DATA FLOW BASED PARALLEL INFERENCE MACHINE

UDK 681.3.001:519.6

INFORMATICA 4/87

Jurij Silc and Borut Robi¢
Jozef Stefan Institute, Ljubljana

- Abstrant. Execution models of the data flow based parallel inference
machine for OR-parallel and AND-parallel Prolog and the experimental

machine architecture are presented.

It is shown that two types of

logic programeing languages with different aims can be supported on
this machine. The programs are compiled into data {lov program graphs

corresponding to machine language codes, Thus, paralleliss in the

program can be exploited naturally.

The machine is constructed from

© processing elements and structure memories interconnected through a
hierarchical network. The processing elements interpret the procedu-
res represented by the data flovw program graphs in parallel. Structu-
red data is distributed to structure memories and shared amang these

procedures.

Keyvords. Fifth generation computer systems, parallel inference aac-
hine, OR-parallel Prolog, AND-parallel Prolog, data flow mechanisa,

machine architecture.

1 Intraoduction

The Fifth Genaration Computer Systems
{FG(S) research and development aim is to build
a prototype of knowledge information processing
system capable of efficiently performing know-
ledge-based problem solving and inference. To-
ward this end, a ten-year period has been
assigned to the FGCS Project, and this period
has been further devided into three stagas.
The goal of the initial three-year stage is to
condyct basic research on individual system
components in order tc establish basie configu-
ration technology for subsystems vhich are -to
be realized in the intermediate four-year sta-
ge.

Fig. 1 shows what has bhecome known as the
"basic configuration image” of the fifth gene-
ration computer C1]. Looked at vertically, it
has a hardware layer, a software layer, and an
external interface to applications systems, as
might bte expected. Logked at horizontally, it
becomes clear that each aspect of the functioc-
nality of a fifth generation cosputer - problea
splving and inference, knou}edge base manage-
ment and intelligent interfacing - requires its
own hardware and software support mechanisas.

The parallel inference machine and knou=-
ledge base wmachine are the most Important
hardware components of the FGCS. In the FGCS
prototype to be completed as the final product
of the project, the two wamachines will be
integrated through a close link. In the initi-
al stage, however, research and development are
proceeding separately {for each machine vith
research themes separately ' determined, since
the initial stage mainly aims to conduct rese-
arch and development of individual component
technologies to estabiish the basic technalogy

for the hardware, called the inference suhS{-
stem and Xnowledge base subsystem to be build
in the intermediate stage C31.

2 Knovledge base and infersnce subsystess

Development of the FGCS hardvare and arc-
hitecture will include the implementation af
mechanisas for processing and controlling a
knowledge bhase and efficient execution of pro-
blem-solving and inference techniques with the-
se& mechanisms. The system will depend on
multiprocessing and parallel processing techni-
gues for which two objectives are criticat:

(1) Provide machines with the power to
handle the mnatural parallelism found in pro-
blems tackled by humans. The structure of a
problem and the neccessary processing for sol-
ving it cam be shown by rules controlled by an
inference aechanism. Thus a major goal of the
FGCS praject is to devise an executlon amodel
for the inference mechanisa and to determine a
way to configure it.

(2) Achieve high-speed parallel proces-
sing ecapable of supporting intelligent human
activities. For this requirement, the princi-
pal reseacch must be concentrated on knowledge
base processing algorithm to handle a large
nunber of facts as well as a mechanisa suppor-
ting the algorithm.

The inference subsystems, together . with
the - knowledge base subsystem, forms the kecnel
of the FGCS hardware [B). The ultimate aim of
the FGCS resecarch and developnent project is a
machine enabling the execution of parallel
inferences [3,7,91. In the followving we shall
describe some FGCE projeot "data flow directed”
efforts in designing such a machine.

High Levet
Enguiry Languoge

Core Language

Natural Longuage
Speech Picture

> =z

] Externol
interface
Knowledge Base Problem Solving & Intelligent L. of the Basic
Managment System Inference Systen Interface Systen Software
System
Basic
Knowledge Bose Problem Solving & Intelligent L Software
Managment System Inference Systenm Interface System System
ll -
Prohlem Solving &
Hardware
- System
Knowledge Base Inference Machine ‘ Inteligent
Machine Interface Mochine

i 7

{}

VLSI Archichecture

Fig. 1 The overall structure af a fifth generation computer.

