
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 15 (2018) 337–346
https://doi.org/10.26493/1855-3974.1470.e79

(Also available at http://amc-journal.eu)

Tilings of hyperbolic (2× n)-board with
colored squares and dominoes

Takao Komatsu
School of Mathematics and Statistics, Wuhan University, Wuhan, China
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Abstract

Several articles deal with tilings with squares and dominoes of the well-known regular
square mosaic in Euclidean plane, but not any with the hyperbolic regular square mosaics.
In this article, we examine the tiling problem with colored squares and dominoes of one
type of the possible hyperbolic generalization of (2× n)-board.
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1 Introduction
In the hyperbolic plane there exist infinite types of regular mosaics, they are denoted by
Schläfli’s symbol {p, q}, where the positive integers p and q have the property (p− 2)(q−
2) > 4, see [5]. If p = 4 they are the regular square mosaics and each vertex of the mosaic
is surrounded by q squares. Note that if p = q = 4 we obtain the Euclidean square mosaic.

Now we define the (2 × n)-board on mosaic {4, q}, where q ≥ 4. First we take a
square S1 with vertices A0, A1, B1, B0 according to Figure 1, and later to Figures 2 and 3.
As the second step we consider the square S2, which has a common edge A1B1 with S1.
The two new vertices are A2, B2. Similarly, we define the squares S3, . . . , Sn, their newly
constructed vertices are Ai and Bi (3 ≤ i ≤ n), respectively. The union of Si (1 ≤ i ≤ n)

E-mail addresses: komatsu@whu.edu.cn (Takao Komatsu), nemeth.laszlo@uni-sopron.hu (László Németh),
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forms the first level of the board. It is depicted with yellow colors in Figures 1-3. (On
the left-hand side of Figure 2 the mosaic {4, 5} and the (2 × 4)-board are illustrated in
Poincaré disk model and on the right-hand side there is a “schematic” (2 × 4)-board from
the mosaic.) The second level of the board is formed by the squares of the mosaic having
at least one vertex from the set {A1, A2, . . . , An} and not from {B1, B2, . . . , Bn, An+1},
where the last point is the appropriate point of the virtually joined square Sn+1 (A0 is not
in the first set, see Figure 3). These are the light blue squares in the figures. In the first
level, independently from q there are n squares, while the second level contains n(q − 3)
squares (see Figure 3).

Let rn be the number of the different tilings with (1×1)-squares and (1×2)-dominoes
(two squares with a common edge) of a (2 × n)-board of mosaic {4, q}. It is known
that the tilings of a (1 × n)-board on the Euclidean square mosaic can be counted by
the Fibonacci numbers [2, 4]. In fact, rn = fn, where {fn}∞n=0 is the shifted Fibonacci
sequence (Fn = fn−1, where Fn is the n-th Fibonacci number, A000045 in OEIS [12]), so
that

fn = fn−1 + fn−2 (n ≥ 2)

holds with initial values f0 = f1 = 1 (and f−1 = 0).
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Figure 1: (2× 4)-board on Euclidean mosaic {4, 4}.
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Figure 2: (2× 4)-board on hyperbolic mosaic {4, 5}.

McQuistan and Lichtman [9] (generalizations in [6]) studied the tilings in case of the
Euclidean square mosaic {4, 4} and they proved that rn satisfies the identity

rn = 3rn−1 + rn−2 − rn−3 (1.1)

for n ≥ 3 with initial values r0 = 1, r1 = 2 and r2 = 7 (A030186 in [12]).
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Figure 3: (2× 1)-board and (2× 4)-board on hyperbolic mosaic {4, q} (q ≥ 5).

In the work [3], the generalized Fibonacci number un, where

un = aun−1 + bun−2, (n ≥ 2) (1.2)

with initial values u0 = 1, u1 = a (and u−1 = 0), is interpreted as the number of ways
to tile a (1 × n)-board using a colors of squares and b colors of dominoes. Obviously, if
a = b = 1 then un = fn. Belbachir and Belkhir proved a couple of general combinatorial
identities related to un in [1].

