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In this paper a novel architecture of Support Vector Machine classifiers utilizing binary decision tree 

(SVM-BDT) for solving multiclass problems is presented. The hierarchy of binary decision subtasks 

using SVMs is designed with a clustering algorithm. For consistency between the clustering model and 

SVM, the clustering model utilizes distance measures at the kernel space, rather than at the input space. 

The proposed SVM based Binary Decision Tree architecture takes advantage of both the efficient 

computation of the decision tree architecture and the high classification accuracy of SVMs. The SVM-

BDT architecture was designed to provide superior multi-class classification performance. Its 

performance was measured on samples from MNIST, Pendigit, Optdigit and Statlog databases of 

handwritten digits and letters. The results of the experiments indicate that while maintaining 

comparable or offering better accuracy with other SVM based approaches, ensembles of trees (Bagging 

and Random Forest) and neural network, the training phase of SVM-BDT is faster. During recognition 

phase, due to its logarithmic complexity, SVM-BDT is much faster than the widely used multi-class SVM 

methods like “one-against-one” and “one-against-all”, for multiclass problems. Furthermore, the 

experiments showed that the proposed method becomes more favourable as the number of classes in the 

recognition problem increases. 

Povzetek: Predstavljena je metoda gradnje binarnih dreves z uporabo SVM za večrazredne probleme. 

 

1 Introduction 
The recent results in pattern recognition have shown that 

support vector machine (SVM) classifiers often have 

superior recognition rates in comparison to other 

classification methods. However, the SVM was 

originally developed for binary decision problems, and 

its extension to multi-class problems is not straight-

forward. How to effectively extend it for solving multi-

class classification problem is still an on-going research 

issue. The popular methods for applying SVMs to multi-

class classification problems usually decompose the 

multi-class problems into several two-class problems that 

can be addressed directly using several SVMs.  

For the readers’ convenience, we introduce the SVM 

briefly in section 2. A brief introduction to several 

widely used multi-class classification methods that 

utilize binary SVMs is given in section 3. The Kernel-

based clustering introduced to convert the multi-class 

problem into SVM-based binary decision-tree 

architecture is explained in section 4. In section 5, we 

discuss related works and compare SVM-BDT with other 

multi-class SVM methods via theoretical analysis and 

empirical estimation. The experimental results in section 

6 are presented to compare the performance of the 

proposed SVM-BDT with traditional multi-class 

approaches based on SVM, ensemble of decision trees 

and neural network. Section 7 gives a conclusion of the 

paper. 

2 Support vector machines for 

pattern recognition 
The support vector machine is originally a binary 

classification method developed by Vapnik and 

colleagues at Bell laboratories [1][2], with further 

algorithm improvements by others [3]. For a binary 

problem, we have training data points: {xi, yi}, i=1,...,l , 

yi {-1, 1}, xi R
d
. Suppose we have some hyperplane 

which separates the positive from the negative examples 

(a “separating hyperplane”). The points x which lie on 

the hyperplane satisfy w·x + b = 0, where w is normal to 

the hyperplane, |b|/||w|| is the perpendicular distance 

from the hyperplane to the origin, and ||w|| is the 

Euclidean norm of w. Let d+ (d-) be the shortest distance 

from the separating hyperplane to the closest positive 

(negative) example. Define the “margin” of a separating 

hyperplane to be d++d-. For the linearly separable case, 

the support vector algorithm simply looks for the 

separating hyperplane with largest margin. This can be 

formulated as follows: suppose that all the training data 

satisfy the following constraints:  
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 1bi wx  for 1iy ,        ( 1 ) 

     1bi wx  for 1iy ,        ( 2 ) 

These can be combined into one set of inequalities: 

 

 01by ii wx  i ,        ( 3 ) 

 

Now consider the points for which the equality in Eq. 

(1) holds (requiring that there exists such a point) is 

equivalent to choosing a scale for w and b. These points 

lie on the hyperplane H1: xi · w + b = 1 with normal w 

and perpendicular distance from the origin |1-b|/||w||. 

Similarly, the points for which the equality in Eq. (2) 

holds lie on the hyperplane H2: xi · w + b = -1, with 

normal again w and perpendicular distance from the 

origin |-1-b|/||w||. Hence d+ = d- = 1/||w|| and the margin is 

simply 2/||w||. 

