGW ≈ 10−4(f/mpl). (15.11)
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At f ∼ 1014GeV this primordial gravitational wave background can reachΩGW ≈
10−9. For the physically reasonable values of

1 < Λ < 108GeV (15.12)

the maximum of spectrum corresponds to

3 · 10−3 < ν0 < 3 · 105Hz. (15.13)

In the range from tens to thousand Hz such background may be a challenge for
Laser Interferometer Gravitational-Wave Observatory (LIGO) experiment.

Another profound signature of the considered scenario are gravitational wave
signals from merging of BHs in PBH cluster. Being in cluster, PBHs with the
masses of tens M� form binaries much easier, than in the case of their random
distribution. In this aspect detection of signals from binary BH coalescence in the
gravitational wave experiments [53–57] may be considered as a positive evidence
for this scenario. Repeatedly detected signals localized in the same place would
provide successive support in its favor [51,58].

15.4 Antihelium from antimatter stars in our Galaxy

Primordial strong inhomogeneities can also appear in the baryon charge distri-
bution. The appearance of antibaryon domains in the baryon asymmetrical Uni-
verse, reflecting the inhomogeneity of baryosynthesis, is the profound signature
of such strong inhomogeneity [59]. On the example of the model of spontaneous
baryosynthesis (see [60] for review) the possibility for existence of antimatter do-
mains, surviving to the present time in inflationary Universe with inhomogeneous
baryosynthesis was revealed in [61].

The mechanism of spontaneous baryogenesis [60,62,63] implies the existence
of a complex scalar field

χ = (f/
√
2) exp (iθ) (15.14)

carrying the baryonic charge. TheU(1) symmetry, which corresponds to the baryon
charge, is broken spontaneously and explicitly, similar to the case, considered in
the previous Section 15.3. The explicit breakdown of U(1) symmetry is caused by
the phase-dependent term, given by Eq. (15.7).

Baryon and lepton number violating interaction of the field χ with matter
fields can have the following structure [60]

L = gχQ̄L+ h.c., (15.15)

where fields Q and L represent a heavy quark and lepton, coupled to the ordinary
matter fields.

In the early Universe, at a time when the friction term, induced by the Hubble
constant, becomes comparable with the angular mass mθ = Λ2

f
, the phase θ starts

to oscillate around the minima of the PNG potential and decays into matter fields
according to (15.15). The coupling (15.15) gives rise to the following [60]: as the
phase starts to roll down in the clockwise direction, it preferentially creates excess
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of baryons over antibaryons, while the opposite is true as it starts to roll down
in the opposite direction. If fluctuations of θ on inflational stage move its value
above π in some region, it starts to roll down anticlockwise and, simulataneously,
there should appear a closed wall, separting this region. As we discussed in the
previous Section, collapse of such wall leads to formation of black hole with the
mass in the range, determined by f and Λ.

The fate of such antimatter regions depends on their size. If the physical size
of some of them is larger than the critical surviving size Lc = 8h2 kpc [61], they
survive annihilation with surrounding matter.

The possibility of formation of dense antistars within an extension of the
Affleck-Dine scenario of baryogenesis and the strategies for their search were
considered in [64].

Evolution of sufficiently dense antimatter domains can lead to formation
of antimatter globular clusters [65]. The existence of such cluster in the halo of
our Galaxy should lead to the pollution of the galactic halo by antiprotons. Their
annihilation can reproduce [66] the observed galactic gamma background in the
range tens-hundreds MeV. The gamma background data put upper limit on the
total mass of antimatter stars. The prediction of antihelium component of cosmic
rays [67], as well as of antimatter meteorites [68] provides the direct experimental
test for this hypothesis. In the mechanism of spontaneous baryosynthesis there ap-
pears an interesting possibility of PBH, associated with dense antimatter domain,
and the observational constraints on presence of massive black holes in globular
clusters put constraints on the parameters f and Λ.

Cosmic antihelium flux is a well motivated stable signature of antimatter
stars in our Galaxy [65,67]. Antimatter nucleosynthesis produces antihelium 4
as the most abudant (after antiprotons) primordial element. Antimatter stellar
nucleosynthesis increases its primordial abundance. Heavy antinuclei, released in
anti-Supernova explosions, annihilate with interstellar gas (dominantly hydrogen)
and give rise to multiple antihelium fragments in the result of annihilation [65,67].
Propagation of antihelium-4 in the matter gas is also accompanied by its annihila-
tion, in which about 25% of events give fragments of antihelium-3, either directly
or after antitritium decay.

The minimal mass of antimatter globular cluster is determined by the con-
dition of the sufficient survival size of antimatter domain, corresponding to
103Modot. It leads to a minimal cosmic antihelium flux accessible to searches
for cosmic ray antihelium in AMS02 experiment.

Possible evidences for positive results of these searches continuously appear
in the presentations by the AMS collaboration [6,7]. To the present time there are
about ten clear candidates for antihelium-3 and two events that may be inter-
preted as antihelium-4. These results need further analysis and confirmation. It is
expected that more statistics and the 5σ result will be available to 2024. It would be
interesting to check whether significant amount of matter in the aperture of AMS02
detector hinder antihelium-4, but increase antihelium-3 fraction in the result of
antihelium-4 annihilation with matter. Confirmation of antihelium-3 events that
cannot be explained as secondary from cosmic ray interactions [69] would favor
antimatter globular cluster hypothesis appealing to its detailed analysis.
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15.5 Conclusions

To conclude, the BSM physical basis leads to nontrivial features in cosmological
scenario and the current exprimental progress probably gives evidences favor-
ing their existence. However these evidences need further confirmation as well
more theoretical work is needed to confront these predicted features with the
experimental data.

Indeed, even in the simplest case of OHe dark atoms the open problem of
OHe interaction with nuclei hinders a possible OHe solution for the puzzles of
direct dark matter searches, On the other hand, indirect effects of OHe dark matter
can explain anomalies of low and high energy cosmic positrons only for masses of
hypothetical stable double charged within the reach of the search for such particles
at the LHC. It opens new line of accelerator probes for dark matter.

Prediction of primordial strong inhomogeneities in the distribution of total,
dark and baryonic matter in the Universe is the new important phenomenon of
cosmological models, based on BSM physics with hierarchy of symmetry breaking.
The current progress in detection of gravitational waves and cosmic antimatter
nuclei is probably approaching confirmation for the corresponding nonstandard
cosmological scenarios.

Here we have given examples of nontrivial cosmological consequences com-
ing from some minimal extensions of particle Standard model, involving predic-
tion of extra stable double charged particles or additional global U(1) symmetry.
One can expect much richer set of predictions in a more extensive theoretical
framework of BSM physics and the platform of Bled Workshops will provide a
proper place for extensive nonformal discussion of such a rich new physics and its
cosmological impact.
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Abstract. In the spin-charge-family theory there are in d-dimensional space 2d Clifford
vectors, describing internal degrees of freedom of fermions — their families and family
members. Due to two kinds of the Clifford algebra objects, defined in this theory as γa and
γ̃a [2–7], each vector carries two kinds of indices. Operators γa γb determine in d = (3+ 1)

space the spin and all the charges of quarks and leptons, γ̃a γ̃b determine families of
quarks and leptons. In this contribution basis in d = (3 + 1) Clifford space is chosen in a
way that the matrix representation of the γa matrices and of the generators of the Lorentz
transformations in internal space Sab = i

4
(γaγb − γbγa) coincide for each family quantum

number, determined with S̃ab = i
4
(γ̃aγ̃b − γ̃bγ̃a), with Dirac matrices. We do not take here

into account the second quantization requirements [?], which reduce the number of states
from 2d to 2

d
2
−1 families of 2

d
2
−1 family members each, but this is the case for d = 2(2n+1),

since in the spin-charge-family theory d > 4.

Povzetek. V teoriji spinov-nabojev-družin je v d-razsežnem prostoru 2d Cliffordovih vektor-
jev, ki opisujejo notranje prostostne stopnje fermionov, to je njihove družine in člane družin.
Ker imamo dve vrsti Cliffordovih objektov, ki so v tej teoriji definirani kot γa in γ̃a [2–7],
ima vsak vektor dve vrsti indeksov. Operatorji Sab = i

4
(γaγb−γbγa) določajo v d = (3+1)-

razsežnem prostoru spin in vse naboje kvarkov in leptonov, S̃ab = i
4
(γ̃aγ̃b − γ̃bγ̃a) pa

kvantna števila njihovih družin. V tem prispevku je baza v d = (3 + 1) Cliffordovem
prostoru izbrana tako, da matrične upodobitve operatorjev γa in generatorjev Lorent-
zovih transformacij Sab v notranjem prostoru sovpadajo z Diracovimi matrikami za vsako
družinsko kvantno število, določeno s S̃ab. V prispevku ne upoštevamo zahtev druge
kvantizacije [8], ki zmanjšajo število stanj z 2d na 2

d
2
−1 družin s po 2

d
2
−1 člani. Vendar velja

v teoriji spinov-nabojev-družin to le za d = 2(2n + 1), kjer je d > 4.

? This contribution is written to help readers of the Bled proceedings and participants
at future Bled Workshops ”What Comes Beyond the Standard Models” to understand
the difference between the Dirac γa matrices and the γ̃a matrices, which are all defined
in 2d space and used in the spin-charge-family theory to describe families and family
members [2–7].
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16.1 Introduction

In the spin-charge-family theory there are in d-dimensional space two kinds of
operators, γa and γ̃a, which operate on 2d Clifford vectors, describing internal
degrees of freedom of fermions; γ̃a determine family quantum numbers, γa

determine family members. Due to these two kinds of the Clifford algebra objects
each vector carries two kinds of indexes [2–7]. Operators i

2
γa γb determine in

d = (3 + 1) space the spin and all the charges of quarks and leptons, i
2
γ̃a γ̃b

determine families of quarks and leptons.
Here only basis in d = (3+ 1) Clifford space is discussed, which in the spin-

charge-family theory is only a part of d = (13+ 1). The basis is chosen in a way that
the matrix representation of the γa matrices and of the generators of the Lorentz
transformations in internal space Sab = i

4
(γaγb − γbγa) coincide for each family

quantum number, determined with S̃ab = i
4
(γ̃aγ̃b − γ̃bγ̃a), with Dirac matrices.

This contribution is written to help the reader of the proceedings of Bled
workshops ”What comes beyond the standard models” to realize the differences
between the Dirac matrices (operators) γa and the operators γ̃a [2].

We do not take here into account the second quantization requirements [8],
which reduce the number of states from 2d to 2

d
2
−1 families of 2

d
2
−1 family mem-

bers each, since these requirements concern the states in d = 2(2n+ 1), and not at
all the particular subspace, in our case d = (3+ 1).

We use in this contribution 2d vectors in Clifford space, expressible with γa

with the properties

{γa, γb}+ = 2ηab . (16.1)

A general vector can correspondingly be written as

B =

d∑
k=0

aa1a2...ak γ
a1γa2 . . . γak |ψoc > , ai ≤ ai+1 , (16.2)

where |ψo > is the vacuum state. We arrange these vectors as products of nilpotents
and projectors

ab

(k): =
1

2
(γa +

ηaa

ik
γb) ,

ab

[k]: =
1

2
(1+

i

k
γaγb) , (16.3)

where k2 = ηaaηbb, their Hermitian conjugate values are

ab

(k)

†

= ηaa
ab

(−k),
ab

[k]

†

=
ab

[k] , (16.4)
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and that they all are eigenstates of the Cartan subalgebra of the generators of the
Lorentz transformations Sab = i

4
(γaγb = γabγa) in this internal space

S03, S12, S56, · · · , Sd−1 d ,
(16.5)

with the eigenvalues

Sab
ab

(k) =
1

2
k
ab

(k) , Sab
ab

[k]=
1

2
k
ab

[k] . (16.6)

We find in this Clifford algebra space two kinds of the Clifford algebra objects,
besides γa also γ̃a [2–7], which anticommute with γa

{γa, γ̃b}+ = 0 ,

{γa, γ̃b}+ = I 2ηab, for a, b ∈ {0, 1, 2, 3, 5, · · · , d} , (16.7)

for any d, even or odd. I is the unit element in the Clifford algebra. One of the
authors (N.S.M.B.) recognized these two possibilities in Grassmann space [2]. But
one can as well as understand the appearance of the two kinds of the Clifford
algebra object by recognizing

γa B |ψo >: = (a0 γ
a + aa1 γ

a γa1 + aa1a2 γ
a γa1γa2 + · · ·+

aa1···ad γ
a γa1 · · ·γad ) |ψoc > ,

γ̃a B |ψo >: = ( i a0γ
a − i aa1γ

a1 γa + i aa1a2γ
a1γa2 γa + · · ·+

i (−1)d aa1···adγ
a1 · · ·γad γa ) |ψo > . (16.8)

The nilpotents and projectors oof Eq. (16.3) are the eigenstates also of the generators
of the Cartan subalgebra

S̃03, S̃12, S̃56, · · · , S̃d−1 d , (16.9)

with the eigenvalues

S̃ab
ab

(k) =
k

2

ab

(k) , S̃ab
ab

[k]= −
k

2

ab

[k] . (16.10)

One finds the relations

γa
ab

(k)= ηaa
ab

[−k], γb
ab

(k)= −ik
ab

[−k], γa
ab

[k]=
ab

(−k), γb
ab

[k]= −ikηaa
ab

(−k) ,

γ̃a
ab

(k)= −iηaa
ab

[k], γ̃b
ab

(k)= −k
ab

[k], γ̃a
ab

[k]= i
ab

(k), γ̃b
ab

[k]= −kηaa
ab

(k) .

(16.11)

We discuss in what follows the representations of the operators γa, γ̃a, Sab

and S̃ab only in d = (3+ 1).
In Ref. [8], as well as in this proceedings, the second quantization in Clifford

and in Grassmann space is discussed. There the restrictions on the choices of
products of nilpotents and projectors, which can be recognized as independent
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states in the Clifford space, and yet allow the second quantization, is analyzed.
The restrictions reduce, as noticed above, the number of states from 2d to 2

d
2
−1

families with 2
d
2
−1 family members each. All the states of this contribution appear

as a part of states (included as factors) already in d = (5+ 1).
In what follows we shall notpay attention on these limitations. We only

present matrices of the operators γa, γ̃a, Sab and S̃ab for all possible states.

16.2 Basis in d = (3+ 1)

There are 24 = 16 basic states in d = (3 + 1). We make a choice of products of
nilpotents and projectors, which are eigenstates of the Cartan subalgebra operators
as presented in Eqs. (16.6, 16.10). The family members are reachable by Sab, or by
γa representing twice two vectors of definite handedness Γ (d) in d = (3+ 1)

Γ (d) : = (i)d/2
∏
a

(
√
ηaaγa) , if d = 2n . (16.12)

Each vector carries also the family handedness

Γ̃ (d) : = (i)d/2
∏
a

(
√
ηaaγ̃a) , if d = 2n . (16.13)

In what follows we first define the basic states and then represent all the
operators — γa, Sab, γ̃a, S̃ab, Γ (d) (= −4iS03S12 in d = 4), Γ̃ (d) (= −4iS̃03S̃12 in
d = 4) — as 16× 16matrices in this basis. We see that the operators have a 4× 4
diagonal or off diagonal or partly diagonal and partly off diagonal substructure.

Let us start with the definition of the basic states, presented in Table 16.1.
As seen in Table 16.1 γa change handedness. Sab, which do not belong to

Cartan subalgebra, generate all the states of one representation of particular hand-
edness, Eq. (16.12), and particular family quantum number. S̃ab, which do not
belong to Cartan subalgebra, transform a family member of one family into the
same family member of another family, γ̃a change the family quantum number as
well as the handedness Γ̃ (3+1), Eq. (16.13).

Dirac matrices γa and Sab do not distinguish among the families, they ”see”
all the families in the same way and correspondingly ”see” only four states —
instead of 4× four states. The operators γa and Sab are correspondingly 4 × 4
matrices.

Let us define, to simplify the notation, the unit 4 × 4 submatrix and the
submatrix with all the matrix elements equal to zero as follows

1 =

(
1 0

0 1

)
, 0 =

(
0 0

0 0

)
. (16.14)

We also use (2× 2) Pauli matrices:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. (16.15)
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d = 4 ψi γ0 ψi γ
1 ψi γ

2 ψi γ
3 ψi γ̃

0 ψi γ̃
1 ψi γ̃

2 ψi γ̃
3 ψi S

03 S12 S̃03 S̃12 Γ3+1 Γ̃3+1

ψ11 (+i)(+) ψ13 ψ14 iψ14 ψ13 −iψ21 −iψ31 ψ31 −iψ21
i
2

1
2

i
2

1
2

1 1

ψ12 [−i][−] ψ14 ψ13 −iψ13 −ψ14 iψ22 iψ32 −ψ32 iψ22 − i
2
− 1
2

i
2

1
2

1 1

ψ13 [−i](+) ψ11 −ψ12 −iψ12 −ψ11 iψ23 iψ33 −ψ33 iψ23 − i
2

1
2

i
2

1
2

−1 1

ψ14 (+i)[−] ψ12 −ψ11 iψ11 ψ12 −iψ24 −iψ34 ψ34 −iψ24
i
2
− 1
2

i
2

1
2

−1 1

ψ21 [+i](+) ψ23 −ψ24 −iψ24 ψ23 iψ11 iψ41 −ψ41 −iψ11
i
2

1
2
− i
2

1
2

1 −1

ψ22 (−i)[−] ψ24 −ψ23 iψ23 −ψ24 −iψ12 −iψ42 ψ42 iψ12 − i
2
− 1
2
− i
2

1
2

1 −1

ψ23 (−i)(+) ψ21 ψ22 iψ22 −ψ21 −iψ13 −iψ43 ψ43 iψ13 − i
2

1
2
− i
2

1
2

−1 −1

ψ24 [+i][−] ψ22 ψ21 −iψ21 ψ22 iψ14 iψ44 −ψ44 −iψ14
i
2
− 1
2
− i
2

1
2

−1 −1

ψ31 (+i)[+] ψ33 −ψ34 −iψ34 ψ33 iψ41 −iψ11 −ψ11 iψ41
i
2

1
2

i
2
− 1
2

1 −1

ψ32 [−i](−) ψ34 −ψ33 iψ33 −ψ34 −iψ42 iψ12 ψ12 −iψ42 − i
2
− 1
2

i
2
− 1
2

1 −1

ψ33 [−i][+] ψ31 ψ32 iψ32 −ψ31 −iψ43 iψ13 ψ13 −iψ43 − i
2

1
2

i
2
− 1
2

−1 −1

ψ34 (+i)(−) ψ32 ψ31 −iψ31 ψ32 iψ44 −iψ14 −ψ14 iψ44
i
2
− 1
2

i
2
− 1
2

−1 −1

ψ41 [+i][+] ψ43 ψ44 iψ44 ψ43 −iψ31 iψ21 ψ21 iψ31
i
2

1
2
− i
2
− 1
2

1 1

ψ42 (−i)(−) ψ44 ψ43 −iψ43 −ψ44 iψ32 −iψ22 −ψ22 −iψ32 − i
2
− 1
2
− i
2
− 1
2

1 1

ψ43 (−i)[+] ψ41 −ψ42 −iψ42 −ψ41 iψ33 −iψ23 −ψ23 −iψ33 − i
2

1
2
− i
2
− 1
2

−1 1

ψ44 [+i](−) ψ42 −ψ41 iψ41 ψ42 −iψ34 iψ8 ψ24 iψ34
i
2
− 1
2
− i
2
− 1
2

−1 1

Table 16.1. In this table 2d = 16 vectors, describing internal space of fermions in d = (3+1),
are presented. Each vector carries the family member quantum number — determined by
S03 and S12, Eqs. (16.6) — and the family quantum number — determined by S̃03 and S̃12,
Eq. (16.10).

