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Abstract

A new formulation of Randi¢ index is carried out as a minimization of a quadratic form which involves the Laplacian
matrix of a graph. Using this formulation it is easy to realize that Randi¢ index is useful in defining a new index of irre-
gularity, which is then formulated here. A new context for the study of irregularity of graphs is advanced as a necessity
for studying complex (biological) networks. We analyze both Randic and irregularity indices for random networks with
Poisson and power-law degree distributions. Then, we analyze the irregularity of 10 protein-protein interaction net-
works in different organisms ranging from 50 to 3000 nodes. Finally, some ‘ruminations’ about the elegance and appli-
cability of Randic index are remarked.
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1. Introduction

Chemistry is defined as the science that studies the
“composition, structure, properties, and reactions of mat-
ter, especially of atomic and molecular systems”.' A great
deal of efforts was put forward in the 20th century for un-
derstanding the structure and properties of isolated mole-
cular species. Quantum chemistry, molecular mechanics
and molecular graph theory are examples of these fruitful
attempts to express molecular structure in an abstract
way. Such (mathematical) abstractions allow the descrip-
tion, and more importantly the prediction, of many mole-
cular properties, ranging from physico-chemical to com-
plex biological behaviours. However, 21th century has
presented a new and more difficult challenge to chemi-
stry. The availability of new experimental techniques al-
lows mapping the interactions of thousands of molecules
in cellular environments. As a consequence systems bio-
logy was born.? Systems biology is an interdisciplinary
approach to study complex interactions in biological sys-
tems, resting basically on the study of emergent proper-
ties in complex biological networks. Among their targets
we can mention genetic networks, transcription net-

works, protein-protein interaction networks, and metabo-
lic networks. More recently, the term system chemistry’
has been coined, which goes beyond biological networks
to cover the whole spectrum of emergent properties in
chemical networks.

Among the approaches developed in the 20th cen-
tury to study properties of ‘isolated’ molecules only a tiny
fraction is useful to study the new problems posted by sys-
tems biology and chemistry. It goes beyond any imagina-
tion to ask how quantum chemistry or even molecular
mechanics can deal with more than 6,000 interactions bet-
ween more than 2,700 proteins in the main connected
component of the human protein-protein interaction net-
work. In contrast, methods based on network theory,
which rest basically on the study of topological properties
of these interaction networks, has become the standard
analysis in systems biology and chemistry.

In 1975 Milan Randié proposed one of such topolo-
gical invariants to study properties of small isolated orga-
nic molecules.* This index was proposed as a branching
index and it is nowadays known as the Randic index of a
graph.* The Randi¢ index 'R_, of a graph having |E| = m
undirected links is given by*
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Here we designate the degree of a node, i.e., number
of links attached to it, by k.. This index was then generali-
zed by Bollobas and Erdos by changing the exponent —1/2
to any real value exponent ¢.’ The Randic index has been
intensively studied in mathematics and widely applied in
chemistry and biomolecular sciences.®”'’ Here we propose
a new interpretation for this index and a new context for
applications in systems biology and chemistry.

2. Network Irregularity

and Randi¢ Index

The study of network irregularity can be traced back
to the seminal paper of Collatz and Sinogowitz in 1957."
These authors raised the question of finding the most irre-
gular graphs of a given size by using the following measure

cs(G)=4, -k, )

where A, is the principal eigenvalue of the adjacency ma-
trix and k is the average degree. Clearly this index is zero
for regular graphs and Collatz and Sinogowitz conjectu-
red that stars maximize this index.'" They showed that in
fact this is the case for graphs with up to 5 nodes. Howe-
ver, Cvetkovi¢ and Rowlinson'? rejected the conjecture of
Collatz and Sinogowitz'' by constructing several families
of graphs having larger values of CS(G) than the corres-
ponding stars of the same size.

Another irregularity index was proposed in 1992 by
Bell as the variance of node degrees k:"?

VAR® = (k k). 3)

This index was proposed for the first time as a mea-
sure of centralization by Snijders'* based on the intuition
that “centralization is synonymous with the dispersion or
heterogeneity” of a node. It takes the minimum value for
regular graphs as there is no heterogeneity at all in their
degrees. However, the maximum value depends on the
number of nodes in the network.

