UDKG21.3:(53+54+621+66), ISSN0352-9045 Informacije MIDEM 33(2003)4, Ljubljana

EFFICIENT DEVELOPMENT OF HIGH QUALITY SOFTWARE
FOR EMBEDDED SYSTEMS

Stanislav Gruden
Iskraemeco d.d., Kranj, Slovenia

INVITED PAPER
MIDEM 2003 CONFERENCE
01.10.2003 - 03.10.2003, Grad Ptuj

Abstract: New electronics products are being developed with a constantly growing pace today. The development must meet very tough criteria:
shorl time-to-market, continuous use of currently the best available technology in order to reach high performance requirements, etc. More and
more we see that the cost for this is a decreasing quality of the products, especially the low cost consumer electronics. The problems are most
often due to the insufficiently tested software of the embedded systems used. On the other hand there is no need to make the software optimized
for performance anymore, usually the more efficient way of optimizing the overall cost and resources is just to use more powerful hardware.

In order to increase the software quality in these hard development conditions some measures have to be taken into consideration: rigorous testing is one
of them, but a lot can also be achieved by using of high level programming languages wherever applicable, making code as portable and reusable as
possible, using tested other party software whenever accessible, etc.

Some technigues that can be used to make software more portable and reusable are presented. A common characteristic of these techniques is they use
some of the system resources like memory or CPU time in exchange for structural organization that makes the code much easier to maintain, distribute
between many developers and test. The technique of compiling and testing the code on strong personal computers or workstations before using it on a
real system is described. This technique takes up some additional development resources at the beginning but saves them lately because it makes
developing and testing a new code much easier, makes it portable and it is possible to have a large part of application completed even before the actual
hardware is obtained, etc.

Ucinkovit razvoj programske opreme za vgrajene sisteme

fzvledek: Zivimo v svetu, kjer elektronske naprave razvijajo z vedno hitrej$im tempom. Ta razvoj se odvija v tezkih pogojih: vstop na tr#isde mora biti hiter,
hkrati je potrebno slediti napredku na podrogju tehnologije z namenom ves ¢as delovati v optimainem podro¢ju. Vedno bolj je o¢itno, da to gre na raéun
kvalitete izdelkov, posebno to velja za nizkocenovne sirokopotrodniske naprave. Najpogosteje problemi nastanejo zaradi nezadostno preverjene program-
ske opreme vgrajenih sistemov. Po drugi strani se izkaze, da ni ved potrebe po pretirani optimizaciji programske kode, ampak je za bolj$o izkoris¢enost
razvojnih virov in manje skupne stroske bolise vzeti zmogliivejso strojno opremo.

Za povecanje kakovosti programske opreme v teh zaostrenih pogojih so potrebni doloGeni ukrepi. Natacno testiranje je najpomembnejse. Mnogo se da
doseci z uporabo visjih programskih jezikov, kjer je to mogoce, ter z izdelavo ¢imbolj prenosne programske kode in uporabo preverjene programske
opreme drugih proizvajalcev.

Prispevek prikazuje nekaj nacinov, kako programsko kodo narediti dobro prenosljivo in primerno za ponovno uporabo. Splodna znadiinost takih metod je,
da boljsa strukturiranost programa gre nekoliko na skodo porabljenih virov - pomnilnika, procesorskega ¢asa. Konéni rezultat je lazje vzdrzevanje kode,
preprostejsi prenos med razvijalci in ucinkovitej$e testiranje. Opisali smo postopek, kako na mocnih osebnih rac¢unainikin ali delovnih postajah prevestiin
preveriti programsko kodo brez uporabe konéne strojne opreme. Postopek zahteva dodatne razvojne vire na zaCetku, ki pa jih ve¢ kot prihranimo kasneje,
saj sta razvoj in testiranje nove kode mnogo preprostej$a, tako dobliena koda je sama po sebi dobro prenosijiva, vedino kode tahko dokondamo tudi v
primeru, da konéne strojne opreme $e nismo dobili, itd.

start until these two phases are finished and confirmed by
the customers and design team. Unfortunately, this almost
never is a case. The system analysis would usually take
too much effort if itis to be complete and all the facts about
the system are taken into account. This would also require
the customer to really study the analysis and to make all
necessary comments on time. Many customers are just
not prepared to do this and leave the important decisions
to the developers. The most frequent reason for omitting
the analysis steps are the deadlines. We just simply live in

1. Introduction

Many articles and books have been written on the soft-
ware crisis that has been continuously happening since
the first commercial computer applications /1/. They ad-
dress the huge problem of software quality, late time-to-
market, etc.