Looking in Table 16.1 one easily finds the matrix representations for γ0, γ1,
γ2 and γ3

γ0 =


0 σ1

σ1 0
0 0 0

0 0 σ1

σ1 0
0 0

0 0 0 σ1

σ1 0
0

0 0 0 0 σ1

σ1 0

 , (16.16)

γ1 =


0 σ1

−σ1 0
0 0 0

0 0 −σ1

σ1 0
0 0

0 0 0 −σ1

σ1 0
0

0 0 0 0 σ1

−σ1 0

 , (16.17)

γ2 =


0 −σ2

σ2 0
0 0 0

0 0 σ2

−σ2 0
0 0

0 0 0 σ2

−σ2 0
0

0 0 0 0 −σ2

σ2 0

 , (16.18)

γ3 =


0 σ3

−σ3 0
0 0 0

0 0 σ3

−σ3 0
0 0

0 0 0 σ3

−σ3 0
0

0 0 0 0 σ3

−σ3 0

 . (16.19)
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One sees as well the 4× 4 substructure along the diagonal of 16× 16matrices.
The representations of the γ̃a, these do not appear in the Dirac case, manifest

the off diagonal structure as follows

γ̃0 =


0 iσ3 0

0 −iσ3
0 0

−iσ3 0

0 iσ3
0 0 0

0 0 0 −iσ3 0

0 iσ3

0 0 iσ3 0
0 −iσ3

0

 , (16.20)

γ̃1 =


0 0 −iσ3 0

0 iσ3
0

0 0 0 iσ3 0
0 −iσ3

−iσ3 0

0 iσ3
0 0 0

0 iσ3 0
0 −iσ3

0 0

 , (16.21)

γ̃2 =


0 0 −σ3 0

0 σ3
0

0 0 0 σ3 0
0 −σ3

σ3 0
0 −σ3

0 0 0
0 −σ3 0

0 σ3
0 0

 , (16.22)

γ̃3 =


0 −iσ3 0

0 iσ3
0 0

−iσ3 0

0 iσ3
0 0 0

0 0 0 iσ3 0
0 −iσ3

0 0 iσ3 0
0 −iσ3

0

 . (16.23)

Matrices Sab have again the 4× 4 substructure along the diagonal structure,
as expected, manifesting the repetition of the Dirac 4× 4matrices, since the Dirac
Sab do not distinguish among families.

S01 =



i
2
σ1 0

0 − i
2
σ1

0 0 0

0 − i
2
σ1 0

0 i
2
σ1

0 0

0 0 − i
2
σ1 0

0 i
2
σ1

0

0 0 0
i
2
σ1 0

0 − i
2
σ1


, (16.24)

S02 =



− i
2
σ2 0

0 i
2
σ2

0 0 0

0
i
2
σ2 0

0 − i
2
σ2

0 0

0 0
i
2
σ2 0

0 − i
2
σ2

0

0 0 0 − i
2
σ2 0

0 i
2
σ2


, (16.25)
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S03 =



i
2
σ3 0

0 − i
2
σ3

0 0 0

0
i
2
σ3 0

0 − i
2
σ3

0 0

0 0
i
2
σ3 0

0 − i
2
σ3

0

0 0 0
i
2
σ3 0

0 − i
2
σ3


, (16.26)

S12 =



1
2
σ3 0

0 1
2
σ3

0 0 0

0
1
2
σ3 0

0 1
2
σ3

0 0

0 0
1
2
σ3 0

0 1
2
σ3

0

0 0 0
1
2
σ3 0

0 1
2
σ3


, (16.27)

S13 =



1
2
σ2 0

0 1
2
σ2

0 0 0

0 − 1
2
σ2 0

0 − 1
2
σ2

0 0

0 0 − 1
2
σ2 0

0 − 1
2
σ2

0

0 0 0
1
2
σ2 0

0 1
2
σ2


, (16.28)

S23 =



1
2
σ1 0

0 1
2
σ1

0 0 0

0 − 1
2
σ1 0

0 − 1
2
σ1

0 0

0 0 − 1
2
σ1 0

0 − 1
2
σ1

0

0 0 0
1
2
σ1 0

0 1
2
σ1


. (16.29)

Γ3+1 = −4iS03S12 =


1 0
0 −1 0 0 0

0 1 0
0 −1 0 0

0 0 1 0
0 −1 0

0 0 0 1 0
0 −1

 . (16.30)

The operators S̃ab have again off diagonal 4× 4 substructure, except S̃03 and
S̃12, which are diagonal.

S̃01 =


0 0 0 − i

2
1

0 0 − i
2

1 0
0 − i

2
1 0 0

− i
2

1 0 0 0

 , (16.31)

S̃02 =


0 0 0 1

2
1

0 0 1
2

1 0
0 −1

2
1 0 0

−1
2

1 0 0 0

 , (16.32)

S̃03 =


i
2

1 0 0 0
0 − i

2
1 0 0

0 0 i
2

1 0
0 0 0 − i

2
1

 , (16.33)
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S̃12 =


1
2

1 0 0 0
0 1
2

1 0 0
0 0 −1

2
1 0

0 0 0 −1
2

1

 , (16.34)

S̃13 =


0 0 0 − i

2
1

0 0 i
2

1 0
0 − i

2
1 0 0

i
2

1 0 0 0

 , (16.35)

S̃23 =


0 0 0 −1

2
1

0 0 1
2

1 0
0 1

2
1 0 0

−1
2

1 0 0 0

 . (16.36)

Γ̃3+1 = −4iS̃03S̃12 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 . (16.37)
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Abstract. In Ref. [1] one of the authors (N.S.M.B.) study the second quantization of fermions
with integer spin while describing the internal degrees of freedom of fermions in Grass-
mann space. In this contribution we study the representations in Grassmann space of the
groups SO(5, 1), SO(3, 1), SU(3)×U(1), and SO(4), which are of particular interest as the
subgroups of the group SO(13, 1). The second quantized integer spin fermions, appearing
in Grassmann space, not observed so far, could be an alternative choice to the half integer
spin fermions, appearing in Clifford space. The spin-charge-family theory, using two kinds
of Clifford operators — γa and γ̃a — for the description of spins and charges (frst) and
family quantum numbers (second), offers the explanation for not only the appearance of
femilies but also for all the properties of quarks and leptons, the gauge fields, scalar fields
and others [2–5]. In both cases the gauge fields in d ≥ (13+1) — the spin connectionsωabα
(of the two kinds in Clifford case and of one kind in Grassmann case) and the vielbeins fαα
— determine in d = (3 + 1) scalars, those with the space index α = (5, 6, · · · , d), and gauge
fields, those with the space index α = (0, 1, 2, 3). While states of the Lorentz group and all
its subgroups (in any dimension) are in Clifford space in the fundamental representations of
the groups, with the family degrees of freedom included [2,3,1], states in Grassmann space
manifest with respect to the Lorentz group adjoint representations, allowing no families.

Povzetek. V članku [1], ki uporabi za opis notranjih prostostnih stopenj fermionov Grass-
mannov prostor, predstavi eden od avtorjev (N.S.M.B.) drugo kvantizacijo fermionov s
celoštevilskimi spini. Prispevek predstavi lastnosti upodobitev grup SO(5, 1), SO(3, 1),
SU(3) × U(1) in SO(4) v Grassmannovem prostoru. Te grupe so posebej zanimive kot
podgrupe grupe SO(13, 1). Kreacijski in anihilacijski operatorji, ki ustrežejo komutacijskim
relacijam za fermione, nosijo v Grassmannovem prostoru celoštevilčni spin. Fermioni s
celoštevilčnim spinom ponudijo alternativni opis fermionom v Cliffordovem prostoru,
ki nosijo polštevilčni spin. Opaženi so le fermioni s polštevilčnim spinom. Teorija spinov-
nabojev-družin, ki uporabi dve vrsti operatorjev γ v Cliffordovem prostoru — γa in γ̃a —
prvega za opis spina in vseh nabojev in drugega za opis družinskega kvantnega števila,
ponuja razlago ne samo za pojav družin, ampak tudi pojasni vse lastnosti kvarkov in
leptonov, umeritvenih polj, skalarnih polj in drugo [2–5]. Umeritvena polja v d ≥ (13+ 1) —
spinske povezaveωabα (dveh vrst v Cliffordovem primeru in ene vrste v Grassmannovem
primeru) in “vielbeini” fαα — določajo v obeh primerih v d = (3 + 1) skalarje, če nosijo
prostorski indeks α = (5, 6, · · · , d), ter umeritvena polja, kadar imajo prostorski indeks

? This contribution developed during the discussions at the 20th — Bled, 09-17 of July,
2017 — and 21st — Bled, 23 of June to 1 of July — Workshops ”What Comes Beyond the
Standard Models”, Bled, 09-17 of July, 2017.
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α = (0, 1, 2, 3). Stanja Lorentzove grupe in vseh njenih podgrup so za poljubno dimenzijo
v Cliffordovem prostoru v fundamentalni upodobitvi in vključujejo družinske prostostne
stopnje [2,3,1], v Grassmannovem prostoru pa so glede na Lorentzovo grupo v adjungirani
upodobitvi in ne dopuščajo družin.

Keywords: Spinor representations in Grassmann space, Second quantization of
fermion fields in Grassmann space, Higher dimensional spaces, Kaluza-Klein
theories, Beyond the standard model
PACS:04.50.-Cd, 11.10.Kk, 11.25.Mj, 11.30.Hv, 12.10.-g, 12.60.-i

17.1 Introduction

In Ref. [2] the representations in Grassmann and in Clifford space were discussed.
In Ref. ([1] and the references therein) the second quantization procedure in both
spaces — in Clifford space and in Grassmann space — were discussed in order to
try to understand ”why nature made a choice of Clifford rather than Grassmann
space” during the expansion of our universe, although in both spaces the creation
operators b̂†j and the annihilation operators b̂j exist fulfilling the anticommutation
relations required for fermions [1]

{b̂i, b̂
†
j }+|φo > = δij |ψo > ,

{b̂i, b̂j}+|ψo > = 0 |ψo > ,

{b̂†i , b̂
†
j }+|ψo > = 0 |ψo > ,

b̂†j |ψo > = |ψj >

b̂j|ψo > = 0 |ψo > . (17.1)

|ψo > is the vacuum state. We use |ψo >= |1 >.
The creation operators can be expressed in both spaces by products of eigen-

states of the Cartan subalgebra, Eq. (17.33), of the Lorentz algebra, Eqs. (17.3, 17.11).
Starting with one state (Ref. [1]) all the other states of the same representation are
reachable by the generators of the Lorentz transformations (which do not belong
to the Cartan subalgebra), with Sab presented in Eq. (17.32) in Grassmann space
and with either Sab or S̃ab, Eq. (17.34), in Clifford space.

But while there are in Clifford case two kinds of the generators of the Lorentz
transformations — Sab and S̃ab, the first transforming members of one family
among themselves, and the second transforming one member of a particular
family into the same member of other families — there is in Grassmann space
only one kind of the Lorentz generators — Sab. Correspondingly are all the states
in Clifford space, which can be second quantized as products of nilpotents and
projectors [9,10,1], reachable with one of the two kinds of the operators Sab and
S̃ab, while different representations are in Grassmann space disconnected.

On the other hand the vacuum state is in Grassmann case simple — |ψo >=

|1 >— while in Clifford case is the sum of products of projectors, Eq. (17.17).
In Grassmann space states are in the adjoint representations with respect

to the Lorentz group, while states in Clifford space belong to the fundamental
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representations with respect to both generators, Sab and S̃ab, or they are singlets.
Correspondingly are properties of fermions, described with the spin-charge-family
theory [3,4,6,5,8,7], which uses the Clifford space to describe fermion degrees
of freedom, in agreement with the observations, offering explanation for all the
assumptions of the standard model (with families included) and also other observed
phenomena.

In Grassmann case the spins manifest, for example, in the case of SO(6) or
SO(5, 1) decuplets or singlets — triplets and singlets in Clifford case, Table 17.2 —
while with respect to the subgroups SU(3) and U(1) of SO(6) the states belong to
either singlets, or triplets or sextets, Tables 17.3, 17.4 — triplets and singlets in the
Clifford case.

In what follows we discuss representations, manifesting as charges and spins
of fermions, of subgroups of SO(13, 1), when internal degrees of freedom of
fermions are described in Grassmann space and compare properties of these
representations with the properties of the corresponding representations appearing
in Clifford space. We assume, as in the spin-charge-family theory, that both spaces,
the internal and the ordinary space, have d = 2(2n+ 1)-dimensions, n is positive
integer, d ≥ 14 and that all the degrees of freedom of fermions and bosons originate
in d = 2(2n+ 1), in which fermions interact with gravity only.

After the break of the starting symmetry SO(13, 1) into SO(7, 1)×SU(3)×U(1),
and further to SO(3, 1) × SU(2) × SU(2) × SU(3) × U(1), fermions manifest in
d = (3+ 1) the spin and the corresponding charges and interact with the gauge
fields, which are indeed the spin connections with the space indexm = (0, 1, 2, 3),
originating in d = (13, 1) [7]. Also scalar fields originate in gravity: Those spin
connections with the space index a = (5, 6, 7, 8) determine masses of fermions,
those with the space index a = (9, 10, . . . , 14) contribute to particle/antiparticle
asymmetry in our universe [4].

We pay attention on fermion fields, the creation and annihilation operators of
which fulfill the anticommutation relations of Eq. (17.1).

17.1.1 Creation and annihilation operators in Grassmann space

In Grassmann d = 2(2n + 1)-dimensional space the creation and annihilation
operators follow from the starting two creation and annihilation operators, both
with an odd Grassmann character, since those with an even Grassmann character
do not obey the anticommutation relations of Eq. (17.1) [1]

b̂θ1†1 = (
1√
2
)
d
2 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−1 + iθd) ,

b̂θ11 = (
1√
2
)
d
2 (

∂

∂θd−1
− i

∂

∂θd
) · · · ( ∂

∂θ0
−

∂

∂θ3
) ,

b̂θ2†1 = (
1√
2
)
d
2 (θ0 + θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−1 + iθd) ,

b̂θ21 = (
1√
2
)
d
2 (

∂

∂θd−1
− i

∂

∂θd
) · · · ( ∂

∂θ0
+

∂

∂θ3
) . (17.2)
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All the creation operators are products of the eigenstates of the Cartan subalgebra
operators,Eq. (17.33)

Sab(θa ± εθb) = ∓iη
aa

ε
(θa ± εθb) ,

ε = 1 , for ηaa = 1 , ε = i , for ηaa = −1 ,

Sab (θaθb ± εθcθd) = 0 , Scd (θaθb ± εθcθd) = 0 . (17.3)

The two creation operators, b̂θ1†1 and b̂θ2†1 , if applied on the vacuum state,
form the starting two states φ11 and φ21 of the two representations, respectively.
The vacuum state is chosen to be the simplest one [1] — |φ0 >= |1 >. The rest
of creation operators of each of the two groups, b̂θ1†i and b̂θ2†i , follow from the
starting one by the application of the generators of the Lorentz transformations in
Grassmann space Sab, Eq. (17.32), which do not belong to the Cartan subalgebra,
Eq. (17.33), of the Lorentz algebra. They generate either |φ1j > of the first group or
|φ2j > of the second group.

Annihilation operators b̂θ1i and b̂θ2i follow from the creation ones by the
Hermitian conjugation [1], when taking into account the assumption

(θa)† =
∂

∂θa
ηaa = −i pθaηaa , (17.4)

from where it follows

(
∂

∂θa
)† = ηaa θa , (pθa)† = −iηaaθa . (17.5)

The annihilation operators b̂θ1i and b̂θ2i annihilate states |φ1i > and |φ2i >,
respectively.

The application of S01 on b̂θ1†1 , for example, transforms this creation operator
into b̂θ1†2 = ( 1√

2
)
d
2
−1 (θ0θ3 + iθ1θ2) (θ5 + iθ6) · · · (θd−1 − iθd). Correspondingly

its Hermitian conjugate annihilation operator is equal to b̂θ12 = ( 1√
2
)
d
2
−1 ( ∂

∂θd−1 −

i ∂
∂θd

) · · · ( ∂
∂θ3

∂
∂θ0

− i ∂
∂θ2

∂
∂θ1

).
All the states are normalized with respect to the integral over the Grassmann

coordinate space [2]

< φai |φ
b
j > =

∫
dd−1xddθa ω < φai |θ >< θ|φ

b
j >= δ

ab δij ,

ω = Πdk=0(
∂

∂θk
+ θk) , (17.6)

where ω is a weight function, defining the scalar product < φai |φ
b
j >, and we

require that [2]

{dθa, θb}+ = 0,

∫
dθa = 0 ,

∫
dθaθa = 1 ,∫

ddθ θ0θ1 · · · θd = 1 ,

ddθ = dθd . . . dθ0 , (17.7)
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with ∂
∂θa

θc = ηac.
There are 1

2
d!
d!
2
d!
2

in each of these two groups of creation operators of an odd
Grassmann character in d = 2(2n+ 1)-dimensional space.

The rest of creation operators (and the corresponding annihilation operators)
would have rather opposite Grassmann character than the ones studied so far: like
a. θ0θ1 for the creation operator and [ ∂

∂θ1
∂
∂θ0

] for the corresponding annihilation
operator in d = (1+1) (since {θ0θ1, ∂

∂θ1
∂
∂θ0

}+ gives (1+(1+1)θ0θ1 ∂
∂θ1

∂
∂θ0

)), and
like b. (θ0∓θ3)(θ1±iθ2) for creation operator and [( ∂

∂θ1
∓i ∂

∂θ2
)( ∂
∂θ0
∓ ∂
∂θ3

)] for the
annihilation operator, or θ0θ3θ1θ2 for the creation operator and [ ∂

∂θ2
∂
∂θ1

∂
∂θ3

∂
∂θ0

]
for the annihilation operator in d = (3+ 1) (since, let say, {1

2
(θ0 − θ3)(θ1 + iθ2),

1
2
( ∂
∂θ1

−i ∂
∂θ2

)( ∂
∂θ0

− ∂
∂θ3

)}+ gives (1+ 1
4
(1+1)(θ0−θ3)(θ1+iθ2)( ∂

∂θ1
−i ∂

∂θ2
)( ∂
∂θ0

−
∂
∂θ3

) and equivalently for other cases), but applied on a vacuum states some of
them still fulfill some of the relations of Eq. (17.1), but not all (like {1

2
(θ0−θ3)(θ1+

iθ2), 1
2
(θ0 + θ3)(θ1 − iθ2)}+ = iθ0θ1θ2θ3, while it should be zero).

