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Abstract

We construct isometric point-circle configurations on surfaces from uniform maps. This
gives one geometric realisation in terms of points and circles of the Desargues configura-
tion in the real projective plane, and three distinct geometric realisations of the pentagonal
geometry with seven points on each line and seven lines through each point on three distinct
dianalytic surfaces of genus 57. We also give a geometric realisation of the latter pentago-
nal geometry in terms of points and hyperspheres in 24 dimensional Euclidean space. From
these, we also obtain geometric realisations in terms of points and circles (or hyperspheres)
of pentagonal geometries with k circles (hyperspheres) through each point and k−1 points
on each circle (hypersphere).
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1 Introduction
A compact Klein surface S is a surface (possibly with boundary and non-orientable) en-
dowed with a dianalytic structure, that is, the transition maps are holomorphic or antiholo-
morphic (the conjugation z → z is allowed). If the surface S admits analytic structure
and is closed, then the surface is a Riemann surface. By the uniformization theorem each
Klein surface is a quotient S = U/G, where U is either the Riemann sphere, the complex
Euclidean plane or the hyperbolic plane, and G is a group without elliptic elements. In the
case of surfaces without boundary the group G is torsion-free.
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The surface inherits the geometry of its universal covering space U through this quo-
tient. Incidences between lines and circles in S follow the same axioms as in the covering
space and geodesics on the surface come from lines in the covering space. In what follows,
terms like line and circle will refer to such geometric objects, if not defined otherwise.

A map is a drawing of a graph on a surface such that the complement of the drawing is a
disjoint union of topological discs called faces. So a map consists of a set of vertices, a set
of edges and a set of faces. The genus of a map is the genus of the surface in which the graph
is embedded, and can be calculated through the Euler characteristic using a generalization
of Euler’s polyhedron formula. Given a map with |V | points, |E| edges and |F | faces, the
Euler characteristic is χ = |V | − |E|+ |F |. The genus g of an orientable surface satisfies
χ = 2−2g and the genus h of a non-orientable surface satisfies χ = 2−h. By considering
the map as the lifting of the segment [0, 1] in C, the map determines the structure of the
dianalytic surface. In general, a given surface allows different maps, and a given graph can
be embedded as a map on different surfaces [18, 5, 4]. However, among the different maps
of a graph there is one which has the largest Euler characteristic, then called the Euler
characteristic of the graph. This map will have the smallest orientable or non-orientable
genus of all maps of this graph, depending on whether it is orientable or not.

It makes sense to consider both the smallest orientable and the smallest non-orientable
genus of the graph. For example, the orientable genus of a planar graph is the genus of
the sphere, which is 0. This is also the orientable genus of the 1-skeleta of the Platonic
surfaces. The Petersen graph is not planar and so it has orientable genus at least 1. Since it
can be drawn without crossings on the torus, it has orientable genus exactly 1. The hemi-
dodecahedron is the abstract polyhedron obtained by identifying antipodal points in the
dodecahedron. The 1-skeleton of this polyhedron is the Petersen graph, defining a map of
the Petersen graph in the real projective plane, so the non-orientable genus of the Petersen
graph is 1.

The study of configurations in projective real or complex plane is a classical subject in
geometry. Configurations appear naturally as arrangements of lines, planes or circles in a
geometric plane or space. In contrast with the situation when graphs are realised as maps
on surfaces, the requirement that there should be no crossings on the surface other than
the incidences defined by the configuration is typically relaxed (although not always). For
example, Hilbert and Cohn-Vossen [16] define a planar point-line configuration as follows.

“A plane configuration is a system of v points and b straight lines arranged in a plane in
such a way that every point is incident with r lines and every line is incident with k points.”

Note that it is not required that the b lines should meet only in the v points, only the
incidences in the distinguished points are important. However, extra incidences on these
points are often regarded as an anomaly.