The reasoning in this article is based on real life situations,
which differ greatly from the theoretical situations. Theo-

retically the less expensive development would consist of
athorough problem analysis and after that, a complete de-
sign of software structure. The actual coding would not

260

a world where time is money and the ‘theoretically less
expensive development would actually cost more because
of the lost opportunities on the market /4/.

S. Gruden;

Efficient Development of High Quality Software for Embedded Systems

Informacije MIDEM 33(2003)4, str. 260-266

There exist possibilities, despite the real world require-
ments, to build up a better structured, more documented,
portable and less error-prone code. Early and frequent
integration /2/ does so with so-called front-loading - the
problems should be detected as soon as possible. De-
signers must meet earlier and resolve the conflicts earlier.
Following some guidelines ensures this to happen virtually
automatically while doing the ‘preferred’ work - the coding.

Thorough testing must be performed through the whole
development process. Some possibilities of how to set up
and use testing features are presented.

The presented ideas are directly applicable when using
standard programming languages like C, C++. They may
not always be useful if higher-level design tools, which au-
tomate code generation, are used since these tools may
already force the way the program is designed.

2. Relation between development
resources, time to market,
reliability and product price

The basic requirements for any development are:

- The final product must have a quality that is expected
by the customers /2/. This may differ largely from one
application to another. Mass consumer products like
cheap children toys need not to be veryreliable, some-
times it is even expected that they will be in use for
some days and then abandoned; on the other hand
the professional equipment is supposed to work with-
out any problems for a long period of time. The high-
est level of reliability must be assured when human
lives depend on the proper operation of the system.

- The production costs of the product tend to be mini-
mized although the effort of doing this depends on
application type. Very large quantity products are hard-
ware minimized to the highest possible limit, since
every cent is important. The software and hardware
development costs for such products are low and rep-
resent a negligible part of the final price. On the other
side high quality products need a lot of intensive de-
velopment. Being sold in much smaller quantities
means that every device incorporates in its price a
significant portion of the development costs. These
costs may be much higher than the hardware costs
and in this case hardware cost minimization is not so
important.

- Development resources are always limited. The most
important of these resources are developers. Addi-
tional money, development tools and equipment can
be obtained one way or another i case of time pres-
sure, but human resources are not trivial to add. This
fact was known long ago, as early as in year 1975
/1/. A lot of time is needed to find people that are
able to do the work; their training and getting to know
the project cause another delay. This is true even with
experienced developers. In case of tough deadlines

one usually does not have any other choice but to
count only on the available developers. The excep-
tions are possible in a case a very distinctive module
can be separated from the entire product, which has
asimple application programming interface (AP), eas-
ily describable black box functionality, and is at the
same time so complex that it takes a lot of work to
implement. The functionality and requirements for
such a module can be easily documented and pre-
sented to a new, skilled developet.

- Time to market is a bigissue /3, 4/. In the world where
the market competition is the main driving force, it is
absolutely necessary to get to the market as soon as
possible. Atthe beginning the demand for a new prod-
uct is at the strongest, there is less or no competition
and the prices are high. When the competition comes
to the market the prices may fall to production cost,
development may not be covered anymore and the
profit disappears. The applications also have short
tives. In some cases a fast development also decreas-
es development costs /3/.

The goal is to make a good compromise between these
issues of which each one generally contradicts the other.
Lower product price means weaker hardware, which needs
more development resources to get the work done, other-
wise the reliability will be worse or development time will
be unacceptable high. As a very simple approximation it
could be stated that a weighted sum of these parameters
is a constant value.

The use of better tools and equipment can help reducing
this value but may not always be affordable. On the other
hand, a better organization of the development process
can greatly improve the final guality of the product - the
number and the severeness of operation errors (bugs),
which are an inevitable part of the products, especially
complex ones.

For quality devices it usually turns out that it is better to use
more advanced platform than the minimal one (more mem-
ory, higher speed). Namely, despite good planning and
previous analysis the amount of system resources on the
platform needed is usually underestimated. With stronger
platform the programming is easier because the focus can
be put to the problem solving and not to the resource opti-
mization. The code can be written in a cleaner way, with
higher programming languages. Such a platform is easier
to maintain and upgrade later. Electronic elements nowa-
days are developed very quickly and one moment sophis-
ticated and expensive platform very quickly gets a succes-
sor, which is even more powerful. The price of the older
platform then decreases and when the device is in pro-
duction it is not so expensive anymore.