Let us add that, like in Clifford case, one can simplify the scalar product in
Grassmann case by recognizing that the scalar product is equal to δab δij

< φai |θ >< θ|φ
b
j > = δab δij , (17.8)

without integration over the Grassmann coordinates. Let us manifest this in the
case of d = (1 + 1):< 1| 1√

2
( ∂
∂θ0

− ∂
∂θ1

) 1√
2
(θ0 − θ1)|1 >= 1, |1 > is the normal-

ized vacuum state, < 1|1 >= 1. It is true in all dimensions, what can easily be
understood for all the states, which are defined by the creation operators b̂†i on
the vacuum state |1 >, |φbi >= b̂

†
i |1 >, fulfilling the anticommutation relations of

Eq. (17.1).

17.1.2 Creation and annihilation operators in Clifford space

There are two kinds of Clifford objects [2], ([3] and Refs. therein), γa and γ̃a, both
fulfilling the anticommutation relations

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ ,

{γa, γ̃b}+ = 0 . (17.9)

Both Clifford algebra objects are expressible with θa and ∂
∂θa

[2,1], ([3] and Refs.
therein)

γa = (θa +
∂

∂θa
) ,

γ̃a = i (θa −
∂

∂θa
) ,

θa =
1

2
(γa − iγ̃a) ,

∂

∂θa
=
1

2
(γa + iγ̃a) , (17.10)

from where it follows: (γa)† = γaηaa, (γ̃a)† = γ̃aηaa, γaγa = ηaa, γa(γa)† = 1,
γ̃aγ̃a = ηaa, γ̃a(γ̃a)† = 1.
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Correspondingly we can use either γa or γ̃a instead of θa to span the internal
space of fermions. Since both, γa and γ̃a, are expressible with θa and the deriva-
tives with respect to θa, the norm of vectors in Clifford space can be defined by
the same integral as in Grassmann space, Eq.(17.6), or we can simplify the scalar
product (as in the Grassmann case, Eq. (17.8) by introducing the Clifford vacuum
state |ψoc >, Eq. (17.17), instead of |1 > in Grassmann case.

We make use of γa to span the vector space. As in the case of Grassmann
space we require that the basic states are eigenstates of the Cartan subalgebra
operators of Sab and S̃ab, Eq. (17.33).

ab

(k): =
1

2
(γa +

ηaa

ik
γb) ,

ab

(k)

†

= ηaa
ab

(−k) ,

ab

[k]: =
1

2
(1+

i

k
γaγb) ,

ab

[k]

†

=
ab

[k] ,

Sab
ab

(k) =
1

2
k
ab

(k) , Sab
ab

[k]=
1

2
k
ab

[k] ,

S̃ab
ab

(k) =
1

2
k
ab

(k) , S̃ab
ab

[k]= −
1

2
k
ab

[k] , (17.11)

with k2 = ηaaηbb. To calculate S̃ab
ab

(k) and S̃ab
ab

[k] we use [10,9] the relation on
any Clifford algebra object A as follows

(γ̃aA = i(−)(A)Aγa)|ψoc > , (17.12)

where A is any Clifford algebra object and (−)(A) = −1, if A is an odd Clifford
algebra object and (−)(A) = 1, if A is an even Clifford algebra object, |ψoc > is
the vacuum state, replacing the vacuum state |ψo >= |1 >, used in Grassmann
case, with the one of Eq. (17.17), in accordance with the relation of Eqs. (17.10, 17.6,
17.7), Ref. [1].

We can define now the creation and annihilation operators in Clifford space
so that they fulfill the requirements of Eq. (17.1). We write the starting creation
operator and its Hermitian conjugate one (in accordance with Eq. (17.11) and
Eq.(17.33)) in 2(2n+ 1)-dimensional space as follows [1]

b̂1†1 =
03

(+i)
12

(+)
56

(+) · · ·
d−1 d

(+) ,

b̂11 =
d−1 d

(−) · · ·
56

(−)
12

(−)
03

(−i) . (17.13)

The starting creation operator b̂1†1 , when applied on the vacuum state |ψoc >,
defines the starting family member of the starting ”family”. The corresponding
starting annihilation operator is its Hermitian conjugated one, Eq. (17.11).

All the other creation operators of the same family can be obtained by the
application of the generators of the Lorentz transformations Sab, Eq. (17.34), which
do not belong to the Cartan subalgebra of SO(2(2n+ 1) − 1, 1), Eq. (17.33).

b̂1†i ∝ Sab..Sefb̂
1†
1 ,

b̂1i ∝ b̂11Sef..Sab , (17.14)
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with Sab† = ηaaηbbSab. The proportionality factors are chosen so, that the corre-
sponding states |ψ11 >= b̂

1†
i |ψoc > are normalized, where |ψoc > is the normalized

vacuum state, < ψoc|ψoc >= 1.
The creation operators creating different ”families” with respect to the starting

”family”, Eq. (17.13), can be obtained from the starting one by the application of
S̃ab, Eq. (17.34), which do not belong to the Cartan subalgebra of S̃O(2(2n+ 1) −

1, 1), Eq. (17.33). They all keep the ”family member” quantum number unchanged.

b̂α†i ∝ S̃ab · · · S̃ef b̂
1†
i . (17.15)

Correspondingly we can define (up to the proportionality factor) any creation
operator for any ”family” and any ”family member” with the application of Sab

and S̃ab [1]

b̂α†i ∝ S̃ab · · · S̃efSmn · · ·Sprb̂
1†
1

∝ Smn · · ·Sprb̂1†1 Sab · · ·Sef . (17.16)

All the corresponding annihilation operators follow from the creation ones by the
Hermitian conjugation.

There are 2
d
2
−1 × 2

d
2
−1 creation operators of an odd Clifford character and

the same number of annihilation operators, which fulfill the anticommutation
relations of Eq. (17.1) on the vacuum state |ψoc >with 2

d
2
−1 summands

|ψoc >=

α (
03

[−i]
12

[−]
56

[−] · · ·
d−1 d

[−] +
03

[+i]
12

[+]
56

[−] · · ·
d−1 d

[−] +
03

[+i]
12

[−]
56

[+] · · ·
d−1 d

[−] + · · · )|0 > ,

α =
1√
2
d
2
−1
,

for d = 2(2n+ 1) , (17.17)

n is a positive integer. For a chosen α = 1√
2
d
2

−1
the vacuum is normalized:

< ψoc|ψoc >= 1.
It is proven in Ref. [1] that the creation and annihilation operators fulfill the

anticommutation relations required for fermions, Eq. (17.1).

17.2 Properties of representations of the Lorentz group
SO(2(2n + 1)) and of subgroups in Grassmann and in
Clifford space

The purpose of this contribution is to compare properties of the representations
of the Lorentz group SO(2(2n + 1)), n ≥ 3, when for the description of the
internal degrees of freedom of fermions either i. Grassmann space or ii. Clifford
space is used. The spin-charge-family theory ([6,5,3,4,8,7,11] and the references
therein) namely predicts that all the properties of the observed either quarks and
leptons or vector gauge fields or scalar gauge fields originate in d ≥ (13+ 1), in



i
i

“proc18” — 2018/12/10 — 11:44 — page 342 — #358 i
i

i
i

i
i

342 D. Lukman and N.S. Mankoč Borštnik

which massless fermions interact with the gravitational field only — with its spin
connections and vielbeins.

However, both — Clifford space and Grassmann space — allow second quan-
tized states, the creation and annihilation operators of which fulfill the anticom-
mutation relations for fermions of Eq. (17.1).

But while Clifford space offers the description of spins, charges and families
of fermions in d = (3+ 1), all in the fundamental representations of the Lorentz
group SO(13, 1) and the subgroups of the Lorentz group, in agreement with the
observations, the representations of the Lorentz group are in Grassmann space the
adjoint ones, in disagreement with what we observe.

We compare properties of the representations in Grassmann case with those in
Clifford case to be able to better understand ”the choice of nature in the expanding
universe, making use of the Clifford degrees of freedom”, rather than Grassmann
degrees of freedom.

In introduction we briefly reviewed properties of creation and annihilation
operators in both spaces, presented in Ref. [1] (and the references therein). We pay
attention on spaces with d = 2(2n+ 1) of ordinary coordinates and d = 2(2n+ 1)

internal coordinates, either of Clifford or of Grassmann character.
i. In Clifford case there are 2

d
2
−1 creation operators of an odd Clifford

character, creating ”family members” when applied on the vacuum state. We
choose them to be eigenstates of the Cartan subalgebra operators, Eq.(17.33), of the
Lorentz algebra. All the members can be reached from any of the creation operators
by the application of Sab, Eq. (17.34). Each ”family member” appears in 2

d
2
−1

”families”, again of an odd Clifford character, since the corresponding creation
operators are reachable by S̃ab, Eq. (17.34), which are Clifford even objects.

There are correspondingly 2
d
2
−1· 2d2−1 creation and the same number (2

d
2
−1·

2
d
2
−1) of annihilation operators. Also the annihilation operators, annihilating states

of 2
d
2
−1 ”family members” in 2

d
2
−1 ”families”, have an odd Clifford character,

since they are Hermitian conjugate to the creation ones.
The rest of 2· 2d2−1· 2d2−1 members of the Lorentz representations have an

even Clifford character, what means that the corresponding creation and annihila-
tion operators can not fulfill the anticommutation relations required for fermions,
Eq. (17.1). Among these 2

d
2
−1 products of projectors determine the vacuum state,

Eq. (17.17).
ii. In Grassmann case there are d!

d
2
! d
2
!

operators of an odd Grassmann
character, which form the creation operators, fulfilling with the corresponding
annihilation operators the requirements of Eq. (17.1). All the creation operators are
chosen to be products of the eigenstates of the Cartan subalgebra Sab, Eq. (17.33).
The corresponding annihilation operators are the Hermitian conjugated values of
the creation operators, Eqs. (17.4, 17.5, 17.2). The creation operators form, when
applied on the simple vacuum state |φo >= |1 >, two independent groups of
states. The members of each of the two groups are reachable from any member
of a group by the application of Sab, Eq. (17.32). All the states of any of the two
decuplets are orthonormalized.
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We comment in what follows the representations in d = (13+ 1) in Clifford
and in Grassmann case. In spin-charge family theory there are breaks of the starting
symmetry from SO(13, 1) to SO(3, 1)× SU(2)× SU(3)×U(1) in steps, which lead
to the so far observed quarks and leptons, gauge and scalar fields and gravity.
One of the authors (N.S.M.B.), together with H.B. Nielsen, defined the discrete
symmetry operators for Kaluza-Klein theories for spinors in Clifford space [19]. In
Ref. [1] the same authors define the discrete symmetry operators in the case that
for the description of fermion degrees of freedom Grassmann space is used. Here
we comment symmetries in both spaces for some of subgroups of the SO(13, 1)
group, as well as the appearance of the Dirac sea.

17.2.1 Equations of motion in Grassmann and Clifford space

We define [1] the action in Grassmann space, for which we require — similarly as
in Clifford case — that the action for a free massless object

A =
1

2
{

∫
ddx ddθ ω (φ†(1− 2θ0

∂

∂θ0
)
1

2
(θapa + ηaaθa†pa)φ} , (17.18)

is Lorentz invariant. The corresponding equation of motion is

1

2
[(1− 2θ0

∂

∂θ0
) θa + ((1− 2θ0

∂

∂θ0
) θa)†] pa |φ

θ
i > = 0 , (17.19)

pa = i ∂
∂xa

, leading to the Klein-Gordon equation

{(1− 2θ0
∂

∂θ0
)θapa}

† θbpb|φ
θ
i > = papa|φ

θ
i >= 0 . (17.20)

In the Clifford case the action for massless fermions is well known

A =

∫
ddx

1

2
(ψ†γ0 γapaψ) + h.c. , (17.21)

leading to the equations of motion

γapa|ψ
α > = 0 , (17.22)

which fulfill also the Klein-Gordon equation

γapaγ
bpb|ψ

α
i > = papa|ψ

α
i >= 0 . (17.23)

17.2.2 Discrete symmetries in Grassmann and Clifford space

We follow also here Ref. [1] and the references therein. We distinguish in d-
dimensional space two kinds of dicsrete operators C,P and T operators with
respect to the internal space which we use.

In the Clifford case [19], when the whole d-space is treated equivalently, we
have

CH =
∏
γa∈=

γa K , TH = γ0
∏
γa∈<

γa K Ix0 , P(d−1)
H = γ0 I~x ,

Ixx
a = −xa , Ix0x

a = (−x0,~x) , I~x~x = −~x ,

I~x3x
a = (x0,−x1,−x2,−x3, x5, x6, . . . , xd) . (17.24)
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The product
∏
γa is meant in the ascending order in γa.

In the Grassmann case we correspondingly define

CG =
∏

γa
G
∈=γa

γaG K , TG = γ0G
∏

γa
G
∈<γa

γaG K Ix0 , P(d−1)
G = γ0G I~x ,

(17.25)

with γaG defined as

γaG = (1− 2θaηaa
∂

∂θa
) , (17.26)

while Ix, I~x3 is defined in Eq. (17.24). Let be noticed, that since γaG (= −iηaa γaγ̃a)
is always real as there is γaiγ̃a, while γa is either real or imaginary, we use in
Eq. (17.25) γa to make a choice of appropriate γaG. In what follows we shall use
the notation as in Eq. (17.25).

We define, according to Ref. [1] (and the references therein) in both cases
— Clifford Grassmann case — the operator ”emptying” [6,5] (arxiv:1312.1541)
the Dirac sea, so that operation of ”emptyingN” after the charge conjugation
CH in the Clifford case and ”emptyingG” after the charge conjugation CG in the
Grassmann case (both transform the state put on the top of either the Clifford or
the Grassmann Dirac sea into the corresponding negative energy state) creates the
anti-particle state to the starting particle state, both put on the top of the Dirac sea
and both solving the Weyl equation, either in the Clifford case, Eq. (17.22), or in
the Grassmann case, Eq. (17.19), for free massless fermions

"emptyingN" =
∏
<γa

γa K in Clifford space ,

"emptyingG" =
∏
<γa

γaG K in Grassmann space , (17.27)

although we must keep in mind that indeed the anti-particle state is a hole in the
Dirac sea from the Fock space point of view. The operator ”emptying” is bringing
the single particle operator CH in the Clifford case and CG in the Grassmann case
into the operator on the Fock space in each of the two cases. Then the anti-particle
state creation operator — Ψ†a[Ψp] — to the corresponding particle state creation
operator — can be obtained also as follows

Ψ†a[Ψp] |vac > = CH Ψ
†
p[Ψp] |vac >=

∫
Ψ†a(~x) (CH Ψp(~x))d(d−1)x |vac > ,

CH = "emptyingN" · CH (17.28)

in both cases.
The operators CH and CG

CH = "emptyingN" · CH ,
CG = "emptyingNG" · CG , (17.29)

operating on Ψp(~x) transforms the positive energy spinor state (which solves
the corresponding Weyl equation for a massless free fermion) put on the top of
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the Dirac sea into the positive energy anti-fermion state, which again solves the
corresponding Weyl equation for a massless free anti-fermion put on the top of
the Dirac sea. Let us point out that either the operator "emptyingN" or the operator
"emptyingNG" transforms the single particle operator either CH or CG into the
operator operating in the Fock space.

We use the Grassmann even, Hermitian and real operators γaG, Eq. (17.26), to
define discrete symmetry in Grassmann space, first we did in ((d+ 1) − 1) space,
Eq. (17.25), now we do in (3 + 1) space, Eq. (17.30), as it is done in [19] in the
Clifford case. In the Grassmann case we do this in analogy with the operators in
the Clifford case [19]

CNG =
∏

γm
G
∈<γm

γmG K Ix6x8...xd ,

TNG = γ0G
∏

γm
G
∈=γm

K Ix0Ix5x7...xd−1 ,

P(d−1)
NG = γ0G

d∏
s=5

γsGI~x ,

CNG =
∏

γs
G
∈<γs

γsG , Ix6x8...xd ,

CNGP(d−1)
NG = γ0G

d∏
γs
G
∈=γs,s=5

γsG I~x3 Ix6x8...xd ,

CNGTNGP(d−1)
NG =

∏
γs
G
∈=γa

γaG IxK . (17.30)

17.2.3 Representations in Grassmann and in Clifford space in d = (13+ 1)

In the spin-charge-family theory the starting dimension of space must be ≥ (13+ 1),
in order that the theory manifests in d = (3 + 1) all the observed properties of
quarks and leptons, gauge and scalar fields (explaining the appearance of higgs
and the Yukawa couplings), offering as well the explanations for the observations
in cosmology.

Let us therefore comment properties of representations in both spaces when
d = (13+ 1), if we analyze one group of ”family members” of one of families in
Clifford space, and one of the two representations of 1

2
d!
d
2
!d
2
!
.

a. Let us start with Clifford space [3,5,4,6,13,12,2]. Each ”family” repre-
sentation has 2

d
2
−1 = 64 ”family members”. If we analyze this representation

with respect to the subgroups SO(3, 1), (SU(2) × SU(2)) of SO(4) and (SU(3)×
U(1)) of SO(6) of the Lorentz group SO(13, 1), we find that the representations
have quantum numbers of all the so far observed quarks and leptons and anti-
quarks and antileptons, all with spin up and spin down, as well as of the left and
right handedness, with the right handed neutrino included as the member of this
representation.

Let us make a choice of the ”family”, which follows by the application of
S̃15 on the ”family”, for which the creation operator of the right-handed neutrino
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with spin 1
2

would be
03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

(+)
13 14

(+) . (The corresponding

annihilation operator of this creation operator is
13 14

(−)
11 12

(−)
9 10

(−) ||
78

(−)
56

(−) |
12

(−)
03

(−i)). In Table 6.3 (see pages 112–113 in this volume) presented creation operators
for all the ”family members” of this family follow by the application of Sab

on S̃15
03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

(+)
13 14

(+) . (The annihilation operator of S̃15
03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

(+)
13 14

(+) is
13 14

[−]
11 12

[−]
9 10

(−) ||
78

(−)
56

[+] |
12

[+]
03

(−i).)
This is the representation of Table 6.3 (see pages 112–113 in this volume),

in which all the ’family members” of one ”family” are classified with respect to
the subgroups SO(3, 1) × SU(2) × SU(2) × SU(3) × U(1). The vacuum state on
which the creation operators, represented in the third column, apply is defined
in Eq. (17.17). All the creation operators of all the states are of an odd Clifford
character, fulfilling together with the annihilation operators (which have as well
the equivalent odd Clifford character, since the Hermitian conjugation do not
change the Clifford character) the requirements of Eq. (17.1). Since the Clifford
even operators Sab and S̃ab do not change the Clifford character, all the creation
and annihilation operators, obtained by products of Sab or S̃ab or both, fulfill the
requirements of Eq. (17.1).

We recognize in Table 6.3 (see pages 112–113 in this volume) that quarks
distinguish from leptons only in the SO(6) part of the creation operators. Quarks
belong to the colour (SU(3)) triplet carrying the ”fermion” (U(1)) quantum num-
ber τ4 = 1

6
, antiquarks belong to the colour antitriplet, carrying the ”fermion”

quantum number τ4 = −1
6

. Leptons belong to the colour (SU(3)) singlet, carrying
the ”fermion” (U(1)) quantum number τ4 = −1

2
, while antileptons belong to the

colour antisinglet, carrying the ”fermion” quantum number τ4 = 1
2

.
Let us also comment that the oddness and evenness of part of states in the

subgroups of the SO(13, 1) group change: While quarks and leptons have in
the part of SO(6) an odd Clifford character, have antiquarks and antileptons in
this part an even odd Clifford character. Correspondingly the Clifford character
changes in the rest of subgroups.