Let Rn be the number of tilings of (2 × n)-board of mosaic {4, q} using a colors of
squares and b colors of dominoes. When q = 4 Katz and Stenson [7] showed the recurrence
rule

Rn = (a2 + 2b)Rn−1 + a2bRn−2 − b3Rn−3, (n ≥ 3) (1.3)

with initial values R0 = 1, R1 = a2 + b and R2 = a4 + 4a2b+ 2b2.
In this article, we examine the tilings of (2 × n)-board on mosaic {4, q} (q ≥ 4) with

colored squares and dominoes in a general way and we obtain the following main theorem.

Theorem 1.1. Assume q ≥ 4. The sequence {Rn}∞n=0 can be described by the fourth order
linear homogeneous recurrence relation

Rn = αq Rn−1 + βq Rn−2 + γq Rn−3 − b2(q−2)Rn−4, (n ≥ 4) (1.4)

where (explicit formulas later)

αq+2 = aαq+1 + bαq, (1.5)

βq+3 = (a2 + b)βq+2 + b(a2 + b)βq+1 − b3βq, (1.6)

γq+2 = −abγq+1 + b3γq (1.7)

with initial values

α4 = a2 + b, α5 = a(a2 + 3b),

β4 = 2b(a2 + b), β5 = b(a2 + b)(a2 + 2b), β6 = b(a6 + 6a4b+ 10a2b2 + 2b3),

γ4 = b2(a2 − b), γ5 = −ab3(a2 + b),

moreover R0 = 1, R1 = uq−2, R2 = u2q−2 + abuq−4uq−3 + bu2q−3 + b2u2q−4, R3 =
(u2q−2 +2abuq−4uq−3 +2bu2q−3 +2b2u2q−4)uq−2 + b2(uq−3uq−4 + (a2 + b)uq−4uq−5 +
au2q−4)uq−3 + ab3u2q−4uq−5.

If a = b = 1, then Theorem 1.1 leads to the following corollary. Recall that fn = Fn+1

(shifted Fibonacci numbers).
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Corollary 1.2. The sequence {rn}∞n=0 can be given by the fourth order linear homoge-
neous recurrence relation

rn = 2fq−3 rn−1 +
(
5f2q−4 + (−1)q−1

)
rn−2 + 2(−1)qfq−5 rn−3 − rn−4, (n ≥ 4)

(1.8)
with initial values r0 = 1, r1 = fq−2, r2 = 7f2q−4 + 7fq−4fq−5 + 2f2q−5 and r3 =
22f3q−4 + 36f2q−4fq−5 + 19fq−4f

2
q−5 + 3f3q−5.

Observe, that if q = 4, then (1.4) returns with (1.3) (compute the sum of Rn and
bRn−1). Similarly, the extension of (1.1) is (1.8).

2 Tilings on mosaic {4, q}
We can see that our tiling exercise of the hyperbolic (2 × 1)-board on the mosaic {4, q}
(q ≥ 5) is the same as the tiling exercise of the Euclidean

(
1 × (q − 2)

)
-board. So R1 =

uq−2 and r1 = fq−2 (Figure 3).
Before the discussion of the main result, we define the break-ability of a tiling. A

tiling of a (2 × n)-board is breakable in position i for 1 ≤ i ≤ n − 1, if this tiling is a
concatenation of the tilings of a (2× i)-subboard and a

(
2×(n− i)

)
-subboard. Clearly, the

number of colored tilings of such a board is RiRn−i. A tiling is unbreakable in position i
in three different ways: if a domino covers the last square of the first subboard and the first
square of the second subboard either in the first or the second level, or on both levels (see
Figure 4).

i i i in n n n0 0 0 01 1 1 1

i i iA B C

Figure 4: Breakable and unbreakable tilings in position i when q = 7.

Now, we define three subboards. Let Ai, Bi and Ci be the subboards of (2 × i)-board
(1 ≤ i ≤ n), respectively, where the last square from second level, the last square from
first level and the last squares from both levels are deleted from (2× i)-board. In Figure 4
these subboards are illustrated. Let Ai, Bi and Ci denote the number of different colored
tilings of Ai, Bi and Ci, respectively.

