
 Informatica 33 (2009) 225-233 225

A Multi-class SVM Classifier Utilizing Binary Decision Tree

Gjorgji Madzarov, Dejan Gjorgjevikj and Ivan Chorbev

Department of Computer Science and Engineering

Faculty of Electrical Engineering and Information Technology

Karpos 2 b.b., 1000 Skopje, Macedonia

E-mail: madzarovg@feit.ukim.edu.mk

Keywords: Support Vector Machine, multi-class classification, clustering, binary decision tree architecture

Received: July 27, 2008

In this paper a novel architecture of Support Vector Machine classifiers utilizing binary decision tree

(SVM-BDT) for solving multiclass problems is presented. The hierarchy of binary decision subtasks

using SVMs is designed with a clustering algorithm. For consistency between the clustering model and

SVM, the clustering model utilizes distance measures at the kernel space, rather than at the input space.

The proposed SVM based Binary Decision Tree architecture takes advantage of both the efficient

computation of the decision tree architecture and the high classification accuracy of SVMs. The SVM-

BDT architecture was designed to provide superior multi-class classification performance. Its

performance was measured on samples from MNIST, Pendigit, Optdigit and Statlog databases of

handwritten digits and letters. The results of the experiments indicate that while maintaining

comparable or offering better accuracy with other SVM based approaches, ensembles of trees (Bagging

and Random Forest) and neural network, the training phase of SVM-BDT is faster. During recognition

phase, due to its logarithmic complexity, SVM-BDT is much faster than the widely used multi-class SVM

methods like “one-against-one” and “one-against-all”, for multiclass problems. Furthermore, the

experiments showed that the proposed method becomes more favourable as the number of classes in the

recognition problem increases.

Povzetek: Predstavljena je metoda gradnje binarnih dreves z uporabo SVM za večrazredne probleme.

1 Introduction
The recent results in pattern recognition have shown that

support vector machine (SVM) classifiers often have

superior recognition rates in comparison to other

classification methods. However, the SVM was

originally developed for binary decision problems, and

its extension to multi-class problems is not straight-

forward. How to effectively extend it for solving multi-

class classification problem is still an on-going research

issue. The popular methods for applying SVMs to multi-

class classification problems usually decompose the

multi-class problems into several two-class problems that

can be addressed directly using several SVMs.

For the readers’ convenience, we introduce the SVM

briefly in section 2. A brief introduction to several

widely used multi-class classification methods that

utilize binary SVMs is given in section 3. The Kernel-

based clustering introduced to convert the multi-class

problem into SVM-based binary decision-tree

architecture is explained in section 4. In section 5, we

discuss related works and compare SVM-BDT with other

multi-class SVM methods via theoretical analysis and

empirical estimation. The experimental results in section

6 are presented to compare the performance of the

proposed SVM-BDT with traditional multi-class

approaches based on SVM, ensemble of decision trees

and neural network. Section 7 gives a conclusion of the

paper.

2 Support vector machines for

pattern recognition
The support vector machine is originally a binary

classification method developed by Vapnik and

colleagues at Bell laboratories [1][2], with further

algorithm improvements by others [3]. For a binary

problem, we have training data points: {xi, yi}, i=1,...,l ,

yi {-1, 1}, xi R
d
. Suppose we have some hyperplane

which separates the positive from the negative examples

(a “separating hyperplane”). The points x which lie on

the hyperplane satisfy w·x + b = 0, where w is normal to

the hyperplane, |b|/||w|| is the perpendicular distance

from the hyperplane to the origin, and ||w|| is the

Euclidean norm of w. Let d+ (d-) be the shortest distance

from the separating hyperplane to the closest positive

(negative) example. Define the “margin” of a separating

hyperplane to be d++d-. For the linearly separable case,

the support vector algorithm simply looks for the

separating hyperplane with largest margin. This can be

formulated as follows: suppose that all the training data

satisfy the following constraints:

226 Informatica 33 (2009) 225–233 G. Madzarov et al.

 1bi wx for 1iy , (1)

 1bi wx for 1iy , (2)

These can be combined into one set of inequalities:

 01by ii wx i , (3)

Now consider the points for which the equality in Eq.

(1) holds (requiring that there exists such a point) is

equivalent to choosing a scale for w and b. These points

lie on the hyperplane H1: xi · w + b = 1 with normal w

and perpendicular distance from the origin |1-b|/||w||.

Similarly, the points for which the equality in Eq. (2)

holds lie on the hyperplane H2: xi · w + b = -1, with

normal again w and perpendicular distance from the

origin |-1-b|/||w||. Hence d+ = d- = 1/||w|| and the margin is

simply 2/||w||.

margin

origin

Figure 1 – Linear separating hyperplanes for the

separable case. The support vectors are circled.

Note that H1 and H2 are parallel (they have the same

normal) and that no training points fall between them.

Thus we can find the pair of hyperplanes which gives the

maximum margin by minimizing ||w||
2
, subject to

constraints (3).