 

margin

origin

 
 

Figure 1 – Linear separating hyperplanes for the 

separable case. The support vectors are circled. 

 

Note that H1 and H2 are parallel (they have the same 

normal) and that no training points fall between them. 

Thus we can find the pair of hyperplanes which gives the 

maximum margin by minimizing ||w||
2
, subject to 

constraints (3). 

Thus we expect the solution for a typical two 

dimensional case to have the form shown on Fig. 1. We 

introduce nonnegative Lagrange multipliers αi, i = 1,..., l, 

one for each of the inequality constraints (3). Recall that 

the rule is that for constraints of the form ci ≥ 0, the 

constraint equations are multiplied by nonnegative 

Lagrange multipliers and subtracted from the objective 

function, to form the Lagrangian. For equality 

constraints, the Lagrange multipliers are unconstrained. 

This gives Lagrangian: 
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We must now minimize Lp with respect to w, b, and 

maximize with respect to all αi at the same time, all 

subject to the constraints  αi ≥ 0 (let’s call this particular 

set of constraints C1). Now this is a convex quadratic 

programming problem, since the objective function is 

itself convex, and those points which satisfy the 

constraints also form a convex set (any linear constraint 

defines a convex set, and a set of N simultaneous linear 

constraints defines the intersection of N convex sets, 

which is also a convex set). This means that we can 

equivalently solve the following “dual” problem: 

maximize LP, subject to the constraints that the gradient 

of LP with respect to w and b vanish, and subject also to 

the constraints that the αi ≥ 0 (let’s call that particular set 

of constraints C2). This particular dual formulation of the 

problem is called the Wolfe dual [4]. It has the property 

that the maximum of LP, subject to constraints C2, occurs 

at the same values of the w, b and α, as the minimum of 

LP, subject to constraints C1. 

Requiring that the gradient of LP with respect to w 

and b vanish gives the conditions: 
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Since these are equality constraints in the dual 

formulation, we can substitute them into Eq. (4) to give 
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Note that we have now given the Lagrangian different 

labels (P for primal, D for dual) to emphasize that the 

two formulations are different: LP and LD arise from the 

same objective function but with different constraints; 

and the solution is found by minimizing LP or by 

maximizing LD. Note also that if we formulate the 

problem with b = 0, which amounts to requiring that all 

hyperplanes contain the origin, the constraint (6) does not 

appear. This is a mild restriction for high dimensional 

spaces, since it amounts to reducing the number of 

degrees of freedom by one. 

Support vector training (for the separable, linear case) 

therefore amounts to maximizing LD with respect to the 

αi, subject to constraints (6) and positivity of the αi, with 

solution given by (5). Notice that there is a Lagrange 

multiplier αi for every training point. In the solution, 

those points for which αi > 0 are called “support vectors”, 

and lie on one of the hyperplanes H1, H2. All other 

training points have αi = 0 and lie either on H1 or H2 

(such that the equality in Eq. (3) holds), or on that side of 

H1 or H2 such that the strict inequality in Eq. (3) holds. 

For these machines, the support vectors are the critical 

elements of the training set. They lie closest to the 

decision boundary; if all other training points were 

removed (or moved around, but so as not to cross H1 or 

H2), and training was repeated, the same separating 

hyperplane would be found.  

The above algorithm for separable data, when applied 

to non-separable data, will find no feasible solution: this 

will be evidenced by the objective function (i.e. the dual 

Lagrangian) growing arbitrarily large. So how can we 

extend these ideas to handle non-separable data? We 

would like to relax the constraints (1) and (2), but only 
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when necessary, that is, we would like to introduce a 

further cost (i.e. an increase in the primal objective 

function) for doing so. This can be done by introducing 

positive slack variables ei; i = 1,..., l, in the constraints, 

which then become: 

  

 ii eb 1wx  for 1iy ,        ( 8 ) 

     ii eb 1wx  for 1iy ,        ( 9 ) 

 .0 iei       ( 10 ) 

 

Thus, for an error to occur, the corresponding ei must 

exceed unity, so Σiei is an upper bound on the number of 

training errors. Hence a natural way to assign an extra 

cost for errors is to change the objective function to be 

minimized from ||w||
2
/2 to ||w||

2
/2 + C(Σiei), where C is a 

parameter to be chosen by the user, a larger C 

corresponding to assigning a higher penalty to errors. 

