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Abstract

In this paper the deformation of a Bernoulli beam rest-
ing on Winkler's soil is reviewed in terms of the mixed 
finite-element methodology. While the stiffness matrix 
of the Bernoulli beam problem utilizing the standard 
displacement-based approach, in which only the displace-
ment field is interpolated, may be alternatively obtained 
using a mixed-type approach to the absolutely shear-stiff 
second-order Timoshenko beam (in which the rotation 
and shear-stress resultant fields are additionally interpo-
lated), the two approaches lead to different Winkler-type 
soil-stiffness contributions. Furthermore, extending the 
mixed-type formalism to both of these elements by addi-
tionally interpolating the distributed soil-reaction field, 
the soil-stiffness contributions also differ. In this way four 
different elements are obtained, with one, two, three or 
four independently interpolated fields, in which the beam-
stifness matrix is equal, but the soil-stiffness matrices are 
different. It is demonstrated that the displacement-based 
one-field element is the least convergent, while the mixed-
type element with four interpolated fields is the most 
convergent.

Keywords

Bernoulli beam, Winkler soil, mixed finite-element 
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1 INTRODUCTION

Among many other engineering fields, the well-known 
Bernoulli beam theory [1, 2] finds widespread applica-
tion in the numerical analyses of slender engineering 
structures resting on deformable soil. In contrast to 
beam structures that are subject to known point or 
distributed external loading, in this case the actual 
deformation of the structure results in a soil-induced 
reaction that depends on the actual constitution of the 
soil. To avoid the very complex (nonlinear, anisotropic, 
heterogeneous and stress-dependent) behavior of the 
soil, the subsoil is often modelled by a simpler system 
called a subgrade reaction model [3]. 

In [3] Winkler proposed a model that assumes a 
constant ratio between the contact pressure and the 
associated deflection of the soil (settlement) defined by 
the modulus of subgrade reaction ks. Many researchers 
[4-11] have investigated the modulus of subgrade reac-
tion, and it was found that the geometry, the foundation 
dimensions and the soil layering below the foundation 
structure are the most important parameters needed to 
define this modulus. Terzaghi made recommendations 
for how to obtain the modulus of the subgrade reaction 
from a 1 ft x 1 ft rigid plate test placed on diferent soil 
layers [5]. Biot solved the problem with an infinite beam 
model on a 3D elastic soil continuum loaded with a 
concentrated force [4]. 

The modulus of the subgrade reaction can be measured 
using diferent experiments such as the plate-load test, 
the oedometer test, the triaxial compression test and the 
California Bearing Ratio (CBR) test. The ranges of values 
for the modulus of the subgrade reaction for typical soil 
types are given in Table 1. 

The desired value of the modulus of the subgrade reaction 
to be used in the present uniaxial beam model, of course, is 
measured in force-per- length-squared, rather than force-
per-length-cubed. To distinguish between the two, the 
former modulus will be denoted simply as k, and is related 
to ks via k = Bks with B as the foundation-strip width.
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In [6] Vesić gave an expression for k as a direct function 
of the material properties of the soil (Young's modulus 
Es, Poisson's ratio ν) as well as the material and geometric 
properties of the foundation strip (Young's modulus E, 
foundation width B, and its second moment of area I) as:
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The solution to the problem of a beam resting on 
Winkler's soil changes considerably with respect to the 
problem of a beam with no such soil contribution and 
standard, point-wise, supporting conditions. The result-
ing deformation ceases to be polynomial and becomes a 
combination of trigonometric and hyperbolic functions 
[13]. 

Using the finite-element method for the problems of 
beam-soil interaction is as popular as elsewhere in 
structural analyses, and standard beam finite elements 
[1, 2] are regularly used in academic and commercial 
software. In addition, a number of special-type finite 
elements using a non-polynomial interpolation of the 
deformation field have been proposed and successfully 
tested against the exact results, which they are required 
to reproduce by design [14, 15]. 