Thus we expect the solution for a typical two

dimensional case to have the form shown on Fig. 1. We

introduce nonnegative Lagrange multipliers αi, i = 1,..., l,

one for each of the inequality constraints (3). Recall that

the rule is that for constraints of the form ci ≥ 0, the

constraint equations are multiplied by nonnegative

Lagrange multipliers and subtracted from the objective

function, to form the Lagrangian. For equality

constraints, the Lagrange multipliers are unconstrained.

This gives Lagrangian:

l

i
i

l

i
iiip byL

11

2

2

1
wxw , (4)

We must now minimize Lp with respect to w, b, and

maximize with respect to all αi at the same time, all

subject to the constraints αi ≥ 0 (let’s call this particular

set of constraints C1). Now this is a convex quadratic

programming problem, since the objective function is

itself convex, and those points which satisfy the

constraints also form a convex set (any linear constraint

defines a convex set, and a set of N simultaneous linear

constraints defines the intersection of N convex sets,

which is also a convex set). This means that we can

equivalently solve the following “dual” problem:

maximize LP, subject to the constraints that the gradient

of LP with respect to w and b vanish, and subject also to

the constraints that the αi ≥ 0 (let’s call that particular set

of constraints C2). This particular dual formulation of the

problem is called the Wolfe dual [4]. It has the property

that the maximum of LP, subject to constraints C2, occurs

at the same values of the w, b and α, as the minimum of

LP, subject to constraints C1.

Requiring that the gradient of LP with respect to w

and b vanish gives the conditions:

i
iii yw x , (5)

 0
i

ii y . (6)

Since these are equality constraints in the dual

formulation, we can substitute them into Eq. (4) to give

l

ji
jijiji

i
iD yyL

,2

1
xx , (7)

Note that we have now given the Lagrangian different

labels (P for primal, D for dual) to emphasize that the

two formulations are different: LP and LD arise from the

same objective function but with different constraints;

and the solution is found by minimizing LP or by

maximizing LD. Note also that if we formulate the

problem with b = 0, which amounts to requiring that all

hyperplanes contain the origin, the constraint (6) does not

appear. This is a mild restriction for high dimensional

spaces, since it amounts to reducing the number of

degrees of freedom by one.

Support vector training (for the separable, linear case)

therefore amounts to maximizing LD with respect to the

αi, subject to constraints (6) and positivity of the αi, with

solution given by (5). Notice that there is a Lagrange

multiplier αi for every training point. In the solution,

those points for which αi > 0 are called “support vectors”,

and lie on one of the hyperplanes H1, H2. All other

training points have αi = 0 and lie either on H1 or H2

(such that the equality in Eq. (3) holds), or on that side of

H1 or H2 such that the strict inequality in Eq. (3) holds.

For these machines, the support vectors are the critical

elements of the training set. They lie closest to the

decision boundary; if all other training points were

removed (or moved around, but so as not to cross H1 or

H2), and training was repeated, the same separating

hyperplane would be found.

The above algorithm for separable data, when applied

to non-separable data, will find no feasible solution: this

will be evidenced by the objective function (i.e. the dual

Lagrangian) growing arbitrarily large. So how can we

extend these ideas to handle non-separable data? We

would like to relax the constraints (1) and (2), but only

A MULTI-CLASS SVM CLASSIFIER... Informatica 33 (2009) 225–233 227

when necessary, that is, we would like to introduce a

further cost (i.e. an increase in the primal objective

function) for doing so. This can be done by introducing

positive slack variables ei; i = 1,..., l, in the constraints,

which then become:

 ii eb 1wx for 1iy , (8)

 ii eb 1wx for 1iy , (9)

 .0 iei (10)

Thus, for an error to occur, the corresponding ei must

exceed unity, so Σiei is an upper bound on the number of

training errors. Hence a natural way to assign an extra

cost for errors is to change the objective function to be

minimized from ||w||
2
/2 to ||w||

2
/2 + C(Σiei), where C is a

parameter to be chosen by the user, a larger C

corresponding to assigning a higher penalty to errors.

How can the above methods be generalized to the

case where the decision function (f(x) whose sign

represents the class assigned to data point x) is not a

linear function of the data? First notice that the only way

in which the data appears in the training problem, is in

the form of dot products, xi · xj. Now suppose we first

mapped the data (Figure 2) to some other (possibly even

infinite dimensional) Euclidean space H, using a

mapping which we will call Ф:

Hd R: , (11)

Then of course the training algorithm would only depend

on the data through dot products in H, i.e. on functions of

the form Ф(xi) · Ф(xj). Now if there were a “kernel

function” K such that K(xi, xj) = Ф(xi) · Ф(xj), we would

only need to use K in the training algorithm, and would

never need to explicitly even know what Ф is. The kernel

function has to satisfy Mercer’s condition [1].One

example for this function is Gaussian:

2

2

2
exp,

ji

jiK
xx

xx , (12)

In this particular example, H is infinite dimensional,

so it would not be very easy to work with Ф explicitly.