How can the above methods be generalized to the 

case where the decision function (f(x) whose sign 

represents the class assigned to data point x) is not a 

linear function of the data? First notice that the only way 

in which the data appears in the training problem, is in 

the form of dot products, xi · xj. Now suppose we first 

mapped the data (Figure 2) to some other (possibly even 

infinite dimensional) Euclidean space H, using a 

mapping which we will call Ф: 

 

  

Hd R: ,     ( 11 ) 

 

Then of course the training algorithm would only depend 

on the data through dot products in H, i.e. on functions of 

the form Ф(xi) · Ф(xj). Now if there were a “kernel 

function” K such that K(xi, xj) = Ф(xi) · Ф(xj), we would 

only need to use K in the training algorithm, and would 

never need to explicitly even know what Ф is. The kernel 

function has to satisfy Mercer’s condition [1].One 

example for this function is Gaussian: 
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In this particular example, H is infinite dimensional, 

so it would not be very easy to work with Ф explicitly. 

However, if one replaces xi · xj by K(xi, xj) everywhere in 

the training algorithm, the algorithm will happily 

produce a support vector machine which lives in an 

infinite dimensional space, and furthermore do so in 

roughly the same amount of time it would take to train on 

the un-mapped data. All the considerations of the 

previous sections hold, since we are still doing a linear 

separation, but in a different space. But how can we use 

this machine? After all, we need w, and that will live in 

H. But in test phase an SVM is used by computing dot 

products of a given test point x with w, or more 

specifically by computing the sign of 
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where the si are the support vectors. So again we can 

avoid computing Ф(x) explicitly and use the K(si, x) = 

Ф(si) · Ф(x) instead. 

 

 
 

Figure 2 – General principle of SVM: projection 

of data in an optimal dimensional space. 

3 An overview of widely used multi-

class SVM classification methods 
Although SVMs were originally designed as binary 

classifiers, approaches that address a multi-class problem 

as a single “all-together” optimization problem exist [5], 

but are computationally much more expensive than 

solving several binary problems. 

A variety of techniques for decomposition of the 

multi-class problem into several binary problems using 

Support Vector Machines as binary classifiers have been 

proposed, and several widely used are given in this 

section. 

3.1 One-against-all (OvA) 

For the N-class problems (N>2), N two-class SVM 

classifiers are constructed [6]. The i
th

 SVM is trained 

while labeling the samples in the i
th

 class as positive 

examples and all the rest as negative examples. In the 

recognition phase, a test example is presented to all N   

SVMs and is labelled according to the maximum output 

among the N classifiers. The disadvantage of this method 

is its training complexity, as the number of training 

samples is large. Each of the N classifiers is trained using 

all available samples. 

3.2 One-against-one (OvO) 

This algorithm constructs N(N-1)/2 two-class classifiers, 

using all the binary pair-wise combinations of the N   

classes. Each classifier is trained using the samples of the 
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first class as positive examples and the samples of the 

second class as negative examples. To combine these 

classifiers, the Max Wins algorithm is adopted. It finds 

the resultant class by choosing the class voted by the 

majority of the classifiers [7]. The number of samples 

used for training of each one of the OvO classifiers is 

smaller, since only samples from two of all N classes are 

taken in consideration. The lower number of samples 

causes smaller nonlinearity, resulting in shorter training 

times. The disadvantage of this method is that every test 

sample has to be presented to large number of classifiers 

N(N-1)/2. This results in slower testing, especially when 

the number of the classes in the problem is big [8]. 

3.3 Directed acyclic graph SVM 

(DAGSVM) 

Introduced by Platt [1] the DAGSVM algorithm for 

training an N(N-1)/2 classifiers is the same as in one-

against-one. In the recognition phase, the algorithm 

depends on a rooted binary directed acyclic graph to 

make a decision [9]. DAGSVM creates a model for each 

pair of classes. When one such model, which is able to 

separate class c1 from class c2, classifies a certain test 

example into class c1, it does not really vote “for” class 

c1, rather it votes “against” class c2, because the example 

must lie on the other side of the separating hyperplane 

than most of the class c2 samples. Therefore, from that 

point onwards the algorithm ignores all the models 

involving the class c2. This means that after each 

classification with one of the binary models, one more 

class can be thrown out as a possible candidate, and after 

only N-1 steps just one candidate class remains, which 

therefore becomes the prediction for the current test 

example. This results in significantly faster testing, while 

achieving similar recognition rate as One-against-one. 