For example, consider Desargues’ Theorem, which is a theorem regarding the realisa-
tion of the configuration in Figure 1 in projective planes. In a projective plane every pair
of lines intersect, therefore every pair of the 10 lines in the configuration in Figure 1 must
meet at some point. Some of these points do not belong to the configuration. Similarly,
there is of course a line between each pair of points, but some of these lines do not belong
to the configuration. What makes it a configuration is the fact that in any of the 10 points
there are r = 3 of the 10 lines intersecting, and on any of the 10 lines there are k = 3 of
the 10 points. However, if it was drawn so that a 4th of the 10 points accidently were on an
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Figure 1: Desargues’ Theorem: two triangles are perspective from a point if and only if
they are perspective from a line.

extra line, then some lines would have 3 points and others would have 4 points, making the
configuration degenerate. An (r, k)-combinatorial configuration is a set of incidences be-
tween two sets of v and b elements called points and lines respectively, defined in analogy
with the planar and linear definition above, but without considering realisability in some
geometric space; see for example [13, 22]. A combinatorial configuration is called linear if
each pair of lines meet at most once. Linear combinatorial configurations are often simply
called combinatorial configurations. Combinatorial configuration with k = 2 or r = 2 are
graphs or their duals are graphs, respectively. Therefore it is typically required that r ≥ 3
and k ≥ 3.

A pentagonal geometry is a (linear) combinatorial configuration in which, for any point
p, all points that are not collinear with p are on a single line, which is called the opposite
line of p. A pentagonal geometry has order (k, r) if there are r lines through each point and
k points on each line [1]. There are two classes of lines in a pentagonal geometry, lines that
are the opposite line of some point, and lines that are not. A pentagonal geometry with no
non-opposite lines is self-polar by the polarity that associates each point with its opposite
line. The deficiency graph (P,E) of a configuration is a graph with vertex set P , consisting
of the points of the configuration, and edge set E, consisting of all the pairs (p, q) such that
the points p, q ∈ P are not collinear. In a pentagonal geometry, for each p ∈ P the opposite
line of p is formed by the points that are neighbours to p in the deficiency graph. When
r = k, the number of points equals the number of lines, so there are no non-opposite lines,
and all lines are defined by the neighbourhood of some point in the deficiency graph. Given
the deficiency graph it is then possible to construct the pentagonal geometry by drawing a
(combinatorial) line through the neighbourhood of each point in the deficiency graph. This
construction of pentagonal geometries was described in [1], where it also was proved that
pentagonal geometries with r = k are exactly the ones with a Moore graph (of diameter
two) as deficiency graph.

There are only three known Moore graphs of diameter 2: the cycle graph of length 5,
the Petersen graph, and the Hoffman-Singleton graph. These graphs have valency 2, 3 and
7, respectively. They are unique for their valencies [17]. The existence of a Moore graph
of valency 57 is still an open question. The pentagonal geometries obtained from these
graphs are, respectively, the ordinary pentagon, the Desargues configuration (Figure 1) and
a pentagonal geometry with parameters (7, 7) and with 50 points and 50 lines. In [1], it
was also proved that all pentagonal configurations of order (k, k + 1) can be constructed
from pentagonal geometries of order (k+1, k+1) through the removal of one point and its
opposite line. There are therefore at most three such pentagonal geometries, with k = 2, 6
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and maybe 56.
The construction of pentagonal geometries from a graph with a combinatorial line

through the neighbourhood of each vertex can also be used to construct other configu-
rations. Indeed, the same construction works for any graph with the property that any two
vertices have at most one common neighbour. In other words, the graph should be without
cycles of length 4. This construction seems to appear first in an article by Lefèvre-Percsy,
Percsy and Leemans, as the neighbourhood geometry (of rank 2) of a graph [20], and later,
in the context of geometric realisations of configurations in articles by Gévay and Pisan-
ski [9, 10]. If the graph can be drawn in the real Euclidean plane in such a way that a
circle can be traced through the neighbours of each point, then the drawing and the con-
struction together give rise to a geometric point-circle configuration in the real Euclidean
plane [10]. For example, any 3-regular graph has this property, defining a point-circle
(3, 3)-configuration in the real Euclidean plane. Also unit-distance graphs can be used for
the same purpose. Indeed, a circle is defined as the collection of points at a given distance
from the center of the circle. As an extra feature, a unit-distance graph gives an isometric
point-circle configuration, in which all circles have the same radius.

