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Abstract

The revised Szeged index is a molecular structure descriptor equal to the sum of prod-
ucts [nu(e) + n0(e)/2]× [nv(e) + n0(e)/2] over all edges e = uv of the molecular graph
G, where n0(e) is the number of vertices equidistant from u and v, nu(e) is the number
of vertices whose distance to vertex u is smaller than the distance to vertex v and nv(e) is
defined analogously. In this paper, new formula for computing this molecular descriptor is
presented by which it is possible to reprove most of results given in [M. Aouchiche and P.
Hansen, On a conjecture about the Szeged index, European J. Combin. 31 (2010), 1662–
1666]. We also present an edge version of this graph invariant. At the end of the paper an
open question is presented.
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1 Introduction
We first describe some notations which will be kept throughout. Let G be a simple graph
with vertex set V (G) and edge set E(G). If e = uv ∈ E(G) then d(u, v) stands for the
distance between u and v in G. A topological index is a graph invariant applicable in
chemistry. A topological index χ is called distanced-based, if χ is related to the distance
function d(−,−). The first use of a distance-based topological index occurred in the year
1947 in a seminal paper by an American chemist Harold Wiener [14].

Suppose G is a connected graph and e = uv ∈ E(G). The quantities n0(e), nu(e)
and nv(e) are defined to be the number of vertices equidistant from u and v, the number of
vertices whose distance to vertex u is smaller than the distance to vertex v and the number
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of vertices closer to v than u, respectively. Similarly, the quantities m0(e), mu(e) and
mv(e) are defined to be the number of edges equidistant from u and v, the number of
edges whose distance to vertex u is smaller than the distance to vertex v and the number of
edges closer to v than u, respectively. Here, for an edge e = xy and vertex u, the distance
between e and u is defined as dG(e, u) = Min{dG(x, u), dG(y, u)}.

The Szeged, edge Szeged, edge-vertex Szeged, vertex-edge Szeged, revised Szeged
and edge revised Szeged indices of G are defined as follows:

Sz(G) =
∑
e=uv

[nu(e)× nv(e)],

Sze(G) =
∑
e=uv

[mu(e)×mv(e)],

Szev(G) = 1/2
∑
e=uv

[mu(e)× nv(e) +mv(e)× nu(e)],

Szve(G) = 1/2
∑
e=uv

[mu(e)× nu(e) +mv(e)× nv(e)],

Sz∗(G) =
∑
e=uv

[(nu(e) + n0(e)/2)× (nv(e) + n0(e)/2)],

Sz∗e (G) =
∑
e=uv

[(mu(e) +m0(e)/2)× (mv(e) +m0(e)/2)].

It is worth mentioning here that the Szeged index was introduced by Ivan Gutman [4]
and the name Szeged index was given in [5]. For the mathematical properties of this topo-
logical index we refer to [3, 9, 10]. The concept of edge Szeged index was introduced
in [6] and mathematical properties of this graph invariant are studied in [2, 7, 8]. The
revised Szeged index was introduced by Milan Randić [13] as a modification of the clas-
sical Wiener index. Nowadays the scientists prefer the name revised Szeged index for this
distance-based topological index. The interested readers can consult [1, 11, 12, 15] for
mathematical properties of this new topological index.

Throughout this section graph means finite simple connected graph. The notation is
standard and can be taken from the standard books on graph theory.

2 Main results
In this section, we first present a new formula for computing revised Szeged index of
graphs. Then apply this new formula to reprove all results given by Aouchiche and Hansen
[1]. We also present an edge version of the revised Szeged index and extend the results
given in the mentioned article to this new graph invariant. We begin by an example.

Example 2.1. SupposeG1 = Kn,G2 = Cn andG3 = Wn denote the complete, cycle and
wheel graphs of order n, and G4 = Km,n is the complete bipartite graph with partitions of
size m and n, respectively. Then,

• If e = uv ∈ E(G1) then mu = mv = n − 2 and m0 = n2−5n+8
2 . Therefore,

Sze(G1) = n(n−1)(n−2)2
2 and Sz∗e (G1) = n3(n−1)3

32 .

• Suppose e = uv is an arbitrary edge of G2. If n = 2k + 1, then mu = mv = k

and so m0 = 1. Therefore, Sze(G2) = (2k + 1)k2 = n(n−1)2
4 and Sz∗e (G2) = n3

4 .
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If n = 2k then mu = mv = k − 1 and so m0 = 2. This implies that Sze(G2) =

n(k − 1)2 = n(n−2)2
4 and Sz∗e (G2) = n3

4 .