3. Design considerations

It is a good idea to take a lot of time at the beginning of the
project to split the system into smaller logically separated

261

Informacije MIDEM 33(2003)4, str. 260-266

S. Gruden;

Efficient Development of High Quality Software for Embedded Systems

units. The most important part is to define good bounda-
ries between them. These are the so-called APls (applica-
tion programming interface). They should be as simple as
possible, but must,implement all the needed functionality.
The policy of how to use the APls must be as simple as
possible to avoid confusion and misunderstanding between
developers. The most important AP! is the one that delim-
its the platform independent from the platform dependent
code as shown in Figure 1. The simpler it is, the easier the
porting to a new system will be if this is needed in the fu-
ture. Additional well-defined APIs are used to delimit mod-
ules that will be assigned to different developers.

A good directory scheme of source code must also be
designed, which fits well to the structure of developers’
modules. In ideal case each module can be assigned a
special directory, which will be maintained by one devel-
oper only. This is rarely a case and to avoid confusion and
backup problems use of a version tracking system (CVS,
Microsoft SourceSafe) is needed.

e :
Application system |
independent code '

i

OSAPI | nhardware APl |

|

LRealplatform (O8] J<f~>t Real hardware [

APl used as a boundary between the
platform independent and the platform
dependent code.

Figure 1:

A common programming ‘technique’ is use of ‘copy and
paste’. While this gives good enough results very quickly,
it can be a source of hard to understand errors later. The
reason is that when some part of such a code must be
corrected, one usually forgets to make a correction on all
the places where this code was also used. It is better to
use functions performing the task (with parameters if the
task is not exactly the same everywhere), macros, which
will be expanded, or templates. Macros are deprecated
because they produce name spacing problems and are
hard to debug (breakpoints can usually not be set inside
macros).

The higher the level of the programming language, the
easier the programming is. The reason is that on the low
level, the: programmer must also focus on the correct use
of code. The result is the distraction from the main prob-
lem, which the developers try to solve.

Humans can easily understand complicated data struc-
tures, especially when hierarchically organized, on the oth-
erhand it is very hard to trace alf but the simplest program
flows. Object oriented programming languages are spe-
cifically designed to make programming easier by focus-
ing the programmers attention on data structures instead
of algorithms (a case in classical programming).

262

Integrated debugging environments (IDE) with powerful
graphical user interface are ideal for making an applica-
tion very fast (rapid prototyping), but are less suitable when
it comes to maintaining the code, reusing the code, auto-
mating the process of compilation, source saving, etc. Typ-
ical such programs make a lot of auto-generated code,
which usually resides in predefined directories. Their con-
figurations are typically in binary form, so they are less
manageable then text based configurations. The only ac-
cess possible is by mouse (sometimes it is very frustrating
if alot of clicking is needed to make a lot of identical chang-
es, which could have been done with a simple ‘find and
replace’). Classical tools such as make, command line
compilers and powerful script shells offer much greater
flexibility but take a lot of time to learn how to use and set-
up. This time is very often saved later. They are very porta-
ble, flexible and easily automatically generated.

Data types used are very often a big problem when it comes
to code portability. Apart from big/little endian compatibil-
ity (not so hard to manage properly) the most problems are
caused by the difference of storage length and precision
for simple data types (in C programming language), espe-
cially integer and sometimes also floating point data types.
The same code that may work perfectly on one platform
would fail - during runtime usually - on the other. There
exist recommendations about this issue but care must al-
ways be taken to prevent problems. Using only specially
defined (typedef) types helps a lot (using types directly from
headers of different operating systems often introduces
more confusion than it solves), but the type promotion rules
in C always make problems.

The recommendations about the coding style and other
rules may differ very much from person to person and can-
not be generalized. Even related project teams do not al-
ways agree (/5/ and /6/). Itis a good idea to read a lot of
them so every valuable piece of information is taken into
account. Very often some largely accepted rules just are
not so efficient as generally thought, for example, exten-
sive use of comments usually just puts additional load on
developers, with no real benefit.

Multiple checking of the data validity takes additional ef-
fortto implement but may help reveal some errors. On both
sides of an API a different range of data may be valid. For
example, a key pressing is detected by the hardware and
processed by the driver, which always implements some
sort of glitch removal. At this stage typically only very quick
(some microseconds) changes are considered as a glitch.
This may or may not be suitable for the application, it de-
pends on what is the behavior required by the customer. It
therefore makes sense that the application implements its
own data check algorithm (longer glitch detection in this
case). Making so ensures the driver for the keyboard can
remain the same regardless of the application requirements
and is therefore useful also for future applications. Howev-
er, the excessive use of double-checking leads to bad ef-
ficiency.