Families are generated by S̃ab applying on any one of the ”family members”.
Again all the ”family members” of this ”family” follow by the application of all
Sab (not belonging to Cartan subalgebra).

The spontaneous break of symmetry from SO(13, 1) to SO(7, 1)×SU(3)×U(1),
Refs. [3–5], makes in the spin-charge-family theory all the families, generated by
S̃mt and S̃st, [m = (0, 1, 2, 3), s = (5, 6, 7, 8), t = (9, 10, 11, 12, 13, 14)], massive of
the scale of ≥ 1016 GeV [14–16]. Correspondingly there are only eight families of
quarks and leptons, which split into two groups of four families, both manifesting
the symmetry S̃U(2)× S̃U(2) ×U(1). (The fourth of the lower four families is pre-
dicted to be observed at the LHC, the stable of the upper four families contributes
to the dark matter [17].)

In the spin-charge-family theory fermions interact with only gravity, which
manifests after the break of the starting symmetry in d = (3+ 1) as all the known
vector gauge fields, ordinary gravity and the higgs and the Yukawa couplings [7,3–
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5,11]. There are scalar fields which bring masses to family members. The theory
explains not only all the assumptions of the standard model with the appearance of
families, the vector gauge fields and the scalar fields, it also explains appearance
of the dark matter [17], matter/antimatter asymmetry [4] and other phenomena,
like the miraculous cancellation of the triangle anomalies in the standard model [8].

b. We compare representations of SO(13, 1) in Clifford space with those in
Grassmann space. We have no ”family” quantum numbers in Grassmann space.
We only have two groups of creation operators, defining — when applied on the
vacuum state |1 > — 1

2
d!
d
2
!d
2
!

equal in d = (13 + 1) to 1716 members in each of
the two groups in comparison in Clifford case with 64 ”family members” in one
”family” and 64 ”families”, which the breaks of symmetry reduce to 8 ”families”,
making all the (64− 8) ”families” massive and correspondingly not observable at
low energies ([5,14] and the references therein).

Since the 1716members are hard to be mastered, let us look therefore at each
subgroup — SU(3)×U(1), SO(3, 1) and SU(2)× SU(2) of SO(13, 1) — separately.

Let us correspondingly analyze the subgroups: SO(6) from the point of view
of the two subgroups SU(3) × U(1), and SO(7, 1) from the point of view of the
two subgroups SO(3, 1)× SO(4), and let us also analyze SO(4) as SU(2)× SU(2).

17.2.4 Examples of second quantizable states in Grassmann and in Clifford
space

We compare properties of representations in Grassmann and in Clifford space for
several choices of subgroups of SO(13, 1) in the case that in both spaces creation
and annihilation operators fulfill requirements of Eq. (17.1), that is that both kinds
of states can be second quantized. Let us again point out that in Grassmann case
fermions carry integer spins, while in Clifford case they carry half integer spin.

States in Grassmann and in Clifford space for d = (5+ 1) We study properties
of representations of the subgroup SO(5, 1) (of the group SO(13, 1)), in Clifford and
in Grassmann space, requiring that states can be in both spaces second quantized,
fulfilling therefore Eq. (17.1).

a. In Clifford space there are 2
d
2
−1, each with 2

d
2
−1 family members, that is

4 families, each with 4 members. All these sixteen states are of an odd Clifford
character, since all can be obtained by products of Sab, S̃ab or both from an Clifford
odd staring states and are correspondingly second quantizable as required in
Eq. (17.1). All the states are the eigenstates of the Cartan subalgebra of the Lorentz
algebra in Clifford space, Eq. (17.33), solving the Weyl equation for free massless
spinors in Clifford space, Eq. (17.22). The four familes, with four members each,
are presented in Table 17.1. All of these 16 states are reachable from the first one in
each of the four families by Sab, or by S̃ab if aplied on any family member.

Each of these four families have positive and negative energy solutions, as
presented in [19], in Table I.. We present in Table 17.1 only states of a positive
energy, that is states above the Dirac sea. The antiparticle states are reachable from
the particle states by the application of the operator CN P(d−1)

N = γ0γ5I~x3Ix6 ,
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keeping the spin 1
2

, while changing the charge from 1
2

to −1
2

. All the states above
the Dirac sea are indeed the hole in the Dirac sea, as explained in Ref. [19].

ψ S03 S12 S56 S̃03 S̃12 S̃56

ψI1
03

(+i)
12

(+)
56

(+) i
2

1
2

1
2

i
2

1
2

1
2

ψI2
03

[−i]
12

[−]
56

(+) − i
2
− 1
2

1
2

i
2

1
2

1
2

ψI3
03

[−i]
12

(+)
56

[−] − i
2

1
2

− 1
2

i
2

1
2

1
2

ψI4
03

(+i)
12

[−]
56

[−] i
2

− 1
2
− 1
2

i
2

1
2

1
2

ψII1
03

[+i]
12

[+]
56

(+) i
2

1
2

1
2

− i
2
− 1
2

1
2

ψII2
03

(−i)
12

(−)
56

(+) − i
2
− 1
2

1
2

− i
2
− 1
2

1
2

ψII3
03

(−i)
12

[+]
56

[−] − i
2

1
2

− 1
2
− i
2
− 1
2

1
2

ψII4
03

[+i]
12

(−)
56

[−] i
2

− 1
2
− 1
2
− i
2
− 1
2

1
2

ψIII1
03

[+i]
12

(+)
56

[+] i
2

1
2

1
2

− i
2

1
2

− 1
2

ψIII2
03

(−i)
12

[−]
56

[+] − i
2
− 1
2

1
2

− i
2

1
2

− 1
2

ψIII3
03

(−i)
12

(+)
56

(−) − i
2

1
2

− 1
2
− i
2

1
2

− 1
2

ψIII4
03

[+i]
12

[−]
56

(−) i
2

− 1
2
− 1
2
− i
2

1
2

− 1
2

ψIV1
03

(+i)
12

[+]
56

[+] i
2

1
2

1
2

i
2

− 1
2
− 1
2

ψIV2
03

[−i]
12

(−)
56

[+] − i
2
− 1
2

1
2

i
2

− 1
2
− 1
2

ψIV3
03

[−i]
12

[+]
56

(−) − i
2

1
2

− 1
2

i
2

− 1
2
− 1
2

ψIV4
03

(+i)
12

(−)
56

(−) i
2

− 1
2
− 1
2

i
2

− 1
2
− 1
2

Table 17.1. The four families, each with four members. For the choice pa = (p0, 0, 0, p3, 0, 0)

have the first and the second member the space part equal to e−i|p
0|x0+i|p3|x3 and

e−i|p
0|x0−i|p3|x3 , representing the particles with spin up and down, respectively. The third

and the fourth member represent the antiparticle states, with the space part equal to
e−i|p

0|x0−i|p3|x3 and e−i|p
0|x0+i|p3|x3 , with the spin up and down respectively. The antipar-

ticle states follow from the particle state by the application of CN P(d−1)
N = γ0γ5I~x3Ix6 . The

charge of the particle states is 1
2

, for antiparticle states − 1
2

.

b.0 In Grassmann space there are d!
d
2
!d
2
!

second quantizable states as required

in Eq. (17.1), forming in d = (5 + 1) two decuplets — each with 1
2

d!
d
2
!d
2
!

states —
all are the eigenstates of the Cartan subalgebra of the Lorentz algebra in (internal)
Grassmann space. All the states of one (anyone of the two) decuplets are reachable
by the application of the operators Sab on a starting state. The two decouplets are
presented in Table 17.2

Let us first find the solution of the equations of motion for free massless
fermions, Eq. (17.19), with the momentum pa = (p0, p1, p2, p3, 0, 0). One obtains
for ψI = α(θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) +β(θ0θ3 + iθ1θ2)(θ5 + iθ6)+ γ(θ0 +
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θ3)(θ1 − iθ2)(θ5 + iθ6) the solution

β =
2γ(p1 − ip2)

(p0 − p3)
=
2γ(p0 + p3)

(p1 + ip2)
= −

2α(p0 − p3)

(p1 − ip2)
= −

2α(p1 + ip2)

(p0 + p3)
,

(p0)2 = (p1)2 + (p2)2 + (p3)2 ,

β

−α
=
2(p0 − p3)

(p1 − ip2)
,

γ

−α
=

(p0 − p3)2

(p1 − ip2)2
. (17.31)

One has for p0 = |p0| the positive energy solution, describing a fermion above
the ”Dirac sea”, and for p0 = −|p0| the negative energy solution, describing a
fermion in the ”Dirac sea”. The ”charge” of the ”fermion” is 1. Similarly one finds
the solution for the other three states with the negative ”charge” −1, again with the
positive and negative energy. The space part of the ”fermion” state is for ”spin up”
equal to e−i|p

0|x0+i~p~x, for his antiparticle for the same internal spin e−i|p
0|x0−i~p~x.

The discrete symmetry operator CNG P(d−1)
NG , which is in our case equal to

γ0Gγ
5
GI~x3Ix6 , transforms the first state in Table 17.2 into the sixth, the second state

into the fifth, the third state into the fourth, keeping the same spin while changing
the ”charge” of the superposition of the three states ψIp. Both superposition of
states, Eq. (17.31) represent the positive energy states put on the top of the ”Dirac”
sea, the first describing a particle with ”charge” 1 and the second superposition
of the second three states ψIa, describing the antiparticle with the”charge” −1.
We namely apply CNG P(d−1)

NG on Ψ†p[Ψ
pos
I ] by applying CNG P(d−1)

NG on ΨposI as
follows: CNG P(d−1)

NG Ψ†p[Ψ
pos
I ] (CNG P(d−1)

NG )−1 = Ψ†aNG[CNG P
(d−1)
NG Ψpos1 ]. One

recognizes that it is CNG P(d−1)
NG ΨposI = ΨposII (Table 17.2), which must be put

on the top of the ”Dirac” sea, representing the hole in the particular state in the
”Dirac” sea, which solves the corresponding equation of motion for the negative
energy.

Properties of SO(6) in Grassmann and in Clifford space when SO(6) is em-
bedded into SO(13, 1) a. Let us first repeat properties of the SO(6) part of the
SO(13, 1) representation of 64 ”family members” in Clifford space, presented in
Table 6.3 (see pages 112–113 in this volume). As seen in Table 6.3 (see pages 112–

113 in this volume) there are one quadruplet (2
d
2
−1 = 4) — (

9 10

(+)
11 12

[−]
13 14

[−] ,
9 10

[−]
11 12

(+)
13 14

[−] ,
9 10

[−]
11 12

[−]
13 14

(+) ,
9 10

(+)
11 12

(+)
13 14

(+) ), representing quarks and leptons

— and one antiquadruplet — (
9 10

[−]
11 12

(+)
13 14

(+) ,
9 10

(+)
11 12

[−]
13 14

(+) ,
9 10

(+)
11 12

(+)
13 14

[−] ,
9 10

[−]
11 12

[−]
13 14

[−] ), representing antiquarks and antileptons, which both belong to
the 64th-plet, if SO(6) is embedded into SO(13, 1). The creation operators (and
correspondingly their annihilation operators) have for 32 members (represent-
ing quarks and leptons) the SO(6) part of an odd Clifford character (and can be
correspondingly second quantized (by itselves [1] or) together with the rest of
space, manifesting SO(7, 1) (since it has an even Clifford character). The rest of 32
creation operators (representing antiquarks and antileptons) has in the SO(6) part
an even Clifford character and correspondingly in the rest of the Clifford space in
SO(7, 1) an odd Clifford character.
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I decuplet S03 S12 S56

1 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) i 1 1

2 (θ0θ3 + iθ1θ2)(θ5 + iθ6) 0 0 1

3 (θ0 + θ3)(θ1 − iθ2)(θ5 + iθ6) −i −1 1

4 (θ0 − θ3)(θ1 − iθ2)(θ5 − iθ6) i −1 −1

5 (θ0θ3 − iθ1θ2)(θ5 − iθ6) 0 0 −1

6 (θ0 + θ3)(θ1 + iθ2)(θ5 − iθ6) −i 1 −1

7 (θ0 − θ3)(θ1θ2 + θ5θ6) i 0 0

8 (θ0 + θ3)(θ1θ2 − θ5θ6) −i 0 0

9 (θ0θ3 + iθ5θ6)(θ1 + iθ2) 0 1 0

10 (θ0θ3 − iθ5θ6)(θ1 − iθ2) 0 −1 0

II decuplet S03 S12 S56

1 (θ0 + θ3)(θ1 + iθ2)(θ5 + iθ6) −i 1 1

2 (θ0θ3 − iθ1θ2)(θ5 + iθ6) 0 0 1

3 (θ0 − θ3)(θ1 − iθ2)(θ5 + iθ6) i −1 1

4 (θ0 + θ3)(θ1 − iθ2)(θ5 − iθ6) −i −1 −1

5 (θ0θ3 + iθ1θ2)(θ5 − iθ6) 0 0 −1

6 (θ0 − θ3)(θ1 + iθ2)(θ5 − iθ6) i 1 −1

7 (θ0 + θ3)(θ1θ2 + θ5θ6) −i 0 0

8 (θ0 − θ3)(θ1θ2 − θ5θ6) i 0 0

9 (θ0θ3 − iθ5θ6)(θ1 + iθ2) 0 1 0

10 (θ0θ3 + iθ5θ6)(θ1 − iθ2) 0 −1 0

CGN CGNP(d−1)
GN CGNP(d−1)

GN

Table 17.2. The creation operators of the decuplet and the antidecuplet of the orthog-
onal group SO(5, 1) in Grassmann space are presented. Applying on the vacuum state
|φ0 >= |1 > the creation operators form eigenstates of the Cartan subalgebra, Eq. (17.33),
(S03,S12, S56). The states within each decuplet are reachable from any member by Sab.
The product of the discrete operators CNG (=

∏
<γs γ

s
G Ix6x8...xd , denoted as C in the last

column) P(d−1)
NG (= γ0G

∏d
s=5 γ

s
GI~x3 ) transforms, for example, ψI1 into ψI6, ψI2 into ψI5 and

ψI3 into ψI4. Solutions of the Weyl equation, Eq. (17.19), with the negative energies belong
to the ”Grassmann sea”, with the positive energy to the particles and antiparticles. Also
the application of the discrete operators CGN, Eq. (17.30) and CNG P(d−1)

NG , Eq. (17.30) is
demonstrated.

Let us discuss the case with the quadruplet of SO(6) with an odd Clifford char-
acter. From the point of view of the subgroups SU(3) (the colour subgroup) and
U(1) (the U(1) subgroup carrying the ”fermion” quantum number), the quadru-
plet consists of one SU(3) singlet with the ”fermion” quantum number −1

2
and

one triplet with the ”fermion” quantum number 1
6

. The Clifford even SO(7, 1)
part of SO(13, 1) define together with the Clifford odd SO(6) part the quantum
numbers of the right handed quarks and leptons and of the left handed quarks
and leptons of the standard model, the left handed weak charged and the right
handed weak chargeless.

In the same representation of SO(13, 1) there is also one antiquadruplet, which
has the even Clifford character of SO(6) part and the odd Clifford character in
the SO(7, 1) part of the SO(13, 1). The antiquadruplet of the SO(6) part consists of
one SU(3) antisinglet with the ”fermion” quantum number 1

2
and one antitriplet

with the ”fermion” quantum number −1
6

. The SO(7, 1) × SO(6) antiquadruplet
of SO(13, 1) carries quantum numbers of left handed weak chargeless antiquarks
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and antileptons and of the right handed weak charged antiquarks and antileptons
of the standard model.

Both, quarks and leptons and antiquarks and antileptons, belong to the same
representation of SO(13, 1), explaining the miraculous cancellation of the triangle
anomalies in the standard model without connecting by hand the handedness and
the charges of quarks and leptons [8], as it must be done in the SO(10) models.

b. In Grassmann space there are one (1
2

d!
d
2
!d
2
!
= 10) decuplet representation

of SO(6) and one antidecuplet, both presented in Table 17.3. To be able to second
quantize the theory, the whole representation must be Grassmann odd. Both decu-
plets in Table 17.3 have an odd Grassmann character, what means that products
of eigenstates of the Cartan subalgebra in the rest of Grassmann space must be
of an Grassmann even character to be second quantizable. Both decuplets would,
however, appear in the same representation of SO(13, 1), and one can expect also
decuplets of an even Grassmann character, if SO(6) is embedded into SO(13, 1) 1.

With respect to SU(3)×U(1) subgroups of the group SO(6) the decuplet man-
ifests as one singlet, one triplet and one sextet, while the antidecuplet manifests
as one antisinglet, one antitriplet and one antisextet. All the corresponding quan-
tum numbers of either the Cartan subalgebra operators or of the corresponding
diagonal operators of the SU(3) or U(1) subgroups are presented in Table 17.3.