However, if one replaces xi · xj by K(xi, xj) everywhere in

the training algorithm, the algorithm will happily

produce a support vector machine which lives in an

infinite dimensional space, and furthermore do so in

roughly the same amount of time it would take to train on

the un-mapped data. All the considerations of the

previous sections hold, since we are still doing a linear

separation, but in a different space. But how can we use

this machine? After all, we need w, and that will live in

H. But in test phase an SVM is used by computing dot

products of a given test point x with w, or more

specifically by computing the sign of

bKybyf
ss N

i
iii

N

i
iii

11

,)(xsxsx (13)

where the si are the support vectors. So again we can

avoid computing Ф(x) explicitly and use the K(si, x) =

Ф(si) · Ф(x) instead.

Figure 2 – General principle of SVM: projection

of data in an optimal dimensional space.

3 An overview of widely used multi-

class SVM classification methods
Although SVMs were originally designed as binary

classifiers, approaches that address a multi-class problem

as a single “all-together” optimization problem exist [5],

but are computationally much more expensive than

solving several binary problems.

A variety of techniques for decomposition of the

multi-class problem into several binary problems using

Support Vector Machines as binary classifiers have been

proposed, and several widely used are given in this

section.

3.1 One-against-all (OvA)

For the N-class problems (N>2), N two-class SVM

classifiers are constructed [6]. The i
th

 SVM is trained

while labeling the samples in the i
th

 class as positive

examples and all the rest as negative examples. In the

recognition phase, a test example is presented to all N

SVMs and is labelled according to the maximum output

among the N classifiers. The disadvantage of this method

is its training complexity, as the number of training

samples is large. Each of the N classifiers is trained using

all available samples.

3.2 One-against-one (OvO)

This algorithm constructs N(N-1)/2 two-class classifiers,

using all the binary pair-wise combinations of the N

classes. Each classifier is trained using the samples of the

228 Informatica 33 (2009) 225–233 G. Madzarov et al.

first class as positive examples and the samples of the

second class as negative examples. To combine these

classifiers, the Max Wins algorithm is adopted. It finds

the resultant class by choosing the class voted by the

majority of the classifiers [7]. The number of samples

used for training of each one of the OvO classifiers is

smaller, since only samples from two of all N classes are

taken in consideration. The lower number of samples

causes smaller nonlinearity, resulting in shorter training

times. The disadvantage of this method is that every test

sample has to be presented to large number of classifiers

N(N-1)/2. This results in slower testing, especially when

the number of the classes in the problem is big [8].

3.3 Directed acyclic graph SVM

(DAGSVM)

Introduced by Platt [1] the DAGSVM algorithm for

training an N(N-1)/2 classifiers is the same as in one-

against-one. In the recognition phase, the algorithm

depends on a rooted binary directed acyclic graph to

make a decision [9]. DAGSVM creates a model for each

pair of classes. When one such model, which is able to

separate class c1 from class c2, classifies a certain test

example into class c1, it does not really vote “for” class

c1, rather it votes “against” class c2, because the example

must lie on the other side of the separating hyperplane

than most of the class c2 samples. Therefore, from that

point onwards the algorithm ignores all the models

involving the class c2. This means that after each

classification with one of the binary models, one more

class can be thrown out as a possible candidate, and after

only N-1 steps just one candidate class remains, which

therefore becomes the prediction for the current test

example. This results in significantly faster testing, while

achieving similar recognition rate as One-against-one.

3.4 Binary tree of SVM (BTS)

This method uses multiple SVMs arranged in a binary

tree structure [10]. A SVM in each node of the tree is

trained using two of the classes. The algorithm then

employs probabilistic outputs to measure the similarity

between the remaining samples and the two classes used

for training. All samples in the node are assigned to the

two subnodes derived from the previously selected

classes by similarity. This step repeats at every node until

each node contains only samples from one class. The

main problem that should be considered seriously here is

training time, because aside training, one has to test all

samples in every node to find out which classes should

be assigned to which subnode while building the tree.

This may decrease the training performance considerably

for huge training datasets.

4 Support vector machines utilizing

a binary decision tree
In this paper we propose a binary decision tree

architecture that uses SVMs for making the binary

decisions in the nodes. The proposed classifier

architecture SVM-BDT (Support Vector Machines

utilizing Binary Decision Tree), takes advantage of both

the efficient computation of the tree architecture and the

high classification accuracy of SVMs. Utilizing this

architecture, N-1 SVMs needed to be trained for an N

class problem, but only at most N2log SVMs are

required to be consulted to classify a sample. This can

lead to a dramatic improvement in recognition speed

when addressing problems with big number of classes.

An example of SVM-BDT that solves a 7 - class

pattern recognition problem utilizing a binary tree, in

which each node makes binary decision using a SVM is

shown on Figure 3. The hierarchy of binary decision

subtasks should be carefully designed before the training

of each SVM classifier.

The recognition of each sample starts at the root of

the tree. At each node of the binary tree a decision is

being made about the assignment of the input pattern into

one of the two possible groups represented by

transferring the pattern to the left or to the right sub-tree.

Each of these groups may contain multiple classes. This

is repeated recursivly downward the tree until the sample

reaches a leaf node that represents the class it has been

assigned to.