3.4 Binary tree of SVM (BTS) 

This method uses multiple SVMs arranged in a binary 

tree structure [10]. A SVM in each node of the tree is 

trained using two of the classes. The algorithm then 

employs probabilistic outputs to measure the similarity 

between the remaining samples and the two classes used 

for training. All samples in the node are assigned to the 

two subnodes derived from the previously selected 

classes by similarity. This step repeats at every node until 

each node contains only samples from one class. The 

main problem that should be considered seriously here is 

training time, because aside training, one has to test all 

samples in every node to find out which classes should 

be assigned to which subnode while building the tree. 

This may decrease the training performance considerably 

for huge training datasets. 

4 Support vector machines utilizing 

a binary decision tree 
In this paper we propose a binary decision tree 

architecture that uses SVMs for making the binary 

decisions in the nodes. The proposed classifier 

architecture SVM-BDT (Support Vector Machines 

utilizing Binary Decision Tree), takes advantage of both 

the efficient computation of the tree architecture and the 

high classification accuracy of SVMs. Utilizing this 

architecture, N-1 SVMs needed to be trained for an N 

class problem, but only at most N2log  SVMs are 

required to be consulted to classify a sample. This can 

lead to a dramatic improvement in recognition speed 

when addressing problems with big number of classes. 

An example of SVM-BDT that solves a 7 - class 

pattern recognition problem utilizing a binary tree, in 

which each node makes binary decision using a SVM is 

shown on Figure 3. The hierarchy of binary decision 

subtasks should be carefully designed before the training 

of each SVM classifier. 

The recognition of each sample starts at the root of 

the tree. At each node of the binary tree a decision is 

being made about the assignment of the input pattern into 

one of the two possible groups represented by 

transferring the pattern to the left or to the right sub-tree. 

Each of these groups may contain multiple classes. This 

is repeated recursivly downward the tree until the sample 

reaches a leaf node that represents the class it has been 

assigned to. 

There exist many ways to divide N classes into two 

groups, and it is critical to have proper grouping for the 

good performance of SVM-BDT. 

For consistency between the clustering model and 

the way SVM calculates the decision hyperplane, the 

clustering model utilizes distance measures at the kernel 

space, rather than at the input space. Because of this, all 

training samples are mapped into the kernel space with 

the same kernel function that is to be used in the training 

phase. 
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Figure 3: Illustration of SVM-BDT. 

 

The SVM-BDT method that we propose is based on 

recursively dividing the classes in two disjoint groups in 

every node of the decision tree and training a SVM that 

will decide in which of the groups the incoming 

unknown sample should be assigned. The groups are 

determined by a clustering algorithm according to their 

class membership. 
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Let’s take a set of samples x1, x2, ..., xM each one 

labeled by yi  {c1, c2, ..., cN} where N is the number of 

classes. SVM-BDT method starts with dividing the 

classes in two disjoint groups g1 and g2. This is 

performed by calculating N gravity centres for the N 

different classes. Then, the two classes that have the 

biggest Euclidean distance from each other are assigned 

to each of the two clustering groups. After this, the class 

with the smallest Euclidean distance from one of the 

clustering groups is found and assigned to the 

corresponding group. The gravity center of this group is 

then recalculated to represent the addition of the samples 

of the new class to the group. The process continues by 

finding the next unassigned class that is closest to either 

of the clustering groups, assigning it to the corresponding 

group and updating the group’s gravity center, until all 

classes are assigned to one of the two possible groups. 

This defines a grouping of all the classes in two 

disjoint groups of classes. This grouping is then used to 

train a SVM classifier in the root node of the decision 

tree, using the samples of the first group as positive 

examples and the samples of the second group as 

negative examples. The classes from the first clustering 

group are being assigned to the first (left) subtree, while 

the classes of the second clustering group are being 

assigned to the (right) second subtree. The process 

continues recursively (dividing each of the groups into 

two subgroups applying the procedure explained above), 

until there is only one class per group which defines a 

leaf in the decision tree. 
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Figure 4: SVM-BDT divisions of the seven classes. 

