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Abstract

A graph G is a core if every endomorphism of G is an automorphism. A graph is called
a pseudo-core if every its endomorphism is either an automorphism or a colouring. Suppose
that Jq(n,m) is a Grassmann graph over a finite field with q elements. We show that every
Grassmann graph is a pseudo-core. Moreover, J2(4, 2) is not a core and Jq(2k + 1, 2)
(k ≥ 2) is a core.
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1 Introduction
Throughout this paper, all graphs are finite undirected graphs without loops or multiple
edges. For a graph G, we let V (G) denote the vertex set of G. If xy is an edge of G, then
x and y are said to be adjacent, and denoted by x ∼ y. Let G and H be two graphs. A
homomorphism ϕ from G to H is a mapping ϕ : V (G) → V (H) such that ϕ(x) ∼ ϕ(y)
whenever x ∼ y. If H is the complete graph Kr, then ϕ is a r-colouring of G (colouring
for short). An isomorphism from G to H is a bijection ϕ : V (G)→ V (H) such that x ∼ y
⇔ ϕ(x) ∼ ϕ(y). Graphs G and H are called isomorphic if there is an isomorphism from
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G to H , and denoted by G ∼= H . A homomorphism (resp. isomorphism) from G to itself
is called an endomorphism (resp. automorphism) of G.

Recall that a graph G is a core if every endomorphism of G is an automorphism. A
subgraph H of G is a core of G if it is a core and there exists a homomorphism from G to
H . Every graph has a core, which is an induced subgraph and is unique up to isomorphism
[5]. A graph is called core-complete if it is a core or its core is complete.

A graph G is called a pseudo-core if every endomorphism of G is either an automor-
phism or a colouring. Every core is a pseudo-core. Any pseudo-core is core-complete but
not vice versa. For more information, see [2, 6, 9].

For a graph G, an important and difficult problem is to distinguish whether G is a core
[2, 5, 6, 7, 11, 15]. If G is not a core or we don’t know whether it is a core, then we need
to judge whether it is a pseudo-core because the concept of pseudo-core is the most close
to the core. Recently, Godsil and Royle [6] discussed some properties of pseudo-cores.
Cameron and Kazanidis [2] discussed the core-complete graph and the cores of symmetric
graphs. The literature [10] showed that every bilinear forms graph is a pseudo-core which
is not a core. One of the latest result is from [9], where it was proved that every alternating
forms graph is a pseudo-core. Moreover, Orel [13, 12] proved that each symmetric bilinear
forms graph (whose diameter is greater than 2) is a core and each Hermitian forms graph
is a core.

Suppose that Fq is the finite field with q elements, where q is a power of a prime. Let V
be an n-dimensional row vector space over Fq and let

[
V
m

]
be the set of all m-dimensional

subspaces of V . The Grassmann graph Jq(n,m) has the vertex set
[
V
m

]
, and two vertices

are adjacent if their intersection is of dimension m − 1. If m = 1, we have a complete
graph and hence it is a core. Since Jq(n,m) ∼= Jq(n, n − m), we always assume that
4 ≤ 2m ≤ n in our discussion unless specified otherwise. The number of vertices of
Jq(n,m) is the Gaussian binomial coefficient:[

n

m

]
=

m∏
i=1

qn+1−i − 1

qi − 1
. (1.1)

For Jq(n,m), the distance of two vertices X and Y is d(X,Y ) := m− dim(X ∩ Y ). Any
Grassmann graph is distance-transitive [1, Theorem 9.3.3] and connected. By [6, Corol-
lary 4.2], every distance-transitive graph is core-complete, thus every Grassmann graph is
core-complete. The Grassmann graph plays an important role in geometry, graph theory,
association schemes and coding theory.