Even though such 'exact' beam-soil finite elements 
exist, they by no means obviate the need to assess the 
performance of the standard finite elements based 
on a polynomial interpolation. For one reason, the 
former elements are designed for a situation of limited 
applicability (e.g., Bernoulli beam on Winkler's soil) and 
there is no guarantee that they will perform better than 
the standard beam elements when applied to a different 
problem, e.g., a non-linear beam or soil model. Addi-
tionally, the shape functions used in these elements are 

Soil ks [kN/m3]
Loose sand 4800 − 16000

Medium dense sand 9600 − 80000
Dense sand 64000 − 128000

Clayey medium dense sand 32000 − 80000
Silty medium dense sand 24000 − 48000

Clayey soil:
qu ≤ 200 kPa 12000 − 24000

200 < qu ≤ 400 kPa 24000 − 48000
qu > 400 kPa > 48000

Table 1. Range of values for the modulus of the subgrade reac-
tion ks [12].

(qu = uniaxial compressive strength)

non-standard and sometimes contain singularities [15] 
for extreme values of beam-to-soil stifness. 

With this motivation in mind, after defining the model 
problem in Section 2, in Section 3 we recall that the 
solution to the Bernoulli beam problem utilizing 
the standard displacement-based approach may be 
completely recovered using a mixed-type approach to 
the second-order Timoshenko beam, leading to results 
with a well-defined shear-rigid limit [16]. In Section 4, 
we investigate the application of the two approaches to 
the Bernoulli beam resting on Winkler's soil and show 
that the resulting soil-stiffness contributions become 
different, even though the beam-stiffness contribution 
is the same. Additionally, if the distributed soil-reaction 
field is interpolated independently from the interpola-
tion of the displacement of the beam reference line 
using a mixed-type technique, we show that both of the 
above soil-stiffness contributions experience further 
changes, effectively leading to four different solutions for 
the soil-stiffness contribution associated with the same 
beam stiffness. In Section 5 we numerically analyze the 
results and assess their performance on two simple test 
examples.

2 THEORETICAL PROBLEM SET-UP 

Let us consider a straight beam of length L and uniform 
cross-sectional bending stiffness EI, loaded by a distrib-
uted static loading q and an arbitrary point loading 
resting on a reacting soil with a distributed soil-reaction 
field f (x), which is proportional to the amount of 
displacement, i.e., f (x) = kw(x), with k as the modulus of 
the subgrade reaction. 

As a result, the beam deects by an amount w(x) and its 
cross-sections rotate by an amount θ(x) (here assumed 
as positive in the counter-clockwise direction), from 
where the stress-couple resultant may be obtained as 
M(x) =EIθ'(x), while the shear-stress resultant follows 
from T(x) = M'(x), where the dash (') indicates a dieren-
tiation with respect to the longitudinal coordinate x.

Figure 1. Straight beam on elastic soil.
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3 SUMMARY OF THE BERNOULLI 
BEAM THEORY 

3.1 DISPLACEMENT-BASED APPROACH 
TO THE BERNOULLI BEAM PROBLEM

In the Bernoulli beam theory (see, e.g., [17]) the 
cross-sectional rotations are the same as the rotations 
of the beam centroidal line (θ(x) =−w'(x)) giving the 
stress-couple resultant in a cross-section as M(x) 
= −EIw''(x). Equilibrium is achieved when the total 
potential energy of the problem V = Vdef − U is station-
ary, where 1 2

2 0

L

defV EIw dx¢¢= ò  is the strain energy and 

0,0

L
LU qdx U= +ò  is the work of the applied loading 

with 0, 0 0(0) (0) ( ) ( )L L LU w F w M w L F w L M¢ ¢= + + +
as the work of the boundary point forces F0, FL and 
moments M0, ML. By dividing the beam length into 
Nel finite elements of length li = xi+1 − xi > 0 each, and 
assuming a distribution of the displacement field within 
each element using the standard Hermitean polynomi-
als, the above becomes 
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with pi as the vector of the standard nodal degrees of 
freedom (vertical displacement and rotation at both 
ends), δpi as its variation, 

2 2

, 3

2 2

12 6 12 6
6 4 6 2
12 6 12 6
6 2 6 4

i i

i i i i
b i

i ii

i i i i

l l
l l l lEI

l ll
l l l l

é ù- - -ê ú
ê ú-ê ú= ê ú-ê ú
ê ú-ê úë û

K         (3)

as the element stiffness matrix and Ri as the correspond-
ing element load vector.