3 Parallsl infersnce subsystes

Machine lanquage of parallel inference machine

In FGCS project, logic prograsming was
selected as a bridge ta fill the gap between a
highly parallel cosputer architecture and know-
ledge information processing. Several logic
programning languages, named kernel languages,
vhich define an abstract interface betveen the
hardware and the software, are beeing develo-
ped. The kecrnal language KLO is the machine
language of sequential inference machine fram
which a parallel versiom KL1 is beeing develo~
ped. KL1 is the the wmachine language of
parallel inference machime (2] including two
types of basic languages: AND-parallel Proleog
and OR~parallel Prolog C41.

In the execution of logic programs, a high
degree of parallelism can be implemented vith
use of AND-parallel and OR-parallel executions,
When OR-parallelism is applied alternative clo-
uses of the same goal are executed in parallel.
The altecnative clauses have identical initial
states and do not interfere with each other,
except faor possible concurrent lnitialization
attempts of a goal variable by multiple clau-
ses. On the other hand, in ANMD-parallelism the
conjunctive goals of a clause body are executed
in parallel. In general, the goals may share
varlables and thus interfere with each othec
when the shared variables are accessed concu-
rrently. AND-parallelism in logic programaing
involves the simultaneuos execution of subgeoals

in » clause, Whereas OR-parallelism atteapts
to achieve increased speed by investigating
many postible sclutions in parallel, AND-paral-
lelism attempts to achieve increased speed by
investigating the subparts of a particular
solution in parallel,

In conventional segquential Prolog the se-
arch and test operations (called wunifications)
are executed one by one, but parallel search
and test operations can be impleménted through
parallel machine acchitecture to obtain a high-
speed machine, A few sources of parallelisa
which can be distinguished for parallel execu-
tion of Prolog are AND parallelism, and OR
parallelism.

(1) OR-parallel Prolog. When a gaal 1i-
teral 6 is given, the definition of & is
invaoked. A clause C is then selected {rom the
definition, and unification of G and the head H
of the clause C is attempted. Generally, vhen
multiple clauses €1, €2, .»+ Cn exist in the
definition, wunification of G and each H1, HZ,
v+ Hn cam be executed in parallel. A unit
clause Ci that is successfully unified with G

‘returns the splution(s). A nonunit clause (j

initiates the next wunification, treating its
body as a new goal statement, and waits for the
solutions. The resulting solutions of the goal
6 are merged into streams by stream aerging
primitives <{(in the order in vwvhich they are
obtained) and then ceturned to the goal. Thus,
OR-parallel Prolog is suitable for the clas of
"search-for-all-splutions" probleas.

An example o! OR-parallel Prolog is Paral-
lel Prolog T4,

(2) AND-parallel
expressed as 61 AND 62 AND ...
AND-parallelism can be wused to
conditions for 311 1literals 6i in parallel.
The goal statement is satisfied only wvhen
solutions are found for all the literals Gi and
there is no inconsistency between these soluti-
ons. The consistency checking is easy or evan
unnecessary in cases when the.goal literals Gi
have no wunbound variables shared agrong AND
protesses, or Wwhere shared variables are bound
to the ground instances before invocations of
these Titerals.

Several 1languages have been proposed to
realize AND-parallelism. They include PARLOG,
Concurrent Prolog, and &HC (Guarded Horn (lau-
ses) [4,51.

Prolag. When a goal is
AND @e,

search for

Mechanisms of parallel i e

Various mechanisms of parallel inference
and architectures based an those mechanisms are
beeing studied: data flow mechanism, reduction
mechanisa, complete-copying mechanism and, cla-
use unit processing mechanism., In what follows
we shall briefly describe these four mechanisms
€al:

. €1) Data {flow mechanisam. In the data
flow concept, execution starts when data neces-
sary faor the execution arrived. This caoncept
can result in parallelism regardless of whether

it is explicitly indicated in the ptograas.
This sechanism executes kernel language pro-
grams in parallel based on the data flow
concept. i

€2} PReduction mechanism. When eaxecuted,

an OR-parallel and AND-parallel Prolog program
generates resolvents from & goal and clause,
This can be rvegarded as a process in which a
goal modifies itself using a clause as a rule.
The reduction mechanism can also be viewed as 8
kind o! self-modification. Thus, there is 4
close similarity between the execution of OR-
parallel and AND-parallel Prolog programs and
the reduction mechanism. Accordingly, the re-
duction mechanism was selected far a wmachine
architectura that executes OR-parallel and AND-
parallel Prolog programs.