Recall that an independent set of a graph G is a set of vertices that induces an edgeless
graph. The size of the largest independent set is called the independence number of G,
denoted by α(G). The chromatic number χ(G) ofG is the least value of k for whichG can
be k-colouring. A clique of a graph G is a complete subgraph of G. A clique C is maximal
if there is no clique of G which properly contains C as a subset. A maximum clique of G
is a clique with the maximum size. The clique number of G is the number of vertices in a
maximum clique, denoted by ω(G).

By [6, p.273], if G is a distance-transitive graph and χ(G) > ω(G), then G is a core.
Unluckily, applying the eigenvalues or the known results of graph theory for Grassmann
graph, to prove the inequality χ(G) > ω(G) is difficult. Thus, it is a difficult problem to
verify a Grassmann graph being a core. However, there are some Grassmann graphs which
are not cores (see Section 4). Therefore, we need to judge whether a Grassmann graph is a
pseudo-core. So far, this is an open problem. We solve this problem as follows:
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Theorem 1.1. Every Grassmann graph Jq(n,m) is a pseudo-core.

The paper is organized as follows. In Section 2, we give some properties of the maximal
cliques of Grassmann graphs. In Section 3, we shall prove Theorem 1.1. In Section 4, we
discuss cores on Grassmann graphs. We shall show that J2(4, 2) is not a core, Jq(2k+1, 2)
(k ≥ 2) is a core.

2 Maximal cliques of Grassmann graph
In this section we shall discuss some properties of the maximal cliques of Grassmann
graphs.

We will denote by |X| the cardinal number of a set X . Suppose that V is an n-
dimensional row vector space over Fq . For two vector subspaces S and T of V , the join
S ∨ T is the minimal dimensional vector subspace containing S and T . We have the di-
mensional formula (cf. [8, Lemma 2.1] or [16]):

dim(S ∨ T ) = dim(S) + dim(T )− dim(S ∩ T ). (2.1)

Throughout this section, suppose that 4 ≤ 2m ≤ n. For every (m − 1)-dimensional
subspace P of V , let [P 〉m denote the set of all m-dimensional subspaces containing P ,
which is called a star. For every (m + 1)-dimensional subspace Q of V , let 〈Q]m denote
the set of all m-dimensional subspaces of Q, which is called a top. By [4], every maximal
clique of Jq(n,m) is a star or a top. For more information, see [14].

By [16, Corollary 1.9],

|[P 〉m| =
qn−m+1 − 1

q − 1
, |〈Q]m| =

qm+1 − 1

q − 1
. (2.2)

If n > 2m, then every maximum clique of Jq(n,m) is a star. If n = 2m, then every
maximal clique of Jq(n,m) is a maximum clique. By (2.2) we have

ω(Jq(n,m)) =
[
n−m+1

1

]
if n ≥ 2m. (2.3)

Since n ≥ 2m, we have

|[P 〉m| ≥ |〈Q]m|, and |[P 〉m| > |〈Q]m| if n > 2m. (2.4)

Lemma 2.1. If [P 〉m ∩ 〈Q]m 6= ∅, then the size of [P 〉m ∩ 〈Q]m is q + 1.

Proof. Since [P 〉m ∩ 〈Q]m 6= ∅, one gets P ⊆ Q. It follows that [P 〉m ∩ 〈Q]m consists of
all m-dimensional subspaces containing P in Q. By [16, Corollary 1.9], the desired result
follows.

Lemma 2.2. ([8, Corollary 4.4]) Let M1 and M2 be two distinct stars (tops). Then
|M1 ∩M2| ≤ 1.

Lemma 2.3. Suppose [A〉m 6= [B〉m. Then [A〉m∩ [B〉m 6= ∅ if and only if dim(A∩B) =
m− 2. In this case, [A〉m ∩ [B〉m = {A ∨B}.