3.2 BERNOULLI BEAM AS A SHEAR-RIGID 
SECOND-ORDER TIMOSHENKO BEAM

The above result may be reproduced using the Timosh-
enko beam theory (see, e.g., [17]) with an infinite shear 
stiffness. In the Timoshenko beam theory, the cross-
sectional rotation is in general assumed to differ from 
the amount of rotation of the beam centroidal line by a 
shear angle γ(x) = θ(x) + w'(x), resulting in a shear-stress 
resultant T(x) = GAγ(x) where G is the shear modulus 
of the beam material and A is the shear area of the 
cross-section. We consider the shear-stress resultant T 
as an independent field and, instead of V = Vdef − U, we 
start from the condition of stationarity of a mixed func-

tional V* = Vd + VdT − VT − U with 2

0

1
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Assuming a quadratic Lagrangian interpolation for the
displacements and the rotations
( 1 2 21( ) , ( ) 1
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a linear shear-stress resultant field (T = NTTi with 
1T x=á ñN ) thus leads to
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Since (4) must hold true for any variations δpi and δTi it 
turns out that for any discontinuous interpolation for the 
shear stress resultant field (which is admissible owing to 
the fact that no derivatives of T with respect to x appear 
in V* ) the term within the second parentheses must 
vanish. This results in
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with Kb,i as the stiffness matrix of a three-node element 
in which the displacement and the rotation at the inter-
nal node may be condensed out to eventually give
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with 2
12

i

EI
GAl

f= , which coincides with the result obtained 

in [16] using the stiffness-based approach. This result 
can also be obtained by consistently deriving the appro-
priate shape functions needed to obtain the exact solu-
tion, as shown by Reddy [18]. This stiffness matrix has a 
well-defined shear-rigid limit that coincides with (3).

4 BERNOULLI BEAM ON 
WINKLER'S SOIL

The differential equation for a Bernoulli beam resting on 
Winkler's soil (see, e.g., [19]) is given as

( ) ( ) ( )IVEIw x kw x q x+ =         (10)

defined over a domain 0 < x < L with known values for w 
or its derivatives at x = 0,L as the boundary conditions. 
For known boundary conditions, the above dierential 
equation is easily solved [13].

4.1 DISPLACEMENT-BASED APPROACH TO 
THE ORIGINAL BERNOULLI-WINKLER 
PROBLEM (ONE-FIELD INTERPOLA-
TION) 

The problem may be variationally approached in 
a manner completely analogous to that presented 
in Section 3.1 with the only dierence being 
that the strain energy of the problem is now 

( )2 2
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2
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From δV = 0, therefore, it now follows
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where Ks,i denotes the soil part of the stiffness matrix. 
Using the standard Hermitean polynomials
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4.2 MIXED APPROACH TO THE ORIGI-
NAL BERNOULLI-WINKLER PROBLEM 
(TWO-FIELD INTERPOLATION)

Instead of minimizing the total potential energy of the 
problem, it is possible to approach the task from the 
standpoint of the Hellinger-Reissner complementary 
energy principle [1]. In particular, let us introduce a 
new function f(x) (the distributed soil-reaction field), 
which, although obviously uniquely related to the 
unknown displacement function w(x), serves to define 
a new two-field potential V*  = Vb + Vbf − Vf − U, where 

2
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1
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0

L

bfV fwdx=ò and 2

0

1
2

L

fV f dx
k

= ò in 

which w(x) and f(x) may be treated (and interpolated) as 
independent fields. Furthermore, owing to the absence 
of any derivatives on f(x), this function only requires 
C-1 continuity, i.e., it does not have to be continuous 
between the elements. From δV*  = 0 we therefore obtain

0 0 0

0
L L L

b
fV wfdx fwdx f dx U
k

d d d d d+ + - - =ò ò ò .    (14)

Dividing the beam into Nel finite elements as before, 
and now additionally assuming the interpolation of the 
distributed soil-reaction field within each element as 

,( ) ( )i f i if fx x= N with 1
t

i M if f f=á ñ where M−1 is the 
order of the polynomial used to describe the distributed 
soil-reaction field, the above equation becomes
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Since (15) must hold true for any variations δpi and δfi it 
turns out that for any discontinuous interpolation for the 
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distributed soil-reaction field the term within the second 
parentheses must vanish. As a result

1
, ,

t
i f i bf i if -=-K K p         (18)

and (15) becomes
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The soil-stiffness contribution to the element stiffness 
matrix from here immediately follows as

1
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As already mentioned, the interpolation for f(ξ) does 
not have to be continuous across the elements and 
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a constant approximation of the distributed soil-reaction 
field, the soil-stiffness contribution to the element stiff-
ness matrix thus follows as
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while for a linear approximation of the distributed soil-
reaction field, it becomes
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For a quadratic approximation of the distributed 
soil-reaction field, the soil-stiffness contribution to the 
element stiffness matrix becomes
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while for a cubic and all further higher-order 
approximations of the distributed soil-reaction field, 
the soil-stiffness contribution to the element stiffness 
matrix is, as expected, identical to the one obtained 

using the displacement-based approach (13), in which 
the displacement field, from which the distributed soil-
reaction is computed, is cubic.