 

For example, Figure 4 illustrates grouping of 7 

classes, while Figure 3 shows the corresponding decision 

tree of SVMs. After calculating the gravity centers for all 

classes, the classes c2 and c5 are found to be the furthest 

apart from each other, considering their Euclidean 

distance and are assigned to group g1 and g2 accordingly. 

The closest to group g1 is class c3, so it is assigned to the 

group g1, followed by recalculation of the g1’s gravity 

center. In the next step, class c1 is the closest to group g2, 

so it is assigned to that group and the group’s gravity 

center is recalculated. In the following iteration, class c7 

is assigned to g1 and class c6 is assigned to g2, folowed 

by recalculating of group’s gravity centers. Finally class 

c4 is assigned to g1. This completes the first round of 

grouping that defines the classes that will be transferred 

to the left and the right subtree of the root node. The 

SVM classifier in the root is trained by considering 

samples from the classes {c2, c3, c4, c7} as positive 

examples and samples from the classes {c1, c5, c6} as 

negative examples. 

The grouping procedure is repeated independently for 

the classes of the left and the right subtree of the root, 

which results in grouping c7 and c4 in g1,1 and c2 and c3 in 

g1,2 in the left node of the tree and c1 and c5 in g2,1 and c6 

in g2,2 in the right node of the tree. The concept is 

repeated for each SVM associated to a node in the 

taxonomy. This will result in training only N-1 SVMs for 

solving an N-class problem. 

5 Related work and discussion 
Various multi-class classification algorithms can be 

compared by their predictive accuracy and their training 

and testing times. The training time T for a binary SVM 

is estimated empirically by a power law [13] stating that 

T≈αM
d
, where M is the number of training samples and 

 is a proportionality constant. The parameter d is a 

constant, which depends of the datasets and it is typically 

in the range [1, 2].  According to this law, the estimated 

training time for OvA is 
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where N is the number of classes in the problem. 

Without loss of generality, let's assume that each of 

the N classes has the same number of training samples. 

Thus, each binary SVM of OvO approach only requires 

2M/N samples. Therefore, the training time for OvO is: 
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The training time for DAGSVM is same as OvO. 

As for BTS and SVM-BDT, the training time is 

summed over all the nodes in the N2log   levels. 

In the i
th

 level, there are 2
i-1

 nodes and each node uses 

2M/N for BTS and M/2
i-1

 for SVM-BDT training 

samples. Hence, the total training time for BTS is: 
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and for SVM-BDT is: 
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It must be noted that TSVM-BDT in our algorithm does 

not include the time to build the hierarchy structure of 

the N classes, since it consumes insignificant time 

compared to the quadratic optimization time that 

dominates the total SVM training time. On the other 

hand, in the process of building the tree, BTS requires 

testing of each trained SVM with all the training samples 

in order to determine the next step, therefore significantly 

increasing the total training time. 

According to the empirical estimation above, it is 

evident that the training speed of SVM-BDT is 

comparable with OvA, OvO, DAGSVM and BTS.  

In the testing phase, DAGSVM performs faster than 

OvO and OvA, since it requires only N-1 binary SVM 

evaluations. SVM-BDT is even faster than DAGSVM 

because the depth of the SVM-BDT decision tree is 

N2log  in the worst case, which is superior to N-1, 

especially when N>>2.  

While testing, the inner product of the sample’s 

feature vector and all the support vectors of the model 

are calculated for each sample. The total number of 

support vectors in the trained model directly contributes 

to the major part of the evaluation time, which was also 

confirmed by the experiments. 

A multistage SVM (MSVM) for multi-class problem 

has been proposed by Liu et al. [11]. They use Support 

Vector Clustering (SVC) [12] to divide the training data 

into two parts that are used to train a binary SVM. For 

each partition, the same procedure is recursively repeated 

until the binary SVM gives an exact label of class. An 

unsolved problem in MSVM is how to control the SVC 

to divide the training dataset into exact two parts. 

However, this procedure is painful and unfeasible, 

especially for large datasets. The training set from one 

class could belong to both clusters, resulting in decreased 

predictive accuracy. 