There exist many ways to divide N classes into two

groups, and it is critical to have proper grouping for the

good performance of SVM-BDT.

For consistency between the clustering model and

the way SVM calculates the decision hyperplane, the

clustering model utilizes distance measures at the kernel

space, rather than at the input space. Because of this, all

training samples are mapped into the kernel space with

the same kernel function that is to be used in the training

phase.

SVM

SVM SVM

SVM 6

2 3 7

1,2,3,4,5,6,7
2,3

2,3,4,7 1,5,6

2,3

4

SVM

4,7

5 1

SVM

1,5

Figure 3: Illustration of SVM-BDT.

The SVM-BDT method that we propose is based on

recursively dividing the classes in two disjoint groups in

every node of the decision tree and training a SVM that

will decide in which of the groups the incoming

unknown sample should be assigned. The groups are

determined by a clustering algorithm according to their

class membership.

A MULTI-CLASS SVM CLASSIFIER... Informatica 33 (2009) 225–233 229

Let’s take a set of samples x1, x2, ..., xM each one

labeled by yi {c1, c2, ..., cN} where N is the number of

classes. SVM-BDT method starts with dividing the

classes in two disjoint groups g1 and g2. This is

performed by calculating N gravity centres for the N

different classes. Then, the two classes that have the

biggest Euclidean distance from each other are assigned

to each of the two clustering groups. After this, the class

with the smallest Euclidean distance from one of the

clustering groups is found and assigned to the

corresponding group. The gravity center of this group is

then recalculated to represent the addition of the samples

of the new class to the group. The process continues by

finding the next unassigned class that is closest to either

of the clustering groups, assigning it to the corresponding

group and updating the group’s gravity center, until all

classes are assigned to one of the two possible groups.

This defines a grouping of all the classes in two

disjoint groups of classes. This grouping is then used to

train a SVM classifier in the root node of the decision

tree, using the samples of the first group as positive

examples and the samples of the second group as

negative examples. The classes from the first clustering

group are being assigned to the first (left) subtree, while

the classes of the second clustering group are being

assigned to the (right) second subtree. The process

continues recursively (dividing each of the groups into

two subgroups applying the procedure explained above),

until there is only one class per group which defines a

leaf in the decision tree.

7
7

7

7
7

7 7

2

2

2

2
2

2
2

3

3
3

3
3

3
3

4
4

4

4
4

4 4

1
1

1

1
1 1

1

6

6

6

6 6

6

6

5
5

5

5
5 5

5

Figure 4: SVM-BDT divisions of the seven classes.

For example, Figure 4 illustrates grouping of 7

classes, while Figure 3 shows the corresponding decision

tree of SVMs. After calculating the gravity centers for all

classes, the classes c2 and c5 are found to be the furthest

apart from each other, considering their Euclidean

distance and are assigned to group g1 and g2 accordingly.

The closest to group g1 is class c3, so it is assigned to the

group g1, followed by recalculation of the g1’s gravity

center. In the next step, class c1 is the closest to group g2,

so it is assigned to that group and the group’s gravity

center is recalculated. In the following iteration, class c7

is assigned to g1 and class c6 is assigned to g2, folowed

by recalculating of group’s gravity centers. Finally class

c4 is assigned to g1. This completes the first round of

grouping that defines the classes that will be transferred

to the left and the right subtree of the root node. The

SVM classifier in the root is trained by considering

samples from the classes {c2, c3, c4, c7} as positive

examples and samples from the classes {c1, c5, c6} as

negative examples.

The grouping procedure is repeated independently for

the classes of the left and the right subtree of the root,

which results in grouping c7 and c4 in g1,1 and c2 and c3 in

g1,2 in the left node of the tree and c1 and c5 in g2,1 and c6

in g2,2 in the right node of the tree. The concept is

repeated for each SVM associated to a node in the

taxonomy. This will result in training only N-1 SVMs for

solving an N-class problem.

5 Related work and discussion
Various multi-class classification algorithms can be

compared by their predictive accuracy and their training

and testing times. The training time T for a binary SVM

is estimated empirically by a power law [13] stating that

T≈αM
d
, where M is the number of training samples and

 is a proportionality constant. The parameter d is a

constant, which depends of the datasets and it is typically

in the range [1, 2]. According to this law, the estimated

training time for OvA is

d

OvA MNT , (11)

where N is the number of classes in the problem.

Without loss of generality, let's assume that each of

the N classes has the same number of training samples.

Thus, each binary SVM of OvO approach only requires

2M/N samples. Therefore, the training time for OvO is:

dd
d

OvO MN
N

MNN
T 22

2

1
, (12)

The training time for DAGSVM is same as OvO.

As for BTS and SVM-BDT, the training time is

summed over all the nodes in the N2log levels.