(3) Complete-copying mechanism.
te-copying is type of reduction mechanisa.
Even if a pracess includes several literals
{subgoals) and only aone literal (subgoal} is
reducible, the whole procass is copied and
transferred to & unit that executes the unifi-
cation process. This increases the number of
copies and the length af a packet im the
network, while enhancing the independence of
each process.

{4) Clause unit processing mechanism. 1In
response to a reguest from an idle processing
unit, a busy processing unit sends a process,
Thus, this mechanisa can avoid an explosion of
resource requests. However, it takes time for
all praocessing units to become busy.

Comple-

Y Data {lov based infersnce sachine

The parallel inference
data {low mechanism (PIM-D) is naturally well
suited to parallel procesing becouse the data
flow mechanism is closely related to functional
languages.

machine based on

Data flow computation ,..

Programs in the data flow eodel are repre-
sented by data flow graphs, nodes correspond to

operators and directed arcs correspond to data
paths along which operands are sent. An opera-
tor i5s deiven by operand arrivals from its

input arcs, and it outputs the result operands
to its output arcs without affecting the other

29.

functionality of
functio-

operators’ executian. This
operators has olose similarity to the
nal languaqes.

roe and logi o ampin

Execution of logic programs is performesd
in a goal-driven manner: a clause in the
programs is initiated when a goal is given and
returns the solutions to the goal. Logic
programming languages @ake use of the unifica-

tion operation, which is one of their basic
functiaons. Nondeterminism is another basic
feature of these languagesjy in pacticular,
"dan't-knav nondeterminism® is required for

OR-parallel Prolog, while “don't-care nondeter-
minisa" is regquired for AND-parallel Prolog.
The data flow model is also similar to logic
programming languages such as OR-paraliel and
AND-parallel ' Prolog. The pograms written in
OR-parallel or AND-parallel Prolog are compiled
into data flow graphs. ’

Implementation of GHC

GHC was selected as a basic language " of
KL% becouse it has eclearer semantics and provi-
des more efficient implementation than .Concu-
rrent Prolog, and it has more poweriul descrip-

tive power than PARLOG, G6HC programs consist
af guarded clauses such as!

H :- G1, 62y .+sy Gm | B1, BZ, ..., Bn.
where, H, Bi, and B} are head, guard and body
literals, respectively and "“I" is oalled a
cammit operator. When a goal literal is given

each definition clause is invoked and a semap-
hore flag shared among these clauses is ‘grea-
ted. Unifjcation is attempted between the head
literal and the given goal literal and if it
succeeds then the guard literals are invoked as

the new goal literals. Only the clause whose
guard literals succed {first can execute its
body; i.e. the clause whose guard sucgeeds

perforas a test-and-set operation to the shared
semaphore flag. If the result of this operati-
on 1is also successful, the clause can execute
its body; processing of the other clauses is
terminated. Thus, one clause is exclusively
selected faor a given goal from all the clauses
whose guards succeeded. There are several
implementation schemes to support the guard
mechanism in GHC C&J: :

(1) Complete compilation scheme. 'All the
unification directions are analysed in coapila-
tion time and codes are generated using unidi-
rectiaonal unmification primitives. In this
scheme the compiler is complicated.

(2) System number scheme. All the envi-
conments are managed by guard system nusbers.
4 new guard system number is allocated, vhen a
new definition is invoked and is restored to
its parent number when the coamit opecator is
executed. The guard numbers are associated with
all the wvariables included in the jinvoked
cltauses and the invironment to which each
variable belongs is compared with the current
environment when unification to the variable is
attempted.

{3) Pointer colaring scheme, The pointecr
cvoloring scheme distinguishes variables belon-
ging to the goal literals from those belanging
to the current guard by caloring.lf unification

is attempted between a goal variable and a
varliable in the invoked clause, the callee’s
variable is changed to a colored variable,

which points to the original variables. If H
colored wvariable is wunified with a term, the
instance bound to the variable is read before
unification. The commit operator cvestores the
colored variables to their original variables.