Proof. Since dim(A) = dim(B) = m − 1 and A 6= B, one gets dim(A ∨ B) ≥ m. If
[A〉m∩[B〉m 6= ∅, then by Lemma 2.2, there exists a vertexC of Jq(n,m) such that {C} =
[A〉m∩[B〉m. It follows from (2.1) andA,B ⊂ C thatC = A∨B and dim(A∩B) = m−2.
Conversely, if dim(A ∩B) = m− 2, then Lemma 2.2 and (2.1) imply that C := A ∨B is
a vertex of Jq(n,m) and hence {C} = [A〉m ∩ [B〉m.
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Lemma 2.4. Suppose 〈P ]m 6= 〈Q]m. Then 〈P ]m∩〈Q]m 6= ∅ if and only if dim(P ∩Q) =
m. In this case, 〈P ]m ∩ 〈Q]m = {P ∩Q}.

Proof. By dim(P ) = dim(Q) = m + 1 and P 6= Q, we have dim(P ∩ Q) ≤ m. If
〈P ]m ∩ 〈Q]m 6= ∅, then Lemma 2.2 implies that there exists a vertex C of Jq(n,m) such
that {C} = 〈P ]m∩〈Q]m. SinceC ⊂ P ∩Q, we get thatC = P ∩Q and dim(P ∩Q) = m.
Conversely, if dim(P ∩Q) = m, then by P ∩Q ∈ 〈P ]m ∩ 〈Q]m and Lemma 2.2, we have
{P ∩Q} = 〈P ]m ∩ 〈Q]m.

In the following, let ϕ be an endomorphism of Jq(n,m) and Im(ϕ) be the image of ϕ.

Lemma 2.5. IfM is a maximal clique, then there exists a unique maximal clique contain-
ing ϕ(M).

Proof. Suppose there exist two distinct maximal cliquesM′ andM′′ containing ϕ(M).
Then ϕ(M) ⊆ M′ ∩M′′. By Lemmas 2.1 and 2.2, |M′ ∩M′′| ≤ q + 1. Since |M| =
|ϕ(M)|, by (2.2) we have |ϕ(M)| > q + 1, a contradiction.

Lemma 2.6. LetM be a star and N be a top such that |ϕ(M) ∩ ϕ(N )| > q + 1. Then
ϕ(N ) ⊆ ϕ(M).

Proof. Let N ′ be the maximal clique containing ϕ(N ). Then |ϕ(M) ∩N ′| > q + 1. One
gets ϕ(M) = N ′ by Lemmas 2.1 and 2.2.

Lemma 2.7. Suppose there exist two distinct stars [A〉m and [B〉m such that

[A〉m ∩ [B〉m = {X}, ϕ([A〉m) = ϕ([B〉m).

If ϕ([A〉m) is a star, then ϕ is a colouring of Jq(n,m).

Proof. WriteM := ϕ([A〉m). Then ϕ([B〉m) =M and ϕ(X) ∈ M. Assume thatM is
a star. If Im(ϕ) =M, then ϕ is a colouring of Jq(n,m). Now we prove Im(ϕ) =M as
follows. Suppose that Y is any vertex with Y ∼ X . Since G := Jq(n,m) is connected, it
suffices to show that there exist two distinct stars [C〉m and [D〉m such that

{Y } = [C〉m ∩ [D〉m and ϕ([C〉m) = ϕ([D〉m) =M.

In fact, if we can prove this point, then we can imply that ϕ(Z) ∈ M for all Z ∈ V (G).
We prove it as follows.

Since X ∈ 〈X ∨ Y ]m ∩ [A〉m ∩ [B〉m, using Lemma 2.2 we get |〈X ∨ Y ]m ∩ [A〉m ∩
[B〉m| = 1. By Lemma 2.1 we obtain

|〈X ∨ Y ]m ∩ [A〉m| = |〈X ∨ Y ]m ∩ [B〉m| = q + 1.

It follows that
|〈X ∨ Y ]m ∩ ([A〉m ∪ [B〉m)| = 2q + 1.

Observe that

ϕ(〈X∨Y ]m∩ ([A〉m∪ [B〉m)) ⊆ ϕ(〈X∨Y ]m)∩ϕ([A〉m∪ [B〉m) ⊆ ϕ(〈X∨Y ]m)∩M.