S. Gruden;

Efficient Development of High Quality Software for Embedded Systems

Informacije MIDEM 33(2003)4, str. 260-266

It is considered a bad programming technigue to:

- Use global variables; instead, all data should be put
locally on stack. This is slower and needs more mem-
ory but is much less error-prone. Even worse is reus-
ing global variables for more than one purpose in or-
der to save memory.

- Write code in an optimized way; it is better to concen-
trate on the clarity/readability of the code. That is es-
pecially true today when good compilers make much
better optimization than any programmer could, and
larger or slower final executable is not a problem ei-
ther.

- Not to use operating systems, multi-threading, etc.,
except for extremely simple applications.

To make the code compile on many platforms two basic
techniques are possible:

- Using the same modules with compilation switches.

- Using a common platform independent modules and
separate modules for each platform that implements
the dependent code.

The first approach is better only if the number of differenc-
es is very small (for example, using sockets under Unix or
Microsoft Windows). Usually the second approach results
in a more clear and easy to understand code. If the first
approach is used, it is better to code the differences as
macros or templates in a separate header in order to make
the main code more readable.

The software documentation is often a problem. It is some-
times updated only few times during the development, for
example, when explicitly required by the customer. Itis not
kept up-to-date when the changes in the software happen.
The reason is almost always the time pressure. When there
are not enough resources available to make the complete
documentation, the priorities must be set up. It is usually
sufficient to have a coarse description of the system archi-
tecture and algorithms used, which does not change much
during the development. The details in the code should be
commented in a way that the author, or any other normally
skilled programmer, would understand them at any time in

the future. Excessive use of comments is not a solution,
doing so can make the code harder to understand, itis also
very likely that the comments do not follow the code chang-
es, which renders them misleading and wrong.

The APls, on the other hand, deserve extremely detailed
documentation, which consists not only of software inter-
faces (function prototypes, macros, enumerations, etc.),
but also of detailed description of what conditions have to
be fulfilled for the code on both sides of the interface in
order to function properly (for example, thread safety poli-
cy, speed and processing capabilities limits). These con-
ditions must be kept in mind for all the developers: those
that implement the functionality should know what they must
implement and what they need not to (but are allowed to if
they can); those that use the functionality should be aware
of AP! usage limitations and use only the documented fea-
tures. It is very risky to count on the knowledge about the
other parts of the system and to use non-documented fea-
tures because they may change at any time. Any small
change in APIs must be documented immediately.

4. Device simulation

Almost no development is possible without first making the
product prototype. The same also applies for the embed-
ded system software development. A powerful way to do
this is simulating the behavior of the device and its envi-
ronment.

Very often there exist simulators for target CPU and pe-
ripherals, which allow testing of native executables. Using
one of them makes the debugging much easier. But the
first level of simulation can be done in an environment used
more generally by the developers.

The basic idea is to use a good compiler and debugger on
a strong personal computer or workstation, to produce the
first working prototype of the new application as a simula-
tion. The application code (the platform independent code)
is shared between this simulation and the real device that
will be developed later in the process with a new platform
as shown in Figure 2.

Application system
independent code

OS APl | hardware AP

| 0SAPI | hardware AP!I |

| OSAPI | hardware API |

i

} Real platform 08}4"1 Real hardware ‘

A L
\J v

] Simulation platform & OS @ Hardware simulation

Figure 2:
interchangeable.

Replacement of the platform dependent code, the real platform and the simulated platform are

263

Informacije MIDEM 33(2003)4, str. 260-266

S. Gruden;

Efficient Development of High Quality Software for Embedded Systems

It must be noted that according to the general recommen-
dations the prototype code should not be used in the final
product, instead the code should be rewritten from scratch.
Due to usual time pressures this is only seldom feasible.

This technique has one strong drawback - it is necessary
to make an emulation of every part of the platform (operat-
ing system - OS, hardware, etc.) that will be presentin the
final product and set up one additional paralle! project en-
vironment, which takes some time and efforts at the start
of the project development. However, the simulation sys-
tem usually turns out to be very simple; for example, in the
real world sensing the state of a simple switch requires
using an I/O port and writing the driver to handle this infor-
mation, on the simulation that may be a simple button that
is incorporated in a matter of seconds. LCD driver in a real
world is complicated, but drawing bitmaps in any window
environment is much easier.