In the i
th

 level, there are 2
i-1

 nodes and each node uses

2M/N for BTS and M/2
i-1

 for SVM-BDT training

samples. Hence, the total training time for BTS is:

dd
N

i

i
d

N

i

d
i

BTS

MN
N

M

N

M
T

1
log

1

1

log

1

1

2

2

22

22

, (13)

and for SVM-BDT is:

230 Informatica 33 (2009) 225–233 G. Madzarov et al.

d

N

i

d

i

i
BDTSVM M

M
T

2log

1
1

1

2
2 , (14)

It must be noted that TSVM-BDT in our algorithm does

not include the time to build the hierarchy structure of

the N classes, since it consumes insignificant time

compared to the quadratic optimization time that

dominates the total SVM training time. On the other

hand, in the process of building the tree, BTS requires

testing of each trained SVM with all the training samples

in order to determine the next step, therefore significantly

increasing the total training time.

According to the empirical estimation above, it is

evident that the training speed of SVM-BDT is

comparable with OvA, OvO, DAGSVM and BTS.

In the testing phase, DAGSVM performs faster than

OvO and OvA, since it requires only N-1 binary SVM

evaluations. SVM-BDT is even faster than DAGSVM

because the depth of the SVM-BDT decision tree is

N2log in the worst case, which is superior to N-1,

especially when N>>2.

While testing, the inner product of the sample’s

feature vector and all the support vectors of the model

are calculated for each sample. The total number of

support vectors in the trained model directly contributes

to the major part of the evaluation time, which was also

confirmed by the experiments.

A multistage SVM (MSVM) for multi-class problem

has been proposed by Liu et al. [11]. They use Support

Vector Clustering (SVC) [12] to divide the training data

into two parts that are used to train a binary SVM. For

each partition, the same procedure is recursively repeated

until the binary SVM gives an exact label of class. An

unsolved problem in MSVM is how to control the SVC

to divide the training dataset into exact two parts.

However, this procedure is painful and unfeasible,

especially for large datasets. The training set from one

class could belong to both clusters, resulting in decreased

predictive accuracy.

There are different approaches for solving multi-class

problems which are not based on SVM. Some of them

are presented in the following discussion. However, the

experimental results clearly show that their classification

accuracy is significantly smaller than the SVM based

methods.

Ensemble techniques have received considerable

attention within the recent machine learning research

[16][17][18][19]. The basic goal is to train a diverse set

of classifiers for a single learning problem and to vote or

average their predictions. The approach is simple as well

as powerful, and the obtained accuracy gains often have

solid theoretical foundations [20][20][21]. Averaging the

predictions of these classifiers helps to reduce the

variance and often increases the reliability of the

predictions. There are several techniques for obtaining a

diverse set of classifiers. The most common technique is

to use subsampling to diversify the training sets as in

Bagging [21] and Boosting [20]. Other techniques

include the use of different feature subsets for every

classifier in the ensemble [23], to exploit the randomness

of the base algorithms [24], possibly by artificially

randomizing their behavior [25], or to use multiple

representations of the domain objects. Finally, classifier

diversity can be ensured by modifying the output labels,

i.e., by transforming the learning tasks into a collection

of related learning tasks that use the same input

examples, but different assignments of the class labels.

Error-correcting output codes are the most prominent

example for this type of ensemble methods [22].

Error-correcting output codes are a popular and

powerful class binarization technique. The basic idea is

to transform an N-class problem into n binary problems

(n > N), where each binary problem uses a subset of the

classes as the positive class and the remaining classes as

a negative class. As a consequence, each original class is

encoded as an n-dimensional binary vector, one

dimension for each prediction of a binary problem (+1

for positive and −1 for negative). The resulting matrix of

the form {−1, +1} N×n is called the coding matrix. New

examples are classified by determining the row in the

matrix that is closest to the binary vector obtained by

submitting the example to the n classifiers. If the binary

problems are chosen in a way that maximizes the

distance between the class vectors, the reliability of the

classification can be significantly increased. Error-

correcting output codes can also be easily parallelized,

but each subtask requires the total training set.

Similar to binarization, some approaches suggest

mapping the original multiple classes into three clsses. A

related technique where multi-class problems are mapped

to 3-class problems is proposed by Angulo and Catal’a

[26]. Like with pairwise classification, they propose

generating one training set for each pair of classes. They

label the two class values with target values +1 and −1,

and additionally, samples of all other classes are labeled

to a third class, with a target value of 0. This idea leads to

increased size of the training set compared to the binary

classification. The mapping into three classes was also

used by Kalousis and Theoharis [27] for predicting the

most suitable learning algorithm(s) for a given dataset.

They trained a nearest-neighbor learner to predict the

better algorithm of each pair of learning algorithms. Each

of these pairwise problems had three classes: one for

each algorithm and a third class named “tie”, where both

algorithms had similar performances.

Johannes Fürnkranz has investigated the use of round

robin binarization (or pair-wise classification) [28] as a

technique for handling multi-class problems with

separate-and-conquer rule learning algorithms (aka

covering algorithms). In particular, round robin

binarization helps Ripper [29] outperform C5.0 on multi-

class problems, whereas C5.0 outperforms the original

version of Ripper on the same problems.

6 Experimental results
In this section, we present the results of our experiments

with several multi-class problems. The performance was

measured on the problem of recognition of handwritten

digits and letters.