Since the restriction of ϕ on a clique is injective, one gets

|ϕ(〈X ∨ Y ]m) ∩M| ≥ 2q + 1 > q + 1.
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Thus, Lemma 2.6 implies that

ϕ(〈X ∨ Y ]m) ⊆M. (2.5)

So ϕ(Y ) ∈ M. Write C := X ∩ Y . Since every vertex of [C〉m \ {X} is adjacent to X ,
by our claim we have ϕ([C〉m) =M.

Pick a vertex Z such that Z ∼ Y and the distance fromX is 2. WriteD = Y ∩Z. Since
Y ∈ [D〉m ∩ 〈X ∨ Y ]m, by Lemma 2.1 we have |[D〉m ∩ 〈X ∨ Y ]m| = q + 1. It follows
from (2.5) that |ϕ([D〉m) ∩M| ≥ q + 1. Thus Lemma 2.2 implies that ϕ([D〉m) =M.
Since {Y } = [C〉m ∩ [D〉m, [C〉m and [D〉m are the desired stars.

3 Proof of Theorem 1.1
For the proof of Theorem 1.1, we only need to consider the case 4 ≤ 2m ≤ n. We divide
the proof of Theorem 1.1 into two cases: n > 2m and n = 2m.

Lemma 3.1. If n > 2m, then every Grassmann graph Jq(n,m) is a pseudo-core.

Proof. Suppose that n > 2m ≥ 4. Then by (2.4), every maximum clique of Jq(n,m) is
a star. Let ϕ be an endomorphism of Jq(n,m). Then the restriction of ϕ on any clique is
injective, so ϕ transfers stars to stars.

Suppose ϕ is not a colouring. It suffices to show that ϕ is an automorphism. Write
Gr := Jq(n, r), where 1 ≤ r ≤ m−1. By Lemma 2.7, the images under ϕ of any two dis-
tinct and intersecting stars are distinct. Hence by Lemma 2.3, ϕ induces an endomorphism
ϕm−1 of Gm−1 such that

ϕ([A〉m) = [ϕm−1(A)〉m.

Let X be any vertex of Jq(n,m). Then there exist two vertices X ′ and X ′′ of Gm−1
such thatX = X ′∨X ′′. Then [X ′〉m∩[X ′′〉m = {X} andϕ(X) ∈ ϕ([X ′〉m)∩ϕ([X ′′〉m).
Since ϕ is not a colouring, by Lemma 2.7 ϕ([X ′〉m) and ϕ([X ′′〉m) are two distinct stars.
By Lemma 2.2, [ϕm−1(X ′)〉m∩ [ϕm−1(X ′′)〉m = {ϕ(X)}. Thus Lemma 2.3 implies that

ϕ(X) = ϕm−1(X
′) ∨ ϕm−1(X ′′). (3.1)

When m = 2, G1 is a complete graph, hence it is a core. We next show that ϕm−1 is
not a colouring of Gm−1 for m ≥ 3. For any two vertices A1 and A3 of Gm−1 at distance
2, we claim that

ϕm−1(A1) 6= ϕm−1(A3).

There exists an A2 ∈ V (Gm−1) such that A1 ∼ A2 ∼ A3. Write Y1 := A1 ∨ A2 and
Y2 := A2 ∨A3. Then Y1 ∼ Y2, so ϕ(Y1) 6= ϕ(Y2). By (3.1),

ϕ(Y1) = ϕm−1(A1) ∨ ϕm−1(A2), ϕ(Y2) = ϕm−1(A2) ∨ ϕm−1(A3).

Thus our claim is valid. Otherwise, one has ϕ(Y1) = ϕ(Y2), a contradiction.
Pick a star N of Gm−1. Since the diameter of Gm−1 is at least two, there exists a

vertex A4 ∈ V (Gm−1) \ N that is adjacent to some vertex in N . If B ∈ N such that A4

is not adjacent to B, then d(A4, B) = 2. By our claim, ϕm−1(A4) 6= ϕ(B) and hence
ϕm−1(A4) 6∈ ϕm−1(N ). Therefore, ϕm−1 is not a colouring.