While in Clifford case the representations of SO(6), if the group SO(6) is
embedded into SO(13, 1), are defining an Clifford odd quadruplet and an Clifford
even antiquadruplet, the representations in Grassmann case define one decuplet
and one antidecuplet, both of the same Grassmann character, the odd one in our
case. The two quadruplets in Clifford case manifest with respect to the subgroups
SU(3) and U(1) as a triplet and a singlet, and as an antitriplet and an antisinglet,
respectively. In Grassmann case the two decuplets manifest with respect to the
subgroups SU(3) and U(1) as a (triplet, singlet, sextet) and as an (antitriplet,
antisinglet, antisextet), respectively. The corresponding multiplets are presented
in Table 17.4. The ”fermion” quantum number τ4 has for either singlets or triplets
in Grassmann space, Table 17.4, twice the value of the corresponding singlets and
triplets in Clifford space, Table 6.3 (see pages 112–113 in this volume): (−1,+1) in

1 This can easily be understood, if we look at the subgroups of the group SO(6). i. Let
us look at the subgroup SO(2). There are two creation operators of an odd Grassmann
character, in this case (θ9 − iθ10) and (θ9 + iθ10). Both appear in either decuplet or in
antidecuplet — together with θ9θ10 with an even Grassmann character — multiplied
by the part appearing from the rest of space d = (11, 12, 13, 14). But if SO(2) is not
embedded in SO(6), then the two states, corresponding to the creation operators, (θ9 ∓
iθ10), belong to different representations, and so is θ9θ10. ii. Similarly we see, if we
consider the subgroup SO(4) of the group SO(6). All six states, (θ9 + iθ10) · (θ11 + iθ12),
(θ9−iθ10) ·(θ11−iθ12), (θ9θ10+θ11θ12), (θ9+iθ10) ·(θ11−iθ12), (θ9−iθ10) ·(θ11+iθ12),
(θ9θ10 − θ11θ12), appear in the decuplet and in the antidecuplet, multiplied with the
part appearing from the rest of space, in this case in d = (13, 14), if SO(4) is embedded in
SO(6). But, in d = 4 space there are two decoupled groups of three states [2]: [(θ9+ iθ10) ·
(θ11 + iθ12), (θ9θ10 + θ11θ12), (θ9 − iθ10) · (θ11 − iθ12)] and [(θ9 − iθ10) · (θ11 + iθ12),
(θ9θ10−θ11θ12), (θ9+ iθ10) · (θ11− iθ12)]. Neither of these six members could be second
quantized in d = 4 alone.
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I decuplet S9 10 S11 12 S13 14 τ4 τ33 τ38

1 (θ9 + iθ10)(θ11 + iθ12)(θ13 + iθ14) 1 1 1 −1 0 0

2 (θ9 + iθ10)(θ11θ12 + θ13θ14) 1 0 0 − 1
3
+ 1
2
+ 1

2
√
3

3 (θ9 + iθ10)(θ11 − iθ12)(θ13 − iθ14) 1 −1 −1 + 1
3

+1 + 1√
3

4 (θ9θ10 + θ11θ12)(θ13 + iθ14) 0 0 1 − 1
3

0 − 1√
3

5 (θ9 − iθ10)(θ11 − iθ12)(θ13 + iθ14) −1 −1 −1 + 1
3

0 − 2√
3

6 (θ11 + iθ12)(θ9θ10 + θ13θ14) 0 1 0 − 1
3
− 1
2
+ 1

2
√
3

7 (θ9 − iθ10)(θ11 + iθ12)(θ13 − iθ14) −1 1 −1 + 1
3

−1 + 1√
3

8 (θ9θ10 − θ11θ12)(θ13 − iθ14) 0 0 −1 + 1
3

0 + 1√
3

9 (θ9θ10 − θ13θ14)(θ11 − iθ12) 0 −1 0 + 1
3
+ 1
2
− 1

2
√
3

10 (θ9 − iθ10)(θ11θ12 − θ13θ14) −1 0 0 + 1
3
− 1
2
− 1

2
√
3

II decuplet S9 10 S11 12 S13 14 τ4 τ33 τ38

1 (θ9 − iθ10)(θ11 − iθ12)(θ13 − iθ14) −1 −1 −1 +1 0 0

2 (θ9 − iθ10)(θ11θ12 + θ13θ14) −1 0 0 + 1
3
− 1
2
− 1

2
√
3

3 (θ9 − iθ10)(θ11 + iθ12)(θ13 + iθ14) −1 1 1 − 1
3

−1 − 1√
3

4 (θ9θ10 + θ11θ12)(θ13 − iθ14) 0 0 −1 + 1
3

0 + 1√
3

5 (θ9 + iθ10)(θ11 + iθ12)(θ13 − iθ14) 1 1 −1 − 1
3

0 + 2√
3

6 (θ11 − iθ12)(θ9θ10 + θ13θ14) 0 −1 0 + 1
3
+ 1
2
− 1

2
√
3

7 (θ9 + iθ10)(θ11 − iθ12)(θ13 + iθ14) 1 −1 1 − 1
3

+1 − 1√
3

8 (θ9θ10 − θ11θ12)(θ13 + iθ14) 0 0 1 − 1
3

0 − 1√
3

9 (θ9θ10 − θ13θ14)(θ11 + iθ12) 0 1 0 − 1
3
− 1
2
+ 1

2
√
3

10 (θ9 + iθ10)(θ11θ12 − θ13θ14) 1 0 0 − 1
3
+ 1
2
+ 1

2
√
3

Table 17.3. The creation operators of the decuplet and the antidecuplet of the orthogonal
group SO(6) in Grassmann space are presented. Applying on the vacuum state |φ0 >= |1 >

the creation operators form eigenstates of the Cartan subalgebra, Eq. (17.33), (S9 10,S11 12,
S13 14). The states within each decouplet are reachable from any member by Sab. The
quantum numbers (τ33, τ38) and τ4 of the subgroups SU(3) and U(1) of the group SO(6) are
also presented, Eq. (17.38).

Grassmann case to be compared with (−1
2
,+1

2
) in Clifford case and (+1

3
,−1

3
) in

Grassmann case to be compared with (+1
6
,−1

6
) in Clifford case.

When SO(6) is embedded into SO(13, 1), the SO(6) representations of either
even or odd Grassmann character contribute to both of the decupled, 1716 states
of SO(13, 1) representations contribute, provided that the SO(8) content has the
opposite Grassmann character than the SO(6) content. The product of both repre-
sentations must be Grassmann odd in order that the corresponding creation and
annihilation operators fulfill the required anticommutation relations for fermions,
Eq. (17.1).

Properties of the subgroups SO(3, 1) and SO(4) of the group SO(8) in Grass-
mann and in Clifford space, when SO(8) is embedded into SO(13, 1) a. Let
us again repeat first properties of the SO(3, 1) and SO(4) parts of the SO(13, 1)
representation of 64 ”family members” in Clifford space, presented in Table 6.3
(see pages 112–113 in this volume). As seen in Table 6.3 (see pages 112–113 in



i
i

“proc18” — 2018/12/10 — 11:44 — page 353 — #369 i
i

i
i

i
i

17 Properties of Fermions With Integer Spin Described in Grassmann Space 353

I τ4 τ33 τ38

singlet (θ9 + iθ10)(θ11 + iθ12)(θ13 + iθ14) −1 0 0

triplet 1 (θ9 + iθ10)(θ11θ12 + θ13θ14) − 1
3
+ 1
2
+ 1

2
√
3

2 (θ9θ10 + θ11θ12)(θ13 + iθ14) − 1
3

0 − 1√
3

3 (θ11 + iθ12)(θ9θ10 + θ13θ14) − 1
3
− 1
2
+ 1

2
√
3

sextet 1 (θ9 + iθ10)(θ11 − iθ12)(θ13 − iθ14) 1
3

+1 + 1√
3

2 (θ9 − iθ10)(θ11 − iθ12)(θ13 + iθ14) 1
3

0 − 2√
3

3 (θ9 − iθ10)(θ11 + iθ12)(θ13 − iθ14) 1
3

−1 + 1√
3

4 (θ9θ10 − θ11θ12)(θ13 − iθ14) 1
3

0 + 1√
3

5 (θ9θ10 − θ13θ14)(θ11 − iθ12) 1
3
+ 1
2
− 1

2
√
3

6 (θ9 − iθ10)(θ11θ12 − θ13θ14) 1
3
− 1
2
− 1

2
√
3

II τ4 τ33 τ38

antisinglet (θ9 − iθ10)(θ11 − iθ12)(θ13 − iθ14) +1 0 0

antitriplet 1 (θ9 − iθ10)(θ11θ12 + θ13θ14) + 1
3
− 1
2
− 1

2
√
3

2 (θ9θ10 + θ11θ12)(θ13 − iθ14) + 1
3

0 + 1√
3

3 (θ11 − iθ12)(θ9θ10 + θ13θ14) + 1
3
+ 1
2
− 1

2
√
3

antisextet 1 (θ9 − iθ10)(θ11 + iθ12)(θ13 + iθ14) − 1
3

−1 − 1√
3

2 (θ9 + iθ10)(θ11 + iθ12)(θ13 − iθ14) − 1
3

0 + 2√
3

3 (θ9 + iθ10)(θ11 − iθ12)(θ13 + iθ14) − 1
3

+1 − 1√
3

4 (θ9θ10 − θ11θ12)(θ13 + iθ14) − 1
3

0 − 1√
3

5 (θ9θ10 − θ13θ14)(θ11 + iθ12) − 1
3
− 1
2
+ 1

2
√
3

6 (θ9 + iθ10)(θ11θ12 − θ13θ14) − 1
3
+ 1
2
+ 1

2
√
3

Table 17.4. The creation operators in Grassmann space of the decuplet of Table 17.3 are
arranged with respect to the SU(3) and U(1) subgroups of the group SO(6) into a singlet,
a triplet and a sextet. The corresponding antidecuplet manifests as an antisinglet, an
antitriplet and an antisextet. τ33 = 1

2
(S9 10−S11 12), τ38 = 1

2
√
3
(S9 10+S11 12−2S13 14), τ4 =

- 1
3
(S9 10 + S11 12 + S13 14); Sab = i(θa ∂

∂θb
− θb ∂

∂θa
).

τ 33

τ 38

τ 4

τ 33

τ 38

τ 4

Fig. 17.1. Representations of the subgroups SU(3) and U(1) of the group SO(6) in Grass-
mann space for two Grassmann odd representations of Table 17.4 are presented. On the
abscissa axis and on the ordinate axis the values of the two diagonal operators, τ33 and
τ38 of the coulour (SU(3)) subgroup are presented, respectively, with full circles. On the
third axis the values of the subgroup of the ”fermion number” U(1) is presented with the
open circles, the same for all the representations of each multiplet. There are one singlet,
one triplet and one sextet on the left hand side and one antisinglet, one antitriplet and one
antisextet on the right hand side.
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this volume) there are four octets and four antioctets of SO(8). All four octets,
having an even Clifford character and forming 32 states when embedded into
SO(13, 1), are the same for either quarks or for leptons, they distinguish only in
the SO(6) part (of an Clifford odd character) of the SO(13, 1) group, that is in
the colour (SU(3)) part and the ”fermion quantum number” (U(1)) part. Also
the four antioctets, having an odd Clifford character, are all the same for the 32
family members of antiquarks and antileptons, they again distinguish only in the
Clifford even SO(6) part of SO(13, 1), that is in the anticolour (SU(3)) part and the
”fermion quantum number” (U(1)) part.

The 64th-plet of creation operators has an odd Clifford character either for
quarks and leptons or for antiquarks and antileptons — correspondingly have
an odd Clifford character also their annihilation operators — and can be second
quantized [1].

Let us analyze first the octet (2
8
2
−1 = 8), which is the same for all 32members

of quarks and leptons. The octet has an even Clifford character. All the right

handed uR-quarks and νR-leptons have the SO(4) part of SO(8) equal to
56

[+]
78

(+),

while their left handed partners have the SO(4) part of SO(8) equal to
56

[+]
78

[−]. All
the right handed dR-quarks and eR-leptons have the SO(4) part of SO(8) equal

to
56

(−)
78

[−], while their left handed partners have the SO(4) part of SO(8) equal

to
56

(−)
78

(+)]. The left handed quarks and leptons are doublets with respect to ~τ1

and singlets with ~τ2, while the right handed quarks and leptons are singlets with
respect to ~τ1 and doublets with ~τ2. The left and right handed quarks and lepton
belong with respect to the SO(3, 1) group to either left handed or the right handed
spinor representations, respectively.

b. In Grassmann space the SO(8) group of an odd Grassmann character has
1
2

8!
4!4! = 35 creation operators in each of the two groups and the same number

of annihilation operators, obtained from the creation operators by Hermitian
conjugation, Eq. (17.4). The corresponding states, created by the creation operators
on the vacuum state |φo >, can be therefore second quantized. But if embedded
the group SO(8) into the group SO(13, 1) the subgroup SO(6) must have an even
Grassmann character in oder that the states in SO(13, 1) can be second quantized
according to Eq. (17.1).

According to what we learned in the case of the group SO(6), each of the
two independent representations of the group SO(13, 1) of an odd Grassmann
character must include either the even SO(7, 1) part and the odd SO(6) part or
the odd SO(7, 1) part and the even SO(6) part. To the even SO(7, 1) representation
either the odd SO(3, 1) and the odd SO(4) parts contribute or both must be of the
Grassmann even character. In the case that the SO(7, 1) part has an odd Grassmann
character (in this case the SO(6) has an even Grassmann character) then one of the
two parts SO(3, 1) and SO(4) must be odd and the other even.
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17.3 Concluding remarks

We learned in this contribution that although either Grassmann or Clifford space
offer the second quantizable description of the internal degrees of freedom of
fermions (Eq. (17.1)), the Clifford space offers more: It offers not only the de-
scription of all the ”family members”, explaining all the degrees of freedom of
the observed quarks and leptons and antiquark and antileptons, but also the
explanation for the appearance of families.

The interaction of fermions with the gravity fields — the vielbeins and the spin
connections — in the 2(2n+ 1)-dimensional space can be achieved, as suggested
by the spin-charge-family theory ([5,4] and references therein), by replacing the
momentum pa in the Lagrange density function for a free particle by the covariant
momentum, equally appropriate for both representations. In Grassmann space
we have: p0a = fαa p0α, with p0α = pα − 1

2
SabΩabα, where fαa is the vielbein

in d = 2(2n+ 1)-dimensional space andΩabα is the spin connection field of the
Lorentz generators Sab. In Clifford space we have equivalently: p0a = fαa p0α,
p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα. Since Sab = Sab + S̃ab we find that when

no fermions are present eitherΩabα orωabα or ω̃abα are uniquely expressible by
vielbeins fαa ([5,4] and references therein). It might be that ”our universe made
a choice between the Clifford and the Grassmann algebra” when breaking the
starting symmetry by making condensates of fermions, since that for breaking
symmetries Clifford space offers better opportunity”.

17.4 Appendix: Useful relations in Grassmann and Clifford
space

The generator of the Lorentz transformation in Grassmann space is defined as
follows [2]

Sab = (θapθb − θbpθa) = Sab + S̃ab , {Sab, S̃cd}− = 0 , (17.32)

where Sab and S̃ab are the corresponding two generators of the Lorentz transfor-
mations in the Clifford space, forming orthogonal representations with respect to
each other.

We make a choice of the Cartan subalgebra of the Lorentz algebra as follows

S03,S12,S56, · · · ,Sd−1 d ,
S03, S12, S56, · · · , Sd−1 d ,
S̃03, S̃12, S̃56, · · · , S̃d−1 d ,
if d = 2n . (17.33)

We find the infinitesimal generators of the Lorentz transformations in Clifford
space

Sab =
i

4
(γaγb − γbγa) , Sab† = ηaaηbbSab ,

S̃ab =
i

4
(γ̃aγ̃b − γ̃bγ̃a) , S̃ab† = ηaaηbbS̃ab , (17.34)
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where γa and γ̃a are defined in Eq. (17.10). The commutation relations for either
Sab or Sab or S̃ab, Sab = Sab + S̃ab, are

{Sab, S̃cd}− = 0 ,

{Sab, Scd}− = i(ηadSbc + ηbcSad − ηacSbd − ηbdSac) ,

{S̃ab, S̃cd}− = i(ηadS̃bc + ηbcS̃ad − ηacS̃bd − ηbdS̃ac) . (17.35)

The infinitesimal generators of the two invariant subgroups of the group SO(3, 1)
can be expressed as follows

~N±(= ~N(L,R)) : =
1

2
(S23 ± iS01, S31 ± iS02, S12 ± iS03) . (17.36)

The infinitesimal generators of the two invariant subgroups of the group SO(4)
are expressible with Sab, (a, b) = (5, 6, 7, 8) as follows

~τ1 : =
1

2
(S58 − S67, S57 + S68, S56 − S78) ,

~τ2 : =
1

2
(S58 + S67, S57 − S68, S56 + S78) , (17.37)

while the generators of the SU(3) and U(1) subgroups of the group SO(6) can be
expressed by Sab, (a, b) = (9, 10, 11, 12, 13, 14)

~τ3 :=
1

2
{S9 12 − S10 11 , S9 11 + S10 12, S9 10 − S11 12,

S9 14 − S10 13, S9 13 + S10 14 , S11 14 − S12 13 ,

S11 13 + S12 14,
1√
3
(S9 10 + S11 12 − 2S13 14)} ,

τ4 := −
1

3
(S9 10 + S11 12 + S13 14) . (17.38)

The hyper charge Y can be defined as Y = τ23 + τ4.
The equivalent expressions for the ”family” charges, expressed by S̃ab follow

if in Eqs. (17.36 - 17.38) Sab are replaced by S̃ab.
The breaks of the symmetries, manifesting in Eqs. (17.36, 17.37, 17.38), are in

the spin-charge-family theory caused by the condensate and the nonzero vacuum
expectation values (constant values) of the scalar fields carrying the space index
(7, 8) (Refs. [5,3] and the references therein). The space breaks first to SO(7, 1)
×SU(3)×U(1)II and then further to SO(3, 1)× SU(2)I ×U(1)I ×SU(3)×U(1)II,
what explains the connections between the weak and the hyper charges and the
handedness of spinors.

Let ius present some useful relations [3]
ab

(k)
ab

(k) = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k] ,
ab

(−k)
ab

(k)= ηaa
ab

[−k] ,
ab

(−k)
ab

(−k)= 0 ,
ab

[k]
ab

[k] =
ab

[k] ,
ab

[k]
ab

[−k]= 0 ,
ab

[−k]
ab

[k]= 0 ,
ab

[−k]
ab

[−k]=
ab

[−k] ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(−k)
ab

[k]=
ab

(−k) ,
ab

(−k)
ab

[−k]= 0 ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

[k]
ab

(−k)= 0 ,
ab

[−k]
ab

(k)= 0 ,
ab

[−k]
ab

(−k)=
ab

(−k) .

(17.39)
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H.B. Nielsen, D. Lukman, DMFA Založništvo, Ljubljana, December 2017, p. 89-120
[arXiv:1802.05554v1v2] (arXiv:1806.01629 whole proceedings).
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Abstract. We investigate whether some of the rather few anomalies, in the sense of de-
viations from the Standard Model, could be explained as due to non-perturbative effects
caused by the top-Yukawa-coupling being of order unity (in a sense to be discussed briefly
in this article). The main achievement of our non-perturbative rule or model is to relate
the deviations of ratios between B-meson decay rates for flavour universality violation for
neutral currents to the deviations for the charged current flavour universality violations. In
fact the anomaly in the ratio R(D∗) for a charged current with τ and its neutrino relative to
the rate with the µ and its neutrino is being related in our model for non-perturbative effects
to an analogous effect in a neutral current B-meson decay. It is suggested that the ratio of
the anomalous amplitudes contributing to these two combinations of decay processes are
to very first approximation given by the squared mass ratio of the heaviest lepton involved
in the two ratios, which by their deviation from the Standard Model prediction signal lack
of flavour universality.

The muon g− 2 anomaly also fits well in our non-perturbative model. But we have to
mutilate the model somewhat in order to avoid a far too large anomaly prediction for, say
Bs-B̄s, particle - antiparticle mixing.

Povzetek. Avtorja v prispevku raziskujeta, ali lahko odstopanja od napovedi Standardnega
modela pojasnita z neperturbativnimi efekti, ki se pojavijo, ker so Yukawine sklopitve
za top kvark reda ena (v smislu razloženem v prispevku). Povežeta odstopanja med
dosedanjimi napovedmi razmerij razpadnih stanj B mezonov za kršitve univerzalnosti
tokov za nevtralne in za nabite tokove in rezultati meritev. Odstopanje v razmerju R(D∗) za
nabite tokove za delec τ in njegov nevtrino in za delec µ in njegov nevtrino je povezano
z analognimi odstopanji v primeru razpadov nevtralnih mezonov B. Predlagata, da je
razmerje anomalnih amplitud, ki prispevajo k tem dvem kombinacijam razpadnih procesov,
v prvem približku dano s kvadratom razmerij mas najtežjih leptonov v teh razpadih.
Odstopanje od napovedi Standardnega modela nakazuje odvisnost od okusa (flavor).

Model je uporabljiv tudi za odstopanja med poskusi in računi za vrednost g − 2 za
mione, denimo za mešanje Bs-B̄s, če model popačita in se tako izogneta velikim odstopan-
jem.

Keywords: Decay rate anomalies, non-perturbative effects, flavor universality
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18.1 Introduction

Are the Tensions in LHCb etc data due to Non-perturbative Effects in the Pure
Standard Model ?

The Standard Model works surprisingly well for LHC physics: Almost no
new physics, and at least nothing truly statistically significant! However there is a
small number of tensions in the data with a few standard deviations significance:
Small lepton universality violating deviations [1–3] , say.