A MULTI-CLASS SVM CLASSIFIER... Informatica 33 (2009) 225–233 231

Here, we compare the results of the proposed SVM-

BDT method with the following methods:

1) one-against-all (OvA);

2) one-against-one (OvO);

3) DAGSVM;

4) BTS;

5) Bagging

6) Random Forests

7) Multilayer Perceptron (MLP, neural network)

The training and testing of the SVMs based methods

(OvO, OvA, DAGSVM, BTS and SVM-BDT) was

performed using a custom developed application that

uses the Torch library [14]. For solving the partial

binary classification problems, we used SVMs with

Gaussian kernel. In these methods, we had to optimize

the values of the kernel parameter σ and penalty C. For

parameter optimization we used experimental results.

The achieved parameter values for the given datasets are

given in Table 1.

Table 1. The optimized values for σ and C for the used

datasets.

 MNIST Pendigit Optdigit Statlog

σ 2 60 25 1.1

C 100 100 100 100

We also developed an application that uses the same

(Torch) library for the neural network classification.

One hidden layer with 25 units was used by the neural

network. The number of hidden units was determined

experimentally.

The classifications based on ensembles of decision

trees [30] (Bagging and Random Forest) was performed

by Clus, a popular decision tree learner based on the

principles stated by Blockeel et al. [31]. There were 100

models in the ensembles. The pruning method that we

used was C4.5. The number of selected features in the

Random Forest method was M2log , where M is the

number of features in the dataset.

The most important criterion in evaluating the

performance of a classifier is usually its recognition rate,

but very often the training and testing time of the

classifier are equally important.

In our experiments, four different multi-class

classification problems were addressed by each of the

eight previously mentioned methods. The training and

testing time and the recognition performance were

recorded for every method.

The first problem was recognition of isolated

handwritten digits (10 classes) from the MNIST

database. The MNIST database [15] contains grayscale

images of isolated handwritten digits. From each digit

image, after performing a slant correction, 40 features

were extracted. The features are consisted of 10

horizontal, 8 vertical and 22 diagonal projections [25].

The MNIST database contains 60.000 training samples,

and 10.000 testing samples.

The second and the third problem are 10 class

problems from the UCI Repository [33] of machine

learning databases: Optdigit and Pendigit. Pendigit has

16 features, 7494 training samples, and 3498 testing

samples. Optdigit has 64 features, 3823 training

samples, and 1797 testing samples.

The fourth problem was recognition of isolated

handwritten letters – a 26-class problem from the

Statlog collection [34]. Statlog-letter contains 15.000

training samples, and 5.000 testing samples, where each

sample is represented by 16 features.

The classifiers were trained using all available

training samples of the set and were evaluated by

recognizing all the test samples from the corresponding

set. All tests were performed on a personal computer

with an Intel Core2Duo processor at 1.86GHz with the

Windows XP operating system.

Tables 2 through 4 show the results of the

experiments using 8 different approaches (5 approaches

based on SVM, two based on ensembles of decision trees

and one neural network) on each of the 4 data sets. The

first column of each table describes the classification

method. Table 2 gives the prediction error rate of each

method applied on each of the datasets. Table 3 and table

4 shows the testing and training time of each algorithm,

for the datasets, measured in seconds, respectively.

The results in the tables show that SVM based

methods outperform the other approaches, in terms of

classification accuracy. In terms of speed, SVM based

methods are faster, with different ratios for different

datasets. In overall, the SVM based algorithms were

significantly better compared to the non SVM based

methods.

The results in table 2 show that for all datasets, the

one-against-all (OvA) method achieved the lowest error

rate. For the MNIST, Pendigit and Optdigit datasets, the

other SVM based methods (OvO, DAGSVM, BTS and

our method - SVM-BDT) achieved higher, but similar

error rates. For the recognition of handwritten letters

from the Statlog database, the OvO and DAGSVM

methods achieved very similar error rates that were about

1.5% higher than the OvA method. The BTS method

showed the lowest error rate of all methods using one-

against-one SVMs. Our SVM-BDT method achieved

better recognition rate than all the methods using one-

against-one SVMs, including BTS. Of the non SVM

based methods, the Random Forest method achieved the

best recognition accuracy for all datasets. The prediction

performance of the MLP method was comparable to the

Random Forest method for the 10-class problems, but

noticeably worse for the 26-class problem.

The MLP method is the fastest one in terms of

training and testing time, which is evident in Table 3 and

Table 4. The classification methods based on ensembles

of trees were the slowest in the training and the testing

phase, especially the Bagging method. Overall, the

Random Forest method was more accurate than the other

non SVM based methods, while the MLP method was

the fastest.

The results in Table 3 show that the DAGSVM

method achieved the fastest testing time of all the SVM

based methods for the MNIST dataset. For the other

datasets, the testing time of DAGSVM is comparable

232 Informatica 33 (2009) 225–233 G. Madzarov et al.

with BTS and SVM-BDT methods and their testing time

is noticeably better than the one-against-all (OvA) and

one-against-one (OvO) methods. The SVM-BDT method

was faster in the recognition phase for the Pendigit

dataset and slightly slower than DAGSVM method for

the Statlog dataset.