30

(4) Read-only tagging scheme. This sche- the
me is an extension of the pointer coloring
scheme, in which every varlable has a tag
specifying its read-only level. The read-only

right side of the "=" operatar. The "{="
aperator specifies a procedure "app" invocation
MACTO. The ‘“wait_instance" instruction reads

the instance of the first goal acgument which

levels of the goal variables are incramented by is passed along the input path "acgi*. 1f the

one before the definitions are invoked, and cal argument is an unbound variable it is
decremented by one when the commit operator of 3 9 :

" Y P suspended until the variable is instantliated

each invoked eclause succeeds, . ("uarg1“}). This operation will need remote

access Lf the variable cells are distributed

aover the memory units in the system. Then, the

Translation from GHC program into the "switch_by_type™ instructions switeh all the

d low gragh goal arguments according to the first acgument

"uargi®. If the (first argqument is nil, they

put their left operands on their first destina-

tions, otherwise (if “uargt" is a 1ist) they

put thelr left agperands on the second destina-

We shall illustate the translation from a
given GHC program into the corresponding data
flow graph. Let wus have a saaple program
written in GHC (Fig, 2). It is a list-append

tions., Thus, one of the subsequent sagments is
prugr;m uhlcht a¥p::dsha élfftspefléie:hby th: invoked axclasivaly. The “wrl:e_instance" in-
second arqument o e hea era 0 e en t 5
of the list specified by the first argusent. struction tries to unify its two operands and

{ G2E BOUREX PRISRKL !

apnal([],Y,2Z):-true;zZ:Y.
APNO([H!X)}, Y, Z):-true!Z:=[H!IZ1),apned(X,Y, 2},

Fig. 2 GHC source prograa,

{ ESMPILEE EBOBX)

ret«<zappliargi,arg2,args3).

begin.

{ CLAUSE IKDEXING 1}
uargizwait_Jlnxtance{argi).
fargi_L,argi_R)=switch__by_type(uargi,uargi).
(arg2_L,arg2_R):=switeh_by_typelarg2,uargi).
(arg3_L.,arg3 _R)=switch_by_type{arg3d,uargi).
(ret_i,ret_2)-switch_by_typa(ret,uargt).

I COMFILED CODE OF THE FIRST CLAUSE)
resizerite_lastance{argd3_L,arg2_L).
return{resi,ret_1).

{ COMPILED CODE OF THE SECOND CLAUSE)
(Pi,p2)zdecompoge_tist(arg!i_R).
Pizcreate_glooal_var(argi_R),
Pldz=conu_Jist(pi,pl).
pPS=write__instance(arg? _R,p4).
péc<=app{p2,arg2_R,p3).
res2:checM_consistency(pSs,p6}.
return{res2,ret_2).

end.
Fig. 3 Compiled code.
The resulting list is unified with the third if gne of them is a varliable, it will instanti-
argument. The compiled code 1is depicted in ate the variable to another operand. 1n the
Fig. 3. The first statement of the compiled second clause af the source prograam, there is a
code specifies the procedure name “app" and its variable "21" in the tody vhich does not appear
arguments "arg1", "arg2", and "arg3". The ~ in the guard, For such a variable, the ‘“crea-
pocedure body is enclosed by “begin® and “end" te_global_var" instruction creates a nev varia-
statements and consists of three segments. The ble cell and initializes it. Two body literals
second and the third segment are compiled codes in the body of the second source clause :111 be
of the {irst and second source clause, respec- executed in parailel. The first is the “"vwrite-
tively. The role of the first segment is tao _instance” instruction and the other is the
decide which of the subsequent segments should recursive invocation of the predicate. The
be invoked. Each body statement correspands to “check_consistency” instruction tests their ce-
a node in the data flow graph. The left side sults whether they terminated successfully.
of the “=* operator specifies destination paths The data flow progras graph representation of

for the results of the instuction specified by the compiled code is shown in Fig. 4.