• Consider the n−vertex wheel graph G3, n > 5. If e = uv is an edge of G3 such
that the vertex v is the center of G3, then mu = 3, mv = 2n − 7 and m0 = 3. If
both of u and v are not the center of G3, then mu = 3 , mv = 3 and m0 = 2n − 8.
Therefore Sze(G3) = (n− 1)(4n− 5) and Sz∗e (G3) = (n− 1)(n2 + 5n− 73/4).

• Suppose G4 = Kx,y , x + y = n, is the complete bipartite graph containing an
arbitrary edge e = uv, where deg(u) = x and deg(v) = y. Then we have mu =
x−1,mv = y−1,m0 = xy−x−y+2. This implies that Sze(G4) = xy(x−1)(y−1)
and Sz∗e (G4) = xy

4 (x2y2 − x2 − y2 + 2xy).

Theorem 2.2. Let G be an n-vertex and m-edge graph. Then

Sz∗(G) =
mn2

4
− 1

4

∑
e=uv

(n2u + n2v) +
1

2
Sz(G)

Proof. Since nu(e) + nv(e) = n− n0(e) we have:

Sz∗(G) =
∑
e=uv

[
(nu +

n0
2

)(nv +
n0
2

)
]

=
∑
e=uv

[
nunv +

n0
2

(nu + nv) +
1

4
n20

]
=

∑
e=uv

[
nunv +

1

2
((n− (nu + nv)))(nu + nv) +

1

4
(n− (nu + nv))2

]
=

∑
e=uv

[
nunv +

n

2
(nu + nv)− 1

2
(nu + nv)2

+
n2

4
− 1

2
n(nu + nv) +

1

4
(nu + nv)2

]
=

∑
e=uv

[
nunv +

n2

4
− 1

4
(n2u + n2v + 2(nu)(nv))

]
=

1

2
Sz(G) +

mn2

4
− 1

4

∑
e=uv

[n2u + n2v].

proving the result.

The next Corollary is already known result that stated and proven in [1].

Corollary 2.3. Sz(G) ≤ Sz∗(G) ≤ mn2

4 .

Proof. Since nu +nv ≤ n, (nu +nv)2 ≤ n2. So,
∑

e=uv[nu +nv]2 ≤ mn2 and therefore
mn2

4 −
1
4

∑
e=uv[nu+nv]2 = mn2

4 −
1
4

∑
e=uv[n2u+n2v]− 1

2Sz(G) ≥ 0. Now, Theorem 2.2
implies that Sz(G) ≤ Sz∗(G), the left hand side of inequality. The right hand side is a
direct consequence of Theorem 2.2 and the following inequality:

1

2
Sz(G)− 1

4

∑
e=uv

[n2u + n2v] = −1

4

∑
e=uv

[nu − nv]2 ≤ 0.
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By a similar argument as Theorem 2.2, one can prove:

Theorem 2.4. Let G be an n-vertex and m-edge graph. Then

Sz∗e (G) =
m3

4
− 1

4

∑
e=uv

[m2
u +m2

v] +
1

2
Sze(G).

Corollary 2.5. Sze(G) ≤ Sz∗e (G) ≤ m3

4 .

Proof. The proof is similar to the proof of Corollary 2.3 and so omitted.

Suppose G is a connected graph and u is a vertex of G. Define

D(u,G) =
∑

x∈V (G)

[dG(u, x)].

The graph G is called distance-balanced (or transmission-regular according to [1]) if for
every u, v ∈ V (G), D(u,G) = D(v,G). Similarly for a vertex u and an edge e = xy
define De(u,G) =

∑
e∈E(G)[dG(e, u). A graph G is called edge-distance-balanced if for

every vertices u, v ∈ V (G), De(u,G) = de(v,G).

Theorem 2.6. Suppose u and v are vertices of a connected graph G. Then mu = mv if
and only if De(u,G) = de(v,G).

Proof. Let e = uv be an arbitrary edge ofG. We partition the edge set ofG into three parts
as follows:

• M(u) is the set of all edges that are closer to u than v.

• M(v) is the set of all edges that are closer to v than u.

• M(o) is the set of all edges that are equidistant from u and v.