2.1 Proof of Theorem 1.1 and Corollary 1.2

Our proof is based on the connections among (2 × n)-board, An, Bn and Cn subboards.
We can easily give the number of tilings if n = 1. They are R1 = uq−2, A1 = uq−4,
B1 = uq−3 and C1 = uq−4. Moreover let R0 = 1, A0 = B0 = C0 = 0.

Generally, if n ≥ 2, then Figure 5 shows the recurrence connections of the subboards.
For example, let us see the first row. We can build a full (2 × n)-board by four different
ways from the full

(
2 × (n − 1)

)
-board or from the subboards An−1, Bn−1 and Cn−1. If

we join a suitable (2 × 1)-board to a
(
2 × (n − 1)

)
-board, then the coefficient uq−2 is

obvious in case of the breakable tilings in position n − 1. When we complete An−1 to a
full (2 × n)-board, we have a domino in the second level with b different colors, and we
put a square onto the first level with a colors. (If we replace the laid down domino in the
second level with two squares, then these tilings would be a part of the first case when we
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completed the
(
2 × (n − 1)

)
-board.) The rest part can be tiled freely. Consequently, the

coefficient of An−1 is abuq−4 and these are unbreakable tilings in position n− 1. Now, let
us complete Bn−1 and Cn−1 to be full (2×n)-board with a domino in the first level or with
two dominoes, one is in the first level and the other in the second level, respectively. The
rest parts can be tiled freely. We obtain buq−3 and b2uq−4 new (unbreakable in position
n− 1) tilings. Summarising the result of the first row of Figure 5 we have the first equation
of the system of recurrence equations (2.1). The determinations of the other rows can be
explained similarly. We mention, that, for example, in the fourth row Bn−1 does not appear,
because when we complete it to Cn we do not have new tiling type, the tilings are in the first
tiling types in the same row. (The yellow square would be in the grey

(
2× (n− 1)

)
-board

– see the last row in Figure 5.) Hence the recurrence equations for n ≥ 1 satisfy the system
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Figure 5: Base of recurrence connections of the subboards.

Rn = uq−2Rn−1 + ab uq−4An−1 + b uq−3Bn−1 + b2 uq−4Cn−1

An = uq−3Rn−1 + ab uq−5An−1 + b uq−4Bn−1 + b2 uq−5Cn−1 (2.1)
Bn = uq−3Rn−1 + b uq−4An−1

Cn = uq−4Rn−1 + b uq−5An−1.

Recall that the initial values are R0 = 1, A0 = B0 = C0 = 0. The matrix of the
coefficients of (2.1) is

M =


uq−2 ab uq−4 b uq−3 b2 uq−4
uq−3 ab uq−5 b uq−4 b2 uq−5
uq−3 b uq−4 0 0
uq−4 b uq−5 0 0

 .

As usual, the characteristic equation of M provides the recurrence relation for {Rn} (and
{An}, {Bn}, {Cn}; see the proof in [10]. The computation was made by the help of
software MAPLE.) Thus we have

Rn = αq Rn−1 + βq Rn−2 + γq Rn−3 + δqRn−4 (n ≥ 4), (2.2)
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where (with some calculation using (1.2))

αq = abuq−5 + uq−2,

βq = b(b2u2q−5 − auq−5uq−2 + 2bu2q−4 + auq−4uq−3 + u2q−3),

γq = −b2(bu2q−5uq−2 − 2uq−4u
2
q−3 + auq−5u

2
q−3 + u2q−4uq−2),

δq = −b4(u2q−5u2q−3 − 2uq−5u
2
q−4uq−3 + u4q−4).