There are different approaches for solving multi-class 

problems which are not based on SVM. Some of them 

are presented in the following discussion. However, the 

experimental results clearly show that their classification 

accuracy is significantly smaller than the SVM based 

methods.  

Ensemble techniques have received considerable 

attention within the recent machine learning research 

[16][17][18][19]. The basic goal is to train a diverse set 

of classifiers for a single learning problem and to vote or 

average their predictions. The approach is simple as well 

as powerful, and the obtained accuracy gains often have 

solid theoretical foundations [20][20][21]. Averaging the 

predictions of these classifiers helps to reduce the 

variance and often increases the reliability of the 

predictions. There are several techniques for obtaining a 

diverse set of classifiers. The most common technique is 

to use subsampling to diversify the training sets as in 

Bagging [21] and Boosting [20]. Other techniques 

include the use of different feature subsets for every 

classifier in the ensemble [23], to exploit the randomness 

of the base algorithms [24], possibly by artificially 

randomizing their behavior [25], or to use multiple 

representations of the domain objects. Finally, classifier 

diversity can be ensured by modifying the output labels, 

i.e., by transforming the learning tasks into a collection 

of related learning tasks that use the same input 

examples, but different assignments of the class labels. 

Error-correcting output codes are the most prominent 

example for this type of ensemble methods [22]. 

Error-correcting output codes are a popular and 

powerful class binarization technique. The basic idea is 

to transform an N-class problem into n binary problems 

(n > N), where each binary problem uses a subset of the 

classes as the positive class and the remaining classes as 

a negative class. As a consequence, each original class is 

encoded as an n-dimensional binary vector, one 

dimension for each prediction of a binary problem (+1 

for positive and −1 for negative). The resulting matrix of 

the form {−1, +1} N×n is called the coding matrix. New 

examples are classified by determining the row in the 

matrix that is closest to the binary vector obtained by 

submitting the example to the n classifiers. If the binary 

problems are chosen in a way that maximizes the 

distance between the class vectors, the reliability of the 

classification can be significantly increased. Error-

correcting output codes can also be easily parallelized, 

but each subtask requires the total training set. 

Similar to binarization, some approaches suggest 

mapping the original multiple classes into three clsses. A 

related technique where multi-class problems are mapped 

to 3-class problems is proposed by Angulo and Catal’a 

[26]. Like with pairwise classification, they propose 

generating one training set for each pair of classes. They 

label the two class values with target values +1 and −1, 

and additionally, samples of all other classes are labeled 

to a third class, with a target value of 0. This idea leads to 

increased size of the training set compared to the binary 

classification. The mapping into three classes was also 

used by Kalousis and Theoharis [27] for predicting the 

most suitable learning algorithm(s) for a given dataset. 

They trained a nearest-neighbor learner to predict the 

better algorithm of each pair of learning algorithms. Each 

of these pairwise problems had three classes: one for 

each algorithm and a third class named “tie”, where both 

algorithms had similar performances. 

Johannes Fürnkranz has investigated the use of round 

robin binarization (or pair-wise classification) [28] as a 

technique for handling multi-class problems with 

separate-and-conquer rule learning algorithms (aka 

covering algorithms). In particular, round robin 

binarization helps Ripper [29] outperform C5.0 on multi-

class problems, whereas C5.0 outperforms the original 

version of Ripper on the same problems. 

6 Experimental results 
In this section, we present the results of our experiments 

with several multi-class problems. The performance was 

measured on the problem of recognition of handwritten 

digits and letters. 
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Here, we compare the results of the proposed SVM-

BDT method with the following methods: 

1) one-against-all (OvA); 

2) one-against-one (OvO); 

3) DAGSVM; 

4) BTS; 

5) Bagging 

6) Random Forests 

7) Multilayer Perceptron (MLP, neural network) 

The training and testing of the SVMs based methods 

(OvO, OvA, DAGSVM, BTS and SVM-BDT) was 

performed using a custom developed application that 

uses the Torch library [14]. For solving the partial 

binary classification problems, we used SVMs with 

Gaussian kernel. In these methods, we had to optimize 

the values of the kernel parameter σ and penalty C. For 

parameter optimization we used experimental results. 