By induction, we may obtain induced endomorphism ϕr ofGr for each r. Furthermore,

ϕ(X) = ϕk1(Xk1) ∨ ϕk2(Xk2) ∨ · · · ∨ ϕks(Xks), (3.2)
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where X = Xk1 ∨Xk1 ∨ · · · ∨Xks ∈ V (Gm) and 1 ≤ dim(Xki) = ki ≤ m− 1.
In order to show that ϕ is an automorphism, it suffices to show that ϕ is injective.

Assume that X and Y are any two distinct vertices in Gm with d(X,Y ) = s. Thus
dim(X ∩ Y ) = m − s. If s = 1, then ϕ(X) 6= ϕ(Y ). Now suppose s ≥ 2. There are
1-dimensional row vectorsXi, Yi, i = 1, . . . .s, such thatX,Y can be written asX = (X∩
Y )∨X1∨· · ·∨Xs, Y = (X∩Y )∨Y1∨· · ·∨Ys. Let Z = (X∩Y )∨X1∨· · ·∨Xs−1∨Ys ∈
V (Gm). By X ∼ Z, dim(ϕ(X) ∨ ϕ(Z)) = m+ 1. Applying (3.2), one has that ϕ(X) =
ϕm−s(X ∩Y )∨ϕ1(X1)∨ · · · ∨ϕ1(Xs), ϕ(Y ) = ϕm−s(X ∩Y )∨ϕ1(Y1)∨ · · · ∨ϕ1(Ys)
and ϕ(Z) = ϕm−s(X ∩ Y ) ∨ ϕ1(X1) ∨ · · · ∨ ϕ1(Xs−1) ∨ ϕ1(Ys). Therefore, we get
ϕ(X) ∨ ϕ(Z) ⊆ ϕ(X) ∨ ϕ(Y ). It follows that ϕ(X) 6= ϕ(Y ). Otherwise, one has
ϕ(X) ∨ ϕ(Z) ⊆ ϕ(X), a contradiction to dim(ϕ(X) ∨ ϕ(Z)) = m + 1. Hence, ϕ is an
automorphism, as desired.

By above discussion, Jq(n,m) is a pseudo-core when n > 2m.

Lemma 3.2. If n = 2m, then every Grassmann graph Jq(n,m) is a pseudo-core.

Proof. Suppose that n = 2m ≥ 4. For a subspace W of V , the dual subspace W⊥ of W
in V is defined by

W⊥ = {v ∈ V | wvt = 0, ∀ w ∈W},

where vt is the transpose of v.
For an endomorphism ϕ of Jq(2m,m), define the map

ϕ⊥ : V (Jq(2m,m)) −→ V (Jq(2m,m)), A 7−→ ϕ(A)⊥.

Then ϕ⊥ is an endomorphism of Jq(2m,m). Note that ϕ⊥ is an automorphism (resp.
colouring) whenever ϕ is an automorphism (resp. colouring). For any maximal cliqueM
of Jq(2m,m), ϕ(M) and ϕ⊥(M) are of different types.

Next we shall show that Jq(2m,m) is a pseudo-core.
Case 1. There exist [A〉m and 〈X]m such that [A〉m ∩ 〈X]m 6= ∅ and ϕ([A〉m),

ϕ(〈X]m) are of the same type.
By Lemma 2.1, the size of [A〉m∩〈X]m is q+1. Then |ϕ([A〉m)∩ϕ(〈X]m)| ≥ q+1.

Since ϕ([A〉m) and ϕ(〈X]m) are of the same type, by Lemma 2.2 one gets

ϕ([A〉m) = ϕ(〈X]m). (3.3)

Note that A ⊆ X . Pick any Y ∈
[
V

m+1

]
satisfying A ⊆ Y and dim(X ∩ Y ) = m. Then

〈Y ]m ∩ [A〉m 6= ∅. By Lemma 2.1 we have |ϕ(〈Y ]m)∩ϕ([A〉m)| ≥ q+1. By Lemma 2.2
and (3.3) we obtain either ϕ(〈Y ]m) = ϕ(〈X]m) or ϕ(〈Y ]m) and ϕ(〈X]m) are of different
types.