Suppose mu(e) = |M(u)|, mv(e) = |M(v)| and m0(e) = |M(o)|. Then we have :

De(u,G) =
∑

e∈E(G)

dG(e, u)

=
∑

e∈M(u)

dG(e, u) +
∑

e∈M(v)

dG(e, u) +
∑

e∈M(0)

dG(e, u)

=
∑

e∈M(u)

dG(e, u) +
∑

e∈M(v)

(1 + dG(e, v)) +
∑

e∈M(0)

dG(e, u)

=
∑

e∈M(u)

dG(e, u) +mv(e) +
∑

e∈M(v)

dG(e, v) +
∑

e∈M(0)

dG(e, u).

A similar argument shows that

De(v,G) =
∑

e∈M(u)

dG(e, u) +mu(e) +
∑

e∈M(v)

dG(e, v) +
∑

e∈M(0)

dG(e, v).

But De(u,G) − De(v,G) = mv(e) − mu(e) and so mu(e) = mv(e) if and only if
De(u,G) = De(v,G). This complete our argument.
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Corollary 2.7. If Sze(G) = m3

4 then G is an edge-distance-balanced graph.

Proof. If Sze(G) = m3

4 then by Corollary 2.5, Sz∗e (G) = m3

4 . Thus

1

2
Sze(G)− 1

4

∑
uv∈E(G)

[m2
u +m2

v] = −1

4

∑
uv∈E(G)

[mu −mv]2 = 0.

Therefore mu = mv . Now Theorem 2.6 implies that G is an edge-distanced-balanced
graph.

In the end of this paper, we compute an exact formula for the edge revised Szeged index
of Cartesian product of graphs. To do this, we assume that G and H are connected graphs
with vertex sets V (G) = {u1, u2, ..., ur} and V (H) = {v1, v2, . . . , vs}. We also assume
that |E(G)| = e1 and |E(H)| = e2. Then by definition V (G×H) = V (G)× V (H) and
we have:

E(G×H) = {(u, v)(a, b) | [u = a, vb ∈ E(H)] or [ua ∈ E(G), v = b]}.

Clearly, |E(G × H)| = |V (G)||E(H)| + |V (H)||E(G)|. To compute the edge revised
Szeged index of G×H we partition the edge set of this graph into the following parts:

Am = {(um, x)(um, y) | xy ∈ E(H)} ; 1 ≤ m ≤ r,
Bt = {(a, vt)(b, vt) | ab ∈ E(G)} ; 1 ≤ t ≤ s.

Theorem 2.8. (See [15, Lemmas 2 and 3]). With above notations we have:
(a) If e = (um, vj)(um, vq) ∈ Am) then

m(um,vj)(e) = |V (G)|mvj (vjvq) + |E(G)|nvj (vjvq) = rmvj (H) + e1nvj
(H),

m(um,vq)(e) = |V (G)|mvq (vjvq) + |E(G)|nvj (vjvq) = rmvq (H) + e1nvq
(H).

(b) If e = (ui, vt)(up, vt) ∈ Bt then

m(ui,vt)(e) = |V (H)|mui(uiup) + |E(H)|nui(uiup) = smui(G) + e2nui(G),

m(up,vt)(e) = |V (H)|mup(uiup) + |E(H)|nup(uiup) = smup(G) + e2nup(G).

Theorem 2.9. With notation of Theorem 2.8, the edge revised Szeged index of Cartesian
product of G and H can be computed as follows:

Sz∗e (G×H) =
1

2
r3Sze(H) + r2e1Szev(H) +

1

2
re21Sz(H) +

1

4
re2(re2 + se1)2

− r2e1Szve(H)− 1

4
r3

∑
xy∈E(H)

[m2
x(H) +m2

y(H)]

− 1

4
re21

∑
xy∈E(H)

[n2x(H) + n2y(H)] +
1

2
s3Sze(G) + s2e2Szev(G)

+
1

2
se22Sz(G) +

1

4
se1(se1 + re2)2 − s2e2Szve(G)

− 1

4
s3

∑
ab∈E(G)

[m2
a(G) +m2

b(G)]− 1

4
se22

∑
ab∈E(G)

[n2a(G) + n2b(G)].
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Proof. Let e = (um, x)(um, y) ∈ Am. Then m0(e) = re2 + se1 − r(mx(H) + my(H))
− e1(nx(H) + ny(H)). Set,

A =

[
m(um,x)(e) +

m0(e)

2

]
×
[
m(um,y)(e) +

m0(e)

2

]
,

B =

[
m(a,vt)(e) +

m0(e)

2

]
×
[
m(b,vt)(e) +

m0(e)

2

]
.