Virtually all the other outcomes of this technique have a
positive influence on the development, mainly because of
the so-called front-loading effect /3/.

The main application development may be started long
before the actual platform is available, tool packages set
up and all the necessary drivers for the product are com-
pleted.

AP! between the system dependent code and the applica-
tion, as well as any other APls, can be evaluated and opti-
mized. The API definition is more likely to be correct and
complete if tested on many platforms. Any weak points or
exceptions show up sooner and can be documented more
reliably. This operation also forces the project manager and
the programmers to think about how the code should be
organized and split between the platform dependent and
the platform independent part. The code organized this
way is much easier to split between the developers and to
port to a new hardware or OS platform if needed, since
only the dependent part of the code has to be rewritten.
This may happen sooner as predicted, because newer,
better and more suitable platform elements emerge on the
market very rapidly.

Debugging on the real platform is usually hard to do or is
poorly supported. The code has to be loaded to the tar-
get, run and then connected with the host application. The
ease of the debugging process depends on the debug-
ging tool maturity, communication channel bandwidth that
is established between the target and the host, etc. Avail-
able target simulators are platform oriented, which means
a new simulator is usually needed if a new processor is
chosen. In the case the producer remains the same, the
existing simulator may still be useful, but changing to an-
other producer usually means setting up an entirely differ-
ent environment, which may not even have the same need-
ed functionality.

Debugging the simulation on the personal computer or
workstation is easy because standard, powerful and well-

264

known tools are used. It is much faster, simpler and allows
operations not possible on the real platform. Practically
only the platform dependent code must be debugged di-
rectly on the target.

Device simulation can be connected to environment simu-
lator, a program, which simulates the system where the
device will be operating, to check if the behavior of the
application is correct.

The simulation platform dependent code can be reused,
usually with slight changes and enhancements, for the
projects in the future.

Compiling the platform independent code on more than one
hardware or OS platform and with different compilers can
reveal warnings and errors that may only be discovered later
during run-time, when they are much harder to track down.
This way the code truly becomes independent.

It is very common that the development is started with in-
sufficient analysis of the problem and customer needs, and
continued with too weak emphasis on consistent software
design basement. Instead, the coding starts very soon,
usually because of tight schedule. This is hard to avoid.
The development for parallel platforms forces this coding
to be much more consistent and is thus less likely that cor-
rections in the future will be needed.

The developers must resist the temptation to quicken the
coding process by putting to the same module the parts of
the code that are different in nature. This largely extends
the complexity of such module and makes it much harder
to understand, document and especially maintain. Gener-
ally, unless ‘copy and paste’ is used, porting the code to
many platforms quickly discloses such coding style and
forces the programmers to organize their code properly.

5. Environment simulation

Any electronic device typically operates in three basic stag-
es;

- Capturing of the input data from the environment.
- Processing of the data.

- Making actions, returning the information to the envi-
ronment.

Usually, the most complex part of the device software is
the data processing. On the other side very often only small
amount of the data is captured from the environment. That
makes the simulation of such an environment extremely
simple and easy to implement.

Example:

Electricity power metering device can capture the follow-
ing input data:

- Voltage and current samples.

- Control inputs.

S. Gruden;

Efficient Development of High Quality Software for Embedded Systems

Informacije MIDEM 33(2003)4, str. 260-266

- Recelving characters over a serial communication.
- Detection of pressed keys on the console.

The information that is trahsferred o the output is:
- Data for the LCD display.
- Sending characters over a serial communication.

- Control outputs.

In this case input and output interface are very simple,
compared to what this power meter device has to proc-
ess:

- Calibrating the input data and calculating many differ-
ent values: powers (active, reactive, apparent), volt-
ages and currents (effective, maximum, minimum,
harmonic analysis), frequency, etc.

- Tariffing and other processing of the data.

- Responding to input requests over communication
and keys: parsing input data, output data formatting.

- Real time clock, security, checking data validity, etc.

For this system it is very simple to make the simulation of
the environment. It consists of a simulating of the input
signal samples, key presses and the communication chan-
nel, and on the output, of the LCD simulation and commu-
nication channel responses.