Moreover, we obtain the initial values of the recurrence for n = 1, 2, 3 from system (2.1).
They are R1 = uq−2, R2 = u2q−2 + abuq−4uq−3 + bu2q−3 + b2u2q−4 and

R3 = (u2q−2 + abuq−4uq−3 + bu2q−3 + b2u2q−4)uq−2

+ (abuq−2uq−4 + a2b2uq−4uq−5 + b2uq−3uq−4 + b3uq−4uq−5)uq−3

+ (buq−2uq−3 + ab2u2q−4)uq−3 + (b2uq−2uq−4 + ab3uq−4uq−5)uq−4.

In the next part, we prove that relations (1.5)–(1.7) hold. Firstly, we insert αq+2, αq+1

and αq into (1.5) to have

abuq−3 + uq = a(abuq−4 + uq−1) + b(abuq−5 + uq−2). (2.3)

Apply (1.2) consecutively with n = q, q− 1, . . . as follows. First plug uq into the equation
(2.3), then substitute uq−1 in the new equation, and so an. Finally, when n = q − 3, we
find that (2.3) is an identity, so (1.5) holds. If q = 4 and q = 5, then αq provides the initial
values. The proofs of (1.6) and (1.7) go similarly.

Finally, we show that δq = −b2(q−2). For q = 4 we immediately obtain δ4 =
−b4(u24−5u24−3 − 2u4−5u

2
4−4u4−3 + u44−4) = −b2·2. Then we consider the recurrence

relation (q ≥ 4)
xq+1 = b2xq. (2.4)

Some calculations show that both expressions (δq and −b2(q−2)) satisfies recursion (2.4),
which implies the equality.

We express the values by uq−4 and uq−5 by using relation (1.2). Thus we have

αq = (a2 + b)uq−4 + 2abuq−5,

βq = (2a2 + 2b)bu2q−4 + (−a3 + 2ab)buq−4uq−5 + (−a2b+ 2b2)bu2q−5,

γq = (a2 − b)b2u3q−4 − (a3 − 3ab)b2u2q−4uq−5 − (3a2b− b2)b2uq−4u2q−5 − 2ab4u3q−5,

δq = −b2(q−2).

As F 2
n − FnFn−1 − F 2

n−1 = (−1)n−1, if a = b = 1, then we obtain

αq = 2fq−4 + 2fq−5 = 2fq−3,

βq = 4f2q−4 + fq−4fq−5 + f2q−5 = 5f2q−4 + (−1)q−1,
γq = 2f2q−4fq−5 − 2fq−4f

2
q−5 − 2f3q−5 = 2(−1)qfq−5,

δq = −1.

Now the initial values Ri lead to the initial values ri (i = 1, 2, 3).
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2.2 Unbreakable tilings

In this subsection we determine the number of unbreakable tilings. Let r̃n (and R̃n) be the
number of different unbreakable tilings with (colored) squares and dominoes of (2 × n)-
board of {4, q}. Moreover, let Ãi, B̃i and C̃i denote the number of the different unbreakable
colored tilings of Ai, Bi and Ci, respectively.

Theorem 2.1. The sequence {R̃n} can be described by the binary recurrence relation

R̃n = abuq−5R̃n−1 + b2
(
u2q−4 + bu2q−5

)
R̃n−2, (n ≥ 3)

where the initial values are R̃1 = uq−2 and R̃2 = abuq−3uq−4 + bu2q−3 + b2u2q−4.

Proof. The proof is similar to the proof of the first theorem. By deleting the breakable
tilings from Figure 5 (the second column) we gain the system of recurrence sequences
(n ≥ 2)

R̃n = abuq−4Ãn−1 + buq−3B̃n−1 + b2uq−4C̃n−1

Ãn = abuq−5Ãn−1 + buq−4B̃n−1 + b2uq−5C̃n−1

B̃n = buq−4Ãn−1

C̃n = buq−5Ãn−1

with initial values R̃1 = uq−2, Ã1 = uq−3, B̃1 = uq−3, C̃1 = uq−4. The character-
istic equation of its coefficients matrix gives the recurrence for R̃n. From the system of
recurrence sequences we gain R̃2.