As was observed in [9], a point-plane configuration in real Euclidean 3-space, con-
structed through a similar construction from the 1-skeleton of a 3-polytope, defines a point-
circle configuration in the real Euclidean plane through stereographic projection whenever
the points in each plane are concyclic. In particular, it was proved in [9] that any Platonic
or Archimedean solid gives a point-circle configuration on the Riemann sphere, and that
the circle-preserving property of the stereographic projection implies that any point-circle
configuration drawn on the sphere can also be drawn in the real Euclidean plane.

In this article we will generalize this construction on the sphere to surfaces in gen-
eral. This construction is motivated by the study of geometric realisations of pentagonal
geometries.

2 Constructing configurations of points and isometric circles on sur-
faces

The geometric construction of Gévay and Pisanski described above does not require an
embedding without crossings of the graph. Rather, what the construction requires from
the graph embedding is that the neighbours of each vertex are concyclic [10]. On the
sphere, any circle is a planar section, so any point-circle configuration gives a point-plane
configuration in 3-space. Since more than 3 points in a plane are not necessarily concyclic,
the converse is not true in general when k > 3.

A nice way of making neighbours concyclic is to mimic the idea of using a map of the
1-skeleton of a convex polytope. A regular tiling (p, q) of the universal covering space U
of a Riemann surface is a collection of congruent polygons which partitions and fills up
the entire space, in such a way that p q-gons meet at each vertex. The stabilizer of this
tiling is a subgroup of a triangle group Γ(p, 2, q). Since the polygons are congruent, the
neighbours of each vertex are concyclic on isometric circles. The distance is the spherical,
the Euclidean or the hyperbolic distance respectively.

Definition 2.1. A uniform map of type (p, q) on a Riemann surface with universal covering
space U is the quotient of a regular tiling of U of type (p, q) by the action of a torsion-free
group G ⊆ Γ(p, 2, q).

This terminology comes from the theory of dessin d’enfants [12, 18, 26], where also
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the term uniform dessin d’enfants is used. In the theory of tilings and polytopes the word
uniform map instead refers to a map with an automorphism group acting transitively on the
vertices. In the literature of tilings and polytopes, our uniform maps are instead known as
equivelar maps. In particular, our uniform maps are not necessarily vertex transitive.

In a uniform map of type (p, q) the vertices have valency p, the edges have valency 2,
and the faces have valency q. Any map with this property is a uniform map of type (p, q).
A map is regular if its automorphism group acts transitively on triples of incident vertices,
edges and faces, that is, on the flags. This implies that a regular map is always uniform.

Isometric circles through the neighbours of each vertex of a regular tiling of U will be
mapped to isometric circles through the neighbours of each vertex of the corresponding
uniform map on U/G. Since each circle contains p points and p circles goes through each
point, this construction gives a configuration of points and circles on the surface, and we
have proved the following.

Theorem 2.2. A uniform map on a surface produces a configuration of points and isometric
circles on the same surface.

On the sphere, this construction gives a configuration of points and isometric circles
which can be taken to a configuration of points and non-isometric circles on the Euclidean
plane through stereographic projection from a suitable point.