The achieved parameter values for the given datasets are 

given in Table 1. 

Table 1. The optimized values for σ and C for the used 

datasets. 

  MNIST Pendigit Optdigit Statlog 

σ 2 60 25 1.1 

C 100 100 100 100 

 

We also developed an application that uses the same 

(Torch) library for the neural network classification. 

One hidden layer with 25 units was used by the neural 

network. The number of hidden units was determined 

experimentally.  

The classifications based on ensembles of decision 

trees [30] (Bagging and Random Forest) was performed 

by Clus, a popular decision tree learner based on the 

principles stated by Blockeel et al. [31]. There were 100 

models in the ensembles. The pruning method that we 

used was C4.5. The number of selected features in the 

Random Forest method was M2log , where M is the 

number of features in the dataset. 

The most important criterion in evaluating the 

performance of a classifier is usually its recognition rate, 

but very often the training and testing time of the 

classifier are equally important. 

In our experiments, four different multi-class 

classification problems were addressed by each of the 

eight previously mentioned methods. The training and 

testing time and the recognition performance were 

recorded for every method. 

The first problem was recognition of isolated 

handwritten digits (10 classes) from the MNIST 

database. The MNIST database [15] contains grayscale 

images of isolated handwritten digits. From each digit 

image, after performing a slant correction, 40 features 

were extracted. The features are consisted of 10 

horizontal, 8 vertical and 22 diagonal projections [25]. 

The MNIST database contains 60.000 training samples, 

and 10.000 testing samples. 

The second and the third problem are 10 class 

problems from the UCI Repository [33] of machine 

learning databases: Optdigit and Pendigit. Pendigit has 

16 features, 7494 training samples, and 3498 testing 

samples. Optdigit has 64 features, 3823 training 

samples, and 1797 testing samples.  

The fourth problem was recognition of isolated 

handwritten letters – a 26-class problem from the 

Statlog collection [34]. Statlog-letter contains 15.000 

training samples, and 5.000 testing samples, where each 

sample is represented by 16 features. 

The classifiers were trained using all available 

training samples of the set and were evaluated by 

recognizing all the test samples from the corresponding 

set. All tests were performed on a personal computer 

with an Intel Core2Duo processor at 1.86GHz with the 

Windows XP operating system. 

Tables 2 through 4 show the results of the 

experiments using 8 different approaches (5 approaches 

based on SVM, two based on ensembles of decision trees 

and one neural network) on each of the 4 data sets. The 

first column of each table describes the classification 

method. Table 2 gives the prediction error rate of each 

method applied on each of the datasets. Table 3 and table 

4 shows the testing and training time of each algorithm, 

for the datasets, measured in seconds, respectively. 

The results in the tables show that SVM based 

methods outperform the other approaches, in terms of 

classification accuracy. In terms of speed, SVM based 

methods are faster, with different ratios for different 

datasets. In overall, the SVM based algorithms were 

significantly better compared to the non SVM based 

methods. 

The results in table 2 show that for all datasets, the 

one-against-all (OvA) method achieved the lowest error 

rate. For the MNIST, Pendigit and Optdigit datasets, the 

other SVM based methods (OvO, DAGSVM, BTS and 

our method - SVM-BDT) achieved higher, but similar 

error rates. For the recognition of handwritten letters 

from the Statlog database, the OvO and DAGSVM 

methods achieved very similar error rates that were about 

1.5% higher than the OvA method. The BTS method 

showed the lowest error rate of all methods using one-

against-one SVMs. Our SVM-BDT method achieved 

better recognition rate than all the methods using one-

against-one SVMs, including BTS. Of the non SVM 

based methods, the Random Forest method achieved the 

best recognition accuracy for all datasets. The prediction 

performance of the MLP method was comparable to the 

Random Forest method for the 10-class problems, but 

noticeably worse for the 26-class problem. 

The MLP method is the fastest one in terms of 

training and testing time, which is evident in Table 3 and 

Table 4. The classification methods based on ensembles 

of trees were the slowest in the training and the testing 

phase, especially the Bagging method. Overall, the 

Random Forest method was more accurate than the other 

non SVM based methods, while the MLP method was 

the fastest. 