N

argf

arg2 org3

walt_Instance

uargl

switch
by _type

argl_R argZ2_L

decompose create
list ‘\ global_vor
pl p2 p3

const_list

switch
by_type

Invoke ‘app’

. write
Instance

p3

check
consistency

return

write
Instance

resl

return

L

Invoke ‘“app

ret

Fig. 4 Data flow graph representation of the compiled code.

Machine architecture

Abstract machine architecture. The machi-
ne can exploit QR and AND-parallelism as well
a8s pearallelism in unificstion. In head unifi-
cation, if both literals consist of aultiple
arguments, or if both arguments are structured
data, the unification of these argusents or
their substructures can be executed in paral-
lel. The machine is construtted from multiple

processing elements and multiple structure me-
mories interconnected by networks. The ab-
stract machine architecture is shown by Fig. &
C41.

Experiasntal wmachine. The experimental
machine is constructed from multiple processing
elenent modules (PEs) and wamultiple structure

" memory modules (8Ms) interconnected through a
hierarchial network as shown in Fig. & U5,41.
There are several hievarchy levels in the

processing processing
element element
NETWORK
structure structure
memor? memory

Flg. S The abstract machine architecture.

interconnection network. Each PE has its local
bus, Four PEs and four SMs are lnterconnected
by an inter-module network bus. A set of these
modules is called s cluster. Several clusters
are futher interconnected by an inter-cluster
network hus. The hacrdware specification for
these interconnection husses are the same, and
they are called T-busses (token busses).

Actual i{mplementation of the experimental
machine includes two clusters and is currently
being expanded to four clusters. 0f these
clusters, one is specialized, having one SM
repleced by a host processor (VAX-11/730),
which is used to initialize or monitor the
system.

PE..processing element

Packet formats. Each PE has several sta-
ges in order to implement pipelined ar parallel
executian, Packets transferred betwveen these
stages include result packets and executable
instruction packets.

A resul packet {(a token which is sent
along the directed arc in the prograa graph),
consiets af three tields:

(1) The activity identifier (16 bits)
specifies the lnvoked gpirocedure instance naame
to which the result packet belong.

(2) The destination field (24 bits) spa=-
cifies the address of the destinatien instruc-
tion (a nade in the data flow graph) of the
result packets. It also includes twe bits for
additional information; one specifies whether
the destined instruction receives one or two
operands, and the other specifies whether the
operand is a left or right aperand.

(3) The data field (32 bits} contains the
operand datas to be send to the imstructian.
The machine uses a tagging scheme, in which
each operand has a value field (25 bits) and
tag field (7 bits}, which specifies the data
type of the operand. 1f the operand ls a
structured data, the value field has a pointer
to the structure aemory (5-bit madule nuasber
and a 20-bit local address in meanry), and tag
tield is further divided inta two subfield: a
data type subfield, which specifies the data
type of structure (i.e., 1ist, vectar, ...) and
2 attribute subfield. The attribute subfield
contains a non-ground {flag, which indicates
whather the structure has any simple variables.
The attribute eubfield alsoc contains a shared
flag, which indicates whether the structure has
any shared-type variables (l.e., shared varia-
bles, global wvariables, opr read-only varia-
bles). The machine recognizes the tag field af
the operand and transfers control to the appro-
priate firmvare routine.

An executable instruction packet consists
af five fields:

¢1) The current instruction address (20
bits) indicates the instruction address to be
executed and i{s used to obtain the destination

SM.stiructure memory <i_
NN..network node

T-BUS

c

CLUSTER 1
< T-BUS >
..... E{g |_:~_||_][_|

PE 1 PE 4 SM 1 SM 4

CLUSTER 8

Fig. & donfiguration af the experimental machine.

address from the destination specifier field as
dascribed belaw.

(2 The operation code {field (8 bits)
specifies the operation to be executed,

(3 The left gperand (32 bits),

(4) The right operand {32 bits).