Table 2. The prediction error rate (%) of each method for

every dataset

Classifier MNIST Pendigit Optdigit Statlog

OvA 1.93 1.70 1.17 3.20

OvO 2.43 1.94 1.55 4.72

DAGSVM 2.50 1.97 1.67 4.74

ВТЅ 2.24 1.94 1.51 4.70

SVM-BDT 2.45 1.94 1.61 4.54

R. Forest 3.92 3.72 3.18 4.98

Bagging 4.96 5.38 7.17 8.04

MLP 4.25 3.83 3.84 14.14

Table 3. Testing time of each method for every dataset

measured in seconds

Classifier MNIST Pendigit Optdigit Statlog

OvA 23.56 1.75 1.63 119.50

OvO 26.89 3.63 1.96 160.50

DAGSVM 9.46 0.55 0.68 12.50

ВТЅ 26.89 0.57 0.73 17.20

SVM-BDT 25.33 0.54 0.70 13.10

R. Forest 39.51 3.61 2.76 11.07

Bagging 34.52 2.13 1.70 9.76

MLP 2.12 0.49 0.41 1.10

Table 4. Training time of each method for every dataset

measured in seconds

Classifier MNIST Pendigit Optdigit Statlog

OvA 468.94 4.99 3.94 554.20

OvO 116.96 3.11 2.02 80.90

DAGSVM 116.96 3.11 2.02 80.90

ВТЅ 240.73 5.21 5.65 387.10

SVM-BDT 304.25 1.60 1.59 63.30

R. Forest 542.78 17.08 22.21 50.70

Bagging 3525.31 30.87 49.4 112.75

MLP 45.34 2.20 1.60 10.80

In terms of training speeds, it is evident in Table 4

that among the SVM based methods, SVM-BDT is the

fastest one in the training phase. For the three 10-class

problems the time needed to train the 10 classifiers for

the OvA approach took about 4 times longer than

training the 45 classifiers for the OvO and DAGSVM

methods. Due to the huge number of training samples in

the MNIST dataset (60000), SVM-BDT’s training time

was longer compared to other one-against-one SVM

methods. The huge number of training samples increases

the nonlinearity of the hyperplane in the SVM, resulting

in an incresed number of support vectors and increased

training time. Also, the delay exists only in the first level

of the tree, where the entire training dataset is used for

training. In the lower levels, the training time of divided

subsets is not as significant as the first level’s delay.

In the other 10 class problems, our method achieved

the shortest training time. For the Statlog dataset, the

time needed for training of the 26 one-against-all SVMs

was almost 7 times longer than the time for training the

325 one-against-one SVMs. The BTS method is the

slowest one in the training phase of the methods using

one-against-one SVMs. It must be noted that as the

number of classes in the dataset increases, the advantage

of SVM-BDT becomes more evident. The SVM-BDT

method was the fastest while training, achieving better

recognition rate than the methods using one-against-one

SVMs. It was only slightly slower in recognition than

DAGSVM.

7 Conclusion
A novel architecture of Support Vector Machine

classifiers utilizing binary decision tree (SVM-BDT) for

solving multiclass problems was presented. The SVM-

BDT architecture was designed to provide superior

multi-class classification performance, utilizing a

decision tree architecture that requires much less

computation for deciding a class for an unknown sample.

A clustering algorithm that utilizes distance measures at

the kernel space is used to convert the multi-class

problem into binary decision tree, in which the binary

decisions are made by the SVMs. The results of the

experiments show that the speed of training and testing

are improved, while keeping comparable or offering

better recognition rates than the other SVM multi-class

methods. The experiments showed that this method

becomes more favourable as the number of classes in the

recognition problem increases.

References

[1] V. Vapnik. The Nature of Statistical Learning

Theory, 2nd Ed. Springer, New York, 1999.

[2] C. J. C. Burges. A tutorial on support vector

machine for pattern recognition. Data Min. Knowl.

Disc. 2 (1998) 121.

[3] T. Joachims. Making large scale SVM learning

practical. in B. Scholkopf, C. Bruges and A. Smola

(eds). Advances in kernel methods-support vector

learning, MIT Press, Cambridge, MA, 1998.

[4] R. Fletcher. Practical Methods of Optimization. 2nd

Ed. John Wiley & Sons. Chichester (1987).

[5] J. Weston, C. Watkins. Multi-class support vector

machines. Proceedings of ESANN99, M.

Verleysen, Ed., Brussels, Belgium, 1999.

A MULTI-CLASS SVM CLASSIFIER... Informatica 33 (2009) 225–233 233

[6] V. Vapnik. Statistical Learning Theory. Wiley,

New York, 1998.

[7] J. H. Friedman. Another approach to

polychotomous classification. Technical report.

Department of Statistics, Stanford University, 1997.

[8] P. Xu, A. K. Chan. Support vector machine for

multi-class signal classification with unbalanced

samples. Proceedings of the International Joint

Conference on Neural Networks 2003. Portland,

pp.1116-1119, 2003.