Supposing a = b = 1, together with

r̃2 = 3f2q−4 + 3fq−4fq−5 + f2q−5 = 4f2q−4 + 2fq−4fq−5 + (−1)q−1

= 2fq−4(2fq−4 + fq−5) + (−1)q−1,

we obtain the following corollary.

Corollary 2.2. The sequence {r̃n} satisfies the binary recurrence relation

r̃n = fq−5r̃n−1 +
(
f2q−4 + f2q−5

)
r̃n−2, (n ≥ 3)

with coefficients linked to Fibonacci numbers, where the initial values are r̃1 = fq−2 and
r̃2 = 2fq−4fq−2 + (−1)q−1.

3 Some identities
In the sequel, we give certain identities related to the sequences {Rn} and {R̃n}. The
proofs are based on the tilings, not on the recursive formulae.

Identity 3.1. If n ≥ 1, then

Rn =

n−1∑
i=0

RiR̃n−i.
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Proof. Let us consider the breakable colored tilings in position i (0 ≤ i < n) of (2 × n)-
board, where the tilings on the right

(
2× (n− i)

)
-subboard are unbreakable (see Figure 6).

The number of this tilings is RiR̃n−i. If i = 0, then the tilings are unbreakable on the
whole (2 × n)-board. Clearly, when i goes from 1 to n − 1, we have different tilings and
we consider all of them exhaustedly.

i n0

i n-iR R

Figure 6: Breakable tilings in position i in case of Identity 3.1.

An equivalent form of Identity 3.1 is

Identity 3.2. If n ≥ 1, then

Rn =

n∑
i=1

Rn−iR̃i.

The next statement gives another rule of summation.

Identity 3.3. If m ≥ 1 and n ≥ 1, then

Rn+m = RnRm +

n∑
i=1

m∑
j=1

Rn−iRm−jR̃i+j .

Proof. Let us consider a
(
2×(n+m)

)
-board as the concatenation of (2×n)-board and (2×

m)-board (in other words, tilings are breakable in position n). First we take the breakable
tilings in position n, their cardinality is RnRm. Then we examine the unbreakable tilings
in this position. We cover the position n by i + j long unbreakable tilings from position
n− i to n+ j. They give the rest tilings. Figure 7 illustrates these two cases.

n-i n j+n n m+ n m+0 0

n m n-i m-jR R R Ri j+R

Figure 7: Tilings in case of Identity 3.3.

Identity 3.3 admits the following remarkable specific cases by the choice of m = 1,
m = (k − 1)n and n = n− k, m = n+ k, respectively.

Identity 3.4. If n ≥ 1, then

Rn+1 = RnR1 +

n∑
i=1

Rn−iR̃i+1.

Identity 3.5. If n ≥ 1 and k ≥ 2, then

Rkn = RnR(k−1)n +

n∑
i=1

(k−1)n∑
j=1

Rn−iR(k−1)n−jR̃i+j .
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Identity 3.6. If n > k ≥ 0 then

R2n = Rn−kRn+k +

n−k∑
i=1

n+k∑
j=1

Rn−k−iRn+k−jR̃i+j .

Finally, we give an identity about the product of two arbitrary terms of the sequence
{Rn}.

Identity 3.7. If n,m ≥ 1, then

RnRm =

n−1∑
i=0

m−1∑
j=0

RiRjR̃n−iR̃m−j .

Proof. Consider a
(
2× (n+m)

)
-board as a concatenation of (2× n)-board and (2×m)-

board. The result is derived in a direct manner from the number of the breakable tilings in
position n. See Figure 8.

i n j+n n m+0

i jn-i m-jR RR R

Figure 8: Tilings in case of Identity 3.7.

4 Conclusion and future work
In this article, we introduced a generalization of the square boards on the hyperbolic regu-
lar square mosaics and examined the combinatorial properties of tilings on these mosaics
with colored squares and dominoes. As there are the infinite number of regular mosaics
in the hyperbolic plane we hope that the examinations of the combinatorial properties of
other tilings give some useful results. Moreover, we are informed on two additional timely
articles about hyperbolic space tilings [8, 11].
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