The present proposal is that even these small tensions are not due to gen-
uine new physics, but rather to effects forgotten because of the systematic use
of perturbation theory except for the QCD-sector; i.e. the tensions should be
non-perturbative effects.
Ratio RK∗ of µµ versus ee for B→ K∗ll̄, anomalous.

Ratio RK of µµ̄ to eē Ratio for B+ → K+ll̄ decay, anomalous for separate q2?.
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Ratio τντ versus µνµ for B→ D∗ν+ lepton, an anomaly

Ratio R(J/Ψ) of τντ versus µνµ also in B→ J/Ψ+ ν+ lepton an anomaly.

The two Deviations from SM at LHCb:
In the following table we summarize the two deviations from the Standard

Model at LHCb and compare our prediction for the ratio of the corresponding
anomaly amplitudes with the data.
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Channel Branch. “R” Deviation Anomaly-
fraction Ratio relative amplitude

B→ K∗µ+µ− 10−6 exp. 0.66 -34 % −0.34
√
10−6/2

neutral c SM 1.00 = −1.7 ∗ 10−4
current = −1.7 ∗ 10−3

√
%

B→ D∗τντ 2% exp. 0.31 +24 % 0.24
√
0.02/2

charged SM 0.25 =0.017
current =0.17

√
%

Ratio 2 ∗ 104 −102

Pred. ∼ 0.4 ∗ (mτ
mµ

)2

ratio =∼ 115

In the table we perform a very crude estimate of the ratio of the anomalous
contributions to the amplitude of the two decay processes B→ D∗τντ (which is a
charged current process) relative to the anomalous contribution for B→ K∗µ+µ−

(which is a neutral current one). It is based on a few very crude but we think
reasonable assumptions in our model:

• Since our non-perturbative anomalous prediction is strongly increasing with
the mass of the charged lepton involved, we of course blame practically the
whole anomaly on the decay rate for the process involved in the ratio revealing
the deviation from lepton universality, which has the biggest mass. In R(D∗)
for instance it is the τ channel that has the anomaly, while for R(K∗) which is a
ratio between a µ and an e channel it is the µ channel that carries the anomaly.

• We make the approximation that the channels all have the same phase space -
which means ignoring the differences between the masses of the particles in
the final state of the decays (compared roughly to the B-meson mass). This also
implies that, in this approximation, we can simply talk about the amplitude
for going into the single final state for each of the considered channels of
decay. This allows us to use the normalization of simply writing the amplitude
of a decay measured in square roots of %, and simply in this notation have
the decay fraction to a channel be the square numerically of the added up
amplitudes.

The columns of the table denote the following

• The first column represents the decay channel, corresponding to the two
different ratios revealing the violation of flavour universality (for leptons),
which has the heavier lepton in the decay. These decay channels are thus,
according to our assumption, the ones that are (most) anomalous in our model.
We shall neglect the anomaly in the other decay channels in the ratios.
• The next column gives the branching fraction of these two channels thought

to be carrying an anomaly.
• The next - 3rd - column now gives both the experimental ratio and the Standard

Model predictions for the ratio associated with the channels lined up in column
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1. That is to say for the first row, or rather the one associated with B →
K∗µ+µ−, we talk about the ratio R(K∗) being the ratio of this decay rate to
the corresponding one with the muons replaced by electrons. Similarly the
second of the genuine rows refers to the ratio of the decay listed in first column
divided by the corresponding one with the lepton replaced by the lighter
lepton, in this case thus B→ D∗µνµ.

• The relative deviation between experiment and Standard Model is calculated
in the next - the 4th - column. In our philosophy this also gives the relative
deviation between the size of the decay in column 1 experimentally relative
to the Standard Model. Thus the anomalous probability contribution is the
product of this relative percentage and the rate as in column 2.
• Finally in the last column we identify the deviation corresponding to the

anomaly with 2 times the amplitude - meaning the square root - of the rate
(from column 2) multiplied with the “anomalous amplitude”. It is then the
latter that is presented in the last column.

Finally the result of interest is that we estimate the ratio of the anomalous
amplitudes for the anomalous parts of the decay amplitudes of the two “rows”.
It is this ratio we have a chance to predict, because as a ratio it means that our
parameter K gets divided out.

The calculation in the table, which we can at the moment hope to confront
with our model, is an order of magnitude one meaning that neither factors 2 or π etc
nor even the sign are our under control so far.

It might seem that just substituting a mu-coupling by a tau-coupling would
only change the anomalous amplitude by a very well-defined real positive ratio
given by the masses actually very precisely. However, in our comparison, we have
it interfere with the Standard Model amplitude for two very different processes
from the Standard Model point of view. So to get even the sign one would need
the relative sign of these Standard Model amplitudes, something that would be
quite a complicated task. We hope to come back to this exercise of calculating
the relative sign of the Standard Model amplitudes, so as to make possible a sign
prediction for our model about the sign of the ratio of the two anomalies which
we studied.

0.4 some order of unity number in the last entry in the table.
In fact the order unity factor 0.4 in our predicted ratio is given in our non-

perturbative model by

VtbVtsg
2
2

Vbcg
2
t

= 0.4. (18.1)

The numerically more significant factor is the ratio

g2τ
g2µ

=
m2τ
m2µ

=
17772

105.72
= 283. (18.2)

The numerical coincidence, that should suggest the truth of our non-perturbative
effect idea, is:
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(R(D∗)|exp/R(D
∗)|SM − 1)

√
B(B→ D∗τντ)

(R(K∗)|exp/R(K∗)|SM − 1)
√
B(B→ K∗µµ̄)

≈ m2τ
m2µ

. (18.3)

Here the ‘‘R ′′ ratios are defined as:

R(K∗) =
B(B→ K∗µµ̄)

B(B→ K∗eē)
; (18.4)

R(D∗) =
B(B→ D∗τν̄τ)

B(B→ D∗µν̄µ)
. (18.5)

Note that these ‘‘R ′′ ratios test the lepton universality, the numerator and the
denominator only deviating by the flavour of the lepton pair produced. But in
R(D∗)it is the ratio τ-pair over µ-pair, while R(K∗) is for µ-pair over e-pair.

Decays into channels only deviating by “hadronic details” support such
models as e.g. our “non-perturbative” model.

That is to say the approximate equalities

R(K)|exp
R(K)|SM

= 0.75 ≈ 0.66 = R(K∗)exp
R(K∗)SM

, (18.6)

R(J/ψ)|exp
R(J/ψ)|SM

= 2.3 ≈ 1.24 = R(D∗)exp
R(D∗)|SM

(18.7)

confirm that the anomaly is approximately the same for different hadronic devel-
opments with the same underlying weak process behind, thus supporting an e.g.
non-perturbative effect, or a new physics at the weak scale.

Have now to build arguments that the lepton pair needs to couple twice
with its Higgs Yukawa coupling to the strongly interacting particles/sector.

We imagine there is some coupling gt which is so strong that very complicated
diagrams involving it become relevant. But somehow we hope to argue that the
leptons only get interacting with the bunch of “new strong” interaction particles
via two Higgs couplings in the processes we looked at with the anomalies.

Also an agreement for the anomaly in the anomalous magnetic moment
for the muon, aµ = (g− 2)/2|µ.

We get a correction to the anomalous magnetic moment for the muon in
our non-perturbative model, using an overall fitting constant K for the non-
perturbative effects (to be explained later):

(aµ|full − aµ|perturbative) ∗
e

mµ
≈ K∗ < φHiggs > (

gµ

gt
)3. (18.8)

With our fitted value K ∼ 1
5GeV2

, we get

aµ|full − aµ|perturbative ≈
246GeV ∗ 0.105GeV
5GeV2 ∗ 17003 = 1 ∗ 10−9

to be compared with the anomaly found experimentally 2.7 ∗ 10−9.
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18.2 Strong Coupling

Except for αS the strongest coupling in Standard Model is the Top Yukawa
Coupling gt.

The Coupling on the Border between Weak and Strong Interactions for
Particle with Only One Component is g ∼ 4π.

Taking very crudely by a “dimensional argument”∫
d|q|

|q|
∼ 1 (by dimensional argument)

and the borderline coupling gborder to

have the increase factor by adding a loop of

g2
∫

d4q

(2π)4|q|4
≈ 1 (ignoring the mass squares

in the propagators) we get

gborder ≈
√

(2π)4

π2
= 4π. (18.9)

Another crude estimate of the border coupling corresponds to taking the
Rydberg constant

R∞ =
α2mec
4π~

to be of the order of the mass-energymec2:

R∞ = mec2 (18.10)

implying (18.11)

α2 = 4π for c = ~ = 1. (18.12)

meaning

e = 4

√
(4π)3 ≈ 6 (18.13)
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Size of Borderline Coupling and Number of “Components”
If there were e.g. a color quantum number takingN values for the particle type

encircling the loop, then there would be N various loops for each one. According
to our philosophy of the increase factor by inserting a loop

g2borderN
∫

d4q

(2π)4|q|4
≈ 1 (18.14)

then the N-dependence of the borderline coupling between perturbative and
non-perturbative regimes would be

gborder ∝
√
1

N
. (18.15)

For say 16 “Components” Borderline Coupling ∼ 1.5 to 3
Very crudely counting particle and antiparticle also as different “components”

and counting together both the Higgs with its 4 real components and the top
with its 3*2*2=12 components, we get in total for the particles interacting via the
top Yukawa coupling gt 12+4 = 16 components. Thus the borderline value for gt
becomes

g
t border ≈ (6 to 4π)/

√
16 = 1.5 to 3. (18.16)

Experimentally
gt exp = 0.935 (18.17)

18.3 Procedure

Very High Order Diagrams Likely to be Important

Diagrams with Almost Only Top-Yukawa Couplings of High Order Could
be Significant and give the Anomalies about to be Statistically Significant “Ten-
sions”.
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L can be both left top and left bottom, strange, d
R right can be only top.
H can be both eaten Higgs and the “radial” observed Higgs
Suggested Procedure of Model
We imagine a lot of Feynman diagrams - that shall be summed up of course -

each with almost only the top-Yukawa coupling gt in it, and only a few external
lines/propagators of other types (like muon say). Then the rules/assumptions of
our non-perturbative model are as follows:

• The sum over the many diagrams with only gt (from which we modify a bit by
putting external lines on) is supposed to give just one overall factor K, which
we must fit.
• When we use an external L line as a left bottom, strange or d quark line, we

include a Vtb, Vts, or Vtd mixing angle factor
• Other couplings than gt needed must give rise to the extra factors being these

couplings, compared to the gt they replace.
• Propagators for W, Higgs, top,... are similar order of magnitudewise, and we

ignore the differences in our crude rule.

From the Physics involving Rather Heavy Particles the Result of the Non-
perturbative Effects should be Effective Lagrangian Terms of Unrenormaliz-
able Dimensionality.

The rather high mass of the particles, like the top quark and Higgs partticle,
involved in the diagrams developing non-perturbative effects suggests these
effects at the relatively low energies involved, in B-meson decay say, should be
described by an effective field theory. The effective terms which have an operator
dimension like in renormalizable theory are already present in the Standard Model.
Thus such non-perturbative effects contributing to terms with dimension less than
or equal to [GeV4] would just be absorbed into these terms already present in the
Standard Model.

We can only realistically hope to measure terms not of this renormalizable
type, because otherwise we would need some knowledge about the bare couplings
not coming from the usual measurements:

Denoting say leptons and quark fields by ψq and ψl and the bosons asWµ,
Zµ and φ, effective field theory terms that might result from non-perturbative
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effects could have e.g. the forms (PL is left handed γ5 projector)

ψ̄tφψt : of renormalizable theory dimension [GeV4]

ψ̄bγνPLψsψ̄µγ
νPLψµ : Dimension [GeV6], so not renormalizable.

Example of an Effective Lagrangian Density Coefficient Estimated in Our
Non-perturbative Scheme:

Say we want the coefficient to the term of the form

ψ̄b(x)γνψs(x)ψ̄µ(x)γ
νψµ(x),

which can represent that a bottom quark b described by ψb(x) becomes a strange
quark s described by ψs by a “neutral current exchange” and the production of a
muon antimuon pair produced by the operator

ψ̄µ(x)γ
νψµ(x).

Then we need a non-perturbative diagram with the four external particles corre-
sponding to b→s, µ and µ̄. In fact it shall be a series of diagrams with an arbitrary
number of gt vertices and associated with tL, tR and Higgs, but as few as possible
other - and therefore smaller - couplings (except we might include the strong QCD
couplings).

If the b and the s are taken to be of the left handed helicity, bL and sL, we are
really interested in the coefficient to the effective term

ψ̄b(x)γνPLψs(x)ψ̄µ(x)γ
νψµ(x). (18.18)

We can interpret it, that the weak SU(2) partners of the left handed top-components
tL, which are also allowed in the bulk of our diagrams, are already present with
amplitudes Vtb and Vts respectively for the left handed bL and sL. So they do not
“cost” extra coupling factors except for these CKM matrix elements, Vtb and Vts.

Ignoring the propagators and thereby the masses, we have in the bulk diagram
perfect formal conservation of weak charge SU(2), and thus the two left handed
quarks b and s being doublets cannot couple to only one Higgs. We must have
two external Higgs bosons coupling to the muon-antimuon pair.

The muon cannot be interpreted as being already there in the bulk diagram
and must instead be coupled, as we already argued, to two Higgs-bosons. This
causes the applicable type of diagram to include a factor g2µ - or if we want to
consider it a replacement of gt couplings by analogous gµ’s, it must include a factor(
gµ
gt

)2
. So the coefficient to the b→ s,µ̄, µ transition operator (18.18) becomes

‘‘coefficient to c→sµ̄ µ ′′ = K ∗ VtbVts
(
gµ

gt

)2
. (18.19)

Here K is an overall constant depending on the non-perturbative part of the
calculation, which we cannot do. Thus we must fit via this overall factor K, while
gt, and gµ are the Yukawa couplings to the Higgs of the top quark and the muon
respectively. Vtb and Vts are the mixing matrix elements.
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Another Example: b→ c, τ̄, ντ; Charged Current Process
The coefficient to the “non-renormalizable” charged current simulating effec-

tive field theory term
ψ̄bγνPLψcψ̄τγ

νPLψντ (18.20)

becomes similarly

K ∗ Vtb(VtbVbc‘‘ + ′′ VtsVsc‘‘ + ′′ VtdVdc)
(
g2

gt

gτ

gt

)2
. (18.21)

Here g2 is the weak SU(2) gauge theory coupling, and as before: K is the overall
non-perturbative constant, Vqq ′ the mixing matrix elements, and gt, gτ the re-
spective Yukawa Higgs couplings. Order of magnitudewise we only care for the
dominant one of the three mixing matrix element products.

Fitting our overall constant K:
With the notation

Heff = −
4GF√
2
VtbV

∗
ts

e2

16π

∑
(CiOi + C

′
iO
′
i) + h.c. (18.22)

and

O
( ′)
9 = (s̄γµPL(R)b)(l̄γ

µl), (18.23)

the fit of the “new physics” NP in the coefficient C9 to the effective termO9, which
we considered is about

C9 ≈ −1.3. (18.24)
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The conventional VtbV∗ts factors in

Heff = −
4GF√
2
VtbV

∗
ts

e2

16π

∑
(CiOi + C

′
iO
′
i) + h.c.

are just the same as in our formula for the non-perturbative effect coefficient

‘‘coefficient to c→sµ̄ µ ′′ = K ∗ VtbVts
(
gµ

gt

)2
.

Thus we should fit to

K ∗
(
gµ

gt

)2
= −

4GF√
2

e2

16π
∗ C9 = −

GF√
2
α ∗ C9

= 1.1663787(6)× 10−5GeV−2/(
√
2 ∗ 137.037) ∗ (−1.3)

= −6.01847886 ∗ 10−8GeV−2 ∗ (−1.3).

Since
(
gµ
gt

)2
= (0.1056583745/172.44)2 = 3.77 ∗ 10−7, we get from fitting the

O9 coefficient

K =
6.018 ∗ 10−8GeV−2

3.77 ∗ 10−7 ∗ 1.3 (18.25)

= 0.21 GeV−2 (18.26)

=
1

4 to 5 GeV2
(18.27)

Embarrassingly Huge Overall ConstantK ∼ 1
4 GeV2

for the Non-perturbative
Effect.

Imagine that the non-perturbative effect in reality is the effect of some loop
with, or just the effect of, a bound state formed from the top-quarks and the Higgs.
If consisting, as we usually speculate, of 6 top + 6 anti-top quarks its constituent
mass would be 12mt = 2.1 TeV . So, even if we did not count suppression from
there being a loop say, an order of magnitude K ∼ 1

4 TeV2
would have been rather

expected.
But now, if we have about 12 constituents in the bound state, a top-quark or a

Higgs would couple to such a bound state with a total coupling of the order of
12gt. Very optimistically a diagram with four external lines would have four such
factors and the resulting K would be enhanced by a factor (12gt)4 ≈ 20000 which
would bring K ∼ 1

4 TeV2
up to K ∼ 1

200 GeV2
.

If the bound state mass were say 750 GeV rather than 2.1 TeV, a reduction
by a factor (2.1/.75)2 of the above speculated value 1

200GeV2
would be argued for.

Then we might say that we could understand if K were of order of magnitude
1

20 GeV2
, but the fitted value K ∼ 1

4 GeV2
still seems to be a bit - a factor 5 - bigger

than we would even speculate optimistically.
But of course the point is that it is too hard to compute or even speculate on

the overall strength K, so that we must rather trust a fit to the data.
Our Prediction for the Ratio of the anomalous Charged Current B→ Xcτντ

to the anomalous Neutral Current B→ Xsµ̄µ amplitudes
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The ratio of the experimentally found quite separate anomalies measured in
their rates/branching ratios is

“Anomalous rate B→ Xcτντ”
“Anomalous rate B→ Xsµνµ”

= (−)1 ∗ 104

while the ratio of the normal rates is:
BR(B→ Xcτντ)

BR(B→ Xsµνµ)
=

2%
2 ∗ 10−6 = 1 ∗ 104

corresponding to an amplitude ratio:

A(B→ Xcτντ)

A(B→ Xsµνµ)
=

√
2%

2 ∗ 10−6 = 1 ∗ 102.

By accident it does not matter whether the anomalies come by interference
- as we think they do - or by just adding to the rate. In any case it is needed
experimentally that the ratio of the two anomalous parts of the amplitude must be
∼ 100:

Aan(B→ Xcτντ)

Aan(B→ Xsµ̄µ)
= 100. (18.28)

Is that then what our model predicts? Our prediction for the ratio of the anomalous
parts of the amplitudes is:

Aan(B→ Xcτντ)

Aan(B→ Xsµ̄µ)
=
K ∗ Vtb(VtbVbc‘‘ + ′′ VtsVsc‘‘ + ′′ VtdVdc)

(
g2
gt

gτ
gt

)2
K ∗ VtbVts

(
gµ
gt

)2
≈ VtbVbc

Vts
∗ g

2
2g
2
τ

g2µg
2
t

≈ 1 ∗ 0.4 ∗ m
2
τ

m2µ

= 0.4 ∗ 1777
2

1052
= 115. (18.29)

Very good agreement with experiment!
Dominant Anomaly in B+ → K+τ+τ−

Our prediction for the branching ratio for B+ → K+τ+τ−:
The anomaly amplitude is enhanced by the factor m2τ/m2µ compared to the

B+ → K+µ+µ− anomaly amplitude and therefore dominates the usual SM am-
plitude.