Another measure of graph irregularity was proposed
by Albertson as: '’

A\G )= k—k,.
( ) la-.xz}c—;-: ' J‘ (4)
Recently, Hansen and Mélot'® have shown that the
Albertson index is not always maximized for star graphs
but it is in a particular class of split graphs consisting of a
clique, an independent set, and some links joining a node
in the clique to another one in the independent set.
Although the three indices are minimized for regular
graphs they identify different classes of graphs as the most

irregular ones. A comparison between these indices has
been published by Gutman et al.'” Consequently, we are
urged to define a new irregularity index from some sort of
“first-principles’. We need an index minimized by regular
graphs and maximized for starlike ones. The reason for
this necessity will become clear in the next section.

Let us restate the problem of finding an irregularity
index as that of minimizing the quantity

1 1
PR ®

The intuition behind this definition of irregularity is
that for regular networks this quantity is equal to zero as
in the case of the other irregularity indices previously de-
fined in the literature. However, as the difference in the
degrees of adjacent nodes increases, the index increases.
For instance, let us consider a node of degree one connec-
ted to a node of degree k. Then, as k increases the term in-
side the bracket tends to one. If we consider the general
case

> (e - f ©

i,jek

we can see these indices as a generalization of the Albert-
son index of irregularity'” in which instead of using a mo-
dulus function we use the square one. Now, let us define
the Laplacian matrix L of a network whose entries are gi-
ven by'®

[ A
L,=4-1 fori~j,
] 0 otherwise,

where i ~ j stands for pairs of adjacent nodes. The matrix
L can be obtained as L. = K-A, where K is a diagonal ma-
trix of degrees and A is the adjacency matrix of the net-
work, whose A, is one if, and only if, the corresponding
nodes are joined by a link or zero otherwise. This discrete
Laplacian has been intensively studied in algebraic graph
theory and the reader is referred to the excellent reviews
for details.'” ?° Let [k*) = (k§, kS, -+, k%) represents a co-
lumn vector where k; is the degree of the node i. Then, it is
easy to realize that expression (6) can be stated as a qua-
dratic form of the Laplacian matrix:

o gal e “
Z(k{. -k :5<k |L|k )

irJeE )

= Z(’{(f}m] -2 Z(ﬂ',.kf)’
j=I ijek
The second term in the right hand side of eq. (7)
is two times the generalized Randic index R, 8-10 1 et
0R = Z (k; )% be designated as the generalized zeroth -or-
der Rflndzc index.®'° It is straightforward to realize that
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the quantity to be minimized is the difference between the
R,,,, index and twice the Randic index 'R, R 2'R,

2

T ) .
Z Jk, \/;7 n-2R,-

Now, let us consider some known facts about the
lRf1 , index. Among connected networks with n nodes, the
star S, attains the minimum lRf1 ,, index and the regular
ones have maximum 1R_1 - Then, among connected net-
works of size n, the original Randi¢ index is bounded
as:10

20+ 200+ 1

(®)

; €))

where the lower bound is reached for the star S, and the
upper bound is attained for any regular network with n no-
des irrespective of its degree. Then, we can normalize the
Randic index as follows

p(G]_ n —2IR_L,3

—”_2\!”_1.

(10)

which gives a zero value for regular graphs and one for the
star. It is straightforward to realize that

o~

1 1 1
!J(GJ——”_E ??—];;-; F——E ’

an

which clearly identifies p(G) as a normalized irregularity
index for a network.

We would like to close this section by developing a
little bit further the connection between the Randi¢ index
and the graph Laplacian. Let gﬁj be an orthonormal eigen-
vector of the Laplacian matrix associated with the ; ei-
genvalue. We recall that the Laplacian matrix is positive
semidefinite. Let

i =
@
cos 8, :Hi’

’ (12

1/2

be the angle formed between the orthonormal eigenvector
@, and the vector k™2 previously defined. The Euclidean
norm ||k®| can be written as ||k®| = \/ORZQ. Then, the gene-
ralized Randi¢ index can be written as

'R = {”R:”_,I ~"Ry, D 1, COS’ 9_,]. (13)
Jj=2

In particular, the original Randic index is expressed
as follows

'Ry = %|:.J‘.-‘—UR_| > u,cos’ 9,}.
=2

(14)

The term cos® 0, represents the “contribution” of the
normalized degree to the corresponding eigenvector (or
vice versa). For instance, cos® 9] = (0 means that the vector
k“ is perpendicular to the corresponding eigenvector, and
no “duplicated” information is contained in both vectors.