Case 1.1. There exists a Y ∈
[
V

m+1

]
such that ϕ(〈Y ]m) and ϕ(〈X]m) are of different

types. For any B ∈
[
X∩Y
m−1

]
, we have that B ⊆ Y and B ⊆ X . Since |[B〉m) ∩ 〈X]m| =

|[B〉m) ∩ 〈Y ]m| = q + 1, we have similarly

|ϕ([B〉m) ∩ ϕ(〈X]m)| ≥ q + 1 and |ϕ([B〉m) ∩ ϕ(〈Y ]m)| ≥ q + 1.

Since ϕ(〈Y ]m) and ϕ(〈X]m) are of different types, Lemma 2.2 implies that ϕ([B〉m) =
ϕ(〈X]m) or ϕ([B〉m) = ϕ(〈Y ]m) for any B ∈

[
X∩Y
m−1

]
.

Since the size of
[
X∩Y
m−1

]
is at least 3, by above discussion, there exist two subspaces

B1, B2 ∈
[
X∩Y
m−1

]
such that ϕ([B1〉m) = ϕ([B2〉m). Note that [B1〉m∩ [B2〉m 6= ∅ because
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X ∩ Y ∈ [Bi〉m (i = 1, 2). If ϕ([B1〉m) is a star, then ϕ is a colouring by Lemma 2.7.
Suppose ϕ([B1〉m) is a top. Then ϕ⊥([B1〉m) is a star. By Lemma 2.7 again, ϕ⊥ is a
colouring. Hence, ϕ is also a colouring.

Case 1.2. ϕ(〈Y ]m) = ϕ(〈X]m) for any Y ∈
[
V

m+1

]
. Consider a star [C〉m where C

satisfies C ⊂ X and dim(C ∩ A) = m − 2. Then (A ∨ C) ⊆ X and dim(A ∨ C) = m.
For any T ∈ [C〉m, since (A ∨ C) ⊆ (A ∨ T ) and m ≤ dim(A ∨ T ) ≤ m + 1, there
exists a subspace W ∈

[
V

m+1

]
such that (A ∨ T ) ⊆ W and dim(W ∩ X) ≥ m (because

(A ∨ C) ⊆W ∩X).
Since T ∈ 〈W ]m, ϕ(T ) ∈ ϕ(〈W ]m). By the condition, ϕ(〈W ]m) = ϕ(〈X]m). Then

ϕ(〈W ]m) = ϕ([A〉m) by (3.3). It follows that ϕ(T ) ∈ ϕ([A〉m) for all T ∈ [C〉m, and so
ϕ([C〉m) ⊆ ϕ([A〉m). Hence, ϕ([C〉m) = ϕ([A〉m). Since [C〉m ∩ [A〉m 6= ∅, similar to
the proof of Case 1.1, ϕ is a colouring.

Case 2. For any two maximal cliques of different types containing common vertices,
their images under ϕ are of different types.

In this case, ϕ maps the maximal cliques of the same type to the maximal cliques of the
same type.

Case 2.1. ϕ maps stars to stars. In this case ϕ maps tops to tops by Lemmas 2.1 and
2.2.

If there exist two distinct starsM andM′ such thatM∩M′ 6= ∅ and ϕ(M) = ϕ(M′),
then ϕ is a colouring by Lemma 2.7. Now suppose ϕ(M) 6= ϕ(M′) for any two distinct
starsM andM′ withM∩M′ 6= ∅. By Lemma 2.3, ϕ induces an endomorphism ϕm−1
of Jq(2m,m − 1) such that ϕ([A〉m) = [ϕm−1(A)〉m. By Lemma 3.1, Jq(2m,m − 1) is
a pseudo-core. Thus, ϕm−1 is an automorphism or a colouring.