So the branching ratio value for B+ → K+τ+τ−is:
Branching ratio

For SM ∼ 2× 10−7
For our anomaly ∼ 3× 10−4

Experiment. < 2.25× 10−3

18.4 g minus 2

There is a small deviation from experiment in the perturbative Standard Model pre-
diction for the anomalous magnetic moment for the muon. The non-perturbative
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contribution of our model is illustrated in the following diagram, which is followed
by a list of comments on it.

• The muon anomalous magnetic moment term in the effective Lagrangian
density

aµψ̄µ(x)Fνρ(x)γ
νγρψµ(x) = aµµ̄(x)Fνρ(x)γ

νγρµ(x) (18.30)

makes a transition between the chirality left to right or opposite. (Contrary to
simple electromagnetic coupling making it left to left or right to right.)

• Thus we need to couple the muon line series an odd number of times to Higgs
in our non-perturbative contribution.

• Only one Higgs exchanged would just give a renormalization of the Higgs
propagator, and would thus already be included in the Standard Model cal-
culation and not count as an anomalous term for the anomalous magnetic
moment.

• This contribution must then, because we ignore the propagator masses in
it, have a Higgs-line couple to vacuum via the expectation value < H >=

246 GeV , so that it conserves weak isospin.

• These remarks give the factor
(
gµ
gt

)3
< H >.

• When we use our speculated non-perturbative effect, we have the “overall”
factor K ∼ 1

4 GeV2
.

• Finally we get a non-perturbative contribution to aµ = (g − 2)/2|µ for the
muon.

aµ|full − aµ|perturbative ≈
246GeV ∗ 0.105GeV
4GeV2 ∗ 17003 = 1.3 ∗ 10−9. (18.31)

This is to be compared with the anomaly found experimentally 2.7 ∗ 10−9.

18.5 Mixing

The mixing of mesons and their antiparticles such as Bs mixing with B̄s is a
problem, as was pointed out by a member of the audience when HBN gave a talk
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about this work in Tallinn. The problem is that at first sight it looks as though
we have, according to our rule above, just a few mixing angles suppressing the
transition from say Bs to B̄s. This is very analogous to the way we got the b to s
transition, using that both s and b can for the left handed case be considered to be
in the doublet with the left handed top and thus indeed participating significantly
in the diagrams supposed to be of very high order and still important. However
this is not quite true, because the quarks that have to be converted in the mixing
process for pseudoscalar mesons - which are w.r.t. strong interactions stable ones,
so that mixing experiments can be practically performed - are both right handed
and left handed.

18.5.1 Formal

If we take completely formally our rules as set up, including the rule of neglecting
propagators and thereby especially the masses of the quarks and leptons in the
strong diagram, then a right handed quark of electric charge 2/3 (like the top)
can, by interaction with a Higgs-doublet, only be converted into the left handed
one of the same flavour or the weak isodoublet partner of this left handed one
of the same flavour. This weak isodoublet partner is a superposition of all three
flavours of the quark with the other electric charge than the starting right quark.
This superposition carries in principle the signal of the flavour of the starting right
handed quark. If we ignore the masses and only have it interact via the Higgses
in the supposed to dominate diagrams, this superposition can only go back to
the right handed quark of just the same flavour as from the start. In this way the
“right flavour” has become formally a conserved quantum number, as long as we
exclude other interactions than in our rule.

Only if there is transition into a right handed quark of the other charge, i.e.
charge -1/3, will another set of Yukawa-couplings (namely the -1/3 charge ones)
come into the game and more complicated flavour changes become possible.

The value of K = 1

(4 to 5)GeV2
we found, by fitting flavour universality vio-

lations, would give us a non-renormalizable Lagrangian term for say top-quark
scattering, which would not be suppressed,

∼
1

5GeV2
t̄(x)γµt(x) ∗ t̄(x)γµt(x). (18.32)

This is quite absurd, if you think of using it up to a cut-off scale of say the order of
Λ ∼ 0.5 TeV or a “lattice scale” of the order a ∼ 1

0.5 TeV
.

We would in fact like to argue that you cannot use perturbation theory for such a
coupling unless for

K ∗ t̄(x)γµt(x) ∗ t̄(x)γµt(x) (18.33)

one has
K/a2 ≤ 1. (18.34)

Too Strong (Effective) Coupling Term gets Absurd/not Perturbatively Ap-
plicable, when K/a2 > 1 for dim =6
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This figure is supposed to make clear the absurdity in the too strong coupling
regime, which does not at least crudely obey K/a2 < 1. The figure is based on the
assumption that inside the interacting particles (in our example top quarks) we
have some structure or fields with which they interact with the other particle, and
now illustrates how one particle passes into the field or matter belonging to the
other one.

Then the idea is to estimate the phase rotation of the amplitude of the scatter-
ing, i.e. after the passage. For the case that the particles did indeed pass within the
distance a, we can argue dimensionally that the phase rotation δmust be of the
order

δ ≈ K/a2 (18.35)

or if there is some suppression factor such as e.g. “suppression”−1 = g2µ
g2t

:

δ ≈ K

“suppression”a2
. (18.36)

Now the important point is that such a phase rotation δ only makes sense
modulo 2π. So it cannot be expected to give any sensible result when it becomes
very big compared to 2π. First the point is that you simply cannot “see” the
difference in various sizes once the 2π is past. Realistically, we would physically
rather imagine that interference between slightly different passage ways of the one
particle through the field or matter around the other one would get relative to 2π
rather big phase differences, so that strong (destructive) interference would take
place. Spoiled by such interference it seems unavoidable that, seen from outside,
the end result would be an effective coupling looking much smaller than the a
priori one K/“suppression”. Therefore we would like to conclude that the very
strong coupling, not obeying our requirement K/(“suppression”a2) < 1 is not
realistic in practice.

Basically the strong interaction would cause further interactions or make
different details in the interaction come out of phase. Thus the effective resulting
interaction would be brought back to a size obeying the upper limit, which we
suggest.

A slightly different way to think of this “strong couplings killing themselves
down” to only of order unity, would be to notice that passing a region with too
strong interactions would cause reflection. So the particle would never come
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through but rather get reflected on the surface. In this way the interaction would
be reduced to a size compatible with only the surface regions being used in the
effective interaction as seen form outside. This is illustrated in the figure by the
track of a particle turning around and going out again.

If there is not a correction factor reducing the K to be sensible, we cannot
take it seriously, but must correct it down:

On this figure we now illustrate what we shall effectively do in our model, so
as to take into account that the absurdly strong couplings cannot be taken seriously.
From the rule of our non-perturbative model one starts from our fitted constant K
and then has to put various factors such as gµ/gt to some powers etc. so that one
at the end divide by a “suppression” - a suppression factor.

In the figure to give an idea of what we shall do, this suppression factor
“suppression” is plotted as the abscissa. As the ordinate is plotted the effective field
theory term coupling coefficient. If we did not modify our model this effective field
theory coupling would of course just be K/“suppression” and that is represented
by the skew straight line, simply with slope −1 in the logarithmic plot. If the
suppression factor is sufficiently big, perturbation theory on top of our non-
perturbative effect is still o.k. and we can take the result seriously. If, however, the
suppression factor for some effective field theory interaction, we look for, turns
out so small that the effective coupling becomes bigger than the limit, we should
cut the coupling down to agree with the limit. This is indicated by the red arrow
on the figure.

So in reality we shall use the kinky curve given on this figure which for small
“suppression” is flat, but for large enough “suppression” kinks into the −1 slope
straight curve piece.

In order that we can claim the success of our main result on the ratio of the
anomalous amplitudes fort the two B-meson anomalies, it is crucial that they both
fall in the region with the skew part of the curve. I.e. that suppression is enough.

18.5.2 Conservations

In order to put forward a little better the problems with making contributions to
meson anti-meson mixing in our scheme, we shall think of a certain truncated
Standard Model:
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In the region of our new strong interaction it is only right and left top quarks
and the Higgs doublet, which are present. We must though consider the left top
to also include a certain superposition of bottom, strange and down left quarks,
namely the one that is in a doublet with the left top.

At least for pedagogical reasons, but also really logically, we are allowed to
use as a strictly speaking more accurate model a restriction of the Standard Model
which also includes the three important particles for the new strong sector: the
right top, the Higgs doublet and the doublet containing the left top.

Let us indeed for our study, pedagogically or logically, choose the model with
all the quarks and for that matter also the leptons, both right and left, and the
Higgs doublet. However, we do not let into this restricted model the gauge bosons,
so there is no transverse W nor transverse Z. (Only the longitudinal components
in the form of eaten Higgses are let in).

This sub-model contains all the components that are crucial for the non-
perturbative effects. So it is in principle “better” than the only new strong interac-
tion approximation.

Now let us contemplate the conserved quantities of this “better” restriction
of the Standard Model, and let us in the spirit of our proposed rule of ignoring
the propagators or at least their masses, take all the quarks and leptons to be
massless except for vacuum expectation values for the Higgs. But the Higgs
vacuum expectation is assumed to be small on the mass scale we have in mind, so
we indeed ignore the masses in the propagators, even for the Higgs, which has a
mass of a similar order of magnitude.

In this our “better” restricted Standard Model the weak isospin is only a
global SU(2) symmetry, as is also the electric charge. We can without problems
use a different flavour basis for the T3 = 1/2 and the T3 = −1/2 quarks, as one in
fact does in practice. In such a notation then all the flavours get totally conserved.
Roughly speaking: We switched off the weak interactions and then the flavours
are conserved. It should though be borne in mind that our restricted sub-model
of the Standard Model only had the transverse weak gauge bosons switched off,
while the longitudinal components in the form of eaten Higgs components are
still included.

But this is then at first very promising for the mixing of the various pseu-
doscalar mesons with their antiparticles in our model. Namely in first approxima-
tion, in which we could claim that we only need the just constructed restricted
Standard Model, we can say that flavour changing is totally forbidden. Without
flavour changing we can have no meson anti-meson mixing and thus our non-
perturbative sector cannot produce any contribution to the mixing in this first
approximation.

18.5.3 Problem

However, there still seems to be a problem: The Standard Model contribution
to meson anti meson mixing already has in amplitude two W-exchanges - as
are needed for the flavour violation. Now the experimental method of measur-
ing mixing is very sensitive and we cannot rely on the anomalous contribution



i
i

“proc18” — 2018/12/10 — 11:44 — page 377 — #393 i
i

i
i

i
i

18 Could Experimental Anomalies Reflect Non-perturbative Effects? 377

from our non-perturbative model being negligible even if decorated with two
W-propagators.

We could therefore expect a non-negligible anomalous contribution basically
simulating the Standard model term, but letting the two top quark propagators
present in the Standard Model main term for the mixing interact via our non-
perturbative effect. This would mean crudely some usual top-propagators, being
of the order 1/mt each, if counted as fermion propagators, would in our anoma-
lous term be replaced - following dimensionality rules - by a top-quark scattering
effective coupling proportional to our K parameter with associated suppression
factors. However, for top quark scattering we have in our model no further sup-
pression and thus we simply get a K replacing the factor 1/m2t from the Standard
Model perturbatively. Our estimating of the correction factor to the full contribu-
tion from the Standard Model would then be of the order m2tK = 1732

5
≈ 5000.

This prediction would of course be catastrophic for the hope that our model could
be right. There is certainly no place for an extra mixing even of the same order as
the Standard Model mixing, let alone 5000 times as much.

Now, however, although formally correct according to our rules, such an
estimate is physically rather crazy. We must realistically expect that the effectively
“new physics”, due to the non-perturbative effects, has to do with say some bound
state or some little clump of a new vacuum or whatever, which only truly comes
into play when the interacting particles come sufficiently close to each other that
the bound state or a couple of them say could be exchanged between them. Such
bound state would presumably already have been observed if it were not of mass
of the order of say the by now disappearing F(750) digamma.

Let as say that, since no such bound state or replacement for it has been seen,
a mass of the order of 1 TeV at least should be estimated.

We would then say that we have an effective field theory and may take the
scale µ for it to be of the order of 1 TeV.

18.5.4 Coupling’s Maximum

Now we then want to argue that when we consider an effective field theory at a
scale µ = a−1, where a is the typical length for the scale of phenomena considered,
there must be an upper bound of what the effective field theory coupling G on
some vertex such as Gψ̄1ψ̄2...ψ3ψ4 can physically be. Here the ... just stands for
some γ-matrices or the like. In fact we want to argue that order of magnitudewise
we must have

µ2G = G/a2 < O(1). (18.37)

This condition is of course the same as that given in eq. (18.34) and discussed
above.

It is very natural, when we have our bound state ideas, to think of the particles
for the purpose of estimating what goes on as having extensions of the order
a = µ−1. Then one particle passing another one will get a phase rotation of its wave
function as it goes by given by G, in such a way that when it has passed through
it is by dimensional arguments rotated by µ2G = G/a2. But if this dimensionless
quantity is big compared to unity (or 2π) there will not result a particle with a phase
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as estimated, but rather some superposition of particles with many somewhat
different phases for their amplitudes, and they may typically interfere out to much
less. So we cannot really expect a coupling not obeying our suggested bound to
have any chance to survive in practice.

This means that unless we have enough suppression factors, such as the gµ/gt
to some power, to bring the µ2G a priori equal to µ2K down to under 1, we are
not allowed to take our model seriously. But now with our suggested number
of µ = 1 TeV and our fit K = 1/(5 GeV2), we have µ2K = 200000. So unless our
suppression factors for the interacting particles - the Yukawa coulings needed etc.
- make a suppression of a factor 200000, we cannot take our model seriously. We
must then claim that, for the physical reason of the particles being able to pass
through each other, we must anyway suppress the non-perturbative effect by the
rest of this needed factor 200000.

The idea now is that this suppression by the full factor 200000 is needed in
the least suppressed case of top on top interaction as we use in the mixing. This
should help to reduce our discrepancy w.r.t. mixing predictions.

In the cases of the anomalies, which we fitted as our main point, even in the
least suppressed of the two cases we had a suppression factorm2τ/m2t ≈ 1/10000.
This is only barely enough suppression to avoid further suppression in order to
get down by 200000. However the factor 200000 was really somewhat arbitrary,
and we could fit the µ to be a bit smaller by a square root of 20. But our problem
with mixing getting predicted too strong of course gets worse by such a choice.

18.6 Review

We have worked for a long time on the speculation that non-perturbative effects
in the Standard Model produce a very strongly bound state of 6 top + 6 anti-top
quarks [4–6], and a new vacuum with a condensate of such bound states. This idea
leads to a model of dark matter[7–10] without any physics beyond the Standard
Model:

• Dark matter consists of bubbles of a new phase of the vacuum filled with
atoms.

• These dark matter “pearls” with mass ∼ 500000tmade 6400 volcanoes of the
Kimberlite pipe type found on earth (and probably many more not found).

Some Successful Numbers Fitted/Predicted by Our Non-perturbative Standard
Model Based Model for Dark Matter:

Quantity Predicted “experiment” from
Weak scale ∼ 30GeV ∼ 100GeV “Tunguska”
3.5 keV line 4.5 keV 3.5 keV “homolumo-gap”

“Life time, 3.5 keV” 1029s? 1028s pearl collisions
Double supernova burst 14 hours 5 hours neutron-eating
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18.7 Conclusion

• We proposed, that two (small) tensions found in respectively neutral current
(c → s) and charged current (b → c) transitions in B-decay are due to non-
perturbative effects inside the Standard Model.
• The observed ratio between the anomalous amplitudes for the two processes/

decays of B-mesons B → Xsµ̄µ and B → Xcτντ seems to be ∼ 1
100

. This is in
agreement with the prediction resulting from our “practical procedure” for
calculating this ratio of amplitudes from our assumption that they result from
non-perturbative effects, due to the top-Yukawa coupling gt being of order
unity.

• So the Standard Model could be perfectly correct even with these anoma-
lies/tensions being true physical effects.

• In the neutral current decay B→ Kτ+τ− we PREdict the anomaly to dominate.
• We have earlier used this non-perturbative effect for a model for dark matter,

thus completely inside the Standard Model.
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for the number of visits to VIA site converts VIA in a specific tool for MOOC activity. VIA
sessions are now a traditional part of Bled Workshops’ programme. At XXI Bled Workshop
it provided a world-wide discussion of the open questions of physics beyond the standard
model, supporting world-wide propagation of the main ideas, presented at this meeting.

Povzetek. Virtual Institute of Astroparticle Physics (VIA) je večnamensko spletišče za
znanost in izobraževanje na naslovu http://viavca.in2p3.fr/site.html. Podpira neposredne
predstavitve najbolj zanimivih teoretičnih in eksperimentalnih rezultatov, sodelovanje v
neposrednih konferencah in srečanjih, podporo za različne oblike znanstvenega sodelo-
vanja, programe za izobraževanje na daljavo, pri čemer ponuja kombinacije videokonferenc
z obširno knjižnico zapisov prejšnjih srečanj in diskusije na Forumu. Po letu 2014 so preda-
vanja VIA na daljavo, kombinirana z individualnim delom na forumu, dobila obliko odprtih
tečajev na daljavo. Ker cilja na individualno delo s posameznimi študenti, ni množicna, ven-
dar je, glede na število obiskov spletišča VIA, le to postalo orodje za množične aktivnosti
učenja na daljavo (MOOC). Seje VIA so postale tradicionalen del programa te blejske
delavnice. Na letošni enaindvajseti delavnici so omogočile diskusije o odprtih vprašanjih
fizike onkraj standardnih modelov za udeležence iz vseh koncev sveta in razširjanje idej,
predstavljenih na delavnici, po vsem svetu.

Keywords: astroparticle physics, physics beyond the Standard model, e-learning,
e-science, MOOC
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19.1 Introduction

Studies in astroparticle physics link astrophysics, cosmology, particle and nuclear
physics and involve hundreds of scientific groups linked by regional networks
(like ASPERA/ApPEC [1,2]) and national centers. The exciting progress in these
studies will have impact on the knowledge on the structure of microworld and
Universe in their fundamental relationship and on the basic, still unknown, physi-
cal laws of Nature (see e.g. [3,4] for review). The progress of precision cosmology
and experimental probes of the new physics at the LHC and in nonaccelerator
experiments, as well as the extension of various indirect studies of physics beyond
the Standard model involve with necessity their nontrivial links. Virtual Institute
of Astroparticle Physics (VIA) [5] was organized with the aim to play the role of
an unifying and coordinating plarform for such studies.

Starting from the January of 2008 the activity of the Institute takes place on
its website [6] in a form of regular weekly videoconferences with VIA lectures,
covering all the theoretical and experimental activities in astroparticle physics and
related topics. The library of records of these lectures, talks and their presenta-
tions was accomplished by multi-lingual Forum. Since 2008 there were 195 VIA
online lectures, VIA has supported distant presentations of 112 speakers at 25
Conferences and provided transmission of talks at 64 APC Colloquiums.