3. Why Does Irregularity Matter?

The study of complex networks representing sys-
tems in disparate real-world contexts ranging from biolo-
gical to technological systems has become an important
area of interdisciplinary research.”!** These complex net-
works share many universal topological characteristics
such as small-worldness,** scale-freeness,” the existence
of network motifs and self-similarity characteristics.”’ In
particular, the power-law degree distribution of many real-
world networks contrasts with the regularity observed in
random models like the one proposed by Erdds and
Rényi.?®

Let us consider the property of scale-freeness in mo-
re detail. Let p(k) = n(k)/n be the probability of randomly
selecting a node of degree k in a network, where n(k) is the
number of nodes having degree k in a network of size n.
Then, a plot of p(k) versus k represents the degree distri-
bution for the network.”>** A random network displays a
Poisson degree distribution of the form

—ﬁkk
plk)== P

s)

where k is the average degree of the network.

Most biological networks behave in a completely
different way. Instead of having such kind of ‘democratic’
distribution of node degrees, they display a very ‘egoistic’
one, in which very few nodes have very large degrees and
most of the nodes has relatively low degrees. In mathema-
tical terms, the degree distribution of these networks fol-

lows a power-law of the form:*>

p(k)~k_". (16)
In Fig. 1 we illustrate the plots of Poisson and po-
wer-law degree distributions for a hypothetical network.
The term ‘scale-free’ describes the fact that by sca-
ling the degree by a constant factor c, only produces a pro-
portionate scaling of the function:
p(ﬁ',c')= A(c-k) "'= Ae™7 -p(k). 17)
Power-law relations are usually represented in a lo-
garithmic scale, where we obtain a straight line, Inp(k) =
—YAnk + InA, where —Yis the slope and InA the intercept of
the function.
However, strictly speaking there are not very many
networks displaying a ‘perfect’ power-law degree distri-
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Figure 1. Illustration of Poisson and power-law degree distributions for hypothetical networks.

bution. Instead, a complete zoo of ‘fat-tail’ distributions,
such as lognormal, Burr, logGamma, Pareto, etc., can be
found in complex (biological) networks. Then, the more
generic term of ‘fat-tail’ degree distribution has been pro-
posed to globalize those distributions. The idea is that net-
works with ‘fat-tail” distributions display a large heteroge-
neity, or in our terms a large irregularity.

The identification of fat-tail degree distribution in
networks has become an intense area of research in sys-
tem biology and other interdisciplinary areas of research.
The consequences that a network displays such kind of
degree distributions are remarkable.?'=?* For instance, let
us consider a protein-protein interaction network, in
which nodes represent proteins and links represent inte-
ractions between pairs of proteins in a cell. If such net-
work displays a fat-tail degree distribution it will be ro-
bust to random failures of their nodes. That is, due to the
fact that about 80% of proteins have low number of inte-
ractions, their failure does not produce the collapse of the
whole system. However, a targeted attack to the most
connected proteins, the very few with very large degrees,
disconnects the network into isolated chunks, which are
unable to function as a system. In other words, if a net-
work is very irregular, i.e., it is starlike, it will be robust
to random failures but very vulnerable to intentional at-
tacks.

The consequences of the previously described rela-
tionship between vulnerability and irregularity are tre-
mendous. Irregular biological networks can be very vul-
nerable to the failure of some specific nodes indicating
possible sources of diseases as well as possible targets for
drug design. The question that remains is whether we
need an index of irregularity for such networks instead of
analyzing their degree distributions.

Identifying the degree distribution of a network is
not a trivial question. There are hundreds of possible di-
stributions to test. Sometimes the differences in the stati-
stical fittings between several distributions are very small.

More difficult is the situation for relatively small net-
works, where the number of data points is not enough for
having a good fit of any of the candidate distributions.
Consequently, having an index such as p(G), which has its
minimum for regular networks and its maximum for star-
like ones, is an urgent necessity.