4.3 BERNOULLI-WINKLER BEAM AS A 
SECOND-ORDER SHEAR-RIGID TIMOSH-
ENKO BEAM ON WINKLER'S SOIL 
(THREE-FIELD INTERPOLATION)

The problem can also be variationally approached in 
a manner completely analogous to that presented in 
Section 3.2, with the only difference being that the origi-
nal three-field mixed functional V*  is now substituted 

with 2
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The soil contribution to the element's stiffness matrix for 
a shear-rigid element (GA →∞) upon condensation of 
the mid-node degrees of freedom reads
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It should be noted by comparing (13) and (26) that even 
though the shear-rigid second-order Timoshenko beam 
reproduces the stiffness matrix of the Bernoulli beam, 
the same is not true for the ensuing soil part.

4.4 DUAL MIXED APPROACH TO THE SHEAR-
RIGID TIMOSHENKO-WINKLER PROBLEM 
(FOUR-FIELD INTERPOLATION)

Obviously, the mixed approaches described in Sections 3.2 
(where displacement, rotation and shear-stress resultant 
have been interpolated as independent fields) and 4.2 
(where displacement and distributed soil-reaction field 
have been interpolated as independent fields) can be easily 
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combined to form a four-field functional V**  = Vd + VdT 
− VT +Vbf − Vf − U . From δV**  = 0 we now obtain
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which, after condensing out the shear-stress resultant 
and distributed soil-reaction parameters, turns into
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It should be noted that the soil part of the stiffness 
matrix (28) is not necessarily the same as in (20) for the 
corresponding choice of interpolation for the distrib-
uted soil-reaction field, since the interpolation for the 
displacement field is different.

For a three-node shear-rigid beam element with a 
constant and a linear approximation of the distributed 
soil-reaction field, the soil part of the stiffness matrix 
upon condensation of the mid-node degrees of freedom 
becomes, respectively,
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while for the quadratic and higher-order approximation 
of the distributed soil-reaction field we obtain the same 
result as in (26).

5 NUMERICAL EXAMPLES

In this section, two problems will be analyzed: a 
rectangular beam on an elastic foundation with the 
concentrated load in the middle of the span and a beam 
on an elastic foundation with the concentrated force 
at a boundary, thus simulating a laterally loaded pile. 
For each example a displacement convergence analysis 

(27)

(29)

is undertaken for different values of the relative soil-
stiffness parameter 

4

4
kL

EI
b=  .

Six values of the relative soil-stiffness parameter β have 
been considered: 1, 5, 10, 50, 100 and 500. Using the 
expression for β and back-calculating the desired value for 
the modulus of the subgrade reaction k, and then plug-
ging it into the equation for the modulus of the subgrade 
reaction proposed by Vesić [6] (1), approximate values 
of the Young's modulus can be obtained, which makes it 
possible to classify the soils in a range between soft and 
hard. Which soil the particular value of the relative soil-
stiffness parameter β is describing is given in Table 2.

 β Soil Description
1 Very loose sand
5 Stiff clay

10 Medium dense sand
50 Very dense gravel

100 Weak rock mass
500 Hard rock mass

Table 2. Soil description based on the relative soil-stiffness 
parameter β.

5.1 THIN BEAM ON WINKLER'S FOUN-
DATION SUBJECT TO A CONCEN-
TRATED FORCE IN THE MIDDLE

The problem is sketched in Figure 2. The material 
and geometric properties of the beam and loading are 
summarized in Table 3.

Length 3.0 m
Width 0.3 m

Young’s modulus 3.15 . 107kPa
Second moment of area 0.000675m4

Force 1.0 kN

Table 3. Beam parameters.

Due to its symmetry, only one half of the problem is 
analyzed with the rotation at the symmetry line being 
set to zero. In the absence of the soil stiffness, all the 
approaches would return exact nodal results for the 
displacements and rotations, provided a suitable support-
ing (e.g., a simple support at the free end) were defined.