Then we have:

A =
1

2
r2mx(H)my(H) +

1

2
e1r(nx(H)my(H) + ny(H)mx(H))

+
1

2
e21nx(H)ny(H) +

1

4
(re2 + se1)2 − 1

2
e1r(nx(H)mx(H) + ny(H)my(H))

− 1

4
r2(m2

x(H) +m2y(H))− 1

4
e21(n2x(H) + n2y(H)).

Thus, ∑
(um,x)(um,y)∈Am

[
m(um,x)(e) +

mo(e)

2

] [
m(um,y)(e) +

m0(e)

2

]
= 1/2r2Sze(H) + e1rSzev(H) +

1

2
e21Sz(H) +

1

4
e2(re2 + se1)2

− e1rSzve(H)− 1

4
r2

∑
xy∈E(H)

[m2
x(H) +m2

y(H)] (2.1)

− 1

4
e21

∑
xy∈E(H)

[n2x(H) + n2y(H)].

Using a similar argument for the edge e = (a, vt)(b, vt) ∈ Bt, we have:

B =

[
m(a,vt)(e) +

m0(e)

2

] [
m(b,vt)(e) +

m0(e)

2

]
=

1

2
s2mui(G)mup(G) +

1

2
e2s [na(G)mb(G) + nb(G)ma(G)]

+
1

2
e22na(G)nb(G) +

1

4
(se1 + re2)2 − 1

2
e2s [na(G)ma(G) + nb(G)mb(G)]

− 1

4
s2
[
m2

a(G) +m2
b(G)

]
− 1

4
e22
[
n2a(G) + n2b(G)

]
.

So, ∑
(a,vt)(b,vt)∈Bt

[
m(a,vt)(e) +

m0(e)

2

] [
m(b,vt)(e) +

m0(e)

2

]
=

1

2
s2Sze(G) + e2sSzev(G) +

1

2
e22Sz(G) +

1

4
e1(se1 + re2)2

− e2sSzve(G)− 1

4
s2

∑
ab∈E(G)

[
m2

a(G) +m2
b(G)

]
(2.2)

− 1

4
e22

∑
ab∈E(G)

[
n2a(G) + n2b(G)

]
.
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Now multiplying Eq. (2.1) by r and Eq. (2.2) by s and summation of these values, the
formula given in the theorem will be obtained.

3 Conclusions
Some of mathematicians recently focus on the revised Szeged index of graphs. In this pa-
per a new formula for computing this topological index is presented by which it is possible
to reprove some earlier results. We also investigate an edge version of this interesting topo-
logical index. We proved that the edge version of this graph invariant is more complicated
than its vertex version. In the case of vertex version, it is easy to find an exact formula for
the Cartesian product of graphs but in the edge version it is too difficult.

In Theorem 2.6 and Corollary 2.7, it is proved that Sze(G) = m3

4 implies that G is an
edge-balanced-distance graph. We end the paper with the following open question:

Question: Characterize graphs G such that Sze(G) = m3/4.

Acknowledgements
The authors are indebted to the referees for their suggestions and helpful remarks. This
research has been supported by the research affair of the University of Kashan, I. R. Iran
under grant number 159020/4.

References
[1] M. Aouchiche and P. Hansen, On a conjecture about the Szeged index, European J. Combin.

31 (2010), 1662–1666.

[2] E. Chiniforooshan and B. Wu, Maximum values of Szeged index and edge- Szeged index of
graphs, Electronic Notes Discrete Math. 34 (2009), 405–409.

[3] K. Ch. Das and I. Gutman, Estimating the Szeged index, Appl. Math. Lett. 22 (2009), 1680–
1684.

[4] I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing
cycles, Graph Theory Notes New York 27 (1994), 9–15.

[5] I. Gutman, P. V. Khadikar, P. V. Rajput and S. Karmarkar, The Szeged index of polyacenes, J.
Serb. Chem. Soc. 60 (1995), 759–764.

[6] I. Gutman and A. R. Ashrafi, The edge version of the Szeged index, Croat. Chem. Acta 81
(2008), 277–281.

[7] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi and I. Gutman, The edge Szeged index of
product graphs, Croat. Chem. Acta 81 (2008), 277–281.

[8] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi and S. G. Wagner, Some new results on
distance-based graph invariants, European J. Combin. 30 (2009), 1149–1163.
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