4. Irregularity in Random Networks

Now, we are going to investigate random graph mo-
dels used to model real-world complex networks. The
Erdos-Rényi graphs® G, , are generated by considering n
nodes which are linked by pairs according to a probability
p, 0 < p < 1. It is well-known that when p ~ @w(n)log n/n,
where @(n) — oo, Gn, is almost surely connected, and the
degrees of almost all nodes are asymptotically equal.
Then, in this regime lR_l » (ER) = n/2 and p(G) = 0.

2000
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Figure 2. Change of Randic index as a function of average degree
for networks generated with Barabési-Albert model of preferential
attachment.
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Another popular model for generating random
graphs is the Barabasi-Albert (BA) model,”> which produ-
ces random graphs with power-law degree distributions.
In this model the graphs are generated from an initial set
of m, =2 nodes. The new nodes are added one at a time by
connecting them to m of the existing nodes according to
the probability p, = k;/ ijj. We have generated BA graphs
with 5,000; 10,000 and 20,000 nodes and average degrees
ranging from 2 to 16. Then, we have averaged the values
of 'R_,, for 100 realizations of each graph. In Fig. 2 we il-
lustrate the plots of 'R_,, versus (k). The plots can be ap-
proximated by using the following power-law expression,

" (18)

'R ,(BA)x ——.
1 _( ] 2_27+A’_|'|8

Accordingly, the irregularity index for BA networks
is approximated by the following expression:

-1.18
o(B4)~ 0.2?+;i_ms [ n ]
2.27+k n—2n-1

which for very large networks, n — o, with very large
average degree approximates to a constant value, p(BA)
=~ (0.1189. The first conclusion that can be extracted
from these results is that the scale-free networks are
more irregular than random networks with homogene-
ous degree distributions, which is a trivial conclusion
based on the proper definition of both kinds of net-
works. However, in particular the BA model is a poor
generator of such irregularity in graphs, which is able to
produce only about 12% of the irregularity of a star-like
graph. In addition, it can be clearly seen that the increa-
se of the average degree in scale-free graphs reduces the
irregularity. Thus, both degree distribution and average
degree play important roles in understanding the irregu-
larity of a network.

19)

5. Irregularity in Protein-protein

Interaction Networks

Here we study 10 protein-protein interaction (PPI)
networks. In these networks, nodes represent proteins and
undirected links represent the interaction between two
proteins determined experimentally. The networks studied
correspond to following organisms: D. melanogaster
(fruit fly),” Kaposi sarcoma herpes virus (KSHV),*® P
falciparum (malaria parasite),’! varicella zoster virus
(VZV),*® human,*? S. cerevisiae (yeast),33 A. fulgidus,34 H.
pylori,® C. elegans®® and B.subtilis.>” We study only the
largest (main) connected component of each of these net-
works, which ranges from 50 to 3039 proteins.

In Table 1 we give the values of irregularities of all
these PPIs together with the values calculated for random
networks with preferential attachment using BA model.

All networks display significantly larger irregularity than
the regular random networks. That is, all networks have
p(G)>> 0, which indicates that they have some kind of
fat-tail degree distributions characterized by very few
hubs that keep the whole network connected. In compa-
ring these networks with those generated at random using
BA preferential attachment we see that most of them dis-
play larger irregularity than the BA ones. In particular the
PPI of yeast, S. cerevisiae, displays a ratio p(G) / p(BA) =
1.74, followed by the human PPI with p(G) / p(BA) =
1.49.

Table 1. Irregularity of complex protein-protein interaction net-
works of several organisms.

No. Network n m  p(G) p(B/A) ratio
1 D. melanogaster 3039 3687 0.148 0.246 0.602
2 KSHV 50 118 0.151 0.246 0.614
3 P. falciparum 229 604 0.174 0.196 0.888
4 VZV 53 154 0.278 0.227 1.225
5 Human 2783 6007 0.283 0.190 1.489
6 S. cerevisiae 2224 6829 0.294 0.169 1.740
7 A. fulgidus 32 37 0308 0372 0.828
8 H. pylori 710 1396 0.323 0.205 1.576
9 C. elegans 314 363 0383 0.273 1.403
10  B. subtilis 84 98 0.386 0.309 1.249