The results for the displacement in the middle of the 
beam will be normalized with respect to the exact solu-
tion provided by Hetenyi [13], expressed in terms of the 
parameter β:
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Figure 2. Mesh of n finite elements for a beam on Winkler's 
foundation with a point force in the middle.
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5.1.1 Displacement convergence analysis

We first analyze the convergence properties of the differ-
ent formulations and in Table 4 show the normalized 
displacements in the middle of the beam for meshes 
with two, four, eight, sixteen, thirty-two and sixty-four 
elements for a soft, moderately hard and hard soil (β = 5, 
β = 50 and β = 500, respectively).

It is immediately obvious that a constant approximation 
of the distributed soil-reaction field (equations (21) and 
(29)1) is inferior to the linear (equations (22) and (29)2) 
or quadratic interpolation (23). The use of the quadratic 
approximation of the distributed soil-reaction field in 

Formulation Elements β = 5 β = 50 β = 500

One-field (13) 

2
4
8

16
32
64

0.998348089607226 
0.999897498365916 
0.999994057876285 
1.000000000000000 
1.000000000000000 
1.000000000000000

0.987206820721338 
0.999168178332181 
0.999948078751554 
0.999996754921972 
1.000000000000000 
1.000000000000000

0.919540084654748 
0.991938846421126 
0.999469328447786 
0.999962094889128 
0.999993682481521 
0.999993682481521

Two-field constant (21) 

2
4
8

16
32
64

1.000506566046710 
1.000401093350760 
1.000120328005230 
1.000031196149500 
1.000008913185570 
1.000002971061860 

1.104105348213100 
1.020562977770130 
1.005037442791980 
1.001255845196800 
1.000313690876030 
1.000077881872670

2.838429464906180 
1.100707562069620 
1.022281887674520 
1.005489923558030 
1.001370901509890 
1.000341145997850 

Two-field (linear) (22)

2
4
8

16
32,64

0.998404539782518 
0.999903440489631 
0.999994057876285 
1.000000000000000 
1.000000000000000

0.989357225761160 
0.999378026711319 
0.999962140756341 
0.999997836614648 
1.000000000000000

0.925636489986733 
0.993031777117948 
0.999583043780403 
0.999974729926085 
0.999993682481521

Two-field quadratic (23)

2
4
8

16
32,64

0.998351060669083 
0.999897498365916 
0.999994057876285 
1.000000000000000 
1.000000000000000

0.987360421081325 
0.999172505102885 
0.999948078751554 
0.999996754921972 
1.000000000000000

0.921144734348348 
0.992039926716786 
0.999469328447786 
0.999962094889128 
0.999993682481521

Three-field (26) 

2
4
8

16
32
64

0.998599144334185 
0.999910868144275 
0.999995543407214 
1.000000000000000 
1.000000000000000 
1.000000000000000

0.998335274971687 
0.999731740216360 
0.999979447839157 
0.999998918307324 
1.000000000000000 
1.000000000000000

1.010076441973590 
0.997757280940047 
0.999772569334765 
0.999981047444564 
0.999993682481521 
1.000000000000000

Four-field constant (29)1 

2
4
8

16
32
64

0.986178620238873 
0.996439182363777 
0.999108681442747 
0.999777170360687
0.999945035355636 
0.999986630221641

0.999778253001427 
0.993338936501395 
0.998246576172258 
0.999561914466233 
0.999890749039727 
0.999971875990425

2.229098490113080 
1.030696822288210 
1.004378040305770 
1.001029755512030 
1.000252700739150 
1.000063175184790

Four-field (linear) (29)2

2
4
8

16
32
64

0.998651137916691 
0.999915324737061 
0.999995543407214 
1.000000000000000 
1.000000000000000 
1.000000000000000

1.000393736134050 
0.999937261824794 
0.999994591536620 
0.999998918307324 
1.000000000000000 
1.000000000000000

1.013683745024950 
0.998742813822731 
0.999892602185862 
0.999987364963043 
0.999993682481521 
1.000000000000000

Table 4. Values of normalized displacements at mid-span for β = 5, 50 and 500.
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the two-field approach gives marginally less-convergent 
results than the use of the linear approximation of this 
field and in what follows only such a linear approxi-
mation of the distributed soil-reaction field will be 
analyzed. The corresponding formulations (22) and 
(29)2 will be denominated as the two-field formulation 
and the four-field formulation, respectively.