We claim that ϕm−1 is an automorphism of Jq(2m,m− 1). For any C ∈
[
V
m

]
and B ∈[

C
m−1

]
, since C ∈ [B〉m and ϕ([B〉m) = [ϕm−1(B)〉m, we have ϕ(C) ∈ [ϕm−1(B)〉m.

Then ϕm−1(B) ⊆ ϕ(C), which implies that ϕm−1(〈C]m−1) is a top of Jq(2m,m − 1).
If m = 2, our claim is valid. Now suppose m ≥ 3 and ϕm−1 is a colouring. Then
Im(ϕm−1) is a star of Jq(2m,m − 1). Note that ϕm−1(〈C]m−1) ⊆ Im(ϕm−1) and
|ϕm−1(〈C]m−1)| > q + 1, contradicting to Lemma 2.1. Hence, our claim is valid. There-
fore, ϕ maps distinct stars onto distinct stars, and ϕ is an automorphism.

Case 2.2. ϕ maps stars to tops. In this case ϕ maps tops to stars by Lemmas 2.1 and
2.2.

Note that ϕ⊥ maps stars to stars. By Case 2.1, ϕ⊥ is an automorphism. Hence, ϕ is an
automorphism.

By above discussion, we have proved that every Grassmann graph Jq(2m,m) is a
pseudo-core.

By Lemmas 3.1 and 3.2, we have proved Theorem 1.1.

4 Cores on Grassmann graphs
In this section, we shall show that J2(4, 2) is not a core and Jq(2k+1, 2) (k ≥ 2) is a core.

It is well-known (cf. [3, Theorem 6.10 and Corollary 6.2]) that the chromatic number
of G satisfies the following inequality:

χ(G) ≥ max {ω(G), |V (G)|/α(G)} .
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By [15, Lemma 2.7.2], if G is a vertex-transitive graph, then

χ(G) ≥ |V (G)|
α(G)

≥ ω(G). (4.1)

Lemma 4.1. Let G be a Grassmann graph. Then G is a core if and only if χ(G) > ω(G).
In particular, if |V (G)|

ω(G) is not an integer, then G is a core.

Proof. By [6, Corollary 4.2], every distance-transitive graph is core-complete, thus G is
core-complete. Then, χ(G) > ω(G) implies that G is a core. Conversely, if G is a core,
then we must have χ(G) > ω(G). Otherwise, there exists an endomorphism f of G such
that f(G) is a maximum clique of G, a contradiction to G being a core. Thus, G is a core
if and only if χ(G) > ω(G).

By [2, p.148, Remark], if the core of G is complete, then |V (G)| = ω(G)α(G). As-
sume that |V (G)|

ω(G) is not an integer. Then |V (G)| 6= ω(G)α(G). Therefore, the core of G is
not complete and hence G is a core.

Denote by Fm×nq the set ofm×nmatrices over Fq and Fnq = F1×n
q . LetG = Jq(n,m)

where n > m. If X is a vertex of G, then X = [α1, . . . , αm] is an m-dimensional
subspace of the vector space Fnq , where {α1, . . . , αm} is a basis ofX . Thus,X has a matrix

representation

(
α1

...
αm

)
∈ Fm×nq (cf. [8, 16]). For simpleness, the matrix representation

ofX ∈ V (G) is also denoted byX . For matrix representationsX,Y of two verticesX and
Y , X ∼ Y if and only if rank

(
X
Y

)
= m + 1. Note that if X is a matrix representation

thenX = PX (as matrix representation) for anym×m invertible matrix P over Fq . Then,
V (G) has a matrix representation

V (G) =
{
X : X ∈ Fm×nq , rank(X) = m

}
.

Now, we give an example of Grassmann graph which is not a core as follows.

Example 4.2. Let G = J2(4, 2). Then G is not a core. Moreover, χ(G) = ω(G) = 7 and
α(G) = 5.