(8) The destination specifier field (48
bits) specifies the destination addresses af
the results, There are two modes to speciiy
the destination addresses in the destination
specifier fieldy in the full destinatiaon eode
the specifier field contains up to two destina-
tians (each of them is 24-bit length), and in
the short destination mode the specifier field
contains wup ta {four destinations, where each
destimation is of 12-bit 1length and contains
the relative addresses {rom the current in-
struction. The relative addresses are added to
the current instructiaon address to obtain the
absolute addresses.

frocessing elesent module. Fig. 7 depicts
the configuration of each PE, The stages in a
PE include a packsd gqueue unit (PQUY, an
instruction control unit (ICU), several atoaic
processing units (APUs), and a network node
(NN These {unctional wnits have their own
controllers and are operative imn a pipelined
manner. Packet transmission via T-bus is con-
trolled by a NN, which has nine-to-one arbiter
to arbitrate the requests fram its lover level
units and from its higher level bus. The PE
has a local memory unit (LMU}, which is used to
store local data such as activity manegement
information, and is shared and accessible fram
APUs. PRU is a FIFO queue memory to store the
result packets from the T-bus., ICU recelves
the result packets fram PGU and checks {f the
destination instructions are executable or not.
An instruction is executable if It receivas a

< | T-BUS)

A A PQU
P P h
u u

u
1 2 ICU

< I-BUS >

APU..atomic processing wunit
PQU..packet queue unit
ICU.instruction control untt
LMy..local memory unit
T-BUS..token bus
I-BUS..instruction bus

Fig. 7 Confiquration of a processing element.

single operand, or if the partner operand is
already in the operand memory (OM) in the ICY
when it receives two operands. 1In the later
case, the ICU searches in its OM whether the
partner operand exists or not, If it does, the
partner is removed frum the memory; otherwvise,
the result packet ics stored in the OM., This
searching is performed associatively by hardwa-

re hash using the identifier and the destinati-
on address as the key field. If the instructi-
on is executable, the 1CU fetches the instruc-
tion code in its instruction memory (IM) and
congtructs an executable instruction packet and
sends the packet to the next stage, one of APUs

via the instruction bus (I-bus). The APU
interprets the instruction packets and sends
result packets to the PQU in its PE or other
PEs, or sends structure acoess comand packets
ta SMs via the token bus,

Structure aesory aodule. The SMs are
responsible for the structure access caammands,
pecform structure manipulation operatians, and
return results to the destination specified by
the cammands, Each €M consists of an structure
processing unit (SPU) and structure memsory unit
(§MU) for storing the structured -data (Fig. &).
The SPUs receive the structure manipulation
commands from the APUs and interpret them. If
the commands need 4the responses, hev result
packets are created and sent back to the PEs.
Such commands include read commands, meaory
allocation commands, and so on.

A
< T-BUS >
I I
S s
P M
u U

SPU..structure processing unit
SMU..structure memory unit
T-BUS..token bus

Fig. 8 Configuration of a structure memory.

The specification and typical processing
times of the various units are given in Table 1
and Table Z, respactively.

Table 1 Specitfication af the units.

————— o ————— - o +
! unit | specification® 1
L e e et e——— m———————— ,emme—mm———— +
| IP&UI FIFD size: 18Kw % 8&b (14K tokens))
I TICUI IM size: F4Kw x 59b (94K instr.)|
IPEI I OM sizet 32Kw x b4b (32K tokens)|
1 1aPU micro store: 1Kw x 3220 ROM $
| S | TKw x 32b RAM |
I ILMUI memory &size: S512Kw x 32b {
o am e e S e e L A e +
I ISPUI micro store: 1Kw x 32b ROM 1
I SM) Y TKw % 32b RAM !
I ISMU! memory size: iMw x 34b (data, tags?!
[S 1 512Kw x 10b (ref. count)!
o e o e e e e e e e e e e
I NN | FIFO size: &4w x Bbb (&4 tokens) |
omm———— A e e e e e +

Tabla 2 Typical processing times of the units.

1PGUI packet receive

l | delay in queue

1ICUt single operand instruction
t | two operand instruction
(on arrival of 1st operand)
tvo operand instruction
(on acrival of 2nd operand)
"copy" instruction

8M-read operation
SM-write operation
packet receive
packet send

o e o A s e o e e 8 ———

* in machine cycles

F o e i o e e o o =

+

1

1

L

[}

i

i
oim e o — o ew omm m e —

5 Conocluding points

Striking progress in computer technology
has given wus single-chip computers whose pro-
cessing pover far exceeds that of the first-ge-
neration computers. There are also variaus
high-level languages, operating systems; and
data-base systeas. As a result, programs f{or
almost any kind of application can be written,
provided that their algocithms can explicitly
be described. This means that computers can
replace people in many areas because of their
high-speed processing and large memory capabi-
lity. However, there remain many application
fields with hard~to-solve problems, One such
is the knowledge-information processing field,
where FGCE are expected te play an important
role.