The uniform maps on the sphere are regular. Consequently, there are two infinite fam-
ilies of uniform maps of the sphere, the hosohedra of type (n, 2) for n ≥ 1, consisting
of n digons meeting at two antipodal vertices, and the dihedra of type (2, n) for n ≥ 1,
consisting of two n-gons meeting at n vertices along a meridian. The result from applying
Theorem 2.2 to a hosohedron is a degenerate configuration consisting of two points and two
circles of radius zero, each point occuring with multiplicity n on one of the circles. By in-
stead using a dihedron one obtains a configuration of n points and n circles with two points
on each circle. This configuration is connected if n is odd, otherwise the configuration
consist of two disconnected components.

A part from the two infinite families just described, which result in configurations of
limited interest, there are only five more uniform maps on the sphere, corresponding to
the Platonic solids. Of the resulting configurations, there is only one which is linear when
regarded as a combinatorial configuration.

Theorem 2.3. The only linear point-circle configuration (with r > 2 and k > 2) coming
from a uniform map on the Riemann sphere is the (203, 203)-configuration on Figures 1,
2, 3 in [10], obtained from the dodecahedron projected on the sphere. In the real pro-
jective plane, the only linear point-circle configuration coming from a uniform map is the
Desargues configuration, obtained from the hemidodecahedron.

Proof. The uniform maps of type (p, q) on the sphere satisfying p > 2 and q > 2 are
the Platonic solids. Gévay and Pisanski constructed point-plane configurations from all
Platonic (and Archimedean) solids except the octahedron in [10]. The octahedron has the
property that the planes through the neighbours of two antipodal vertices coincide. They
also proved that their construction gives a combinatorial point-line configuration (i.e. in
which any two combinatorial lines share at most one point) only if the graph does not
have cycles of length 4. The only Platonic solid graph without cycles of length 4 is the
dodecahedron graph. The uniform maps in the real projective plane are obtained from the
uniform maps on the sphere by identifying antipodal points. As we pointed out in the
introduction, the hemi-dodecahedron is obtained from the dodecahedron in this way.
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The sphere has finite area, implying that each uniform tiling has a finite number of
tiles. Hence the automorphism group of the tiling is finite and has a finite number of
subgroups. Therefore the finite number of regular tilings with p, q ≥ 3 of the sphere
gives a finite number of uniform maps. The situation is different in the Euclidean and
the hyperbolic plane. The Euclidean plane has a finite number of regular tilings (of types
(6, 3), (3, 6) and (4, 4)), but here the area is infinite, resulting in infinitely many uniform
maps. The hyperbolic plane has infinite area and there are infinitely many regular tilings,
and consequently infinitely many uniform maps.

In comparison with the situation in the Euclidean plane, where it is possible to con-
struct isometric point-circle configurations without starting with a planar unit-distance em-
bedding of the graph, it is clear that in general it is not necessary to require the graph
to be embedded as a uniform map on the surface. Isometric point-circle configurations
can in some cases be obtained using other embeddings (non-uniform, non-congruent, with
crossings) of the graph on the surface. However, in this article we focus on point-circle
configurations coming from uniform maps, more precisely, on those coming from uniform
pentagonal maps of Moore graphs of diameter 2.

3 Geometric pentagonal geometries
Here (in three subsections) we discuss different geometric realisations of pentagonal ge-
ometries, with focus on embeddings in Riemann surfaces.

3.1 The ordinary pentagon

The ordinary pentagon is the smallest non-degenerate pentagonal geometry. Its deficiency
graph is the cycle graph on 5 vertices. This graph can also be seen as a point-line realisation
of the configuration itself. The ordinary pentagon can also be constructed as a point-circle
configuration with two points on each circle from its deficiency graph using the geometric
construction by Gévay and Pisanski. So it can be argued that any point-line realisation of
the ordinary pentagon produces a point-circle realisation of the same.