In 2008 VIA complex was effectively used for the first time for participation
at distance in XI Bled Workshop [7]. Since then VIA videoconferences became
a natural part of Bled Workshops’ programs, opening the virtual room of dis-
cussions to the world-wide audience. Its progress was presented in [8–16]. Here
the current state-of-art of VIA complex, integrated since 2009 in the structure
of APC Laboratory, is presented in order to clarify the way in which discussion
of open questions beyond the standard models of both partcile physics and cos-
mology were presented at the XXI Bled Workshop with the of VIA facility to the
world-wide audience.

19.2 VIA structure and activity

19.2.1 VIA activity

The structure of VIA complex is illustrated by the Fig. 19.1. The home page, pre-
sented on this figure, contains the information on the coming and records of the
latest VIA events. The menu links to directories (along the upper line from left
to right): with general information on VIA (About VIA), entrance to VIA virtual
rooms (Rooms), the library of records and presentations (Previous) of VIA Lectures
(Previous→ Lectures), records of online transmissions of Conferences(Previous→
Conferences), APC Colloquiums (Previous→ APC Colloquiums), APC Seminars
(Previous → APC Seminars) and Events (Previous → Events), Calendar of the
past and future VIA events (All events) and VIA Forum (Forum). In the upper
right angle there are links to Google search engine (Search in site) and to contact
information (Contacts). The announcement of the next VIA lecture and VIA online
transmission of APC Colloquium occupy the main part of the homepage with
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Fig. 19.1. The home page of VIA site
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the record of the most recent VIA events below. In the announced time of the
event (VIA lecture or transmitted APC Colloquium) it is sufficient to click on ”to
participate” on the announcement and to Enter as Guest (printing your name) in
the corresponding Virtual room. The Calendar shows the program of future VIA
lectures and events. The right column on the VIA homepage lists the announce-
ments of the regularly up-dated hot news of Astroparticle physics and related
areas.

In 2010 special COSMOVIA tours were undertaken in Switzerland (Geneva),
Belgium (Brussels, Liege) and Italy (Turin, Pisa, Bari, Lecce) in order to test stability
of VIA online transmissions from different parts of Europe. Positive results of these
tests have proved the stability of VIA system and stimulated this practice at XIII
Bled Workshop. The records of the videoconferences at the XIII Bled Workshop
are available on VIA site [17].

Since 2011 VIA facility was used for the tasks of the Paris Center of Cos-
mological Physics (PCCP), chaired by G. Smoot, for the public programme ”The
two infinities” conveyed by J.L.Robert and for effective support a participation
at distance at meetings of the Double Chooz collaboration. In the latter case, the
experimentalists, being at shift, took part in the collaboration meeting in such a
virtual way.

The simplicity of VIA facility for ordinary users was demonstrated at XIV Bled
Workshop in 2011. Videoconferences at this Workshop had no special technical
support except for WiFi Internet connection and ordinary laptops with their
internal webcams and microphones. This test has proved the ability to use VIA
facility at any place with at least decent Internet connection. Of course the quality
of records is not as good in this case as with the use of special equipment, but still
it is sufficient to support fruitful scientific discussion as can be illustrated by the
record of VIA presentation ”New physics and its experimental probes” given by
John Ellis from his office in CERN (see the records in [18]).

In 2012 VIA facility, regularly used for programs of VIA lectures and transmis-
sion of APC Colloquiums, has extended its applications to support M.Khlopov’s
talk at distance at Astrophysics seminar in Moscow, videoconference in PCCP,
participation at distance in APC-Hamburg-Oxford network meeting as well as to
provide online transmissions from the lectures at Science Festival 2012 in Univer-
sity Paris7. VIA communication has effectively resolved the problem of referee’s
attendance at the defence of PhD thesis by Mariana Vargas in APC. The referees
made their reports and participated in discussion in the regime of VIA video-
conference. In 2012 VIA facility was first used for online transmissions from the
Science Festival in the University Paris 7. This tradition was continued in 2013,
when the transmissions of meetings at Journées nationales du Développement
Logiciel (JDEV2013) at Ecole Politechnique (Paris) were organized [20].

In 2013 VIA lecture by Prof. Martin Pohl was one of the first places at which
the first hand information on the first results of AMS02 experiment was presented
[19].

In 2014 the 100th anniversary of one of the foundators of Cosmoparticle
physics, Ya. B. Zeldovich, was celebrated. With the use of VIA M.Khlopov could
contribute the programme of the ”Subatomic particles, Nucleons, Atoms, Universe:
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Processes and Structure International conference in honor of Ya. B. Zeldovich 100th
Anniversary” (Minsk, Belarus) by his talk ”Cosmoparticle physics: the Universe
as a laboratory of elementary particles” [21] and the programme of ”Conference
YaB-100, dedicated to 100 Anniversary of Yakov Borisovich Zeldovich” (Moscow,
Russia) by his talk ”Cosmology and particle physics” [22].

In 2015 VIA facility supported the talk at distance at All Moscow Astrophysi-
cal seminar ”Cosmoparticle physics of dark matter and structures in the Universe”
by Maxim Yu. Khlopov and the work of the Section ”Dark matter” of the Interna-
tional Conference on Particle Physics and Astrophysics (Moscow, 5-10 October
2015). Though the conference room was situated in Milan Hotel in Moscow all the
presentations at this Section were given at distance (by Rita Bernabei from Rome,
Italy; by Juan Jose Gomez-Cadenas, Paterna, University of Valencia, Spain and by
Dmitri Semikoz, Martin Bucher and Maxim Khlopov from Paris) and its work was
chaired by M.Khlopov from Paris [27]. In the end of 2015 M. Khlopov gave his
distant talk ”Dark atoms of dark matter” at the Conference ”Progress of Russian
Astronomy in 2015”, held in Sternberg Astronomical Institute of Moscow State
University.

In 2016 distant online talks at St. Petersburg Workshop ”Dark Ages and White
Nights (Spectroscopy of the CMB)” by Khatri Rishi (TIFR, India) ”The information
hidden in the CMB spectral distortions in Planck data and beyond”, E. Kholupenko
(Ioffe Institute, Russia) ”On recombination dynamics of hydrogen and helium”,
Jens Chluba (Jodrell Bank Centre for Astrophysics, UK) ”Primordial recombination
lines of hydrogen and helium”, M. Yu. Khlopov (APC and MEPHI, France and
Russia)”Nonstandard cosmological scenarios” and P. de Bernardis (La Sapiensa
University, Italy) ”Balloon techniques for CMB spectrum research” were given
with the use of VIA system [28]. At the defense of PhD thesis by F. Gregis VIA
facility made possible for his referee in California not only to attend at distance at
the presentation of the thesis but also to take part in its successive jury evaluation.

Since 2018 VIA facility is used for collaborative work on studies of various
forms of dark matter in the framework of the project of Russian Science Foundation
based on Southern Federal University (Rostov on Don). In September 2018 VIA
supported online transmission of 17 presentations at the Commemoration day
for Patrick Fleury, held in APC [29].

The discussion of questions that were put forward in the interactive VIA
events is continued and extended on VIA Forum. Presently activated in En-
glish,French and Russian with trivial extension to other languages, the Forum
represents a first step on the way to multi-lingual character of VIA complex and
its activity. Discussions in English on Forum are arranged along the following
directions: beyond the standard model, astroparticle physics, cosmology, gravita-
tional wave experiments, astrophysics, neutrinos. After each VIA lecture its pdf
presentation together with link to its record and information on the discussion
during it are put in the corresponding post, which offers a platform to continue
discussion in replies to this post.
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19.2.2 VIA e-learning, OOC and MOOC

One of the interesting forms of VIA activity is the educational work at distance. For
the last eleven years M.Khlopov’s course ”Introduction to cosmoparticle physics”
is given in the form of VIA videoconferences and the records of these lectures
and their ppt presentations are put in the corresponding directory of the Forum
[23]. Having attended the VIA course of lectures in order to be admitted to exam
students should put on Forum a post with their small thesis. In this thesis students
are proposed to chose some BSM model and to study the cosmological scenario
based on this chosen model. The list of possible topics for such thesis is proposed
to students, but they are also invited to chose themselves any topic of their own on
possible links between cosmology and particle physics. Professor’s comments and
proposed corrections are put in a Post reply so that students should continuously
present on Forum improved versions of work until it is accepted as admission for
student to pass exam. The record of videoconference with the oral exam is also
put in the corresponding directory of Forum. Such procedure provides completely
transparent way of evaluation of students’ knowledge at distance.

In 2018 the test has started for possible application of VIA facility to remote
supervision of student’s scientific practice. The formulation of task and discussion
of porgress on work are recorded and put in the corresponding directory on Forum
together with the versions of student’s report on the work progress.

Since 2014 the second semester of the course on Cosmoparticle physics is
given in English and converted in an Open Online Course. It was aimed to develop
VIA system as a possible accomplishment for Massive Online Open Courses
(MOOC) activity [24]. In 2016 not only students from Moscow, but also from
France and Sri Lanka attended this course. In 2017 students from Moscow were
accompanied by participants from France, Italy, Sri Lanka and India [25]. The
students pretending to evaluation of their knowledge must write their small thesis,
present it and, being admitted to exam, pass it in English. The restricted number
of online connections to videoconferences with VIA lectures is compensated by
the wide-world access to their records on VIA Forum and in the context of MOOC
VIA Forum and videoconferencing system can be used for individual online work
with advanced participants. Indeed Google Analytics shows that since 2008 VIA
site was visited by more than 242 thousand visitors from 153 countries, covering
all the continents by its geography (Fig. 19.2). According to this statistics more
than half of these visitors continued to enter VIA site after the first visit. Still the
form of individual educational work makes VIA facility most appropriate for
PhD courses and it is planned to be involved in the International PhD program
on Fundamental Physics, which can be started on the basis of Russian-French
collaborative agreement. In 2017 the test for the ability of VIA to support fully
distant education and evaluation of students (as well as for work on PhD thesis
and its distant defense) was undertaken. Steve Branchu from France, who attended
the Open Online Course and presented on Forum his small thesis has passed exam
at distance. The whole procedure, starting from a stochastic choice of number of
examination ticket, answers to ticket questions, discussion by professors in the
absence of student and announcement of result of exam to him was recorded and
put on VIA Forum [26].
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Fig. 19.2. Geography of VIA site visits according to Google Analytics

19.2.3 Organisation of VIA events and meetings

First tests of VIA system, described in [5,7–9], involved various systems of video-
conferencing. They included skype, VRVS, EVO, WEBEX, marratech and adobe
Connect. In the result of these tests the adobe Connect system was chosen and
properly acquired. Its advantages are: relatively easy use for participants, a possi-
bility to make presentation in a video contact between presenter and audience, a
possibility to make high quality records, to use a whiteboard tools for discussions,
the option to open desktop and to work online with texts in any format.

Initially the amount of connections to the virtual room at VIA lectures and
discussions usually didn’t exceed 20. However, the sensational character of the
exciting news on superluminal propagation of neutrinos acquired the number
of participants, exceeding this allowed upper limit at the talk ”OPERA versus
Maxwell and Einstein” given by John Ellis from CERN. The complete record of
this talk and is available on VIA website [30]. For the first time the problem of
necessity in extension of this limit was put forward and it was resolved by creation
of a virtual ”infinity room”, which can host any reasonable amount of participants.
Starting from 2013 this room became the only main virtual VIA room, but for
specific events, like Collaboration meetings or transmissions from science festivals,
special virtual rooms can be created. This solution strongly reduces the price of the
licence for the use of the adobeConnect videoconferencing, retaining a possibility
for creation of new rooms with the only limit to one administrating Host for all of
them.

The ppt or pdf file of presentation is uploaded in the system in advance
and then demonstrated in the central window. Video images of presenter and
participants appear in the right window, while in the lower left window the
list of all the attendees is given. To protect the quality of sound and record, the
participants are required to switch out their microphones during presentation and
to use the upper left Chat window for immediate comments and urgent questions.
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The Chat window can be also used by participants, having no microphone, for
questions and comments during Discussion. The interactive form of VIA lectures
provides oral discussion, comments and questions during the lecture. Participant
should use in this case a ”raise hand” option, so that presenter gets signal to switch
out his microphone and let the participant to speak. In the end of presentation
the central window can be used for a whiteboard utility as well as the whole
structure of windows can be changed, e.g. by making full screen the window with
the images of participants of discussion.

Regular activity of VIA as a part of APC includes online transmissions of
all the APC Colloquiums and of some topical APC Seminars, which may be of
interest for a wide audience. Online transmissions are arranged in the manner,
most convenient for presenters, prepared to give their talk in the conference
room in a normal way, projecting slides from their laptop on the screen. Having
uploaded in advance these slides in the VIA system, VIA operator, sitting in the
conference room, changes them following presenter, directing simultaneously
webcam on the presenter and the audience.

19.3 VIA Sessions at XXI Bled Workshop

VIA sessions of XXI Bled Workshop continued the tradition coming back to the
first experience at XI Bled Workshop [7] and developed at XII, XIII, XIV, XV, XVI,
XVII, XVIII, XIX and XX Bled Workshops [8–16]. They became a regular part of
the Bled Workshop’s program.

In the course of XXI Bled Workshop, the list of open questions was stipulated,
which was proposed for wide discussion with the use of VIA facility. The list
of these questions was put on VIA Forum (see [31]) and all the participants of
VIA sessions were invited to address them during VIA discussions. During the
XXI Bled Workshop the announcement of VIA sessions was put on VIA home
page, giving an open access to the videoconferences at VIA sessions. Though the
experience of previous Workshops principally confirmed a possibility to provide
effective interactive online VIA videoconferences even in the absence of any special
equipment and qualified personnel at place, VIA Sessions were directed at XXI
Workshop by M.Khlopov at place. Only laptop with microphone and webcam
together with WiFi Internet connection was proved to support not only attendance,
but also VIA presentations and discussions.

In the framework of the program of XXI Bled Workshop, S. Ketov, gave his talk
”Starobinsky Inflation in Gravity and Supergravity” (Fig. 19.3), from Japan, while
his co-author M.Khlopov continued the talk in Bled. VIA session also included
discussion of searches for new physics at the LHC with participation at distance by
A.Romaniouk from CERN. It provided an additional demonstration of the ability
of VIA to support the creative non-formal atmosphere of Bled Workshops (see
records in [32]).

The talks ”Theories for initial conditions” by Holger B. Nielsen(Fig. 19.4)
”Experimental consequences of spin-charge family theory” by Norma Mankoc-
Borstnik (Fig. 19.5) were given at Bled, inviting distant participants to join the
discussion.
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Fig. 19.3. VIA talk ”Starobinsky Inflation in Gravity and Supergravity” by S. Ketov from
Japan at XXI Bled Workshop

Fig. 19.4. VIA talk by Holger B. Nielsen ”Theories for initial conditions” at XXI Bled Work-
shop
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Fig. 19.5. VIA talk ”Experimental consequences of spin-charge family theory” by Norma
Mankoc-Borstnik at XXI Bled Workshop

The records of all these lectures and discussions can be found in VIA library
[32].

19.4 Conclusions

The Scientific-Educational complex of Virtual Institute of Astroparticle physics
provides regular communication between different groups and scientists, working
in different scientific fields and parts of the world, the first-hand information on
the newest scientific results, as well as support for various educational programs at
distance. This activity would easily allow finding mutual interest and organizing
task forces for different scientific topics of astroparticle physics and related topics.
It can help in the elaboration of strategy of experimental particle, nuclear, astro-
physical and cosmological studies as well as in proper analysis of experimental
data. It can provide young talented people from all over the world to get the
highest level education, come in direct interactive contact with the world known
scientists and to find their place in the fundamental research. These educational
aspects of VIA activity is now being evolved in a specific tool for International
PhD programme for Fundamental physics. VIA applications can go far beyond
the particular tasks of astroparticle physics and give rise to an interactive system
of mass media communications.

VIA sessions became a natural part of a program of Bled Workshops, main-
taining the platform of discussions of physics beyond the Standard Model for
distant participants from all the world. This discussion can continue in posts and
post replies on VIA Forum. The experience of VIA applications at Bled Workshops
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plays important role in the development of VIA facility as an effective tool of
e-science and e-learning.
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20 June

Astri Kleppe

Tonight they all spring into blossom, Lilacs,
Bird Cherry
with strands of willow, weaving
their way to the beginning;
How it all
was meant to be.

Birdsong, sound of running steps,
of tea and cups;
Soon the larvae will be heading
for the bird cherry, enfolding it
in silvery cocoons;
and soon
warm nights of August will bring
darkness, for Orion
to be seen.
But in this night of early June
it’s all in ecstasy, in vigil
for the blossom;
No one sleeps, the birds, the flies
are all awake.

Who are you then, I asked
the Lilacs
We are strangers here, the answer came,
and we belong to no one
But tell me who you are, I begged
And flower clusters sprinkled over me,
a waterfall
of petals,
We just arrived, tonight,
what more is there to say?
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II

A loose dream from a corner of the universe
is driving towards us, our island;
Clouds
awakening of granite and cadavers, blue
and earth;
A boomerang towards The Milky Way, its icy stars
and howling wolves, and tightly curved
around the little heat
from our own speed. We are but animals
of auguries, of hope and salt;
and though great dreams
of Leibniz,
Alan Guth and Hubble led us,
it was other tokens
that the Universe imagined,
of another
kind;
And suddenly this otherness
sticks out: a tree
With roots in galaxies and whispers,
in galactic summer, leaves
that dance in morning breeze
and drizzle, with a scent
of seed and clover, pregnant
visions,
over paths through rain-gray
grass.

Beware of those
who tread on dew and stop
under that tree. So slowly
night is turning, in this space
of the improbable, a darkness
where a tree can grow
from nothing, rise
with flower buds and day.

It was in June, an early morning
in a sea before the blue
of skies, before all grass and oxygen;
but still a sea,
a meadow, all its flowers.
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20 June 399

III

They gave us this, a place
so wonderful,
our garden with its tender plants
and trees of darkest mold
with branches stretching out
to heaven, all the blue.

And over time we built
our house,
with kitchen windows with a view
of oaks, and in the winter nights
the dog lay by the oven.
And from stone and dust and clay
we built our roads, from sand
and metal
the first street light, zippers
and TV.
The dogs got leashes, we got
blogs, so marvelous
our garden, and so tall
the skyscrapers;
In street dust and the growing noise
we saw the progress, in the dying trees
the halved diversity
of everything.

Do you remember all these woods? So vast
and wild, the rugged mountains
roaring over trees and oceans.
O, the ocean! Waving waves
around the boat, like fingers
through a golden field, the time
when the first crops
were grown.
This was our Earth, with seas
and meadows, timothy,
all life born within this triangle
where ice and clouds meet seas
and rivers.
It was ours.
We had all this,
the grass, the water, sky
and clouds.
Our garden
was complete.
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IV

The elements are four, they said, it’s
Fire, Earth and Air
and Water.
Air is made of eyes, the Earth is
made of red
and green, and Water
shapes our dreams.

Only Fire, that’s the Sun, is still
unstained. No smog
is registered
in solar atmospheres, no drought,
no poison or depletion of the soil.
Fire alone
is pure.
It burns, it is;
It shall not want.

Three things, they said to me,
are good things.
Four is still OK, and five is not
so bad, but six
is already too much, and seven
is pure waste.
But seven, I protested, is a lovely
number, seven
good things is far more
than three.
Three or seven, never mind, they said.
Our only worry
is when letters are forgotten
or when too many
are added;

And in the early morning
flocks of black deer
ran beneath us, dark clouds
of pure music
on the newgrown grass.
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