The results from Table 4 for the one-field, two-field, 
three-field and four-field formulations are shown 
graphically in Figures 3, 4 and 5. From these figures it 
can be easily concluded that the three-field and four-
field element formulations behave visibly better than the 
one-field and two-field element formulations.

Figure 3. Normalized displacements in the middle of the beam 
depending on the soil stiffness for various elements (β = 5).

Figure 4. Normalized displacements in the middle of the beam 
depending on the soil stiffness for various elements (β = 50).

Additionally, it can be observed that the four-field 
element converges better than the three-field element 
and, apart from the two-element case with β = 500 
(hard soil), is also the most accurate one, regardless of 
the mesh size. Likewise, the two-field element is more 
accurate than the one-field element.

It is interesting to note that the mixed character of the 
formulations becomes increasingly pronounced as the 
soil gets stiffer, whereby, for the three-field and four-field 
formulations, the convergence ceases to be monotonous 
from the stiff side. The superiority of the three-field and 
four-field formulations compared to the one-field and 
two-field formulations increases as the soil gets stiffer.

5.1.2 Parametric analysis for different 
soil-to-beam stiffness ratios

We further compare the performance of the four formu-
lations for a fixed eight-element mesh and various soil 
stiffnesses, including the results for β = 1, β = 10 and
β = 100. As an illustration, we also give the results for 
some other typical soils, given by the values β = 3,
β = 25, β = 35 and β = 60.

Figure 6 shows that between themselves the formula-
tions rank in performance in direct correspondence to 
the number of fields interpolated, with the four-field 
formulation consistently the most effective and one-field 
formulation the least effective.

As already noted, the difference in performance between 
the formulations increases as the soil gets stiffer, but 
now it can be seen that this goes hand-in-hand with the 

Figure 5. Normalized displacements in the middle of the beam 
depending on the soil stiffness for various elements (β = 500).
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general deterioration of the performance. To under-
stand why this is so, it should be noted that any finite-
element formulation based on a polynomial interpola-
tion is bound to lose the absolute accuracy as the soil 
gets stiffer, as in this case the exact solution is dominated 
by the trigonometric and hyperbolic functions.

5.2 THIN PILE IN WINKLER'S SOIL 
SUBJECT TO A HORIZONTAL FORCE 
AT THE HEAD

In this section, a beam will be subjected to an end force. 
Such a set-up can be thought of as a pile (which is essen-
tially a beam embedded in soil) subjected to a horizontal 
load at the head. This is shown in Figure 7. The material 
and geometric properties as well as the value of the 
loading are the same as in the previous model problem 
(Table 3).

The results for the displacement at the head of the beam 
will be normalized with respect to the exact solution 
provided by Hetenyi [13], expressed in terms of the 
parameter β:

Figure 6. Normalized displacement in the middle of the beam for 8 elements varying with  soil stiffness.

Figure 7. Horizontally loaded pile in Winkler's soil - geometric 
and material parameters.
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5.2.1 Displacement convergence analysis

In this example, the constant approximation of the 
distributed soil-reaction field is also considerably less 
effective than the linear approximation, while the 

Formulation Elements β = 5 β = 50 β = 500

One-field (13) 

2
4
8

16
32
64

0.998641145803926 
0.999898368245723 
0.999992471721906 
0.999996235860953 
1.000000000000000 
1.000000000000000

0.990463886169159 
0.999206289432062 
0.999947858429844 
0.999997103246102 
1.000000000000000 
1.000000000000000

0.967540844437416 
0.993935963912077 
0.999523932385082 
0.999970037702558 
0.999998335427920 
1.000000000000000

Two-field (22)

2
4
8

16
32,64

0.998701372028683 
0.999902132384770 
0.999992471721906 
0.999996235860953 
1.000000000000000

0.993577896609060 
0.999409062204893 
0.999962342199332 
1.000000000000000 
1.000000000000000

1.010959542575590 
0.996364574576991 
0.999685395876855 
0.999980025135038 
1.000000000000000

Three-field (26) 

2
4
8

16
32,64

0.998678787194399 
0.999905896523818 
0.999992471721906 
0.999996235860953 
1.000000000000000

0.993928403830667 
0.999594454454339 
0.999973929214922 
1.000000000000000 
1.000000000000000

0.961158875082188 
0.997574718479247 
0.999838536508227 
0.999990012567519 
1.000000000000000

Four-field (29)2

2
4
8

16
32,64

0.998742777558203 
0.999909660662865 
0.999992471721906 
0.999996235860953 

1.0000000000000000

0.997030827254978 
0.999797227227169 
0.999988412984410 
1.000000000000000 
1.000000000000000

0.999930087972634 
0.999978360562958 
0.999998335427920 
1.000000000000000 
1.000000000000000

quadratic interpolation of that field is marginally less 
effective than the linear approximation, hence these 
results are omitted from any further discussion.