Proof. Applying the matrix representation of V (G), G = J2(4, 2) has 35 vertices as fol-
lows:

A1 =

(
1 0 0 0
0 1 0 0

)
, A2 =

(
1 0 1 0
0 1 0 0

)
, A3 =

(
1 0 0 1
0 1 0 0

)
, A4 =

(
1 0 1 1
0 1 0 0

)
,

A5 =

(
1 0 0 0
0 1 1 0

)
, A6 =

(
1 0 0 0
0 1 0 1

)
, A7 =

(
1 0 0 0
0 1 1 1

)
, A8 =

(
1 0 1 0
0 1 1 0

)
,

A9 =

(
1 0 0 1
0 1 0 1

)
, A10 =

(
1 0 1 0
0 1 0 1

)
, A11 =

(
1 0 0 1
0 1 1 0

)
, A12 =

(
1 0 0 1
0 1 1 1

)
,

A13 =

(
1 0 1 0
0 1 1 1

)
, A14 =

(
1 0 1 1
0 1 0 1

)
, A15 =

(
1 0 1 1
0 1 1 0

)
, A16 =

(
1 0 1 1
0 1 1 1

)
,

A17 =

(
0 0 1 0
0 0 0 1

)
, A18 =

(
1 0 1 0
0 0 0 1

)
, A19 =

(
0 1 1 0
0 0 0 1

)
, A20 =

(
0 0 1 0
1 0 0 1

)
,

A21 =

(
0 0 1 0
0 1 0 1

)
, A22 =

(
1 1 1 0
0 0 0 1

)
, A23 =

(
1 0 1 0
1 0 0 1

)
, A24 =

(
0 0 1 0
1 1 0 1

)
,

A25 =

(
0 1 1 0
0 1 0 1

)
, A26 =

(
1 1 1 0
1 1 0 1

)
, A27 =

(
0 1 0 0
0 0 1 0

)
, A28 =

(
1 1 0 0
0 0 1 0

)
,

A29 =

(
0 1 0 0
0 0 1 1

)
, A30 =

(
1 0 0 0
0 0 0 1

)
, A31 =

(
0 1 0 0
0 0 0 1

)
, A32 =

(
1 0 0 0
0 0 1 0

)
,

A33 =

(
1 1 0 0
0 0 0 1

)
, A34 =

(
1 1 0 0
0 0 1 1

)
, A35 =

(
1 0 0 0
0 0 1 1

)
.
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Suppose that L1 = {A1, A10, A12, A15, A17}, L2 = {A2, A6, A20, A19, A34}, L3 =
{A3, A8, A21, A22, A35}, L4 ={A5, A9, A18, A24, A29}, L5 ={A7, A14, A23, A27, A33},
L6 = {A4, A13, A25, A28, A30}, and L7 = {A11, A16, A26, A31, A32}. It is easy to see
that V (G) = L1 ∪ L2 ∪ · · · ∪ L7 and L1, . . . ,L7 are independent sets. Thus χ(G) ≤ 7.
On the other hand, (4.1) implies that χ(G) ≥ ω(G) = 7. Therefore, χ(G) = ω(G) = 7. It
follows from Lemma 4.1 that G is not a core. By (4.1) again, we have α(G) = 5.

We believe that Jq(2k, 2) (k ≥ 2) is not a core for all q (which is a power of a prime).
But this a difficult problem. Next, we give some examples of Grassmann graphs which are
cores.

Example 4.3. If k ≥ 2, then Jq(2k + 1, 2) is core.

Proof. When k ≥ 2, let G = Jq(2k + 1, 2). Applying (1.1) and (2.3) we have

|V (G)|
ω(G)

=
q2k+1 − 1

q2 − 1
=
q2k+1 − q
q2 − 1

+
1

q + 1
.

Thus |V (G)|
ω(G) is not an integer for any q (which is a power of a prime). By Lemma 4.1, G is

a core.
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