[9] Platt, N. Cristianini, J. Shawe-Taylor. Large margin

DAGSVM’s for multiclass classification. Advances

in Neural Information Processing System. Vol. 12,

pp. 547–553, 2000.

[10] B. Fei, J. Liu. Binary Tree of SVM: A New Fast

Multiclass Training and Classification Algorithm.

IEEE Transaction on neural networks, Vol. 17, No.

3, May 2006.

[11] X. Liu, H. Xing, X. Wang. A multistage support

vector machine. 2nd International Conference on

Machine Learning and Cybernetics, pages 1305-

1308, 2003.

[12] A. Ben-Hur, D. Horn, H. Siegelmann, V. Vapnik.

Support vector clustering. Journal of Machine

Learning Research, vol. 2:125-137, 2001.

[13] J. Platt. Fast training of support vector machines

using sequential minimal optimization. In Advances

in Kernel Methods - Support Vector Learning.

Pages 185-208, Cambridge, MA, 1999. MIT Press.

[14] R. Collobert, S. Bengio, J. Mariéthoz. Torch: a

modular machine learning software library.

Technical Report IDIAP-RR 02-46, IDIAP, 2002.

[15] __, MNIST, MiniNIST, USA

http://yann.lecun.com/exdb/mnist

[16] T. G. Dietterich. Machine learning research: Four

current directions. AI Magazine, 18(4): 97–136,

Winter 1997.

[17] G. Dietterich. Ensemble methods in machine

learning. In J. Kittler and F. Roli (eds.) First

International Workshop on Multiple Classifier

Systems, pp. 1–15. Springer-Verlag, 2000a.

[18] D. Opitz and R. Maclin. Popular ensemble methods:

An empirical study. Journal of Artificial

Intelligence Research, 11:169–198, 1999.

[19] E. Bauer and R. Kohavi. An empirical comparison

of voting classification algorithms: Bagging,

boosting, and variants. Machine Learning, 36:105–

169, 1999.

[20] Y. Freund and R. E. Schapire. A decision-theoretic

generalization of on-line learning and an application

to boosting. Journal of Computer and System

Sciences, 55(1):119–139, 1997.

[21] L. Breiman. Bagging predictors. Machine Learning,

24(2):123–140, 1996.

[22] T. G. Dietterich and G. Bakiri. Solving multiclass

learning problems via error-correcting output codes.

Journal of Artificial Intelligence Research, 2:263–

286, 1995.

[23] S. D. Bay. Nearest neighbor classification from

multiple feature subsets. Intelligent Data Analysis,

3(3):191–209, 1999.

[24] J. F. Kolen and J. B. Pollack. Back propagation is

sensitive to initial conditions. In Advances in

Neural Information Processing Systems 3 (NIPS-

90), pp. 860–867. Morgan Kaufmann, 1991.

[25] T. G. Dietterich. An experimental comparison of

three methods for constructing ensembles of

decision trees: Bagging, boosting, and

randomization. Machine Learning, 40(2):139–158,

2000b.

[26] C. Angulo and A. Catal`a. K-SVCR. A multi-class

support vector machine. In R. L´opez de M´antaras

and E. Plaza (eds.) Proceedings of the 11th

European Conference on Machine Learning

(ECML-2000), pp. 31–38. Springer-Verlag, 2000.

[27] A. Kalousis and T. Theoharis. Noemon: Design,

implementation and performance results of an

intelligent assistant for classifier selection.

Intelligent Data Analysis, 3(5):319–337, 1999.

[28] Johannes Fürnkranz, Round robin classification,

The Journal of Machine Learning Research, 2,

p.721-747, 3/1/2002

[29] W. W. Cohen. Fast effective rule induction. In A.

Prieditis and S. Russell (eds.) Proceedings of the

12th International Conference on Machine

Learning (ML-95), pp. 115–123, Lake Tahoe, CA,

1995. Morgan Kaufmann.

[30] D. Kocev, C. Vens, J. Struyf and S. Dˇzeroski.

Ensembles of multi-objective decision trees.

Proceedings of the 18th European Conference on

Machine Learning (pp. 624–631) (2007). Springer.

[31] H. Blockeel, J. Struyf. Efficient Algorithms for

Decision Tree Cross-validation. Journal of Machine

Learning Research 3:621-650, 2002.

[32] D. Gorgevik, D. Cakmakov. An Efficient Three-

Stage Classifier for Handwritten Digit Recognition.

Proceedings of 17th Int. Conference on Pattern

Recognition, ICPR2004. Vol. 4, pp. 507-510, IEEE

Computer Society, Cambridge, UK, 23-26 August

2004.

[33] C. Blake, E. Keogh and C. Merz. UCI Repository of

Machine Learning Databases, (1998). Statlog Data

Set, http://archive.ics.uci.edu/ml/datasets.html

[Online]

[34] Statlog Data Set, http://archive.ics.uci.edu/ml/-

datasets/Letter+Recognition [Online]

http://yann.lecun.com/exdb/mnist