The results in Table 3 show that the DAGSVM 

method achieved the fastest testing time of all the SVM 

based methods for the MNIST dataset. For the other 

datasets, the testing time of DAGSVM is comparable 
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with BTS and SVM-BDT methods and their testing time 

is noticeably better than the one-against-all (OvA) and 

one-against-one (OvO) methods. The SVM-BDT method 

was faster in the recognition phase for the Pendigit 

dataset and slightly slower than DAGSVM method for 

the Statlog dataset.   

Table 2. The prediction error rate (%) of each method for 

every dataset 

Classifier MNIST Pendigit Optdigit Statlog 

OvA 1.93 1.70 1.17 3.20 

OvO 2.43 1.94 1.55 4.72 

DAGSVM 2.50 1.97 1.67 4.74 

ВТЅ 2.24 1.94 1.51 4.70 

SVM-BDT 2.45 1.94 1.61 4.54 

R. Forest 3.92 3.72 3.18 4.98 

Bagging 4.96 5.38 7.17 8.04 

MLP 4.25 3.83 3.84 14.14 

Table 3. Testing time of each method for every dataset 

measured in seconds 

Classifier MNIST Pendigit Optdigit Statlog 

OvA 23.56 1.75 1.63 119.50 

OvO 26.89 3.63 1.96 160.50 

DAGSVM 9.46 0.55 0.68 12.50 

ВТЅ 26.89 0.57 0.73 17.20 

SVM-BDT 25.33 0.54 0.70 13.10 

R. Forest 39.51 3.61 2.76 11.07 

Bagging 34.52 2.13 1.70 9.76 

MLP 2.12 0.49 0.41 1.10 

Table 4. Training time of each method for every dataset 

measured in seconds 

Classifier MNIST Pendigit Optdigit Statlog 

OvA 468.94 4.99 3.94 554.20 

OvO 116.96 3.11 2.02 80.90 

DAGSVM 116.96 3.11 2.02 80.90 

ВТЅ 240.73 5.21 5.65 387.10 

SVM-BDT 304.25 1.60 1.59 63.30 

R. Forest 542.78 17.08 22.21 50.70 

Bagging 3525.31 30.87 49.4 112.75 

MLP 45.34 2.20 1.60 10.80 

 

In terms of training speeds, it is evident in Table 4 

that among the SVM based methods, SVM-BDT is the 

fastest one in the training phase. For the three 10-class 

problems the time needed to train the 10 classifiers for 

the OvA approach took about 4 times longer than 

training the 45 classifiers for the OvO and DAGSVM 

methods. Due to the huge number of training samples in 

the MNIST dataset (60000), SVM-BDT’s training time 

was longer compared to other one-against-one SVM 

methods. The huge number of training samples increases 

the nonlinearity of the hyperplane in the SVM, resulting 

in an incresed number of support vectors and increased 

training time. Also, the delay exists only in the first level 

of the tree, where the entire training dataset is used for 

training. In the lower levels, the training time of divided 

subsets is not as significant as the first level’s delay. 

In the other 10 class problems, our method achieved 

the shortest training time. For the Statlog dataset, the 

time needed for training of the 26 one-against-all SVMs 

was almost 7 times longer than the time for training the 

325 one-against-one SVMs. The BTS method is the 

slowest one in the training phase of the methods using 

one-against-one SVMs. It must be noted that as the 

number of classes in the dataset increases, the advantage 

of SVM-BDT becomes more evident. The SVM-BDT 

method was the fastest while training, achieving better 

recognition rate than the methods using one-against-one 

SVMs. It was only slightly slower in recognition than 

DAGSVM. 

7 Conclusion 
A novel architecture of Support Vector Machine 

classifiers utilizing binary decision tree (SVM-BDT) for 

solving multiclass problems was presented. The SVM-

BDT architecture was designed to provide superior 

multi-class classification performance, utilizing a 

decision tree architecture that requires much less 

computation for deciding a class for an unknown sample. 

A clustering algorithm that utilizes distance measures at 

the kernel space is used to convert the multi-class 

problem into binary decision tree, in which the binary 

decisions are made by the SVMs. The results of the 

experiments show that the speed of training and testing 

are improved, while keeping comparable or offering 

better recognition rates than the other SVM multi-class 

methods. The experiments showed that this method 

becomes more favourable as the number of classes in the 

recognition problem increases. 
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