The cycle graph on 5 vertices has diameter 2 and girth 5, as do all Moore graphs (of
diameter 2). The smallest number of edges in any face of an embedding of this graph on
a surface is therefore 5. For example, it can be embedded in the Riemann sphere as a
pentagonal cycle along one of the geodesics. This map has 5 vertices, 5 edges and 2 faces
and so the orientable genus is 0. We call it a pentagonal map, meaning simply that all
faces have 5 vertices. By introducing one new vertex on the midpoint of each edge of this
pentagonal spherical map, and identifying antipodal points in the resulting decagonal map
one obtains a non-orientable pentagonal map with 1 face in the real projective plane, so the
non-orientable genus is 1. So the ordinary pentagon can be realised as a configuration of
points and circles on the Riemann sphere (and consequently in the Euclidean plane), and
in the real projective plane.

3.2 The Desargues configuration

The Desargues configuration is a (3, 3)-configuration on 10 points and 10 lines. It is the
pentagonal geometry with the Petersen graph, the 3-regular Moore graph, as deficiency
graph. The polarity of the Desargues configuration is known as the von Staudt polar-
ity [28](cf. [8]). Figure 1 shows a classical drawing of Desargues configuration in the
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real plane as the 10 points and 10 lines of Desargues’ Theorem. There are plenty of ge-
ometric realisations of the Desargues configuration in terms of incidences of points and
lines. Indeed, finite projective planes over finite fields are called Desarguesian since they
admit the Desargues configuration as points and lines.

The automorphism group of the (combinatorial) Desargues configuration is S5, the
symmetric group acting on a set of five elements. When a configuration is realised geo-
metrically, the automorphism group of the realisation is a subgroup of the automorphism
group of the combinatorial configuration. Geometric realisations of the Desargues config-
uration were studied by Coxeter in [8], where he showed how to realise subgroups of S5

as collineations of certain embeddings of the Desargues configuration in some geometric
space. Among his collection of geometric realisations of the Desargues configuration, there
are two which have the full automorphism group S5. The first is due to Edge, who proved
that in PG(2, 5), the interior points of a conic, together with the lines that are neither
tangents nor secants to the same conic, form a Desargues configuration. The second is an
embedding of the Desargues configuration on a non-orientable surface of Euler characteris-
tic−5. This embedding arises from a regular map of the Menger graph (collinearity graph)
of the configuration on the surface, with automorphism group S5. Coxeter observed that
the 30 edges in this regular map are situated on 10 geodesics of the surface in such a way
that the vertices of the map together with the 10 geodesics form a Desargues configuration
of points and lines on the surface, which also has automorphism group S5.

We saw in the introduction that any (3, 3)-configuration can be realised as a configu-
ration of points and circles in the Euclidean plane using Gévay and Pisanski’s geometric
spherical construction and an embedding of some 3-regular graph [10]. In particular this
is true for the Desargues configuration, using an embedding of the Petersen graph. Gévay
and Pisanski also showed how to make the circles isometric. Unit-distance embeddings
of the graph always produce isometric circles, but some embeddings with edges of differ-
ent lengths also work. They provided two examples of the Desargues configuration as a
configuration of points and isometric circles in the real Euclidean plane, coming from a
unit-distance and a non-unit-distance embedding of the Petersen graph, respectively. The
automorphism group of these realisations are the cyclic group C5 and the dihedral group
D5 [10].

We show now that the Desargues configuration also can be drawn as a point-circle con-
figuration in the real projective plane from a pentagonal map of the Petersen graph. Indeed,
the (Riemann) spherical (3, 3)-configuration on 20 points and 20 circles constructed from
the dodecahedron in [10] is the double cover of a (3, 3)-configuration on 10 points and 10
circles in the real projective plane which can be constructed analogously from the hemi-
dodecahedron. Since the 1-skeleton of the hemi-dodecahedron is the Petersen graph, it is
easy to see that this configuration on 10 points and 10 circles is a point-circle realisation of
the Desargues configuration. Figure 2 shows this point-circle configuration constructed in
this way from the Petersen graph embedded as the 1-skeleton of the hemi-dodecahedron.
Be aware that incidences outside the vertices may be accidental. The automorphism group
of this realisation is the symmetric group S5.