It turns out that such simplicity is very often a case. There
may be some situations when simulating of the environ-
ment is hard to implement. For example, simulating the
sensor data to the walking robot would be a complex task
because of the strong feedback of robot's movements to
the input sensors; this feedback is not trivial to simulate.
But even in such cases the early simulation saves devel-
opment resources /3/. First simulation may be low-fidelity
and enhanced later, if needed. It can be made program-
mable and may support automated test procedures. This

is useful during development, to test the new functionality,
as well as for the device maintenance, when the device
program is being changed because of fixing errors and
sometimes adding new features. Namely, changing the
program of the device may cause side effects that are not
anticipated, and a complete system has to be tested as a
consequence to ensure quality.

Besides testing of the device simulation, the environment
simulator can be made to support the testing of the device
on the real platform as well. The same test procedure is
used; only the communication channel between the appli-
cation and the environment simulation must be replaced.
Pure simulation may run in the same executable as the
environment simulation, communicating directly through the
function calls. Real platform may connect to the environ-
ment simulator via one of available hardware communica-
tions (serial, Ethernet).

The general principle of how to incorporate the environ-
ment simulation to the system, is shown in Figure 3. The
remote channel support represents the used communica-
tion means for connection to the environment simulation.
In the Figure 3 the two hardware APls implement the same
functionality, which is identical to the general hardware API
in the Figures 1 and 2. This way, the expanded application
can directly replace the original application.

The switch can be realized as an object which all of the
used information paths use to make the registration to.
These information paths do not necessarily support all of
the functionality, so they register itself each one with its
own set of capabilities. Such implementation enables:

- Redirection of the output data from the application to
all the data paths that support that data.

- Gathering input data from the data paths that can pro-
vide that type of data and deciding which input data
path is in control at any given moment.

Application system
independent code

OSAPI | hardware API 1
A

Y

Expanded application code

Remote channe

i

Environment

-) .
simulation

support

| 0SAPI

f Lwhardware API 2

|

Figure 3:
the remote environment simulation.

Insertion of a switch to support redirection of the data flow between the platform implementation and

265

Informacije MIDEM 33(2003)4, str. 260-266

S. Gruden;

Efficient Development of High Quality Software for Embedded Systems

In Figure 3 only two data paths are shown, but thisis not a
limitation. For example, another path could be added to
test a particular piece of hardware through the simulation
environment.

Similar to the device simulation, using the environment sim-
ulation technique forces the developers to consider the
application functionality even more in details. Some new
ideas about how the input data could behave may be gath-
ered. The whole system can be very successfully used as
a demo that is presented to the customer. The customers
very often do not have a good notion of how exactly the
final system should behave and this is a good opportunity
to compare wishes and reality. Demo can be presented in
the earlier stages of the development when the changes
are more easily implemented and are thus less expensive.

6. Conclusion

A situation in the software development domain was brief-
ly described, stating that it is still far from reaching the point
where high quality software is developed and delivered on
time with all the promised functionality.

The simulation method of the application and the environ-
ment is particularly useful when developing the software
for the embedded systems, especially where the input and
output interface to the real world are not too complex, which
is usually a case. These simulations can serve as a design
aid during development and as a testing tool later.

All of these methods are not necessarily useful for every
programmer, but they may be taken into account if they
are found to fit into existing concepts of the development
group. At least they may serve as an idea that would help
produce newer, even better development methods. They
are not meant to answer to the hard question how to con-

266

sistently produce a good and reliably software on time, in-
stead they provide some improvement in the case, which
is very usual, when not enough development resources
and time is available for the project.

7. References

/1/ F. P. Brooks, The Mythical Man-month: Essays on Software
Engineering, Addison Wesley, MA, 1995, 0201835959

/2/ W. A. Sheremata, "Finding and Solving Problems in Software
New Product Development”, Journal of Product Innovation Man-
agement, 19 (2), 2002, 144-158.

/3/ S. Thomke, T. Fujimoto, “Shortening Product Development Time
through ‘Front-Loading’ Problem-Solving”, CIRJE, Facuity of
Economics, University of Tokyo, CIRJE-F-11, http://
ideas.repec.org/p/tky/fseres/98cf11.htmi.

/4/ P. G. Smith, “From Experience: Reaping Benefit from Speed to
Market", Journal of Product Innovation Management, 16, 1999,
222-230.

/5/ http://www.purists.org/linux/: Linux Kernel Coding Style.

/6/ http://www.gnu.org/prep/standards.html: GNU Coding Stand-
ards

Stanisfav Gruden

Iskraemeco d.d.

Savska loka 4, SI-4000 Kranj

E-mail: stanislav.gruden®@iskraemeco.si

Prispelo (Arrived): 15.09.2003 Sprejeto (Accepted): 03.10.2003