A machine to cope with knowledge~informa-
tion processing should support extensive stora-
ge of datz and high-speed inference using the
data. Up to now, inference procesing has
involved implementing functional and logic pro-
gramming languages on caonventional sequential
computers, However, the need for processing
pover of new applications in knowledge-inforaea-
tion processing may exceed the capabilities of
sequantial computers.

PODATKOVNO

PRETOKGVNIL

The architecture of paratlel inference
mechine makes it a possible candidate for
caping with such processing requirements. Coa-
puter architectures proposed for parallel infe-
rence machines include the high-level 1language
machine C103 as well as the data flow machine.

& Literature

£13 P. Bishop, Fifth generation conapu-
ters: oconcepts, implementations and uses, (El-
1lis Horwood, 1984).

€21 K. Furukawa, T. Yokoi, Basic soft-
warea system, in: 1COT, ed., Proc. Int’'l Cont.
Fifth Gener. Comp. Systemg 1984, (North-Hol-
land, 1984) 37-57.

3] L. 0. Hertzberger, R. P. Van De
Riet, Progress in the fifth generation inferen-
ce architectures, Future Generation Computer
Systems 1 (2) (1984) 93-102.

C4) N. Ito, H. Shimizu, M. Kishi, E.
Kuna, K. Rokusawa, Data-~flow based execution
mechanisas of Pacallel and Concurrent PFrolog,
New Generation Computing 3 (3) (1985) 15-41.

€51 N. l1to, "H. Kishi, E. Kuno, K.
Rokusawa, The dataflow-basad parallel inference
machine to support two basic languages in KL1,
in: J.v. Woods, ed., Fifth Gener. Comp.
Architectures, {(North-Holland, 198&) 123-445.

C&41 N, Ito, M. Sato, E. Kuno, K.
Rokusawa, The architecture and grelieinary eva-
luation results of the experimental parallel
inference machine PIM-D, Proc. 13th Int’l
Symp. Comp. Acch., (IEEE, 19B&) 149-15é.

€7l T. Moto-oka, H. Tanaka, H. .Aida,
K. Hirata, T. Murayama, The architecture of a
parallel interence engine - PIE, in: ICOT, ed.,
Prae. Int’]l Conf. Fifth Gener. Coamp. Syst~
hemns 1984, (MNorth-HMolland, 1984) 479-488,

Cal K. Murakami, T. Kakuta, R. Onai,
Architectures and hardware systems: parallel
inference machine and knowledge base machine,
in: 10T, ed., Proc. Int’l fonf. Fifth Gener.
Comp. Systems 1984, (North-Holland, 1984}
18-35.

£9) K. HMurakami, T. Kakuta, R. Onai,
N. 1to, Research on parallel machine architec-
ture for fifth-generation computer systees,
Computer 1B (&) (1985) 74&-92.

€101 H. Tamnaka, A parallel inference mac-
hine, Computer 49 (5) (1984) &48-54.

PARALELNL STROJ 1A

BKLEPANJE. V #lanku je predstavljen paralelni

stroj za sklepanje, ki
fzvelevanju
gtroj podpira izvrdevanje

pretokovnen

temaljl na podatkevno

logittnih pragrasov.
logi&nih prograsov,

zapisanih v OR ali AND-paralelnem Prolagu (Pa-
rallel Prolog, PARLOG, Concurrent Prolog, GHC).
Tak8ni programl se prevedejo v podatkavno pre-
tokovne pragramske grafe, ki ustrezajo strojne-

mu jeziku. Podan

primec transformacije

programa, zapisanega v jeziku 6HC, v ustrezni

podatkovne gpretakovni
tektura stroja obsega

programski graf. Archi-
procesne elemente ter

strukturne pomnilnike, ki jih povezuje hierar-
hina ace?a. Procesni elementl izvrbujejo dele
programskegs grafa soBasno, pri #emer si delijo

podatke, zaplsane v

strukturnih poaniltnikih,

Padan so tudi prostorske in fasovne rahteve
posameznih komponent arhitekture. :