3.3 The pentagonal geometry with the Hoffman-Singleton graph as deficiency graph

The third and last pentagonal geometry that we will discuss in this article is the (7, 7)
pentagonal geometry which has the Hoffman-Singleton graph as deficiency graph. The
Hoffman-Singleton graph was first constructed by Hoffman and Singleton in 1960 [17]. It



222 Ars Math. Contemp. 11 (2016) 215–229

b

bb

bbb b

bb

bb

b

b
b

b

b

b

b

b
bb

b
bb

b

bb

b

b b

b

bb

b

b

1

a

2

b
3c4

d

5

e

1

a

2

b
3 c 4

d

5

e

Figure 2: The Desargues configuration (black lines) obtained from the Petersen graph em-
bedded in the real projective plane as the hemi-dodecahedron (dotted lines). Points are
identified according to letters, and edges are identified according to numbers.

is a symmetric graph with automorphism group PΣU(3, 5) = PSU(3, 5)oC2, which has
order 252000.

The group PSU(3, 5) is the automorphism group of the Hermitian curve over F25. The
first geometric construction of the Hoffman-Singleton graph in this curve was described
by Benson and Losey [2] in 1971. Recently Shimada presented a unified construction of
the Hoffman-Singleton graph, the Higman-Sims graph and the McLaughlin graph in this
curve [24].

In a classical construction by Robertson [23](cf. [15]) the Hoffman-Singleton graph
is obtained after connecting the vertices of 5 pentagons and 5 pentagrams. Later this con-
struction was interpreted in terms of affine geometry over F5 by Hafner [15].

There is also the following construction of the Hoffman-Singleton graph due to
Haemers [14]. Take as vertices the union of the points vp and the lines vl of PG(3, 2).
Put an edge between a point vertex vp and a line vertex vl if p is a point on l. This gives
each point vertex valency 7 and each line vertex valency 3. Also put an edge between two
line vertices vl and vl′ if l ∩ l′ = ∅. This makes the graph 7-regular. To see that this is the
Hoffman-Singleton graph, observe that the girth is 5 and that there are 50 vertices.

Other geometric constructions of the Hoffman-Singleton graph are described for exam-
ple in [3].

In all the constructions described above, except in the first two ([2, 24]), it is required
that the vertex set be partitioned into two parts, and then the vertices in the different parts
are represented by geometric objects of different types. We argue that in these cases what
is dealt with are not geometric realisations of the Hoffman-Singleton graph, but geometric
constructions.
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Our interest in this article is focused on geometric realisations of the (7, 7) pentagonal
geometry in the classical sense. That means realisations of the configuration in terms of
points and lines, or points and circles, in the plane or on some other two-dimensional
surface. We are also interested in higher dimensional generalizations, hyperplanes instead
of lines and hyperspheres instead of circles. In particular, all geometric realisations of the
(7, 7) pentagonal geometry will be circular or spherical.

The construction of the (7, 7)-pentagonal geometry from the Hoffman-Singleton graph
associates the points of the pentagonal geometry with the vertices of the graph. Therefore
we are interested in geometric realisations of the Hoffman-Singleton graph in which all the
vertices are represented by geometric objects of the same type.

3.3.1 The (7,7) pentagonal geometry as a point-circle configuration on a surface of
characteristic -55

Just as for the smaller Moore graphs of diameter 2, in a drawing without crossings of the
Hoffman-Singleton graph on some surface, all faces will have at least 5 vertices. It can be
seen from Eulers polyhedron formula that a map with only pentagonal faces will have the
smallest possible genus. Indeed, since the Hoffman-Singleton graph has 50 vertices and
175 edges, the Euler characteristic of the map is χ = |V |−|E|+ |F | = −125+ |F |, where
|F | is at most 350/5 = 70, so χ reaches its largest value of −55 if all faces are pentagons.
In that case the surface has non-orientable genus 57. It can be proved that such a map does
exist, but cannot be a regular map [6]. Consequently, the automorphism group of the map
will not be the full automorphism group of the graph. More precisely, there exist maps
representing the Hoffman-Singleton graph which have as automorphism group the cyclic
groups C7, C5 and the trivial group. These maps sit on non-orientable surfaces of the form
S = H/G, where G is a torsion-free non-normal subgroup of Γ(7, 2, 5).