The results for the one-field, two-field, three-field and 
four-field formulations (equations (13), (22), (26) and 
(29)2) for the finite-element meshes of two, four, eight, 
sixteen, thirty-two and sixty-four elements for a soft, 
moderately hard and hard soil (β = 5, β = 50 and β = 
500, respectively) are given in Table 5.

Table 5. Values of normalized displacements at the head of pile for β = 5, 50 and 500.

Figure 8. Normalized displacements at the head of the pile 
depending on the soil stiffness for various elementss (β = 5).

Figure 9. Normalized displacements at the head of the pile 
depending on the soil stiffness for various elementss (β = 50).
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These results are shown graphically in Figures 8, 9 and 
10. It can be concluded that, as in the previous example, 
the three-field and four-field element formulations 

Figure 10. Normalized displacements at the head of the pile 
depending on the soil stiffness for various elementss (β = 500).

Figure 11. Normalized displacement at the head of the pile for 8 elements varying with soil stiffness.

behave better than the one-field and two-field element 
formulations and this is especially true for the values of 
β of 50 and 500.

Additionally, it can be observed that the four-field 
element converges better than three-field element, espe-
cially for the case of β = 500 where it gives results very 
close to the exact displacement. As in the previous exam-
ple, the mixed character of the formulations becomes 
increasingly pronounced as the soil gets stiffer. As in the 
previous example, the superiority of the three-field and 
four-field formulations increases as the soil gets stiffer.

5.2.2 Parametric analysis for different 
soil-to-pile stiffness ratios

Again, we also compare the performance of the four 
formulations for a fixed eight-element mesh and various 
soil stiffnesses, including the results for β = 1, β = 10 and 
β = 100. As before, we now also give the results for some 
other typical soils, given by the values β = 3, β = 25, β = 35 
and β = 60. Figure 11 shows that the formulations again 
rank in performance as in the previous example, with the 
four-field formulation being by far the most effective.
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The difference in performance between the formulations 
again increases as the soil gets stiffer, but now it can be 
seen that, in contrast to the previous example, the four-
field formulation gives surprisingly good results, even 
for very hard soils.

6 CONCLUSIONS

The classic problem of a Bernoulli beam resting on 
Winkler's soil has been reviewed in the light of a mixed 
finite-element design methodology.

It has been recalled that the same standard stiffness 
matrix of the Bernoulli beam may be obtained either 
from the classic interpolation of the displacement field 
using Hermitean polynomials (one-field approach) or 
as the shear-rigid limit of the second order mixed-type 
Timoshenko beam in which displacements, rotations and 
shear-stress resultants are interpolated independently 
(three-field approach). Still, applying these interpolations 
to the Bernoulli-Winkler problem results in different 
respective soil-stiffness contributions. It has been shown 
on the two model problems analyzed (a beam on an 
elastic foundation loaded by a central force and a pile 
horizontally loaded at the head) that the three-field 
approach is superior to the one-field approach.

Additionally, in both of these finite-element design prin-
ciples we have investigated the possibility to interpolate 
the distributed soil-reaction field as an independent 
field, thus effectively obtaining what we have named 
the two-field and the four-field approaches. We have 
analyzed the performance of the finite elements in which 
this field is approximated by polynomial functions of 
various orders (constant, linear and, in the two-field 
approach, quadratic) and concluded that a linear 
approximation gives the best results.

In both cases, interpolating the distributed soil-reaction 
field independently improves the results of the underly-
ing formulation, i.e., the two-field approach turns out to 
be more effective than the one-field approach, while the 
four-field approach is more effective than the three-field 
approach. In both the numerical problems analyzed, 
the four-field approach gives the best results for the 
displacements regardless of the soil stiffness. The results 
are surprisingly accurate for the horizontally loaded pile 
embedded in hard soil.
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