Stumpf and Ingram*® have carried out a detailed
statistical analysis of the empirical data existing for the
yeast PPI showing that the best fit for the degree distribu-
tions are the stretched exponential followed by a lognor-
mal distribution. The same distribution is observed for H.
pylori.*® The stretched exponential distribution is also
known as the Weibull distribution and has the following
form:

. (#-1) i
p(k)=é(i] )

The PPI of C. elegans displayed a power-law degree
distribution and that of D. melanogaster was fit to a gam-
ma distribution.** Not all networks analyzed here were
previously discussed by Stumpf and Ingram. In addition
these authors do not study an exhaustive list of all possib-
le distributions for the networks analyzed. Then, it is diffi-
cult to obtain a parallel between both approaches. Accor-
ding to our irregularity measure, the PPI of D. melanoga-
ster appears as the least heterogeneous one while that of
C. elegans is the most irregular among those considered
by Stumpf and Ingram. What is clear here is that the cur-
rent approach allows a classification of networks accor-
ding to their irregularity, which is not possible by using
degree distributions when a variety of fits are considered.
In Fig. 3 we illustrate two of the smallest networks with
close to extreme values of irregularity, i.e., that of KSHV
and that of B.subtilis.

(20)
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Figure 3. Illustration of two protein-protein interaction networks with extreme values of irregularity. Top figure represents the network of KSHV

and the bottom one represents that of B. subtilis.

6. Ruminations

Since the seminal paper introducing the Randi¢ in-
dex was published in 1975, there have been many advan-
ces in the study and applications of networks and graph
theory to molecular sciences. Milan Randié¢ himself has
pioneered several of these forefronts of research in areas
such as characterization of molecular structure, chemin-
formatics and bioinformatics. However, the most impor-
tant contribution that the mentioned 1975 paper has done
is as a source of inspiration for several generations of
scientists. The current author is one of such examples who
found his way in sciences by studying that paper and ot-
hers that Milan Randic published on molecular graph the-
ory. These contributions, together with those of other pio-
neers of molecular graph theory, have paved the road of
the current development of network theory. Network theo-
ry is one of the most important ‘new’ areas of interdisci-
plinary research in 21th century, which is called to solve
important public health, technological, environmental as
well as socio-economical problems that confront human-
kind today.*®

There is a vast literature in mathematics and in che-
mistry about the Randi¢ index. Eminent mathematicians
like Erdos and Bollob4s® already paid attention to this in-
dex at the end of the 20th century. Gutman and others®'°
have found many extremal properties and bounds for this
index. Many chemists and biologists have found an im-
measurable amount of applications for this index.

The simplicity of the Randic index is astonishing:

R :%<k“

24

A| k)

Graham Farmelo has edited a selection of “Elegant
Formulae”,** which includes Einstein’s E = mc?,
Schrodinger’s H¥ = E'Y, Shannon’s I = —p log, p,, among
others. No doubt about the elegance, simplicity and im-
portance of all these formulae. Randi¢ equation is elegant,

simple and fundamental for understanding many proper-
ties of interaction networks. Only time will tell whether
‘Randié equation’ deserves a place among Farmelo’s “ele-
gant formulae”. In the meantime we continue exploring it
to discover new facts that support its inclusion.
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Nova formulacija Randicevega indeksa je izpeljana kot minimizacija kvadratne oblike, ki vkljucuje Laplaceovo matriko
grafa. Iz te formulacije je enostavno razvidno, da Randicev indeks lahko uporabimo za definicijo novega indeksa »ne-
pravilnosti«, ki je tukaj predstavljen. Potreba po novem nacinu $tudija nepravilnosti grafov se je pokazala pri obravnavi
kompleksnih bioloskih sistemov, predstavljenih v obliki mreZ. Analizirali smo Randiceve in »nepravilnostne« indekse
za naklju¢ne mreZe s Poissonovo in poten¢no porazdelitvijo. Nadalje smo analizirali nepravilnost desetih mreZ, ki pona-
zarjajo interakcije med proteini v razli¢nih organizmih, v obmocju med 50 in 3000 vozlis¢i. V zakljuénem razmisleku je

poudarjena eleganca in uporabnosti Randievega indeksa.
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