Remark 3.1. All these maps can be taken with congruent pentagons, and from Theo-
rem 2.2 we obtain configurations of points and circles on the surfaces, in which the circles
are isometric in terms of a quotient of the hyperbolic distance.

Figures 3, 4 and 5 show examples of these three distinct geometric realisations of the
combinatorial pentagonal geometry of order (7, 7) in terms of points and circles, repre-
sented in the Poincaré disk. In the case of the realisation coming from the map with auto-
morphism group C7, the group action divides the vertex set of the map into seven orbits,
each of length seven and one additional fixed point. In Figure 5 the map and the configura-
tion is represented so that the automorphism of order seven is visible as a rotation around
the fixed point. It is much harder to visualize the automorphisms of the geometric realisa-
tion with automorphism group C5. The group action does not fix any vertex, edge nor face
of the map.

Proposition 3.2. The dianalytic surfaces of Euler characteristic 55 that admit geometric
realisations of the (7, 7) pentagonal geometry as a point-circle configuration with different
automorphism groups are different.

Proof. Consider the non-orientable Riemann surfaces Si = H/Gi admitting the maps rep-
resenting the Hoffman-Singleton graph, where Gi are torsion-free non-normal subgroups
of Γ(7, 2, 5). Note that Γ(7, 2, 5) is a non-arithmetic triangle group [27], and that it is max-
imal with respect to inclusion [25]. By Theorem 1 in [11], two groups G and G′, contained
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Figure 3: A drawing in a non-orientable surface of genus 57 (identification along the border
according to the labelling of the points). The edges colored magenta give the pentagonal
geometry of order (7, 7). The edges colored black give the pentagonal map of the Hoffman-
Singleton graph. The automorphism group of this realisation is the trivial group.
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Figure 4: A drawing in a non-orientable surface of genus 57 (identification along the border
according to the labelling of the points). The edges colored magenta give the pentagonal
geometry of order (7, 7). The edges colored black give the pentagonal map of the Hoffman-
Singleton graph. The automorphism group of this realisation is the cyclic group of order
five.
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Figure 5: A drawing in a non-orientable surface of genus 57 (identification along the border
according to the labelling of the points). The edges colored magenta give the pentagonal
geometry of order (7, 7). The edges colored black give the pentagonal map of the Hoffman-
Singleton graph. The automorphism group of this realisation is the cyclic group of order
7.
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in a non-arithmetic Fuchsian triangle group Γ(p, r, q), are the uniformizing groups of two
dianalytically equivalent surfaces if and only if they are conjugate in a maximal Fuchsian
triangle group extending Γ(p, r, q), and so the result follows.

Note that Coxeter realised Desargues configuration by embedding its Menger graph
(collinearity graph) as a map on a surface of Euler characteristic -5. The edges of the
Menger graph nicely line up along the geoedesics. A similar geometric realisation of the
(7, 7) pentagonal geometry is impossible. Indeed, in this case there are 7 points on each
line and 7 lines through each point, so that at each vertex in the Menger graph there are 49
edges. If a combinatorial line with 7 points is represented by a geodesic on this surface,
then all the edges between the vertices representing these points in the embedded Menger
graph must be on this geodesic. Therefore the geometric representations of these edges
would partially overlap, but this is never the case in a map.

3.3.2 The (7,7)-pentagonal geometry as a point-hypersphere configuration in 24 di-
mensional Euclidean space

The Leech lattice is a Euclidean unimodular lattice in 24 dimensions with extraordinary
properties. It can be constructed from the Golay code and provides the optimal kissing
configuration of unit balls (hyperspheres) in 24 dimensions and the densest lattice ball
packing in E24. Each unit ball touches 196560 other unit balls. The Leech lattice was
found in 1967 by Leech [19].

There is a construction of the Higman-Sims graph in the Leech lattice [7]. Start with
three lattice points forming the vertices of a triangle with sides of length 2,

√
6 and

√
6.

The number of lattice points at distance 2 from at least one of the vertices of the triangle is
exactly 100. Construct a graph with these 100 points as vertices and with an edge between
two points whenever the distance between them is

√
6. Then this graph is the Higman-Sims

graph with automorphism group the Higman-Sims sporadic simple group HS. It is well-
known that the vertex set of the Higman-Sims graph can be partitioned into two copies
of the Hoffman-Singleton graph. The automorphism groups of these two copies of the
Hoffman-Singleton graph in the Leech lattice are two conjugate subgroups of HS, each
isomorphic to PSU(3, 5) o C2, the automorphism group of the combinatorial Hoffman-
Singleton graph.

Note that the edges in one of these embeddings of the Hoffman-Singleton graph all have
length

√
6. Hence there is a hypersphere centered at each vertex of radius

√
6, such that

the graph vertices contained in each hypersphere are exactly those that are adjacent to the
vertex in the center. Indeed, this is (more or less) Theorem 2.2 for the Euclidean plane gen-
eralized to higher dimensions. The result is a geometric realisation of the (7, 7)-pentagonal
geometry as a point-hypersphere configuration in 24 dimensions. The automorphism group
of this embedding of the Hoffman-Singleton graph is PSU(3, 5) o C2. Since this is the
automorphism group of the combinatorial object, this is the largest possible.

The embedding of the Hoffman-Singleton graph in the Leech lattice is not unit-distance,
but it is isometric, as required by the construction in Theorem 2.2. It was proved by Mae-
hara and Rödl that any graph of maximum valency d can be embedded as a unit-distance
graph in E2d [21], however this does not say anything about the symmetry group of the
embedding.
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3.4 The pentagonal geometries of order (k, k + 1)

Since all pentagonal geometries of order (k, k+ 1) can be constructed from pentagonal ge-
ometries of order (k+1, k+1) through the removal of one point and its opposite line, there
are at most three (connected) pentagonal geometries of order (k, k + 1), with k = 2, 6 and
maybe 56. The automorphism group of these combinatorial pentagonal geometries is the
point-stabilizer of the automorphism group of the corresponding combinatorial pentagonal
geometry of order (k + 1, k + 1). The pentagonal geometry of order (2, 3) is constructed
from the Desargues configuration and has automorphism group S3 × C2. The pentagonal
geometry of order (6, 7) has automorphism group S7.

As a consequence of the construction of pentagonal geometries of order (k, k+1) from
those of order (k+1, k+1), any geometric realisation of a (k+1, k+1) pentagonal geom-
etry gives rise to a geometric realisation of the corresponding pentagonal geometry of order
(k, k+ 1), by simply removing from the realisation a point and the geometric realisation of
its opposite combinatorial line. In the case of point-circle (point-hypersphere) realisations,
the geometric realisation of a combinatorial line is a circle (hypersphere). Therefore any
geometric realisation, in terms of points and circles (or hyperspheres), of a pentagonal ge-
ometry of order (k+1, k+1), described previously in this article, gives rise to a geometric
realisation in terms of points and circles (or hyperspheres) of the corresponding pentagonal
geometry of order (k, k + 1).

The automorphism group of the geometric realisation of the pentagonal geometry of
order (k, k + 1) is the intersection of the point-stabilizer of the combinatorial pentagonal
geometry of order (k+1, k+1) and the automorphism group of its corresponding geometric
realisation.
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